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Jorge Figueroa-Zúñiga Universidad de Concepción, Chile

Isabel Fraga Universidade de Lisboa, Portugal

Manuel Galea Pontificia Universidad Católica de Chile
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Abstract

Count data emerge naturally within the biomedical and economic sciences, in engi-
neering and in industrial applications. The benchmark Poisson distribution is seldom
an appropriate statistical model for counts but none of the more flexible distributions
available are universally accepted as an alternative. Among such flexible models, the
class of weighted Poisson distributions has recently been studied in theoretical inves-
tigations but their application is still incipient. This article investigates a particular
weighted Poisson model, providing the associated statistical tools for analyzing count
data. We make comparisons with other flexible models using public available datasets.
For the weighted Poisson model under investigation, we have developed estimation by
maximum likelihood and method of moments, random number generation, visual tools
for univariate analysis and finally, regression modeling. Results indicate that weighted
Poisson distributions are very flexible and capable of modeling count responses in dif-
ferent scenarios.

Keywords: Generalized linear models · Overdispersion · Quasi-likelihood · Touchard
· Underdispersion

Mathematics Subject Classification: Primary MSC 62J12 · Secondary MSC
62Fxx

1. Introduction

The Poisson model is the default for analyzing statistically independent counts, such as
number of insurance claims and days of hospitalization, and it should provide an adequate
fit when data come from a population with mean equal to the variance (equidispersion).
However, count data often exhibit over or underdispersion and several distributions have
been proposed for modeling counts. The most documented alternatives to the Poisson distri-
bution are the quasi-Poisson (QP) model, the negative binomial (NB) and, to a lesser extent,
the generalized Poisson (GP) (Cameron and Trivedi, 1998; Hilbe, 2014). Less popular mod-
els include the Poisson-inverse Gaussian, the compound Poisson, the hyper Poisson, the
Poisson-Lindley, the Conway-Maxwell-Poisson (CMP) and the weighted Poisson (WP); see
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Matsushita et al. (2018) and references therein. More complex models include the Poisson-
Goncharov (Denuit, 1997), the Hinde-Demétrio family by Kokonendji et al. (2004) and a
four-parameter extension of the CMP by Chakraborty and Imoto (2016). It is a long, yet
incomplete, list and no single model dominates all others since there are multiple interre-
lated criteria for judging a given model. One might consider, in his own order of importance:
(i) the model’s ability to address varying levels in both directions of dispersion; (ii) math-
ematical and computational tractability; (iii) whether the model generalizes the Poisson;
(iv) if the model arises naturally in some observable process like natural phenomena or in
connection with a stochastic process of broad applicability; (v) if the model is a member of
the exponential family (EF); (vi) availability of estimation and visualization tools for data
analysis; (vii) availability of associated regression tools and interpretability of coe�cients;
(viii) applicability in a specific field (say, actuarial modeling of claim counts or econometric
modeling of health insurance, etc.) and (ix) applicability across many disciplines.

Theoretical aspects of WP distributions, covering much of (i)–(v), have been studied by
several authors (del Castillo and Pérez-Casany, 1998; del Castillo and Pérez-Casany, 2005;
Kokonendji et al., 2008; Matsushita et al., 2018). However, the statistical toolbox for WP
models still lacks several important tools. This paper focuses on a particular WP model
which we call the Touchard model introduced by del Castillo and Pérez-Casany (1998).
Ho et al. (ress) present simulation showing the e�ect of misspecifying the model (Poisson
instead of Touchard) in the context of control charts.

In Section 2 we describe the methodological background of WP distributions including
the Touchard. New results for the Touchard model are given in the Appendix A-D. Section
3 develops tools for univariate estimation, inference and visualization. Finally, regression
modeling is addressed in Section 4 where we develop estimation, inference and diagnostic
tools similar to those in generalized linear models (GLMs). Section 5 concludes the paper.

All computations and graphics presented here were done in the R system and all the
required code will be included in the next release of the publicly available package (Andrade
and Oliveira, 2019) which, so far, only deals with fixed a.

2. Weighted Poisson models

Weighted distributions date back to Fisher (1934) and have been used to adjust a given
benchmark model relative to the way the data are ascertained (Rao, 1985). The adjusted
distribution is used to model observational data recorded without a suitable sampling frame
including situations such as size-biased sampling, damage models, nonresponse and visibility
bias (Patil and Rao, 1978). Under idealized conditions, an observed value y would be a
realization of a benchmark random variable Y ú. (For instance, one can think that the number
of insurance claims would be Poisson distributed if there were no hunger for bonus (deliberate
non-reporting of accidents to save bonus on next premium), if all drivers were insured (no
selection bias), if all (insured) drivers were subjected to the same routes and same driving
distances, etc. However, not only policies are not randomly drawn with a proper sampling
frame but also the conditions just listed are not met. The result is a distribution of claims
biased towards 0 and 1.) However, the benchmark may need to be adjusted so that its
support is reweighted according to the belief that when the event Y = y is realized, the
probability of ascertaining it is w(y). Thus, the realization y is, in fact, from a weighted
version Y with probability density function f(y) = w(y)fú(y)/· , where fú is the benchmark
density and · is the normalization constant.

When modeling counts, the benchmark density is often Poisson, fú(y) = e
≠⁄⁄y/y!, leading

to the general class of WP distributions which we denote by WP(⁄; w(y)). The model WP(⁄;
y) is known as the size-biased Poisson model and its distribution is simply 1 + Poi(⁄).
Another important model is WP(⁄; (y!)‹), for ‹ > 0, which is the CMP distribution.
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We also note that important models such as the NB and the GP are not members of
the WP(⁄; w(y)) class. Interestingly, the NB distribution is a Poisson-Gamma mixture, in
which the parameter space of the Poisson is weighted, rather than its support.

A family within the WP(⁄; w(y)) class is obtained with w(y) = exp[”t(y)], where t
is a convex function and ” œ R provides overdispersion (” < 0), Poissoness (” = 0) or
underdispersion (” > 0). We denote this family by WP(⁄, ”; t). Kokonendji et al. (2008)
showed, among other theoretical aspects, that such WP models are pointwise dual in the
sense that the entire range of ” is guaranteed to account for either over or underdispersion
of the same magnitude.

An important member in the WP(⁄, ”; t(y)) family is the one with t(y) = log(y + a), for
a Ø 0 (del Castillo and Pérez-Casany, 1998). Also, del Castillo and Pérez-Casany (2005)
fitted this model (with fixed a = 7) to the counts of car accidents in a year among 9461
drivers. We have fitted the WP(⁄, ”; log(y + a)) model to di�erent datasets and results
indicate that it is a strong competitor for both under and overdispersed cases; see Table 2.

2.1 The Touchard distribution redefined

The WP(⁄, ”; log(y +1)) model has been recently studied by Matsushita et al. (2018) where
the choice of a = 1 was inspired by the Touchard polynomials, rather than by weighting
schemes. Those authors have labeled it the Touchard distribution, which we redefine. Note
that del Castillo and Pérez-Casany (1998) denoted the WP(⁄, ”; log(y+a)) model by WPDa,
since a is a fixed tuning parameter. The resulting two-parameter model is more tractable
both mathematically and computationally but it is not justifiable for actual data analysis
across di�erent disciplines. In order to distinguish the WPDa model from the general case,
which allows for choices of w(y) other than (y +a)”, and also to avoid confusion with the use
of weights (in the context of regression), we hereafter call the WP(⁄, ”; log(y + a)) model
the Touchard model and denote Y ≥ Tou(⁄, ”, a). Its probability density function is given
by

f(y, ⁄, ”, a) = ⁄y(y + a)”

y!·(⁄, ”, a) , y = 0, 1, . . . , (1)

with a, ⁄ > 0 and ” œ R. Note that if ” ”= 0 then a = 0 can be considered, in which case
P(Y = 0) = 0. We do not consider this case here.

