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George Christakos San Diego State University, US

Enrico Colosimo Universidade Federal de Minas Gerais, Brazil

Gauss Cordeiro Universidade Federal de Pernambuco, Brazil

Francisco Cribari-Neto Universidade Federal de Pernambuco, Brazil

Francisco Cysneiros Universidade Federal de Pernambuco, Brazil

Mário de Castro Universidade de São Paulo, São Carlos, Brazil

Raul Fierro Universidad de Valparáıso, Chile
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Abstract

In this paper, we propose a new regression model with varying precision based on the
Lomax distribution with regression structures for both the mean and precision param-
eters. The structures contain unknown parameters, regressors, and a link function. We
discuss methods for parameter estimation, hypothesis testing and diagnostic analysis,
along with their asymptotic properties. We also provide the expressions for the score
vector as well as for the observed and Fisher information matrices. We conduct a Monte
Carlo simulation study to investigate the behavior of the estimators and evaluate their
finite sample performance. Finally, we present and discuss an empirical application to
illustrate the usefulness of the proposed model.

Keywords: Asymmetrical data · Maximum likelihood method · Monte Carlo
simulation · Positive data · Reparametrization.

Mathematics Subject Classification: Primary 62J99 · Secondary 62F10.

1. Introduction

The Lomax distribution, also known as the Pareto type II model, belongs to the class of
distributions with decreasing failure rate and was first introduced by Lomax (1954) for
modeling business failure data. In the literature, the Lomax distribution has been applied
in several fields. For example, Harris (1968) used this distribution for queue problems,
Atkinson and Harrison (1978) used it for modeling business failure data, Holland et al.
(2006) used it for modeling the distribution of the sizes of computer files on a server,
Corbellini et al. (2007) used the Lomax distribution to model firm size distribution, and
Chandra and Khan (2013) used it to determine the optimal time for level changes for stress
plans in censored samples.
In the context of regression analysis, Beirlant and Goegebeur (2003) presented a regres-

sion model for random variables following a Lomax distribution, in which an exponential
transformation is used to relate the response variable with covariates. Stasinopoulos and
Rigby (2007) developed the package gamlss available in the software R (R Development
Core Team, 2021), in which we can model the parameters using a regression structure and
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190 Melo et al.

link functions. This package is an innovative proposal that makes it possible to consider
regression structures in a wide range of probability distributions. In the approach pre-
sented by Stasinopoulos and Rigby (2007), a regression structure using a link function can
be considered for modeling each of the distribution parameters. However, the modeling is
not performed in terms of the mean of the distribution. This fact can make the interpreta-
tion of the parameters di�cult, thus limiting the use of the model in practice. A possible
approach to interpretation in terms of the mean is to use the invariance property of the
estimators. This result can be applied when using some link functions such logarithmic
(Das et al., 2010) or the square root. However, this is not possible when using the inverse
link function.
When working with regression models for continuous positive variables, one possibility

for modeling is to use transformations of the response variable. The most commonly trans-
formation is the logarithmic. For example, Fernández and De Andrade (2020) proposed
a log-erf-Frechet regression model and Vigas et al. (2017) proposed a regression model
in the location-scale form based on the Poisson-Weibull distribution. In both approaches,
the logarithm of the variable of interest is modeled. Nonetheless modeling the mean is the
most common approach in regression models (McCullagh and Nelder, 1989; Ferrari and
Cribari-Neto, 2004; Fonseca et al., 2016; Palm et al., 2019). Regression models are usually
proposed with a focus on constant dispersion or precision parameter. Some extensions for
modeling parameters related to the variance of the distribution have been considered in
the literature. Among them, we highlight the proposal for modeling the dispersion or pre-
cision, such as in generalized linear models (Smyth, 1989) and in the beta regression model
(Simas et al., 2010). In more recent proposals, models that address the modeling of the two
characteristics, mean and variance, have been introduced in seminal proposals. For exam-
ple, Santos-Neto et al. (2016) proposed a reparameterized Birnbaum-Saunders regression
model with varying precision and Bourguignon and Gallardo (2020) developed the repa-
rameterized inverse gamma regression model with varying precision. In the context of the
modal regression, Bourguignon et al. (2020) presented a parametric modal regression with
varying precision where the response variable is gamma distributed. Additionally, Altun
(2021) introduced a new Lomax regression model, in which the response’s mean and shape
parameter (↵) are modeled by regression structures through the link functions. Recently,
Bourguignon and Nascimento (2020) presented a Bayesian approach that considers a new
parametrization that is indexed by mean and precision parameters, in which the response
variable is a generalized Pareto distribution. The main advantage of this reparametriza-
tion is that it allows the mean and precision parameters to be modeled directly, allowing
the construction of simple and interpretable models, such as in the context of generalized
linear models (McCullagh and Nelder, 1989).
Based on the above discussion, this work has the objective of using the maximum

