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Jorge Figueroa-Zúñiga Universidad de Concepción, Chile

Isabel Fraga Universidade de Lisboa, Portugal

Manuel Galea Pontificia Universidad Católica de Chile
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Abstract

In this work, we study the thin-plate spline partially varying-coe�cient models with
elliptical contoured errors in order to allow distributions with heavier and lighter tails
than the normal ones, such as logistic, Pearson VII, power exponential, and Student-t,
to be considered. We develop an estimation process for the parameters of the model
based on the doubly penalized likelihood function and using smoothing splines. In ad-
dition, an explicit conditional solution for the double penalized maximum likelihood
estimators is derived to obtain closed expressions for the variance-covariance matrix of
the estimators, e↵ective degrees of freedom of the smooth functions and surfaces, and
hat matrix associated with the model. To show the proposed methodology, we analyze
the Boston housing data utilizing-plate spline partially varying-coe�cient model with
normal and Student-t errors. This analysis suggests that the proposed model is helpful
when we want to describe the e↵ect of some covariates that vary smoothly as a function
of other covariates, geographic referencing, and data with heavy-tailed indications.

Keywords: Maximum doubly penalized likelihood estimates · Partially
varying-coe�cient models · Robust estimates · Thin-plate spline models

Mathematics Subject Classification: Primary 62J02 · Secondary 62J12.

1. Introduction

Partially varying-coe�cient models have received much attention in various research areas,
due to its flexibility to explore the dynamic features which may exist the data and its easy
interpretation. In the others words, this class of models allows to model the coe�cients
of the explanatory variables (or covariates) as smooth functions of other variables. These
models are often used in research related to longitudinal, clustered, spatial and hierarchical
sampling schemes, and are a natural alternative to the additive model introduced by
Breiman and Friedman (1985); see also Hastie and Tibshirani (1993), Fan and Zhang
(2008) and Park et al. (2015).
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Another aspect in the statistical literature, that has been developed in recent years, refers
to the regression models under elliptical errors. These models suggest to replace the nor-
mal distribution by the elliptical one when the observations distributions are characterized
by light-and heavy-tails. Savalli et al. (2006) proposed the elliptical linear mixed models,
where the marginal model is also elliptical. Russo et al. (2009) extended the class given by
Savalli et al. (2006) replacing linear fixed e↵ects by a nonlinear fixed e↵ect, creating the
elliptical nonlinear mixed models, for which estimation procedures and diagnostic methods
are developed. Galea and Vilca (2010) studied some hypothesis tests for the equality of
variances and means in the context of univariate elliptical correlated data, with applica-
tions to portfolios data. Marciano et al. (2016) studied the calibration models for repeated
measures considering a univariate elliptical distribution and developed a simulation study
to evaluate the properties of the estimators. Ibacache-Pulgar and Paula (2011) presented a
study on the existence and uniqueness of the maximum penalized likelihood estimate un-
der the partially linear model with Student-t random error, Ibacache-Pulgar et al. (2012)
developed influence diagnostics for elliptical semiparametric mixed models, where it is as-
sumed that the non-parametric component is of type cubic spline, and Ibacache-Pulgar
et al. (2013) studied semiparametric additive model under symmetric distributions. Re-
cently, Ibacache-Pulgar and Reyes (2018) studied the elliptical partially varying-coe�cient
models and developed the technique of local influence to evaluate the sensitivity of the
maximum penalized likelihood estimates.
In this paper, we extend the partially varying-coe�cient model proposed by Ibacache-

Pulgar and Reyes (2018) incorporating a component in its regression structure that allows
us to model the e↵ect of observations in two-dimensional space, such as, for example, coor-
dinates. This structure is called thin-plate spline partially varying-coe�cient model under
elliptical errors. This model emerges as a powerful tool in statistical modeling because of
its flexibility to model explanatory variables e↵ects that can contribute parametric way
and explanatory variables e↵ects in which the coe�cients are allowed to vary as smooth
functions of other variables. Moreover, this class of models incorporate thin-plate spline
(TPS) smoother, a spline-based technique which can be considered the natural general-
ization of cubic spline to any number of dimensions and almost any order of wiggliness
penalty. The TPS smoother was initially introduced by Duchon (1975) and was later con-
sidered by many authors in the context of nonparametric and generalized linear models;
see, Green and Silverman (1994) and Wood (2006) and the references therein. Since the
TPS involves the estimation of many parameters (especially when the dimension is higher
than one), Wood (2003) proposed a low rank smoother that use an approximate thin plate
spline model based on the transformation and truncation of the basis that arises from the
solution of the thin plate spline smoothing problem. The main advantage to include TSP
in our model is that it allows to consider the e↵ect of the geographical locations on the
response variable.
This article is organized as follows. In Section 2, we formally introduce the thin-plate

spline partially varying-coe�cient model under elliptical distributions. Section 3 considers
the problem of estimating the parameters and an application to a set of real data is
considered in Section 4. Finally, in Section 5, we present some final conclusions derived
from this study.