Numerical evaluation of the normalization constant ·(⁄, ”, a) can be done by truncation
of its defining sum. The number of terms required to reach a given precision depends on the
parameter values. Even though 50 terms su�ce in most cases (Matsushita et al., 2018, Table
1), · can be computed with a pre-specified relative precision, without fixing the truncation
point, using a recursive expression similar to the formula given in (10) of Matsushita et al.
(2018); see also Appendix A.

The values of a and ” jointly determine the shape of the distribution. With ” < 0, the
smaller a is, the more the distribution is inflated at zero and the resulting model becomes
an alternative to zero-inflated and hurdle models. Larger values of a provide milder zero
inflation for given ”. With ” > 0, the smaller a is, the more the distribution is deflated
at zero relative to the Poisson. Larger values of a descrease the zero deflation, making the
distribution closer to Poisson. Figure 1 illustrates these facts for some selected values of the
parameters.
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From now on, we define ·j(⁄, ”, a) = ·(⁄, ” + j, a)/·(⁄, ”, a). Statistical moments mk =
E(Y k) are given by (del Castillo and Pérez-Casany, 1998)

mk =
kÿ

j=0

A
k

j

B

(≠1)k≠j·j(⁄, ”, a), (2)

yielding the mean given by

µ = ·1(⁄, ”, a) ≠ a, (3)

and the variance stated as

‡2 = ·2(⁄, ”, a) ≠ · 2
1 (⁄, ”, a). (4)

Touchard quantiles may be calculated with an initial approximation based on the Cornish-
Fisher expansion (using up to m3) followed by a search in the appropriate direction as
implemented in Andrade and Oliveira (2019).
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Figure 1. Examples of WP (Touchard) probabilities with ⁄ = 1, ” = ±3 and a = 0.5, 1, 5 and 10. Circles represent
Poisson probabilities with ⁄ = 1.

Exact (or approximate) results for the variance as a function of the mean are given in
Table 1 for four models of interest besides the Touchard: the two usual benchmarks, QP
and NB, and the CMP and GP which are well documented in the literature and which have
been implemented for data analysis in the R system, including regression. The QP, NB and
GP exhibit polynomial relations between their means and variances with linear, quadratic
and cubic relations, respectively. As opposed to these models, the di�erence between the
mean and the variance in the Touchard and in the CMP models are constant for large
enough µ. Figure 2 illustrates the mean-variance relation for the Touchard model with
di�erent parameter values. The larger |”|, the further away the curve (µ, ‡2) is from the 45¶

diagonal (equidispersion). Larger values of a bring the curve closer to the diagonal and it
also decreases the initial curvature. The curvature is a lot more sensible to the value of a
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and the magnitude of ” in the overdispersed cases (” < 0). Therefore, it must be noted that
even though the mean and variance are not explicit parameters, the Touchard model can
be implicitly reparametrized by the mean and the variance (del Castillo and Pérez-Casany,
2005).

Table 1. Mean-variance relations for selected models.

QP(µ, Ï) NB(µ, –) GP(µ, –) Tou(⁄, ”, a) CMP(⁄, ‹)
‡2 Ïµ µ + –µ2 µ(1 + –µ)2 ¥ µ ≠ ”
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Figure 2. Variance as a function of the mean for Touchard models with arbitrary parameter values. Dotted line on
diagonal represents the Poisson ‡2 = µ.

3. Estimation, testing and visualization

Here, we describe estimation and testing for the Touchard parameters via maximum likeli-
hood (ML) method of moment method (MM). Conditions for consistency and normal-based
large-sample inference require the support to be independent of the parameters, identifia-
bility and bounds on third derivatives (Lehmann and Casella, 1998, Sec. 6.5). We provide a
proof of identifiability in Appendix B. With a fixed, the Touchard distribution is a member
of the two-dimensional EF with su�cient statistics Y and Z = log(Y + a) and natural
parameters log(⁄) and ”. For instance, we already know that ˆ3 log(f(y))/(ˆ⁄2ˆ”) must be
bounded by some M(Y ) with finite expectation. Therefore, we only need to check third-
order derivatives of the log-likelihood involving a. These derivates involve (finite) moments
of Y , Z and (Y + a)≠k, for k Æ 3, and therefore satisfy the necessary conditions.
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3.1 Maximum likelihood estimation

Given a random sample (Y1, . . . , Yn) with observations (y1, . . . , yn), the ML estimates ‚⁄, ‚”
and ‚a must satisfy the conditions stated as

Y
__]

__[

µ(‚⁄, ‚”, ‚a) ≠ ȳ = 0,

Ÿ(‚⁄, ‚”, ‚a) ≠ z̄ = 0,

◊1(‚⁄, ‚”, ‚a) ≠ w̄1 = 0,

where Ÿ(⁄, ”, a) © E(Z), Wj = (Y + a)≠j and ◊j(⁄, ”, a) © E(Wj).
Using results from Appendix C, it can be shown that the expected Fisher information is

given by

I(⁄, ”, a) = n

Q

cccca

‡2

⁄2
Cov(Y, Z)

⁄

” Cov(Y, W1)
⁄

Var(Z) ” Cov(Z, W1)

”2 Var(W1) + ”(W2 ≠ ◊2)

R

ddddb
.

Standard errors (SEs) of ML estimators are computed from the diagonal of I≠1(‚⁄, ‚”, ‚a) or
from the inverse of observed Fisher information which is often produced by (Newton-type)
numerical maximization routines.

3.2 Method of moments

Based on the expression given in Equation (2), the moment conditions for the MM estimators
are expressed as

Y
__]

__[

µ(‚⁄, ‚”, ‚a) ≠ ȳ = 0,

m2(‚⁄, ‚”, ‚a) ≠ 1
n

q
y2

i = 0,

m3(‚⁄, ‚”, ‚a) ≠ 1
n

q
y3

i = 0.

SEs are obtained from the diagonal of a sandwich estimate of the asymptotic variance,
n ‚G€„V ≠1 ‚G≠1, where ‚G is a consistent estimator of the expected value of the gradient
associated with the moment conditions and „V consistently estimates the associated expected
Hessian (Cameron and Trivedi, 1998, Sec. 2.8.4).

3.3 Score test

A score test for H0: ” = 0 is based on fitting the Poisson model, which is the distribution
under the null hypothesis. Define ‹(⁄, ”, a) © Var(Z) and fl(⁄, ”, a) © Corr(Y, Z). Evaluation
under H0, in which case ‚⁄ = ȳ and ” = 0, is represented by a subscript zero (0). The resulting
test statistic is stated as

S = n(z̄ ≠ Ÿ0)2

‹0(1 ≠ fl2
0) , (5)

which is asymptotically ‰2(1) distributed under H0. We do not provide an explicit proof
since this is a special case of the general result derived at the end of Section 4.1.
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3.4 Visualization

Basic visualization of an observed versus a theoretical (or fitted) distribution of counts can
be readily achieved by barplots or, preferably, in the form of a rootogram. The rootogram
can be adapted to regression settings as seen in Section 4.3. Another visualization aimed at
assessing the goodness of fit is the Touchardness plot which compares deviations between
observed data and the Touchard model. These two plots are now described.