likelihood (ML) approach to make inferences in the regression model with the same
reparametrization used in Bourguignon and Nascimento (2020). The methods presented
in this article di↵ers from the described in Bourguignon and Nascimento (2020) in one
main aspect; the approach to estimate parameters of the models. While Bourguignon and
Nascimento (2020) used the Bayesian approach, we presented the ML inference approach.
Additionally, in our proposal, the parametric support of the precision parameter is di↵er-
ent from the one used by Bourguignon and Nascimento (2020), in this sense, other link
functions are suggested and used for precision modeling. In this paper, the estimation of
the parameters is performed using the ML method. We obtain analytical expressions for
the score vector and Fisher information matrix, and also propose diagnostic measures and
tools for model selection. We emphasize that obtaining the Fisher information matrix is
possible due to the simplicity of the Lomax probability density function. Such expressions
are impossible and/or very costly to obtain in some more complex distributions.
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This paper is organized as follows. In Section 2, we present the Lomax distribution, the
proposed reparameterization, reparametrized Lomax regression model, and log-likelihood
function of the model. In Section 3, we present methods for the estimation and infer-
ences, such as the score vector, the observed and Fisher information matrix, procedures
for obtaining confidence intervals and hypothesis tests, additionally we introduce some
diagnostic measures to check the goodness-of-fit of the proposed model. Monte Carlo sim-
ulation results are presented and discussed in Section 4. We also present and discuss an
application. Finally, the conclusions and final remarks are presented in Section 5.

2. Proposed Model

In this section, we introduce the two-parameter Lomax distribution and its main charac-
teristics such as mean, variance, cumulative distribution function, and quantile function.
Furthermore, we present the reparametrization in terms of mean and precision parameters,
the regression structures for modeling the mean and precision, as well as the log-likelihood
function.

2.1 The Lomax distribution

Let Y be a random variable with Lomax distribution. Its probability density function is
given by

f(y;↵,�) =
↵�↵

(y + �)(↵+1)
, y > 0, (1)

where ↵ > 0 is the shape parameter and � > 0 is the scale parameter. The mean and
variance of Y are stated, respectively, by E(Y ) = �/(↵� 1), for ↵ > 1, and Var(Y ) =
↵�2/((↵� 1)2(↵� 2)), for ↵ > 2. The cumulative distribution function corresponding to
Equation (1) is expressed by

F (y;�,↵) = 1�
⇣
1 +

y

�

⌘�↵
.

2.2 A reparametrized Lomax distribution

In regression analysis, it is typically more useful and common to model the mean response,
as it makes the model parameters easily interpretable. In order to obtain a regression
structure for the mean of Y , we consider a new parameterization, which is obtained by
taking µ = �/(↵ � 1) and � = (↵ � 2)/↵ in Equation (1), that is, � = µ(↵ � 1) and
↵ = 2/(1� �). The mean-parametrized Lomax distribution with mean µ and precision �
is characterized by the probability density function expressed as

f(y;µ,�) =

2

1��

h
µ
⇣

2

1�� � 1
⌘i 2

1��

h
y + µ

⇣
2

1�� � 1
⌘i 2

1��
+1

, y > 0, µ > 0, 0 < � < 1. (2)

The mean and variance are given, respectively, by

E(Y ) = µ and Var(Y ) =
µ2

�
.
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The new cumulative distribution function is stated as