2. The thin-plate spline partially varying-coefficients model

In this section, we introduce the thin-plate spline partially varying-coe�cient model (TP-
SPVCM) under elliptical distributions. In addition, we introduce the doubly penalized
likelihood function where the penalty term combines a L2[a, b] penalty for each smooth
varying-coe�cient function with a second L2[Ed] penalty for the smooth surface. Thus, we
estimate the parameters and inference in the elliptical TPSPVCM.
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2.1 Model specification

The study of varying-coe�cients models (VCMs) does not necessarily arise from perform-
ing a mathematical extension of a particular class of models, but rather from the need
to attend to real problems in areas as economics, finance, epidemiology, medical science,
ecology, and environment. The TPSPVCM under study is given by

yij = z
>
ij↵+

sX

k=1

x(k)ij �k(rkij
) + `

>
i g + "ij , i = 1, . . . , n, j = 1, . . . ,mi, (1)

where yij denotes the jth measure associated with the ith cluster at point rkij
, zij is

(p⇥ 1) vector of explanatory variable values, ↵ is a (p⇥ 1) fixed parameter vector, �k, for
k = 1, . . . , s, are unknown smooth arbitrary functions of rk, associated with the covariates
x(k)ij , `i is an (n⇥1) vector with one in the ith position and zeros at the remaining positions,

g = (g(t1), . . . , g(tn))>, g is a smooth surface that depends of the vector ti 2 R2, and "ij
is a random error. Note that in this class of models the coe�cients are allowed to vary as
smooth functions of other variables.
To write the model given in Equation (1) in a matrix form, first consider the one-to-one

linear transformation of the vector g suggested by Green and Silverman (1994) stated as

g =

0

B@
g(t1)
...

g(tn)

1

CA = E� + T
>
a,

where a and � are vectors with components ai and �i, E is an (n⇥ n) matrix defined by
Eij = 1/(16⇡kti � tjk2 log(kti � tjk2)), with Eii = 0 for each i, and T is a (3⇥ n) matrix
given by

T =

✓
1 1 . . . 1
t1 t2 . . . tn

◆
.

Thus, the model model given in Equation (1) takes the form

yi = eZie↵+
sX

k=1

fNki�k + eEi� + "i, i = 1, . . . , n, j = 1, . . . ,mi, (2)

where yi is a (mi ⇥ 1) random vector of observed responses from the ith cluster, eZi =
(Zi

eT i) is an (mi⇥ (p+2)) design matrix, Zi is an (mi⇥ p) design matrix with rows z>
ij ,

eT i = F iT
> is an (mi⇥2) matrix, F i is an (mi⇥n) matrix with an (mi⇥1) vector of ones

in the ith column and zeros in the remanning positions, e↵> = (↵>,a>), fNki = X
(k)
i Nki,

X
(k)
i = diag1jmi

�
x(k)ij

�
, Nki is an (mi ⇥ rk) incidence matrix with the (j, l)th element

equal to the indicator I(rkij
= r0kl

), for j = 1, . . . ,mi, where r0kl
, for l = 1, . . . , rk, denotes

the distinct and ordered values of the explanatory variable rkij
, �k = ( k1

, . . . , rk)
>

is an (rk ⇥ 1) vector of parameters with  kl
= �k(r0kl

), for l = 1, . . . , rk, eEi = F iE and

"i = ("i1, . . . , "mi)
> is an (mi⇥1) vector of within-cluster errors. A compact way of writing

model given in Equation (2) is formulated as

y = eZ e↵+fN1�1 + · · ·+fN s�s + eE� + ", (3)

where y = (y>
1
, . . . ,y>

n )
>, eZ, fNk, eE and " similarly.
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2.2 Doubly penalized likelihood function

Consider the model given by Equation (2) and assume that "i ⇠ Elmi

�
0,⌃i

�
, with ⌃i =

⌃i(⌧ ) being a positive-definite matrix, with ⌧ = (⌧1, . . . , ⌧d)>. Thus, yi ⇠ Elmi

�
µi,⌃i

�
,

with µi = eZie↵+
Ps

k=1
fNki�k + eEi�, and density function stated as

f(yi) = |⌃i|�1/2 h(ui), i = 1, . . . , n, (4)

where ui = "
>
i ⌃

�1

i "i is the Mahalanobis distance, "i = yi � µi, and h is a function of
R ! [0,1] known as the density generator function (Fang et al., 1990). Then, the log-
likelihood function of the model given in Equation (4) for ✓ = (e↵>,�>

1
, . . . ,�>

s , �
>, ⌧>)>

is given by

L(✓) =
nX

i=1

Li(✓),

where Li(✓) = �(1/2) log(|⌃i|) + log(h(ui)) represents the individual contribution of the
ith observation. Since the functions �k belong to the infinite dimensional space and are
considered parameters with respect to the expected value of yi, some restricted subspace
should be defined for the nonparametric functions to ensure identifiability of the parameters
associated with model. Therefore, we assume that the functions �k (which are absolutely
continuous) belong to the Sobolev function space stated as

W(ı)
2

= {�k: �k,�
(1)

k , . . . ,�(ı�1)

k ,�(ı)k 2 L2[ak, bk]} .

In addition, we assume that g belong to the functions space whose partial derivatives
of total order m are in Hilbert space L2[Ed] of square integrable functions on Euclidean
d-space. Incorporating a penalty function over each function �k and g, we have that the
penalized log-likelihood function can be expressed as (Ibacache-Pulgar et al., 2013)

Lp(✓,�1, . . . ,�s,�g) = L(✓) +
sX

k=1

�⇤kJ(�k) + �⇤gJ
d
m(g), (5)

where J(�k) denotes the penalty functional over �k, Jd
m(g) is a penalty functional mea-

suring the wiggliness of g, and �⇤k = �⇤(�k) and �⇤g(�g) are constants that depends on the
smoothing parameters �k � 0 and �g � 0, respectively. In this paper, we consider as a
measure of the curvature of �k functions the squared norm expressed as

J(�k) = k�kk2 =
Z bk

ak

[�(ı)k (rk)]
2drk,

where �(ı)k (rk) = dı�(rk)/drkı, r0kl
2 [ak, bk], and

Jd
m(g) =

X

�1+···+�d=m

m!

�1! · · · �d!

Z
+1

�1
. . .