A clever visualization tool for count data is the Tukey hanging rootogram. It is a variation
of the histogram with the vertical axis showing the square root of the frequencies to de-
emphasize outlying values and right skewness (common for count data). The usual bars
“hang” from the fitted values so that the discrepancies are visualized against a straight
line (the axis) rather than against a curve. The bars are drawn from

Ô
‚y to

Ô
‚y ≠ Ô

y. A
generalization of the rootogram for regression is shown in Figure 4 (right) for counts of crab
satellites predicted by color and weight.

Hoaglin and Tukey (2009) devised a goodness-of-fit plot for count data based on the
count metameter. The key idea is to compare the observed frequency of count y, denoted
hereafter by ny, with the expected frequency from a given model. Assuming a Tou(⁄, ”, a)
model and n data points, the count metameter, Ï(ny), is obtained through the equation
ny = nf(y, ⁄, ”, a) which yields the expression given by

Ï(ny) © log
3

y!ny

n(y + a)”

4
= ≠ log[·(⁄, ”, a)] + log(⁄)y. (6)

Deviations between the observed counts and the theoretical model are assessed by examining
the relation Ï(ny) ◊ y. If the points (Ï(ny), y) follow a straight line with exp(slope) close
to ‚⁄, we have indication that the Touchard model is appropriate. In practice, ” is fixed at
‚” in order to compute Ï(ny) and the intercept and slope are obtained by least squares. In
addition, Hoaglin and Tukey (2009) proposed an approximate confidence interval for the
logarithm of the theoretical frequency. Figure 3 shows the Touchardness plot for data on
counts of crab satellites, indicating an adequate fit.

We can obtain starting values (⁄0, ”0, a0) for numerical procedures associated with ML
and MM based on Equation (6). Consider a in a grid, say a œ {0.1, 0.5, 1, 1.5, . . . , amax},
where amax is arbitrarily defined. One idea is to fit the linear model stated as

log
3

y!ny

n

4
= —0 + —1y + —2 log(y + a)

and set ⁄0 = exp(‚—1), ”0 = ‚—2 and a0 yielding the fit with the smallest sum of squared
errors. Alternatively, one may re-interpret the model given in Equation (6) as a Poisson
log-linear model with log(n/y!) as o�set,

log(ny) = —0 + —1y + —2 log(y + a) + log(n/y!),

and again set ⁄0 = exp(‚—1), ”0 = ‚—2 and a0 yielding the fit with the smallest deviance.

3.5 Illustration with selected datasets

Next, we illustrate the Touchard model and associated tools with univariate, public available,
data of actuarial end economic interest. We consider the five models listed in Table 1.
Except for the NB, the other models handle both under and overdispersion. The QP and
the Touchard models are pointwise dual (in the sense that the entire range of ” accounts
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for either over or underdispersion of the same magnitude) whereas the CMP is pointwise
dual only in the region 0 < ‹ < 2 (Kokonendji et al., 2008). The QP, CMP and NB are
members of the EF (thus enjoying the desirable asymptotic results for ML estimation),
though only the QP is in the one-dimensional EF with dispersion. The support of the GP
distribution depends on the parameter – and it violates standard conditions for consistency
and asymptotic normality of ML estimators (Cameron and Trivedi, 1998).

We have fitted di�erent count models, including the Touchard one, to 14 publicly avail-
able datasets. The datasets were not selected with any particular criteria other than being
publicly available and having been used by the authors for class illustrations, mostly for
audiences from Actuarial Sciences and Economics. Most cases exhibit high inflation of zeros
( ‚f0 > 0.80), dispersion index d = S2/ȳ greater than one and large sample size.

Eight datasets refer to the number of tra�c accidents in a year in di�erent locations
labeled by country name and year such as Zaire74, Belgium58, etc. Some have become
benchmarks in the actuarial literature (Denuit, 1997). Typical of such data, the relative
frequency of zeros is very high.

The CrabSat dataset features the highest level of overdispersion for the response among
the cases studied with d close to 3. The counts are from well-known data on the number of
satellites (male crabs gathered around the female attempting to fertilize her eggs) appearing
in several textbooks (Agresti, 2013).

MedVisits consists of over 5000 counts of doctor visits in the past two weeks for a single-
adult (Australian Health Survey 1977-78) and has been analyzed by several authors (see, for
example, Cameron and Trivedi (1998) and references therein) in the study of health service
utilization and health insurance choice. The sample variance is about twice the sample mean
(d = 2.1). Zeros and ones correspond to 95% of the observations. These data are also used
in Section 4.1 in the context of regression modeling.

The dataset Strikes records the number of outbreaks of strikes in the UK, in a 4-week
period, during 1948-59 for the coal mining industry.

Shells brings the number of accidents in the manufacture of high-explosive shells in a
British military factory at the time of World War I.

The dataset Bids contains the number of takeover bids received by 126 U.S. firms that
were targets of tender o�ers, over a 52-week period following the initial bid.

AZCardio contains close to 2000 observations from the 1991 Arizona cardiovascular patient
files. The counts refer to the length (days beyond the day of admission) of hospital stay
(restricted to less than 9 days) for cardiovascular patients.

Table 2 summarizes the results from fitting five statistical models to the 14 datasets
previously described. the Akaike information criterion (AIC) is reported along with data
summaries. Qualitatively, similar results were obtained using the ‰2 metric (not shown)
instead of the AIC. The Touchard model yields is among the best models all cases with the
exception of Bids for which convergence was not achieved; these data seem to be well fit by
the Poisson model, meaning that a three-parameter distribution is unnecessary.

In Section 4.1, we revisit the CrabSat data for a regression illustration. We thus provide
more detail regarding its univariate mode fit. Parameter estimates under the Touchard
model from ML and MM methods are shown in Table 3 and visualization of model fit by
ML is depicted in Figure 3 showing an adequate fit. As expected, both the score and the
likelihood ratio tests (not shown) strongly reject ” = 0. The AIC values for di�erent models
are: 746 (Touchard), 771 (NB), 774 (CMP) and 782 (GP). The results place the Touchard as
the primary candidate for modeling these data. We must note that some di�erences in AIC
values are small for di�erent models and that mere minimization of a given information
criterion is not by itself a deal breaker in model selection. Several other points may be
assessed including study domain knowledge and substantive interpretability of models. We
remind the reader of the criteria (i)–(ix) listed in the Introduction. The main point to be



Chilean Journal of Statistics 237

taken here is that this superficial examination of the applicability of the Touchard model
across datasets from di�erent domains strongly indicates that the Touchard model (and
weighted Poisson models in general) are an important addition to the toolbox of count data
models. Recall that the Touchard can address both under- and over-dispersion.

Table 2. Data summaries and AIC with selected count models fitted by ML to 14 datasets.