F (y;µ,�) = 1�


1 +

y(1� �)

µ (1 + �)

�� 2
1��

. (3)

2.3 The reparametrized Lomax regression model

Let Y1, . . . , Yn be independent random variables, where each Yt, t = 1, . . . , n, follows the
probability density function stated in Equation (2) with mean µt and precision �t. The
regression structures for the mean and precision of Yt are formulated, respectively, by

⌘1t = g1(µt) = x
>
t � and ⌘2t = g2(�t) = z

>
t �, (4)

where � = (�0,�1, . . . ,�r)> 2 Rr+1 and � = (�0, �1, . . . , �q)> 2 Rq+1 are vectors of
unknown regression parameters assumed to be functionally independent (r + q + 2 < n),
xt = (1, xt1, . . . , xtr)> and zt = (1, zt1, . . . , ztq)> are explanatory variables vectors, ⌘1t and
⌘2t are the mean and precision linear predictors, respectively, and g1 and g2 are twice-
di↵erentiable one-to-one monotonic functions called link functions, where g1: R+

! R and
g2: (0, 1) ! R.
The proposed Lomax regression model is defined by Equations (2) and (4). Due to

the restriction µt > 0, the most common link function and that satisfies the conditions
stated for g1 is the logarithm, g1(µt) = log(µt), because it provides non-negative values
for µt = g�1

1
(⌘t) = exp(⌘t) regardless the values assigned to ⌘t, is twice-di↵erentiable

one-to-one monotonic funcion. Other link functions are usual, but they do not satisfy
all the conditions stated for g1, they are the square root, g1(µt) =

p
µt, and inverse,

g1(µt) = 1/µt (with special attention to the positivity of the estimates). For the restriction
0 < �t < 1, we can use the logit g2(�t) = log [�t/(1� �t)], probit g2(�t) = ��1(�t),
where � is the cumulative distribution function of a standard normal random variable,
complementary log-log g2(�t) = log [� log(1� �t)], and log-log g2(�t) = � log [� log(�t)]
link functions (Ferrari and Cribari-Neto, 2004; Simas et al., 2010). For more details and a
detailed discussion about link functions, see Atkinson (1985, Ch. 7) and McCullagh and
Nelder (1989).

2.4 Likelihood function

Let Y1, . . . , Yn be a sample from the proposed Lomax regression model, y1, . . . , yn its
observations, and ✓ = (�>,�>)> the corresponding regression parameter vector. The
corresponding log-likelihood function for ✓ is given by

`(✓) =
nX

t=1

`t(µt,�t), (5)

where

`t(µt,�t) = log(2)� log(1� �t) +
2

1� �t
log


µt

✓
2

1� �t
� 1

◆�

�

✓
2

1� �t
+ 1

◆
log


yt + µt

✓
1 + �t

1� �t

◆�
. (6)
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3. Estimation and inference

In this section, we present details for performing point and interval estimation, and hy-
pothesis testing. Initially, we present the score vector, the observed information matrix
and Fisher information matrix, next present a test statistic to test hypotheses of interest
and the formula for obtaining confidence intervals.

3.1 Score vector

Taking first derivatives of the log-likelihood function with respect to each element of ✓, we
obtain the score vector U(✓) = (U�(✓)>,U�(✓)>)> given by

U�i
(✓) =

@`(✓)

@�i
=

nX

t=1

@`t(µt,�t)

@µt

dµt

d⌘1t

@⌘1t
@�i

,

U�i(✓) =
@`(✓)

@�i
=

nX

t=1

@`t(µt,�t)

@�t

d�t

d⌘2t

@⌘2t
@�i

.