Z
+1

�1

✓
@mg

@t↵1

1
. . . @t↵d

d

◆2 dY

j=1

dtj .

It is important mention that for ı = 2, the estimation of �k leads to a natural cubic
spline with knots at the points r0kl

, for l = 1, . . . , rk. In addition, for d = 2,m = 2 and
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g = g(t1, t2), that is,

J(g) =

Z Z

R2

( 
@2g

@t2
1

!2

+ 2

 
@2g

@t1@t2

!2

+

 
@2g

@t2
2

!2)
dt1dt2,

the estimation of g leads to a natural thin-plate spline. According to Green and Silverman
(1994), we may express the penalty functional as

J(�k) = �
>
k Kk�k, J(g) = �

>
E�,

where Kk is an (qk ⇥ qk) non-negative definite smoothing matrix associated with the kth
explanatory variable that depends only on the knots. Then, if we consider �⇤k = ��k/2 and
�⇤g = ��g/2, the penalized log-likelihood function given in Equation (5) can be expressed
as

Lp(✓,�) = L(✓)�
sX

k=1

�k
2
�
>
k Kk�k �

�g
2
�
>
E�, (6)

where � = (�1, . . . ,�s,�g)> denotes an ((s+ 1)⇥ 1) vector of smoothing parameters that
controls the tradeo↵ between goodness of fit and the smoothness estimated functions. Note
that the first term in the right-hand side of Equation (6) measures the goodness of fit while
the second and third terms penalizes the roughness of each �k and g with a fixed parameter
�k and �g, respectively. It should be noted that the choice of such parameters is crucial
in the estimation process, since they controls the tradeo↵ between goodness of fit and the
smoothness (regularity) estimated function. A more extensive discussion on the methods
of selecting such parameters is presented later.

3. Parameters estimation

The estimation problem in the context of TPSPVCM under elliptical distributions has not
been discussed in the literature. However, several authors have considered this problem
for some specific cases. For example, in the context of varying-coe�cient model, Cai et al.
(2000) estimated the coe�cient functions based on local polynomial regression technique
and proposed a method that involves solving hundreds of local likelihood equations through
a one-one-step Newton-Raphson. Chiang et al. (2001) derived a componentwise smoothing
spline procedure for the estimation of coe�cient curves in a varying-coe�cient model with
repeatedly measured dependent variables; see also Eubank et al. (2004). Krafty et al. (2008)
developed an estimation procedure of the coe�cient functions when the within-subject
covariance is unknown considering the criterion of iterative reweighted least squares. Wang
et al. (2009) proposed an estimation method based on local ranks which is more e�cient
and robust compared to other methods such as local linear least squares method. Liu and
Li (2015) estimated the coe�cient curves in a varying-coe�cient model for longitudinal
data by using local polynomial smoothing method and showed that the resulting estimator
is asymptotically more e�cient than the ones which ignore the within-subject correlation
structure. In this paper we propose to estimate the model parameters based on the work
proposed by Ibacache-Pulgar and Reyes (2018), which consider to estimate the coe�cient
curves based on penalized likelihood criterion and smoothing spline.
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3.1 Estimation of e↵,�1, . . . ,�s, �

To estimate the parameters e↵,�1, . . . ,�s, � and ⌧ we propose to maximize the double
penalized log-likelihood function assuming � fixed, that is,

max
e↵,�1,...,�s,�,⌧

Lp(✓,�) = max
e↵,�1,...,�s,�,⌧

Lp(e↵,�1, . . . ,�s, �, ⌧ ,�).

This procedure can be solved using the Fisher scoring algorithm (Ibacache-Pulgar and
Reyes, 2018) stated as

0

BBBBBB@

I S
(u)
0
fN1 . . . S

(u)
0
fN s S

(u)
0

eE
S

(u)
1
fN0 I . . . S(u)

1
fN s S

(u)
1

eE
...

...
. . .

...
...

S
(u)
s fN0 S

(u)
s fN1 . . . I S

(u)
s eE

S
(u)
�
fN0 S

(u)
�
fN1 . . . S

(u)
�
fN s I

1

CCCCCCA

0

BBBBBB@

�
(u+1)

0

�
(u+1)

1

...

�
(u+1)

s

�
(u+1)

1

CCCCCCA
=

0

BBBBBB@

S
(u)
0

⌘
(u)

S
(u)
1

⌘
(u)

...

S
(u)
s ⌘

(u)

S
(u)
� ⌘

(u)

1

CCCCCCA
, (7)

where �0 = e↵, fN0 = eZ, ⌘(u) = µ+W
⇤�1

W v(y � µ)
��
✓(u) and S

(u)
k = Sk

��
✓(u) , with

S
(u)
k =

8
><

>:

(fN
>
0 W

⇤fN 0)�1fN
>
0 W

⇤
��
✓(u) , k = 0,

(fN
>
k W

⇤fNk + �kKk)�1fN
>
k W

⇤, k = 1, . . . , s,

and

S
(u)
� = (eE

>
W

⇤ eE + �g eE)�1 eE
>
W

⇤,

where W
⇤ and W v are defined in the appendix. Then, the back-fitting (Gauss-Seidel)

iterations that are used to solve the system stated in Equation (7) take the form

�
(u+1)

k = S
(u)
k

✓
⌘
(u) �

sX

l=0,l 6=k

fN l�
(u)
l � eE�

(u)

◆
, k = 0, 1, . . . , s, (8)

�
(u+1) = S

(u)
�

✓
⌘
(u) �

sX

l=0

fN l�
(u)
l

◆
. (9)