AIC by model
Dataset n ymax d ‚f0 Poisson NB Tou CMP GP
CrabSat 173 15 2.9 0.36 990 771 746 774 782
MedVisits 5,190 9 2.1 0.80 7,968 7,176 7,125 7,320 7,156
Shells 647 5 1.5 0.69 1,236 1,189 1,189 1,189 1,189
AZCardio 1,982 7 1.5 0.07 9,055 8,796 8,726 8,753 8,807
Zaire74 4,000 5 1.4 0.93 2,494 2,372 2,371 2,419 2,371
Belgium58 9,461 7 1.4 0.83 10,983 10,700 10,691 10,713 10,696
Switz61 119,853 6 1.2 0.88 109,225 109,234 109,226 109,235 109,230
Bids 126 10 1.2 0.07 405 406 NA 407 406
NewYork93 365 8 1.2 0.06 1,450 1,449 1,461 1,449 1,449
Belgium75 106,974 4 1.1 0.91 72,379 72,212 72,213 72,213 72,212
Belgium93 63,299 4 1.1 0.90 44,303 44,133 44,130 44,134 44,131
Belgium94 131,182 4 1.1 0.90 90,453 90,163 90,162 90,164 90,162
Germany60 23,589 6 1.1 0.87 20,598 20,451 20,449 20,451 20,450
Strikes 156 4 0.7 0.29 386 388 381 380 382

Table 3. Estimates (with SEs) from fitting the Tou(⁄, ”, a) model to the counts in the CrabSat dataset.

Method
ML MM

⁄ 8.0 (1.2) 11.4 (3.3)
” -2.7 (0.83) -5.6 (2.6)
a 0.4 (0.22) 1.3 (0.80)
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Figure 3. Goodness-of-fit (Touchardness) plots with the CrabSat dataset: circles are the observed count metameters;
filled points show the CIs centers.
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4. Regression modeling

As mentioned in the Introduction, there are several probabilistic models for count data
but most have had limited applicability. Models for which regression tools are not readily
available will not be considered by most data analysts. In this section we develop regression
tools for the Touchard model, including ML estimation, large-sample inference, prediction,
visualization and basic diagnostic tools.

Regression for count data is typically based on either the Poisson or the NB models. The
(quasi) Poisson model with a dispersion parameter Ï œ R, QP(µ, Ï), with expectation µ and
variance Ïµ can accommodate under/overdispersed data. QP regression is a GLM with a
vast literature on estimation, inference and diagnostics. In the NB(µ, –) model, the variance
is a quadratic function of the mean, µ + –µ2, – Ø 0, which can handle overdispersed data.
The GP(µ, –) distribution is another model which can be explicitly parametrized in terms
of its mean and an extra parameter with the variance being a cubic function of µ. The
QP model is a member of the one-dimensional EF with dispersion but neither the NB nor
the GP is a member of the EF. The Touchard distribution is in three-dimensional EF but
cannot be formulated in terms of the one-dimensional EF with dispersion. We recall that
mean-variance relations for these models are reported in Table 1.

The first question posed by any WP regression model is the choice of parametrization
for the systematic component. Given observed responses Yi ≥ Tou(⁄i, ”, a) and a vector of
predictors xi œ R

p, for i = 1, . . . , n, we can postulate that either. (We restrict our attention
to the default log link but other links for count data could be considered.) Then, we have

log(⁄i) = x€
i ↵, (7)

or

log(µi) = x€
i �. (8)

We call the model given in Equation (7) is a direct regression model, which is computa-
tionally more convenient. This is the strategy adopted by Sellers and Shmueli (2010) in the
context of the CMP regression model. In the GLM-type model given by Equation (8), ⁄i

must be treated as an implicit function of µi, ” and a which implies a computational cost
related to solving Equation (3) for ⁄ at every evaluation of the likelihood. We propose a
quasi-likelihood approach to deal with the usual practice of linking the mean response to a
linear predictor as in Equation (8) in the context of Touchard regression.

4.1 Direct regression model

In this section we assume that ⁄ is a function of the linear predictor xi↵, as in Equation (7).
The model log-likelihood for independent data points is given by ¸(↵, ”, a) =

q
i ¸i, where

¸i = yix
€
i ↵ + ” log(yi + a) ≠ log

Ë
·(exp(x€

i ↵), ”, a)
È

≠ log(yi!).

Recall that we have defined zi = log(yi + a), w1i = (yi + a)≠1 and w2i = (yi + a)≠2. We also
define Ÿi = E(Zi), “i = Cov(Yi, Zi), ◊ji = E(Wji) and ‹i = Var(Zi). Denoting by Xn◊p the
model matrix with i-th row x€

i , the observed responses by the n-dimensional vector y with
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µ = E(y) and V = diag(‡2
i ), we can write the score vector as

s(↵, ”, a) =

Q

ccca

X€(y ≠ µ)
q

i(zi ≠ Ÿi)

”
q

i(w1i ≠ ◊1i)

R

dddb (9)

and the Fisher information matrix is formulated as

F (↵, ”, a) = ≠

Q

ccca

X€V X X€� X€TX
q

i ‹i
q

i[” Cov(Zi, W1i) ≠ (◊1i ≠ W1i)]

”2 q
i Var(W1i) + ”[

q
i(W2i ≠ ◊2i)]

R

dddb

where T = diag(ti) with ti = 1 ≠ ·1(⁄i, ”, a)·≠1(⁄i, ”, a). The usual inference based on the
ML estimates uses asymptotic normality with

‰Var
1

‚↵, ‚”, ‚a
2

= ‚F≠1.

The e�ect of the coe�cients on the mean response is expressed as

ˆµi

ˆxij
= ‡2

i –j . (10)

Therefore, the marginal e�ect of –j on µi is a�ected by the variability associated with the
corresponding observation. Thus, over- or under-dispersion play a role that did not exist in
the canonical Poisson model for which ˆµi/ˆxij = µi–j .

It is possible to obtain a score test for Poissoness. Calculations are facilitated by the fact
that residuals and regressors are orthogonal, that is, X€(y ≠ µ) = 0, when the score given
in Equation (9) is zero. The score test allows us to test the null H0: ” = 0 without having
to first fit the Touchard model.

Let ↵0 be the coe�cient estimates from H0 (canonical Poisson GLM). We use the same
notation as in Section 3.3, where the subscript 0 indicates evaluation under H0. Here, �0 =
exp(X↵0) and the score vector given by Equation (9) becomes

s0 = (0, . . . , 0, K0),

where K0 =
q

i[zi ≠ Ÿi,0]. By partitioning F0 and writing its inverse (Graybill, 1983, Ch. 8),
we have F ≠1

0,22 = (F0,22 ≠ F0,21F
≠1
0,11F0,12)≠1 and, after some algebra, the score statistic

S = s€
0 F

≠1
0 s0 reduces to

S = K2
0

F ≠1
0,22

= K2
0

V0 ≠ �€
0 X(X€V0X)≠1X€�0

,

where V0 =
q

i ‹i,0. The special case with no covariates was given by Equation (5). The
asymptotic distribution of S under H0 is ‰2(1) given regularity conditions warranted by the
EF.
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4.2 Quasi-Poisson GLM with Touchard variance

As mentioned before, a regression model based on Equation (8) is computationally more
demanding since ⁄i must be treated as an implicit function of µi, ” and a. Derivative
calculations become a lot more involved. However, the coe�cients in the usual (log-mean)
parametrization are more easily interpreted since, as opposed to Equation (10), we have
that

ˆµi

ˆxij
= µi—j ,

so that —j can be interpreted as a semi-elasticity, the proportionate change in the mean
when xj changes by one unit, all else constant.