From Equation (6), the derivative of `t(µt,�t) with respect to µt is defined by

@`t(µt,�t)

@µt
=

2

µt(1� �t)
�

(3� �t)(1 + �t)

(1� �t)2 [yt + ct]
:= bt, (7)

where ct = µt(1+�t)/(1��t). Note that ⌘1t = g1(µt), then dµt/d⌘1t = 1/g0
1
(µt), where g0

is the first derivative of function g. We also have that @⌘1t/@�i = xti. Therefore, it follows
that

U�i
(✓) =

nX

t=1

bt
1

g0
1
(µt)

xti, i = 0, 1, . . . , r,

where xt0 = 1. By taking derivative in Equation (6) with respect to �t, we define
@`t(µt,�t)/@�t := at, it follows that

at =


1

1� �t
+

2 log(ct)

(1� �t)2
�

2 log(yt + ct)

(1� �t)2
+

4

(1 + �t)(1� �t)2
�

2µt(3� �t)

(1� �t)3(yt + ct)

�
. (8)

For �i, we have that d�t/d⌘2t = 1/g0
2
(�t) and @⌘2t/@�i = zti. Therefore, we obtain

U�i(✓) =
nX

t=1

at
1

g0
2
(�t)

zti, i = 0, 1, . . . , q,

where zt0 = 1. The score vector can be expressed in matrix form as U�(✓) = X
>
Mb

and U�(✓) = Z
>Ma, where X is an n ⇥ r matrix with the t-th row given by xt, Z

is an n ⇥ q matrix with t-th row given by zij , b = (b1, . . . , bn)
>, a = (a1, . . . , an)

>,
M = diag {1/g0

1
(µ1), . . . , 1/g01(µn)}, and M = diag {1/g0

2
(�1), . . . , 1/g02(�n)}.

The ML estimators b� and b� of the parameters � and � are obtained by solving the
nonlinear system of equations expressed as U�(✓) = 0 and U�(✓) = 0. Since the above
system does not have analytical solution, the use of nonlinear optimization algorithms
is required. In this work, we apply the Nelder-Mead simplex method (Nelder and Mead,
1965).
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3.2 Observed information matrix

Taking second order derivatives of Equation (5) with respect to each element of ✓, we have

@2`(✓)

@�i@�j
=

nX

t=1

@

@�i


@`t(µt,�t)

@µt

dµt

d⌘1t

@⌘1t
@�j

�

=
nX

t=1


@2`t(µt,�t)

@µ2
t

dµt

d⌘1t
+

@`t(µt,�t)

@µt

@

@µt

✓
dµt

d⌘1t

◆�
dµt

d⌘1t
xtjxti,

@2`(✓)

@�i@�j
=

nX

t=1

@

@�j


@`t(µt,�t)

@µt

dµt

d⌘1t

@⌘1t
@�i

�
=

nX

t=1


@2`t(µt,�t)

@µt@�t

d�t

d⌘2t
ztj

�
dµt

d⌘t
xti,

@2`(✓)

@�i@�j
=

nX

t=1

@

@�i


@`t(µt,�t)

@�t

d�t

d⌘2t

@⌘2t
@�j

�

=
nX

t=1


@2`t(µt,�t)

@�2
t

d�t

d⌘2t
+

@`t(µt,�t)

@�t

@

@�t

✓
d�t

d⌘2t

◆�
d�t

d⌘2t
ztjzti.

In addition, from Equation (7), we have

@2`t(µt,�t)

@µ2
t

=
@

@µt


2

µt(1� �t)
�

(3� �t)(1 + �t)

(1� �t)2 [yt + ct]

�

= �
2

µ2
t (1� �t)

+
(3� �t)(1 + �t)2

(1� �t)3 (yt + ct)
2
:= wt,

@2`t(µt,�t)

@µt@�t
=

@

@�t


2

µt(1� �t)
�

(3� �t)(1 + �t)

(1� �t)2 [yt + ct]

�

=
2

µt(1� �t)2
�

2µt(1 + �t)2 + 8yt(1� �t)

(1� �t)4 (yt + ct)
2

:= rt.

And from Equation (8), we have

@2`t(µt,�t)

@�2
t

=
@

@�t


1

1� �t
+

2 log(ct)� 2 log(yt + ct)

(1� �t)2
+

4

(1 + �t)(1� �t)2

�
2µt(3� �t)

(1� �t)3(yt + ct)

�

=
5� �2

t

(1 + �t)(1� �t)3
+

4(1 + 3�t)

(1 + �t)2(1� �t)3
+

4 log(ct)

(1� �t)3
�

4µ

(y + ct)(1� �t)4

�
4 log(y + ct)

(1� �t)3
+

4µ2(3� �t)

(y + ct)2(1� �t)5
+

4µ(�t � 4)

(y + ct)(1� �t)4
:= st.