From the convergence of the iterative process given in Equation (8), we obtain the maxi-
mum double penalized likelihood estimator (MDPLE) of �k and �, which leads to a natural
cubic spline estimate for �k (k = 1, . . . , s).
It is important to note that in the iterative process above the parameter estimates

depend on the smoothing matrices Sk and S�, the modified variable ⌘ and the partial
residuals; see Equation 8. In addition, the weights vi have an influence on the estimates
of �k, for k = 0, 1, . . . , s, and �. In particular, it can be shown that for the Student-t and

power exponential distributions, for example, the current weight v(r)i =vi
��
✓(r) is inversely

proportional to the Mahalanobis distance between the observed value yi and its current

predicted value µ
(r)
i =µi

��
✓(r) , so that outlying observations tend to have small weights in

the estimation process.
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3.2 Estimation of ⌧

Regarding the MDPLE of ⌧ , this can be obtained using the Fisher scoring algorithm
formulated as

⌧
(u+1) = ⌧

(u) � E

(
@2Lp(✓,�)

@⌧@⌧>

)�1

@Lp(✓,�)

@⌧

���
✓(u)

. (10)

An iterative process to solve Equations (8) and (10) simultaneously is described in the
appendix.

3.3 Estimation of the surface

In Section 2, we represent the surface g as a linear combination of the coe�cient vectors �
and a. Considering the MDPLEs obtained through the iterative process described above,
that is, b� and ba, we have that the MDPLE, bg, can be obtained as

bg = Eb� + T
>ba. (11)

Consequently, the estimator of the surface g is a natural thin-plate spline. Details of the
conditions that guarantee this result are given, for example, in Green and Silverman (1994).

3.4 A conditional explicit solution

Note that �|, for | = 0, 1, . . . , s, and � can be estimated through the solutions to the set
of normal equations (Buja et al., 1989; Opsomer and Ruppert, 1999) derived from double
penalized log-likelihood function. Indeed, taking partial derivatives of Equation (6) with
respect to the parameter �0,�1, . . . ,�s, � and to equating zero, we obtain

Z
>
W v " = 0,

eTW v " = 0,

fN
>
1 W v "� �1K1�1 = 0,

...

fN
>
s W v "� �1Ks�s = 0,

eEW v "� �gE� = 0.

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

(12)

From Equation (12) it is possible, at least conceptually, to derive an explicit expression for

the estimates b�| (| = 0, 1, . . . , s) and � under some assumptions. For simplicity of notation
consider �s+1 = �, Ss+1 = S� and p0 = p+ 2, and assume �, W v and W

⇤ fixed, we can
write the estimating equation system given in Equation (12) as

0

BBBBBB@

Ip0 S0
fN1 . . . S0

fN s S0
eE

S1
fN0 Ir1 . . . S1

fN s S1
eE

...
...

. . .
...

...

Ss
fN0 Ss

fN1 . . . Irs Ss
eE

Ss+1
fN0 Ss+1

fN1 . . . Ss+1
fN s In

1

CCCCCCA

0

BBBBB@

�0

�1

...
�s

�s+1

1

CCCCCA
=

0

BBBBB@

S0

S1

...
Ss

Ss+1

1

CCCCCA
y .
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In practice, this system of equations is solved iteratively through a backfitting algorithm,
and its backfitting estimators converge to the solution (Buja et al., 1989) stated as

0

BBBBBB@

b�0,
b�1,
...
b�s,
b�s+1,

1

CCCCCCA
=

0

BBBBBB@

Ip0 S0
fN1 . . . S0

fN s S0
eE

S1
fN0 Ir1 . . . S1

fN s S1
eE

...
...

. . .
...

...

Ss
fN0 Ss

fN1 . . . Irs Ss
eE

Ss+1
fN0 Ss+1

fN1 . . . Ss+1
fN s In

1

CCCCCCA

�10

BBBBB@

S0

S1

...
Ss

Ss+1

1

CCCCCA
y ⌘ M

�1
Sy ,

if the inverse ofM exists. Consequently, the backfitting estimator for b�| (| = 0, 1, . . . , s+1)
can be obtained directly as (Opsomer and Ruppert, 1999)

b�| = H|y, | = 0, 1, . . . , s+ 1, (13)

where H| = E|M
�1

S is the smoother matrix obtained when fitting by smoothing spline
the |th explanatory variable only, with E| being a partitioned matrix given by

E| =

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

⇣
I(p0⇥p0)0(p0⇥r1) . . .0(p0⇥rs)0(p0⇥n)

⌘
, | = 0,

⇣
0(r1⇥p0)I(r1⇥r1) . . .0(r1⇥rs)0(r1⇥n)

⌘
, | = 1,

...
...⇣

0(rs⇥p0)0(rs⇥r1) . . . I(rs⇥rs)I(rs⇥n)

⌘
, | = s,

⇣
0(n⇥p0)0(n⇥r1) . . . I(n⇥rs)I(n⇥n)

⌘
, | = s+ 1 .

The direct calculation of the MDPLEs from Equation (13) is rarely used in practice,

because the backfitting algorithm is more e�cient for obtaining b�|; it does not require
high-dimensional matrices and their inverses. However, the above expressions can be useful
if we wish to study some theoretical properties of the MDPLEs and carry out a diagnostic
analysis based on the hat matrix associated with the model fit. Some closed expressions
for the estimators in the context of the semiparametric additive models can be found, for
example, in Ibacache-Pulgar et al. (2013).