A solution is available by the well established quasi-likelihood approach. The QP(µ, Ï)
regression estimates, ‚�, are robust to distributional assumptions in the sense that the Poisson
model is used simply to motivate the estimating equations, and that ‚� is consistent as long
as the link function and linear predictor are correctly specified (Agresti, 2015, Ch. 8). The
choice of v(µ, Ï) = Ïµ corresponds to assuming an EF with dispersion but other forms
of conditional variance may also be entertained (Cameron and Trivedi, 1998, Ch. 3) such
as with the Touchard variance v(µ, ”, a) given by Equation (4). We denote this model by
QPT(µ, ”, a). The estimated regression coe�cients are simply those from a Poisson GLM,
‚�, whereas the other parameters are estimated by the MM, obtained by numerically solving
the system in (”, a) stated as

Y
____]

____[

nÿ

i=1
v(‚µi, ”, a) =

nÿ

i=1
(yi ≠ ‚µi)2,

nÿ

i=1
Ÿ(‚µi, ”, a) =

nÿ

i=1
zi.

If the variance is believed to be correctly specified (in which case ‚� is asymptotically e�cient
among estimators that are locally linear in y) then

‰Var( ‚�) = n

n ≠ p
(X€ „MX)≠1(X€„V X)(X€ „MX)≠1,

where „M is diagonal with typical element ‚µi and „V is diagonal with typical element
v(‚µi, ‚”, ‚a).

4.3 Diagnostics

This section develops standard diagnostic tools to assess the fit of a Touchard regression
model including an adaptation of the rootogram. We denote the predicted mean by ‚µ.
In the case of Equation (7), then ‚µi = exp(x€

i
‚�). In the case of Equation (8), we have

‚µi = ·1(‚⁄i, ‚”, ‚a) ≠ ‚a with ‚⁄i = exp(x€
i ‚↵). For the predicted ⁄ we develop the following

notation: we write ⁄ = �(µ, ”, a) for ⁄ satisfying Equation (3) with given values of µ, ” and
a. The most intuitive residual measure in regression models is the Pearson residual given by

ri = yi ≠ ‚µi

‚‡i
.



Chilean Journal of Statistics 241

Pearson residuals may be visualized by a Q-Q normal plot of standardized ri with a simulated
envelope (Atkinson, 1985).

We use the usual definition of deviance in GLMs, D(y;µ) = 2(˜̧≠ ‚̧), to define an ap-
proximate measure of deviance where we consider ” and a fixed (at estimated values). Here,
‚̧ denotes the maximized log-likelihood and ˜̧ is the saturated log-likelihood. Saturation is
achieved by setting µi = yi since ˆ¸i/ˆµi = 0 … (yi ≠ µi)/‡2

i = 0. As a result, deviance
residuals, di, are defined by the signed square root of the components of D(y;µ) =

qn
1 d2

i ,
as

di =

Y
_]

_[
sign(yi ≠ ‚µi)

Ú
2
Ë
yi log

1
⁄̃i

‚⁄i

2
≠ log

1
·̃i

‚·i

2È
, yi > 0,

sign(yi ≠ ‚µi)


2[log(‚·i) ≠ ” log(‚a)], yi = 0,

where ⁄̃i = �(yi, ‚”, ‚a) and ‚⁄i is either exp(x€
i ‚↵) or �(exp(x€

i
‚�), ‚”, ‚a).

Observations with a large absolute value of either ri or di are viewed as discrepant. De-
tectable patterns in the plot of residuals against the estimated linear predictor are indicative
of misspecification.

Another diagnostic measure is the generalized leverage defined as the diagonal of
Ln◊n(✓) = ˆ ‚y/ˆy€. The actual computation of L is based on first derivatives of the mean
vector, µ̇✓, and second derivatives of the likelihood, ¨̧

✓✓ and ¨̧
✓y, with

L = µ̇✓(≠¨̧
✓✓)≠1 ¨̧

✓y,

evaluated at ‚✓ = ( ‚↵, ‚”, ‚a) or ( ‚�, ‚”, ‚a) (Wei et al., 1998).
In the regression based on Equation (7), the computation of L yields the expression stated

as

L =
1
V X � ⌘

2
F≠1

Q

cca

X€

a€
1

a€
2

R

ddb,

where the vector ⌘ has i-th component ” Cov(Yi, W1i), a1 has i-th component 1/(yi + a)
and a2 has i-th component ≠”/(yi + a)2. In the GLM-type model based on Equation (8),
the computation of L yields the usual projection matrix of a Poisson GLM with the weights
adjusted for the Touchard variance, that is, we get

L = W≠1/2X(X>WX)≠1X€W≠1/2.

where Wn◊n is diagonal with typical element µ2
i /‡2

i .
With the diagonal of L and the Pearson residuals, one can compute the approximate Cook

distance given by

Ci = Liir2
i

p(1 ≠ Lii)2 ,

to measure the squared distance between ‚↵ (or ‚�) and the same estimate without i-th
observation (Cook and Weisberg, 1982).

The extension of the rootogram (Section 3.4) to regression models has been proposed by
Kleiber and Zeileis (2016) as a complement to residual diagnostics in order to visualize im-
portant features of count data such as dispersion, skewness, zero inflation and multimodality,



242 Andrade et al.

vis a vis fitted models.
Given regression estimates ‚↵ (or ‚�), ‚” and ‚a, one obtains ‚⁄1, . . . , ‚⁄n and the expected

frequency of count y stated as

Ey =
nÿ

i=1
f(y, ‚⁄i, ‚”, ‚a), j = 0, 1, . . .

A rootogram can now be drawn with bars from


Ey ≠ Ô
ny up to


Ey, to visually assess

the goodness of fit provided by the Touchard regression model. Discrepancies between the
observed frequencies ny and the Ey are visualized against a straight line; Figure 4 (right).

4.4 Example: Crab satellites

As an illustration, we fit the Touchard regression models along with other count regression
models to the well-known data on the number of satellites (male crabs gathered around
the female attempting to fertilize her eggs). For predicting the number of satellites y, we
consider weight (kg) and color (with two categories, light and dark (baseline)). Therefore,
the linear predictor is formulated as —0 + —1weight + —2color.

Table 4. Estimation results (with SEs) from di�erent models fitted by ML to the CrabSat dataset (n = 173,

n0 = 62, k = 2, ymax = 15).

log(µ) = linear predictor log(⁄) = linear predictor
QP QPT NB GP Tou CMP

intercept -0.49 -0.49 -0.93 -1.11 1.34 -0.58
(0.32) (0.29) (0.40) (0.48) (0.22) (0.08)

weight 0.54 0.54 0.71 0.63 0.21 0.13
(0.12) (0.11) (0.16) (0.20) (0.05) (0.04)

color 0.27 0.27 0.29 0.37 0.09 0.10
(0.18) (0.18) (0.20) (0.06) (0.06) (0.06)

dispersion ‚Ï = 3.15 ‚” = ≠3.99 ‚– = 0.96 ‚– = 0.34 ‚” = ≠2.05 ‚‹ = 0.08
‚a = 0.83 ‚a = 0.25

AIC 738ú 725† 754 719 758 747
SSRraw 1,522 1,522 1,692 1,882 1,480 3,773
SSRpear 536 175 155 166 185 11,258
SSRdev 553 214 197 NA 215 602

‚n0 40 56 50 45 63 42
AMEwei 1.6 1.6 2.1 2.4 1.7 0.4
IRRwei 1.7 1.7 2.0 1.9 NA NA

(*)

Approximate QP(µ, Ï) log-likelihood (Nelder and Pregibon, 1987).
(†) Touchard log-likelihood evaluated at QPT estimates.