Notice also that

@

@µt

✓
dµt

d⌘1t

◆
= �

g00(µ1t)

[g0(µ1t)]2
:= mt and

@

@�t

✓
d�t

d⌘2t

◆
= �

g00(�2t)

[g0(�2t)]2
:= ot,

where g00 is the second derivative of function g.
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LetH = diag {h1, . . . , hn} with ht = [wt/g0(µ1t) + btmt] /g0(µ1t),R = (r1, . . . , rn)>, and
P = (p1, . . . , pn)> with pt = [st/g0(�2t) + atot] /g0(�2t). The joint observed information
matrix for ✓ is given by

J(✓) =

✓
J(�,�) J(�,�)

J(�,�) J(�,�)

◆
,

where J(�,�) = �X
>
HX, J(�,�) = J

>
(�,�) = �X

>
MRMZ, and J(�,�) = Z

>
PZ.

3.3 Information matrix, confidence intervals and hypothesis testing

Before presenting to the important quantities of this subsection, we need some useful
results used in obtaining of the Fisher information matrix provided by Lemma below.

Lemma 1: Let Yt be a random variable that follows a Lomax distribution with probability
density function given in Equation (2). Then,

E
⇣ 1

Yt + µt (2/(1� �t � 1))

⌘
=

2(1� �t)

µt(1 + �t)(3� �t)
,

E
⇣ 1

(Yt + µt (2/(1� �t � 1)))2

⌘
=

(1� �t)
2

µ2
t (1 + �t)2(2� �t)

,

E (log (Yt + µt (2/(1� �t � 1)))) = log

✓
µt(1 + �t)

1� �t

◆
+

1� �t

2
.

Proof: Let f be the probability density function of Yt. Then,

E

0

@ 1

Yt + µt

⇣
2

1��t
� 1

⌘

1

A
k

=

Z 1

0

2

1��t

⇣
µt

⇣
2

1��t
� 1

⌘⌘ 2
1��t

⇣
yt + µt

⇣
2

1��t
� 1

⌘⌘⇣
2

1��t
+1+k

⌘dyt,

where k > 0. Making the variable change xt = yt + µt(2/(1� �t � 1)), then the above
equation becomes

E

✓
1

Yt + µt (2/(1� �t � 1))
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The Fisher information matrix is obtained by taking the expected value of the second
order derivatives of the log-likelihood function, that is, K(✓) = E[J(✓)]. Since

E

✓
@`(µt,�t)

@µt

◆
=

2

µt(1� �t)
�

(1 + �t)(3� �t)

(1� �t)2
E

✓
1

Yt + ct

◆

=
2

µt(1� �t)
�

2

µt(1� �t)
= 0,



196 Melo et al.

the expected value of the derivatives in Section 3.2 are given by

E
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Observe that taking the expected value in Equations (7) and (8), and substituting the
results from this lemma, we have
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Let V = diag {v1, . . . , vn}, D = (d1, . . . , dn)
>, and Q = diag {q1, . . . , qn}. The Fisher

information matrix for ✓ is given by

K(✓) =

✓
K(�,�) K(�,�)

K(�,�) K(�,�)

◆
,

where K(�,�) = �X
>
V M

2
X, K(�,�) = K

>
(�,�) = �X

>
MDMZ, and K(�,�) =

�X
>
QM2

X. Note that the parameters � and � are not orthogonal.
Under usual regularity conditions, the ML estimators b✓ of ✓ are asymptotically con-

sistent, having approximately normal distribution with mean vector ✓ and variance-
covariance matrix K(✓)�1 in large samples (Pawitan, 2001), that is,