3.5 Estimation of the standard errors

We consider in this section the problem of how to derive the variance-covariance ma-
trix of the MDPLE ✓. According to Segal et al. (1994), the variance estimates for the
MDPLEs developed by Wahba (1983) and Silverman (1985), under the Bayesian context,
correspond to the inverse of the observed information matrix obtained by treating the pe-
nalized likelihood as a usual likelihood. Therefore, if we obtain the MDPLE of ✓ through
the Fisher scoring algorithm, it is reasonable to derive the variance-covariance matrix by
using the inverse of the penalized Fisher information matrix. Thus, the asymptotic vari-
ance–covariance matrix of b✓ can be obtained from the inverse of the expected information
matrix Ip defined in the appendix, that is,

dCovasymptotic(b✓) ⇡ I
�1
p (b✓). (14)
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By using variance-covariance matrix given in Equation (14) we can construct an approx-
imate pointwise standard error band (SEB) for �k that allows us to assess how accurate

the estimator c�k at di↵erent locations within the range of interest. For example, we can
consider the approximate pointwise SEB given by

SEBapprox(�k(r
0

kl
)) = b�k(r0kl

)± 2
q
dVar(b�k(r0kl

)) ,

where Var(b�k(rkl
)) is the lth principal diagonal element of the matrix given in Equation

(14), for l = 1, . . . , rk.
Note from Equations (13) and (11) that it is possible to obtain the covariance matrix

for �| (| = 0, . . . , s+ 1) and bg, respectively. Indeed,

dCov(b�|) = H|
\Cov(y)H>

|

and

dCov(bg) = Hg
\Cov(y)H>

g ,

whereHg = EHs+1+T
>
H

0, withHs+1 defined above andH
0 denoting the block of matrix

H0 corresponding to vector a, Cov(y) = blockdiag1in

�
⇠i⌃i

�
and ⇠i > 0 is a quantity

that may be obtained from the derivatives of the characteristic function associated with
elliptical distributions (Fang et al., 1990).

3.6 Effective degrees of freedom

In general, in the literature concerning semiparametric models there are di↵erent defini-
tions for the degrees of freedom (DF), depending on the context in which they are used.
Here, the DF associated with the smooth varying-coe�cient functions is defined as (Hastie
and Tibshirani, 1990)

DF(�k) = tr
�fNkSk

 

= tr
n
fN

>
k W

⇤fNk

⇣
fN

>
k W

⇤fNk + �kKk

⌘�1o
.

In practice, it is desirable to have an approximation to this quantity. Let QNk
=

fN
>
k W

⇤fNk and Q�k
= �kKk. Since W

⇤ > 0 and rank(fN
>
k )  rk, then QfNk

� 0. There-

fore, there exists a matrix Q
1/2
fNk

� 0 such that QfNk
= Q

1/2
fNk

Q
1/2
fNk

. Thus, we can write

tr
�fNkSk

 
= tr

�eSk

 
as (Eilers and Marx, 1996)

tr
�eSk

 
=

rkX

j=1

1

1 + �k`j
,

where `j , for j = 1, . . . , rk, are the eigenvalues of the matrix Q
�1/2
fNk

Q�k
Q

�1/2
fNk

, for k =

1, . . . , s. Analogously to the selection of DFs associated with smooth varying-coe�cient
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functions, the DFs associated with smooth surface is given by

DF(�g) = tr
�eES�

 

= tr
n
eE
⇣
eE
>
W

⇤ eE + �g eE
⌘�1 eE

>
W

⇤
o
.

Thus, considering Q eE = eE
>
W

⇤ eE and Q�g
= �gE, and since W

⇤ > 0 and rank(eE
>
) 

n, then Q eE � 0. Therefore, there exists a matrix Q
1/2
eE

� 0 such that Q eE = Q
1/2
eE

Q
1/2
eE

.

Thus, we can write tr
�eES�

 
= tr

�eS�

 
as

tr
�eS�

 
=

nX

j=1

1

1 + �g`j
,

where `j , for j = 1, . . . , n, are the eigenvalues of the matrixQ
�1/2
eE

Q�g
Q

�1/2
eE

. It is important

to note that both DF(�k) and DF(�g) are inversely proportional to �k and �g, respectively.
Alternatively, we can consider the backfitting estimators defined in Equation (13) and thus
calculate the DFs associated with the smooth varying-coe�cient functions as

DF(�|) = tr
�
H|

 
, | = 1, . . . , s,

with H| defined above. Similarly, the DFs associated with the smooth surface can be

calculated from the representation bg = Eb� + T
>ba = Hgy, whit Hg = EHs+1 + T

>
H

0,
Hs+1, H0 and y defined in the previous sections. Thus, the DFs are given by

DF(�g) = tr
�
Hg

 
.

3.7 Selecting an appropriate model

Under the elliptical TPSPVCM, we have a total of 2 + p + d + DF(�) parameters to be
estimated, with DF(�) = DF(�g) +

Ps
k=1

DF(�k) denoting approximately the number of
e↵ective parameters involved in modeling of the smooth varying-coe�cient functions and
surface. In this case, the Akaike information criterion (AIC) (Akaike, 1973) or the Bayesian
information criterion (BIC) (Schwarz et al., 1978) can be used for selecting an appropriate
model. The idea is to minimize the function

AIC(�) = �2Lp(b✓,�) + 2
h
2 + p+ d+DF(�)

i
,

where Lp(b✓,�) denotes the penalized log-likelihood function available at b✓ for a fixed �. It
is important to mention that AIC is based on information theory and is useful for selecting
an appropriate model given data with adequate sample size. An alternative version of the
AIC, denoted by AICc, was proposed by Hurvich et al. (1998) in the context of paramet-
ric linear regression and autoregressive time series. Recently, Relvas (2016) adapted this
criterion for the partially linear model with first-order autoregressive symmetric errors.
Considering such proposals, we propose the AICc as an alternative for the selection of
models under the elliptical TPSPVCM, which is given by

AICc(�) = log

(
k
q
dW v(y � by) k2

n

)
+

2
h
tr(\H(�)) + 1

i

n� tr(\H(�))� 2
+ 1,
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where by = \H(�)y and \H(�) corresponds to the smoother matrix, which is equivalent
to the hat matrix defined in the class of parametric regression models. If we consider the
matrix representation given in Equation (3) of our model and the backfitting estimators

given in Equation (13), it is possible to obtain a closed expression for the matrix \H(�).
Indeed, assuming that �, W ⇤ and W v are fixed, we have that

H(�) =
s+1X

|=0

eH|, (15)

with eH| = N |H|. Note that the principal diagonal elements of H(�) obtained in the last
iteration of the iterative process, denoted here by hii(�), are called leverage points and
play an important role in the construction of diagnostic techniques.