NA = not available.

Estimation results are shown in Table 4. The estimated coe�cients from the Touchard
GLM-type regression are very close to those from QP. The value of a was chosen to yield
the highest likelihood. The two Touchard models yield similar results with significant im-
provement over the GP and CMP as seen by di�erent sums of residuals, log-likelihood and
estimated number of zeros. The Touchard models yield closer estimates of the proportion
of zeros than the other models considered. The Touchard regression models provide the
estimates (56 and 63) closest to n0 = 62 among the models considered. The sum of de-
viance residuals for the NB model is the lowest despite the higher likelihood achieved by
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the Touchard models. The sums of residuals estimated by the CMP is much higher than
those predicted by the other models which probably explains the huge values for the raw
and Pearson residuals. Rootograms are shown in Figure 4 indicating some misfitting for the
Touchard but noticeable improvement over the fit provided by the NB regression model.

All models agree qualitatively in terms of lack of marginal significance of color and a
considerable e�ect of weight. However, di�erent models give di�erent e�ect sizes for weight.
Marginal e�ects in count regression are often reported either as the average marginal e�ect
(AME) or as the relative change in the conditional mean (incidence rate ratio - IRR). For
istance, the AME associated with the predictor weight is given by

AMEwei = 1
n

nÿ

i=1

ˆµi

ˆxi1
,

where x1 © weight. The AMEwei for models based on log(µi) is simply (1/n)
q

i ‚µi
‚—1. There-

fore the AMEs for the GLM-type models are 1.59 (QP and QPT), 2.12 (NB) and 2.42 (GP).
For both the direct Touchard model and the CMP model, which are based on log(⁄i), we
have Var(Y ) = ˆµ/ˆ log(⁄). Thus, AMEwei = (1/n)

q
i ‚‡2

i ‚–1 and which amounts to 1.73
(Touchard) and 0.36 (CMP). Taking a unit change in weight as the variation of interest,
the marginal e�ect in terms of IRR is stated as

IRRwei = E(y|weight + 1, color)
E(y|weight, color) .

For the GLM-type models, we have IRRwei = exp(—1) with values of 1.72 (QP and QPT),
1.65 (Tou), 2.03 (NB) and 1.88 (GP). For the direct models based on log(⁄) the IRR does
not reduce to a simple expression, varying across observations and values of color. Sellers
and Shmueli (2010) suggest dividing the CMP coe�cients by ‚‹ as a crude approximation for
comparison with Poisson coe�cients. For the coe�cient of weight this yields 0.13/0.08 =
1.63 which is much higher than the Poisson estimate of 0.54.

Estimated marginal e�ects are thus higher under the NB and GP models and strikingly
lower under the CMP model.
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Figure 4. Rootgram associated with NB regression model (left) and Touchard GLM-type model (right) with CrabSat
dataset.
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5. Concluding remarks

We have provided several tools for analyzing count data with a flexible weighted Pois-
son distribution (Touchard) including regression modeling. We have concluded that the
Touchard is a viable and flexible alternative to model over or underdispersed count data.
Data analyses presented here and in Matsushita et al. (2018) show that the Touchard is
a competitive alternative to traditional models within the exponential family. The statis-
tical tools developed here are based on classical methods including maximum likelihood,
method of moments and quasi-likelihood. In terms of tractability, elegance and numerical
implementation, the Touchard model is more flexible than the negative binomial and the
Conway-Maxwell-Poisson, besides many other count models for which similar tools are not
yet available. A major advantage of using the weighted Poisson with (⁄, ”; log(y +a)) model
is that one does not need to switch between highly di�erent models for di�erent datasets.

Regression modeling has been presented in terms of two variants and in the form of
quasi-Poisson estimation with the Touchard variance. Direct modeling of log(⁄) in terms
of a linear predictor has been developed. When mean prediction and interpretability are
wanted, regression based on log(µ) is available in the form of a GLM-type model. The
QPT methodology overcomes the computational burden associated with the GLM-type
model and is a viable choice for large datasets and when directly modeling is either too
slow computationally or the related maximization is unstable. Future work may investigate
quantile-based regression and modeling of ” in terms of covariates. Bayesian modeling based
on the Touchard model is also open for research.

Appendix A. Further results on the normalizing constant

Before providing new results, we state, for mere completion, the following result proved by
del Castillo and Pérez-Casany (1998).

Theorem A.1 The series ·(⁄, ”, a) =
qy

i=0
#
⁄y(y + a)”

$
/y! converges for ⁄, a > 0 and

” œ R.

We now provide asymptotic expressions for · and for the first two moments of Y ≥
Tou(⁄, ”, a).

Theorem A.2 To first-order, the following approximations hold:

· ¥ exp(⁄)(⁄ + a)”,

µ ¥ ⁄ + ⁄”

⁄ + a
, (A1)

and

‡2 ¥ ⁄
3

1 + a”

(⁄ + a)2

4
. (A2)

Proof The first approximation may be obtained by replacing (y + a)” by (⁄ + a)” + (⁄ +
a)”≠1(y ≠ ⁄) + o(|(y ≠ ⁄|) into the series defining ·(⁄, ”, a). Alternatively, it is easy to see
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that · = exp(⁄)E(Y ú + a)”, where Y ú ≥ Poi(⁄). Therefore, by the Delta method, we have

· ¥ exp(⁄)[E(Y ú) + a]”

= exp(⁄)(⁄ + a)”,

Using the above approximation for · and the fact that µ = (⁄/·)(ˆ·/ˆ⁄) (see Appendix
C) we obtain the approximation stated in Equation (A1) for µ. Since ‡2 = ⁄(ˆµ/ˆ⁄), we
obtain approximation stated in Equation (A2) for ‡2. ⌅

We observe that: (i) the above approximations are exact for ” = 0 and ” = 1; (ii) they
are better the larger ⁄ is relative to |”| and the larger a is; (iii) for large ⁄, µ æ ⁄ + ” and
‡2 æ µ ≠ ”; see Figure 2.

Having a compact notation for · in terms of other special functions is of interest to study
further properties and analytical characteristics. This has been explored, for example, by
Castellares and Lemonte (2019), were a previous diverging series was re-derived in terms of
the integro-exponential function to provide a correct converging result for the moments of
the generalized Gompertz distribution. The following theorem provides a representation of
· in terms of the generalized hypergeometric function.