✓ b�
b�

◆
⇠ Nr+q+2

✓✓
�

�

◆
,K(✓)�1

◆
, (9)

where Nr+q+2 denotes the (r + q + 2)-dimensional normal distribution and b� and b� the
ML estimators of � and �, respectively.
Test statistics for hypothesis testing and confidence intervals can be obtained using the

asymptotic result presented in Equation (9). Suppose the interest is to test the following
hypotheses H0: ✓i = ✓0i versus H1 : ✓i 6= ✓0i , where ✓0i is a specified value for the unknown
parameter ✓i. A useful statistic to test these hypotheses is the signed square root of the
Wald statistic, given by Z = (b✓i � ✓0i )/

p

kii, where kii is the i-th diagonal element of

K(b✓)�1. This statistic is particularly convenient to test individual parameters (Pawitan,
2001). Under H0 and for large n, Z has a standard normal distribution. It is also possible
to perform more general hypothesis testing inference using the likelihood ratio, Wald, and
score statistics.
We can also use the result presented in Equation (9) to construct asymptotic confidence

intervals for each parameter ✓i. An approximate 100(1� ↵)% confidence interval for ✓i is

defined as (b✓i � z1�↵/2

p

kii; b✓i + z1�↵/2

p

kii), where �(z1�↵/2) = 1� ↵/2.

3.4 Diagnostic measures

In this subsection we suggest criteria for selecting the Lomax regression model and some
diagnostic measures for examining the goodness-of-fit of the proposed model. For model
selection, we consider the Akaike Information Criterion (AIC) (Akaike, 1974) and Bayesian

Information Criterion (BIC) (Schwarz, 1978) given, respectively, by AIC = �2`(b✓)+2(q+

r + 2) and BIC = �2`(b✓) + log(n)(q + r + 2).
For validating the proposed model, we perform residual analysis using the randomized

quantile residuals (Dunn and Smyth, 1996), defined as r(q)t = ��1(F (yt; bµt, b�t)), where

F (yt; bµt, b�t) is the cumulative distribution function stated in Equation (3). If the model is
correctly specified, these residuals should be independent and normally distributed, with
zero mean and unit variance.

4. Numerical results

In this section, we provide the simulation study in order to evaluate the performance of
the ML estimators of the proposed model under di↵erent sample sizes. Also, we present
and discuss an empirical application to illustrate the proposed framework.
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4.1 Simulation study

We conduct a Monte Carlo simulation study to evaluate the finite sample performance
of the likelihood inference for the proposed Lomax regression model. We used 10,000
Monte Carlo replications and considered five sample sizes n 2 {50, 100, 200, 500, 1000}.
Performance measures for ML estimator evaluation are the mean, bias, relative bias (RB),
standard deviation (SD), and root mean square error (RMSE).
We considered two scenarios with the following true parameter values: (i) Scenario 1: ✓ =

(�0,�1,�2, �0, �1) = (�3.0, 2.2, 1.5, 0.5,�0.3) and (ii) Scenario 2: ✓ = (�0,�1,�2, �0, �1) =
(0.5, 1.3,�0.7, 0.3, �0.5). In both scenarios, the covariates were generated independently
from a standard uniform distribution, U(0, 1), and kept constant during all Monte Carlo
replications. We considered the logarithmic and probit link functions for the mean and
precision submodels, respectively. This scenario considers the link functions that provided
the best fit in the application.
All simulations were performed using the R software. The maximization was obtained

considering the optim function, available in R, using the Nelder-Mead method with first
analytical derivatives; see Nelder and Mead (1965) for more details. As the iterative op-
timization algorithm requires a set of initial values for the parameters to be optimized,
we suggest to use the following empirical approach to determine these values. The initial
values �

(0) for � are obtained by the least squares estimates of � from the following lin-
ear regression model: log(yt) = x

>
t �, while the starting values �(0) for � are obtained by

�
(0) = (y2/S2

y)1
>
q+1

, where y and S2
y denote the sample mean and variance, respectively,

and 1q+1 denotes an (q+1)-dimensional vector of 10s. We have tested the others methods,
however, in our study, the Nelder-Mead method provided more robust estimates.
The simulation results are shown in Tables 1 and 2. Based on the results presented, we

can verify the good performance of the ML estimators of the Lomax regression model.
We observe that the bias and RMSE of the ML estimators of � tend toward zero as the
sample size increases, indicating the consistency property of the ML estimator. For the
vector �, the ML estimators are biased in small samples, but the bias decreases as the
sample size increases. This suggests that some procedure for inferential improvements can
be considered to reduce the problem of biased ML estimator in small samples. We also
highlight that this behavior of the ML estimators in precision modeling is recurrent in the
literature (Bourguignon and Nascimento, 2020; Simas et al., 2010).