3.8 Smoothing parameters

The determination of the parameters �k and �g is a crucial part in the estimation process
and di↵erent choice methods are available in the literature. For example, it is usual to
consider the cross-validation method or the generalized cross-validation method (Craven
and Wahba, 1978). Following Relvas (2016), an alternative to select smoothing parameters
under the elliptical TPSPVCM is to consider a generalized cross-validation method defined
by

GCV(�) =
k
q
dW v(y � by) k2

[1� n�1tr(\H(�))]
.

In this case, � should be obtained by minimizing GCV(�) for a grid of � values. Alter-
natively, these parameters may be selected by applying the AIC. In particular, we can
consider the AIC(�) or AICc(�) criteria defined in the previous section, and use the e↵ec-
tive DFs involved in nonparametric modeling to select appropriate smoothing parameters
(Ibacache-Pulgar et al., 2013).

3.9 Residual Analysis

We propose a standardized residual which can be used to detect error distribution mis-
specification as well as the presence of outlying observations. It follows from Equation (15)
that the residuals vector is the di↵erence between the observed data vector and estimated
mean vector, that is,

br = y � by =
⇥
I �H(�)

⇤
y . (16)

Since that H(�) is not a projection operator, this is, H2(�) 6= H(�), we have that the
approximate variance of the residual vector is given by

Varapprox(br) =
⇥
I �H(�)

⇤
Cov(y)

⇥
I �H(�)

⇤>
,
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where Cov(y)=blockdiag1in

�
⇠i⌃i

�
. Then, we have that the lth standardized residual

takes the form

brl =
d
>
l

⇥
I �H(�)

⇤
y

q
d
>
l
dVarapprox(br)dl

,

where dVarapprox(br)=Varapprox(br)
��
b✓, whit dl denoting an (M ⇥ 1) vector with 1 at the lth

position and 0 elsewhere, for l = 1, . . . ,M . Further details on the analysis of residuals in
the semiparametric context can be found, for example, in Ibacache-Pulgar et al. (2013).

4. Application

In this section, we illustrate the applicability of the TPSPVCM through an application
based on a set of real data. For comparative purposes, we consider random errors whose
distribution belongs to the symmetric class; specifically, the normal and Student-t distri-
butions.

4.1 Data description

In our application, we consider the house prices of Boston area reported by Harrison and
Rubinfeld (1978) and analyzed by many authors; see, for example, Belsley et al. (1980),
Ibacache-Pulgar et al. (2013) and, more recently, Ibacache-Pulgar and Reyes (2018). This
data set contains a sample of 506 observations collected by the U.S Census Service con-
cerning housing in the area of Boston. The variable LMV (logarithm of the median house
price in USD 1000) is related with 14 explanatory variables, 6 of them are defined from
census track and the remaining variables are defined for clusters. For simplicity, we con-
sider four explanatory variables: LSTAT (logarithm of the proportion of the population
that is lower status, ROOM (average number of rooms per dwelling), CRIM (per capita
crime rate by town), TAX (full-value property-tax rate per USD 10000), and the geo-
graphical coordinates expressed in longitude and latitude. Similar to what observed by
Ibacache-Pulgar and Reyes (2018), we see in Figure 1(a) that the relationship between
LMV and the explanatory variable TAX is linear, whereas the relationship between LMV
and LSTAT appear in nonlinear ways (Figure 1(b)). Also, Figures 1(c) and 1(d) suggests
that the explanatory variables ROOM and CRIM might be interacting with the variable
LSTAT in nonlinear fashion. Figure 2 represents the spatial distribution of the LMV vari-
able. From Figure 2 (right) we note that the lowest prices are concentrated between the
latitudes 42.2 and 42.25 and longitudes between -71.0 and -71.1, while the highest prices
are in the north part of the town. It is important to point out that Ibacache-Pulgar and
Reyes (2018) analyzes this same set of variables using a partially varying-coe�cient model
but without considering the e↵ect of the geographic coordinates associated with each of the
households surveyed. We believe that including the e↵ect of geographical coordinates can
improve the fit of the model considered by Ibacache-Pulgar and Reyes (2018) in predictive
terms, precision of the estimates and goodness of fit.