Theorem A.3 The function ·(⁄, ”, a) can be represented in terms of the I generalized
hypergeometric function as

·(⁄, ”, a) = I1,1
1,2

5
≠⁄

----
(≠a, 1, ”)

(0, 1, 1), (1 ≠ a, 1, ”)

6
, (A3)

in which the I-function (Rathie, 1997) is defined as an contour complex integral which
contain powers of Gamma functions in their integrands by

Im,n
p,q

5
z

----
(a1, –1, A1), . . . , (an, –n, An), (an+1, –n+1, An+1), . . . , (ap, –p, Ap)
(b1, —1, B1), . . . , (bm, —m, Bm), (bm+1, —m+1, Bm+1), . . . , (bq, —q, Bq)

6

= 1
2fii

⁄

L

mŸ

j=1
�Bj (bj ≠ —js)

nŸ

j=1
�Aj (1 ≠ aj + –js)

qŸ

j=m+1
�Bj (1 ≠ bj + —js)

pŸ

j=n+1
�Aj (aj ≠ –js)

zs
ds, (A4)

in which –j , Aj , —j and Bj are assumed to be positive quantities and all the aj and bj

are complex such that no singularity of �Bj (bj ≠ —js) coincides with any singularities of
�Aj (1 ≠ aj + –js). In general, these singularities are not poles.

There are three di�erent contours L of integration stated as:

• L goes from from ‡ ≠ iŒ to ‡ + iŒ (‡ real) such that all the sigularities of �Bj (bj ≠ —js),
j = 1, . . . , m lie to the right of L and all the singularities of �Aj (1 ≠ aj + –js), for
j = 1, . . . , n, lie to the left of L.

• L is a loop beginning and ending at +Œ and encircling all the singularities of �Bj (bj ≠
—js), for j = 1, . . . , m, once in the clock-wise direction, but none of the singularities of
�Aj (1 ≠ aj + –js), j = 1, . . . , n.

• L is a loop beginning and ending at ≠Œ and encircling all the singularities of �Aj (1≠aj +
–js), for j = 1, . . . , n, once in the anti-clockwise direction, but none of the singularities
of �Bj (bj ≠ —js), for j = 1, . . . , m.

Proof Let one consider the I-function on the right-hand side of Equation (A3) and its
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contour integral representation given by Equation (A4) as

I1,1
1,2

5
≠⁄

----
(≠a, 1, ”)

(0, 1, 1), (1 ≠ a, 1, ”)

6
= 1

2fii

⁄

L

�(≠s)�”(1 + a + s)
�”(a + s) (≠⁄)s

ds

Since none of the singularities of �”(1 + a + s) coincide with the poles of �(≠s), the simple
application of the residue theorem (Springer, 1979) to the poles of the latter imply that

I1,1
1,2

5
≠⁄

----
(≠a, 1, ”)

(0, 1, 1), (1 ≠ a, 1, ”)

6
=

Œÿ

r=0
lim
sær

(≠s + r)�(≠s)�”(1 + a + s)
�”(a + s) (≠⁄)s

=
Œÿ

r=0

�”(1 + a + r)(≠⁄)r

�”(a + r)r!(≠1)r

=
Œÿ

r=0

(a + r)”⁄r

r! ,

as desired. ⌅

Appendix B. Identifiability

By definition (Lehmann and Casella, 1998, Sec. 1.5), for a given statistical model P =
{P’ : ’ œ Z}, where Z denotes the parameter space, we say P is identifiable if

P’1 = P’2 =∆ ’1 = ’2 ’’1, ’2 œ Z.

With a fixed, the two-parameter Tou(⁄, ”, a) model is clearly identifiable since the statistics
Y and log(Y + a) are linearly independent (Lehmann and Casella, 1998, Sec. 1.5). A more
general result with all parameters free is developed next. We begin by defining ’ = (⁄, ”, a)
and f’(y) in place of Equation (1). Thus, we define

P =
I

f’(y) = ⁄y(y + a)”

y!·(⁄, ”, a) : ⁄, a > 0, ” œ R

J

.

In order to prove identifiability, we must set f’1(y) = f’2(y), ’y. However, we can avoid
·(⁄, ”, a) by working instead with

f’1(y + 1)
f’1(y) = f’2(y + 1)

f’2(y) ,

which reduces to

⁄1
(y + 1)

3
y + 1 + a1

y + a1

4”1

= ⁄2
(y + 1)

3
y + 1 + a2

y + a2

4”2

.

In order to compare both sides of Equation (B), let us consider the series representation of
the function h(”, a, x) = ((x + a)/(x + 1 + a))”, which is can be seen as the product of the
functions ha(”, a, x) = (x + a)” and hb(”, a, x) = (x + 1 + a)≠”. Thus, the MacLaurin Series
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of h(”, a, x) in terms of x is obtained as

h(”, a, x) =
Œÿ

n=0

xn

n!
ˆn

ˆxn
(ha(”, a, x)hb(”, a, x))

----
x=0

. (B1)

The generalized Leibiniz rule states that

ˆn

ˆxn
ha(”, a, x)hb(”, a, x) =

nÿ

y=0

n!
(n ≠ y)!k!

ˆn≠y

ˆxn≠y
ha(”, a, x) ˆy

ˆxk
hb(”, a, x). (B2)

The derivatives on the right hand side of Equation (B2) are quite simple and result in

ˆn≠y

ˆxn≠y
ha(”, a, x) = �(” + 1)

�(” ≠ n + y + 1)(x + a)”≠n+y (B3)

and

ˆy

ˆxy
hb(”, a, x) = (≠1)y �(” + y)

�(”) (x + 1 + a)≠”≠y. (B4)

By combining Equations (B2)), (B3) and (B4), after some algebra we arrive at

ˆn

ˆxn
ha(”, a, x)hb(”, a, x) =

�(” + 1)(x + a)”≠n(x + 1 + a)≠”

�(” ≠ n + 1)

nÿ

y=0

A
n

y

B(≠1)k�(” + y)�(” ≠ n + 1)
1

x+a
x+a+1

2y

�(”)�(” ≠ n + y + 1) . (B5)

By definition, the right hand side of Equation (B5) may be expressed in terms of the hy-
pergeometric function 2F1 and by means of Equation (B1), we obtain

h(”, a, x) =
Œÿ

n=0

�(” + 1)a”≠n(1 + a)≠”

n!�(” ≠ n + 1) 2F1

3
≠n, ”; 1 ≠ n + ”; a

a + 1

4
xn. (B6)

By applying the ratio test to the series, we get

R = x(a)≠1(” ≠ n)
(n + 1)

2F1
1
≠n ≠ 1, ”; ≠n + ”; a

1+a

2

2F1
1
≠n, ”; 1 ≠ n + ”; a

1+a

2 . (B7)

In general, the hypergeometric function in Equation (B7)) vanishes for finite n and, in the
limiting case, the continued fraction representation for the ratio of hypergeometric functions
given by

2F1(a + 1, b; c + 1; z)
2F1(a, b; c; z) =

1

1 +
(a≠c)b
c(c+1)z

1 +
(b≠c≠1)(a+1)

(c+1)(c+2) z

1 + . . .

(B8)



248 Andrade et al.

can be used. By noticing that whenever (a ≠ c ≠ j)(b + j), ’j œ {0, 1, 2, . . . } is in the
numerator of the ratio which multiplies z in Equation (B8), this ratio vanishes to 0 as
n æ Œ, we get

R ≠≠≠æ
næŒ

≠x

(a) .