4.2 Fitting the models

Considering the analysis described above, we suggest the application of a partially varying-
coe�cient model that including the spatial variability. Specifically, we assume the following
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Figure 1. Three-dimensional graphics for house prices data. CONS denote an auxiliar variable defined as an (n⇥1)

ones vector.
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thin-plate spline partially varying-coe�cient model:

yi = ↵0 + ↵1 zi+�1(ri)x
(1)

i +�2(ri)x
(2)

i +g(ti) + "i, i = 1, . . . , 506, (17)

where yi denotes the value of LMV in USD 1000, zi the value of TAX, x(1)i the value of

CRIM, x(2)i the value of ROOM, ↵ = (↵0,↵1)> the parameters vector associated with
parametric component, ri the value of LSTAT from the ith experimental unit, �k, for
k = 1, 2, are unknown smooth functions, g is a smooth surface that depends of the vector
of coordinates ti = (t1i , t2i) 2 R2, and "i are independent random errors that follow a
symmetric distribution whit location parameter 0, scale parameter � and density generator
function h. We compare in the sequel the fits based on normal and Student-t random errors.
The DFs (⌫) for the Student-t model was selected by the AIC, that is, by defining a grid
of values for ⌫ and choosing the one that minimize the AIC. Figure 3 shows the graph of
AIC values for di↵erent DFs. We can see that this criterion is minimized for a value of
⌫ = 4.
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Figure 3. AIC values for di↵erent DFs, with ⌫ = 2, . . . , 10.

The MDPLE estimates, estimated standard errors and the corresponding AIC for the
model of Equation (17) under normal and Student-t distributions are presented in Table 1.
Comparing these results, we may notice a similarity between the estimates b↵ under both
models, but the standard error for b↵1 appears to be smaller under the Student-t model.
Also, it can be seen that the scale parameters are di↵erent for the two fitted models, but
the estimates are not comparable since they are on di↵erent scales. Additionally, we may
notice that the AIC value under the Student-t model is smaller than the one under the
normal model, indicating that the models with longer-than-normal tails seem to better fit
the data, a fact that is also confirmed through the theoretical quantile versus empirical
quantile (QQ) plots presented in Figure 4.

Table 1. Maximum penalized likelihood estimates, estimated standard errors (SE) and AIC values under
normal and Student-t (⌫ = 4) models fitted to house prices data.

Normal Student-t
Estimate SE Estimate SE

↵1 3.0668 0.1145 3.0637 0.0964
↵2 -0.0003 0.0001 -0.0002 0.0001
� 0.0344 0.0022 0.0172 0.0372

AIC -218.76 -274.65
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Figure 4. QQ plots fitted to house prices data: normal (a) and Student-t models with ⌫ = 4 DFs (b).
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The standarized residual plot provide in Figure 5 is used to verify if there are outlying
observations. In this case, the presence of some outlying observations for both models is
clearly observed. Figure 6 displays the graphics of the LMV versus the fitted LMV from
the two models. Although these plots indicate suitable fits for both models.
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Figure 5. Index plots of standardized residuals to house prices data: normal (a) and Student-t models with ⌫ = 4

DFs (b).
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Figure 6. Scatter plots LMV versus fitted LMV to house prices data: normal (a) and Student-t models with ⌫ = 4

DFs (b).

The estimated coe�cients functions �1 and �2 are computed using the smoothing pa-
rameters obtained by the method described in Subsection 3.8. Figures 7 and 8 show the
estimated coe�cient functions under both models and their corresponding approximate
standard error band (dashed curves). The figures suggest that the coe�cient curves vary
with the explanatory variable LSTAT. In addition, it can be seen that the functions esti-
mated under the normal model have a higher smoothness compared to those obtained from
the Student-t model. It is important to remember that in this work we have incorporated
the spatial variability of the data in the modeling process. Comparing with the results
obtained by Ibacache-Pulgar and Reyes (2018), we can notice that the TPSPVCM model
significantly improves the quality of the adjustment compared with the PVCM model. For
example, for normal TPSPVCM model, the AIC value is �218.7586, while that for nor-
mal PVCM model the AIC value is �139.4998. Analogously, under Student-t TPSPVCM
model with four DFs, the AIC value is �274.6546, while that under Student-t PVCM
model with five DFs, the AIC value is �188.3909. In addition, we can notice that for
the normal model, the estimated functions di↵er significantly, while under the Student-t
model, they retain the same tendency but with a greater degree of smoothness.
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Figure 7. Plots of estimated coe�cient function �1 for the house prices data and its approximate pointwise standard

error bands denoted by the dashed lines: Normal (a) and Student-t with ⌫ = 4 DFs (b) models.
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Figure 8. Plots of estimated coe�cient function �2 for the house prices data and its approximate pointwise standard

error bands denoted by the dashed lines: Normal (a) and Student-t with ⌫ = 4 DFs (b).

4.3 Robustness aspects of the MDPLEs

It is important to note that for univariate Student-t distribution the current weight

v(u)i = (⌫ + 1)/(⌫ + u(u)i ), with u(u)i = (yi�µ(u)
i )2/�(u), is inversely proportional to the

distance between the observed value yi and its current predicted value µ(u)
i , so that outly-

ing observations tend to have small weights in the estimation process. Therefore, we may
expected that the MDPLEs from the Student-t TPSPVCMs are less sensitive to outlying
observations than the MDPLEs from normal models. Figure 9 shows the plot between
the standardized residual defined in Equation (16) and estimated weights under Student-t
model. We can be seen that observation #411 has a very small residual and a high esti-
mated weight, but its removal from the data set did no generate significant changes in the
estimation of the parameters. For this reason the summary of the fit without this observa-
tion is omitted. Finally, it is important to note that the iterative process under Student-t
model generates a reduction in the weights associated with the observations detected as
discrepant. Hence such estimators present some characteristics of robustness similar to the
associated with the weight function described by Huber (1981).
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Figure 9. Plot of the standardized residual and estimated weights for the house prices data under Student-t model.

5. Concluding remarks

The elliptical thin-plate spline partially varying-coe�cient models proposed in this paper
have special characteristics compared to other types of models existing in the literature.
Specifically, these models allow describing the mean of the data in those cases in which
there are explanatory variables that are related to the response variable through a re-
gression structure that depends on a parametric component (usual linear predictor), a
non-parametric component (explanatory variables e↵ects in which the coe�cients are al-
lowed to vary as smooth functions of other variables) and a spatial component (thin-plate
spline). In addition, the distributional assumption established on random errors allows us
to model datasets in which the assumption of normality is not appropriate. We derive a
reweighed iterative process for obtaining the maximum doubly penalized likelihood esti-
mators based on the Score Fisher and back-fitting methods. Closed-form expressions are
obtained for the penalized observed and expected information matrices, and expressions
for the standard errors of the maximum doubly penalized likelihood estimators are also
available. We propose a way to estimate the smoothing parameters based on generalized
cross-validation and a method for the selection of models by using the AIC. A real dataset
previously analyzed under normal errors is reanalyzed under Student-t errors by includ-
ing a smoothing surface for the spatial variability. By comparing the AIC values of the
two models, the Student-t showed the better fitting. Thus, we can recommend Student-t
thin-plate spline partially varying-coe�cient models as an option to fit datasets with in-
dications of heavy tails. The computational implementation of all our results was carried
out in MATLAB software, and the codes can be requested from the authors to the email
german.ibacache@uv.cl.

Appendix

Here, we show the score function, the observed information matrix and the expected in-
formation matrix for the elliptical TPSPCVM base on the doubly penalized log-likelihood
function given in Equation (6).

Penalized score function

Let W v = blockdiag1in

�
viW i

�
, with W i = ⌃�1

i , vi = �2⇣h(ui), ⇣h(ui) =

d log h(ui)/dui, ⌃⇤
i = ⌃�1

i @⌃i/@`, ⌥ = blockdiag1in

�
⌥i

�
, with ⌥i =

mailto:german.ibacache@uv.cl
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vi⌃
�1

i (@⌃i/@`)⌃
�1

i . Assuming that Equation (6) is regular with respect to all elements of
✓, we have that the penalized score function of ✓ under elliptical TPSPVCM is given by

Up(✓) =
@Lp(✓,�)

@✓
=

0

BBBBBBB@

Up(✓)e↵

Up(✓)�1

...
Up(✓)�s

Up(✓)�
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1
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,

where U
e↵
p (✓) = (Z>

W v "
eTW v ")>, U

�k
p (✓) = fN

>
k W v " � �1Kk�k, for k = 1, . . . , s,

U
�
p(✓) = eEW v "� �gE� and U

⌧
p(✓) = �(1/2)

Pn
i=1

tr(⌃⇤
i ) + (1/2)">⌥".

Penalized observed information matrix

For simplicity, let  i = 2 1i +  2i,  ⇤
i =  1i +  2i and  ⇤⇤

i =  1i + 2 2i, with
 1i = v

0

i⌃
�1

i "i"
>
i ⌃

�1

i and  2i = vi⌃
�1

i . In addition, let  = diag1in

�
 i

�
and

⌦ = diag1in

�
⌦i
�
, with ⌦i =  ⇤

i (@⌃i/@|)⌃
�1

i . The Lp (p⇤ ⇥ p⇤) Hessian matrix under
elliptical TPSPVCM is defined as

Lp(✓) =
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whose elements are given by
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and
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Penalized expected information matrix

Let dgi = E(⇣2g (�i)�i) and fgi = E(⇣2g (�i)�
2

i ), with �i = e
>
i ei, ei ⇠ Elmi(0, Imi), and

W
⇤ = blockdiag1in

�
(4dgi/mi)W i

�
. By calculating the expectation of the matrix �Lp,

we obtain the (p⇤ ⇥ p⇤) penalized expected information matrix given by

Ip(✓) = �E

 
@2Lp(✓,�)

@✓@✓>

!
.

Following Lange et al. (1989), we have that the (j⇤, `⇤)-element of the matrix Ip for ith
cluster, with respect to the parameters ✓⇤j⇤ and ✓⇤`⇤ , can be obtained as

Ipi(✓) = E

 
@Lpi(✓,�)

@✓j⇤
@Lpi(✓,�)

@✓`⇤

!
.

After some algebraic manipulations we find that the Ip(✓) matrix have a block-diagonal
structure of the form

Ip(✓) = blockdiag
⇣
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Joint iterative process

Since parameters (e↵, �1, . . ., �s, �) and ⌧ are orthogonal, the estimation process is sim-
plified, so the we can consider the simultaneous estimation of (e↵, �1, . . ., �s, �) and
⌧ through process of two independent stages. Specifically, the solution of the estimating
equation system given in Equation (7) to obtain the MDPLE of ✓ may be attained by
iterating between a weighted back-fitting algorithm with weight matrix W

⇤ and a Fisher
score algorithm to obtain maximum likelihood estimation of the parameter ⌧ , which is
equivalent to the following iterative process:

(i) Initialize:

(a) Fitting a TPSPVCM under normal errors to get �(0)

| (| = 0, 1, . . . , s) and �0.
(b) Get starting value for ⌧ by using the fitted values from (a).

(c) From the current value ✓
(0) = (�(0)

>

0
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>

1
, . . . ,�(0)
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(ii) Step 1: Iterate repeatedly by cycling between the equations stated as
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Repeat (ii) replacing �
(u)
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(u+1)

| , for | = 0, 1, . . . , s, and �
(u)
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(Hastie and Tibshirani, 1990).

(iii) Step 2: For current values �
(u+1)

| , for | = 0, 1, . . . , s, and �
(u+1), obtaining ⌧

(u+1)

by using

⌧
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(iv) Iterating between steps (ii) and (iii) by replacing �
(0)

| , for | = 0, 1, . . . , s, �(0) and

⌧
(0) by �

(u+1)

| , �(u+1) and ⌧
(u+1), respectively, until convergence.
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