Thus, Equation (B6) is valid for x < a. To account for other values of x, we can define

g(”, a, x̃) =
3 1 + ax̃

1 + (1 + a)x̃

4”

,

where x̃ = 1/x and back to Equation (B) by following a similar procedure as above, the
series representation for g(”, a, x̃) can be obtained as

g(”, a, x≠1) =
Œÿ

n=0

�(” + 1)(1 + a)n

n!�(” ≠ n + 1) 2F1

3
≠n, ”; 1 ≠ n + ”; a

a + 1

4
x≠n. (B9)

Equation (B9) is valid for x > a + 1 and it remains to be addressed the case a < x < 1 + a.
For real values of a, since x is a positive integer in our case, the only possible value for x
which falls into this interval is x = ÁaË. This special case is treated in the last paragraph.
Now, without loss of generality, let a1 Æ a2. From Equation (B), we conclude that the
identifiability problem reduces to the expression given by

Y
_______]

_______[

⁄1h(”2, a2, y) = ⁄2h(”1, a1, y), for 0 Æ y < a1,

⁄1h(”2, a2, y) = B1, for a1 Æ y < min(a1 + 1, a2),
B2 = B3, for min(a1 + 1, a2) < y < max(a1 + 1, a2),
B4 = ⁄1g(”1, a1, 1/y), for max(a1 + 1, a2) < y < a2 + 1,

⁄1g(”1, a1, 1/y) = ⁄2g(”2, a2, 1/y), for y > a2 + 1,

(B10)

where the functions Bi, i = 1, 2, 3, 4, depend on the max and min functions applications. For
instance, if min(1 + a1, a2) = 1 + a1 then B1 = ⁄2((Áa1Ë + a1)/(1 + (Áa1Ë + a1)))”. Regarding
the first expression in Equation (B10), by performing a term-by-term matching procedure,
the first three terms of the series in Equation (B6) indicate that

(i) ⁄1a”2
2 (1 + a2)≠”2 = ⁄2a”1

1 (1 + a1)≠”1 ,
(ii) ⁄1”2a”2≠1

2 (1 + a2)≠”2≠1 = ⁄2”1a”1≠1
1 (1 + a1)≠”1≠1,

((iii) ⁄1
2 ”2a”2≠2

2 (1 + a2)≠”2≠2(≠1 + ”2 ≠ 2a2) =
⁄2
2 ”1a”1≠2

1 (1 + a1)≠”1≠2(≠1 + ”1 ≠ 2a1).

(B11)

The quotients (ii)/(i) and (iii)/(ii) imply

(iv) ”1
a1(1+a1) = ”2

a2(1+a2) ,

(v) ≠1+”1≠2a1
2a1(1+a1) = ≠1+”2≠2a2

2a2(1+a2) .
(B12)

By solving the system in Equation (B12), the two possible solutions for a1 are a1 = a2 or
a1 = ≠(1 + a2)(1 + 2a2)≠1. Obviously, since ai Ø 0, for i = 1, 2, the only possible solution
is a1 = a2.

By using such solution back on (iv) of Equation (B12), ”1 = ”2. Thus, (i) of Equation
(B11) implies that ⁄1 = ⁄2.
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Now, for the last expression of Equation (B10), the term-by-term series comparison pro-
vides

(vi) ⁄1 = ⁄2,
(vii) ⁄1”1 = ⁄2”2,
(viii) ⁄1

2 ”1(≠1 + ”1 ≠ 2a1) = ⁄2
2 ”2(≠1 + ”2 ≠ 2a2).

The system solution is quite straightforward, implying that: ⁄1 = ⁄2, ”1 = ”2 and a1 = a2.
The remaining cases to be discussed are the other equations which have not been addressed
yet in Equation (B10). Let S denote the support of the probability density function of
the Touchard distribution. So far, it has been shown that the function is identifiable over
S \ {[a1, a2 + 1)}. In order to prove the identifiability over the whole support, it is su�cient
to check if the conditions found for S \ {[a1, a2 + 1)} also work when y œ [a1, a2 + 1). This
easily follows by noticing that the identifiability of a probability density function boils down
to a system of equations. Therefore, all the equations must be simultaneously satisfied in
order to exist a solution. Thus, it has been shown that for [f’1(y) = f’2(y)], ’y =∆ ’1 = ’2,
which proves identifiability when all three parameters are free.

Appendix C. Useful Derivatives

The following expressions were used to obtain several formulas involving derivatives pre-
sented in the article. Recall that we have defined Z = log(Y +a), W1 = (Y +a)≠1, µ = E(Y ),
Ÿ = E(Z), ‡2 = Var(Y ), ‹ = Var(Z) and “ = Cov(Y, Z). We also define Ÿ2 = E[Z2] and
Ÿ3 = E[Y Z]. We start with first and second derivatives of ·(⁄, ”) given by

ˆ·

ˆ⁄
= ·µ

⁄
; ˆ·

ˆ”
= ·Ÿ; ˆ·

ˆa
= ·(⁄, ”≠1, a); ˆ2·

ˆ⁄2 = · [m2 ≠ µ]
⁄2 ; ˆ2·

ˆ”2 = ·Ÿ2 and ˆ2·

ˆ⁄ˆ”
= ·Ÿ3

⁄
.

Next, we list some partial derivatives of the expectations µ(⁄, ”) and Ÿ(⁄, ”) stated as

ˆµ

ˆ⁄
= ‡2

⁄
; ˆµ

ˆ”
= “; ˆµ

ˆa
= ” Cov(Y, W1), ˆŸ

ˆ⁄
= “

⁄
,
ˆŸ

ˆ”
= ‹.

Appendix D. Random number generation (RNG) by the inverse

transformation

In order to generate y from Y ≥ Tou(⁄, ”, a), we take F (y) =
qy

x=0 f(x) and Y =
min{y: F (y ≠ 1) < U Æ F (y), U ≥ Unif(0, 1)}. We note that the RNG can avoid
costly computation of cumulative probabilities and factorial terms by using the ratio
c(y) = f(y)/f(y ≠ 1).

Pseudo-code for the proposed RNG is shown in Algorithm D and it is implemented for
the R system (Andrade and Oliveira, 2019).

The expected number of iterations in the while loop in Algorithm D is 1 + E(Y ) which,
according to results from previous section, is approximately 1 + ⁄[1 + ”/(⁄ + a)] or simply
1 + ⁄ + ” for ⁄ ∫ ”. The generation time increases with ⁄ and ” with ” being a stronger
factor than ⁄ (Table D1). The value of a is of least importance for running time. Generation
of highly overdispersed data is faster. E�cient generators use multiple schemes taking into
consideration the parameter values (Fishman, 2013) and this is still open for research in the
context of Touchard RNG.
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Pseudo-code for Touchard RNG.
Input: p0 = ·(⁄, ”, a)≠1.
Output: Y ≥ Tou(⁄, ”, a).
Define: pk := f(k; ⁄, ”, a) and c(k) := pk

pk≠1
, k = 1, 2, . . ..

initialization
p Ω p0; q Ω p0; k Ω 0
U ≥ Unif(0, 1)

While: U > q
k Ω k + 1
p Ω p · c(k)
q Ω q + p

Return: Y = k

Table D1. Time to generate 10
4

values using Algorithm D (in plain C) for di�erent combinations of

parameter values with a = 1. Times reported in 1/1000 seconds (Intel Pentium dual core i5 1200MHz

running Linux Debian).

”

-10 -5 -1 1 5 10

⁄

0.5 2 1 2 2 10 15
2 2 1 2 3 19 27

10 1 9 8 10 54 66
20 1 55 15 18 92 109
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