4.2 Empirical application

We illustrate the proposed model using dataset obtained from the United Nations Devel-
opment Programme (available at http://hdr.undp.org/en/data). The response variable
is the carbon dioxide emissions per capita (DEC, measured in tonnes) in 123 countries,
including the autonomous territory of Hong-Kong and the United Kingdom collected in
2016. The covariates associated with this response variable are: forest area (FAR, measured
in % of total land area), concentration index of exports (CIN, ranging from 0% to 100%,
with a larger value denoting a higher concentration of exports), employment in agricul-
ture (EAG, measured in % of total employment), and human development index (HDI).
Some summary statistics of the response variable are given in Table 3. Figure 1 shows the
dispersion plots between the response variable and covariates. After some adjustments, we
consider only the set of regressors statistically significant at the level of 10% in the Lomax
regression model. The HDI covariate was not significant for the mean submodel. Also, the
FAR, CIN, and EAG covariates were not significant for the precision submodel. We use the
observed information matrix obtained numerically using the optim function of R software
because it provided lower variance estimates than the Fisher information matrix.

http://hdr.undp.org/en/data
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Table 1. Monte Carlo simulation results for likelihood inference, evaluation of point estimation, for the
Lomax regression model - Scenario 1 - g1(µt) = log(µt), g2(�t) = ��1(�t), �0 = �3.0, �1 = 2.2, �2 = 1.5,
�0 = 0.5 and �1 = �0.3.

n Estimator Mean Bias RB SD RMSE

50 b�0 �3.030 �0.030 0.010 0.556 0.557
b�1 2.210 0.010 0.004 0.736 0.736
b�2 1.480 �0.020 �0.013 0.714 0.714
b�0 2.161 1.661 3.322 9.454 9.599
b�1 �0.704 �0.404 1.347 55.585 55.586

100 b�0 �3.013 �0.013 0.004 0.357 0.358
b�1 2.198 �0.002 �0.001 0.434 0.434
b�2 1.508 0.008 0.005 0.502 0.502
b�0 1.235 0.735 1.471 6.504 6.546
b�1 �0.171 0.129 �0.431 13.708 13.709

200 b�0 �3.008 �0.008 0.003 0.240 0.240
b�1 2.202 0.002 0.001 0.314 0.314
b�2 1.499 �0.001 �0.001 0.292 0.292
b�0 0.805 0.305 0.610 2.413 2.432
b�1 �0.214 0.086 �0.286 4.165 4.166

500 b�0 �3.002 �0.002 0.001 0.135 0.135
b�1 2.199 �0.001 0.000 0.179 0.179
b�2 1.500 0.000 0.000 0.179 0.179
b�0 0.641 0.141 0.281 0.777 0.789
b�1 �0.368 �0.068 0.225 1.318 1.319

1000 b�1 �3.001 �0.001 0.000 0.099 0.099
b�2 2.199 �0.001 0.000 0.130 0.130
b�3 1.501 0.001 0.001 0.129 0.129
b�0 0.552 0.052 0.104 0.468 0.471
b�1 �0.312 �0.012 0.039 0.786 0.786

Table 2. Monte Carlo simulation results for likelihood inference, evaluation of point estimation, for the
Lomax regression model - Scenario 2 - g1(µt) = log(µt), g2(�t) = ��1(�t), �0 = 0.5, �1 = 1.3, �2 = �0.7,
�0 = 0.3 and �1 = �0.5.

n Estimator Mean Bias RB SD RMSE

50 b�0 0.443 �0.057 �0.114 0.578 0.581
b�1 1.310 0.010 0.008 0.673 0.673
b�2 �0.684 0.016 �0.023 0.613 0.614
b�0 1.163 0.863 2.878 16.240 16.263
b�1 �1.372 �0.872 1.744 34.205 34.216

100 b�0 0.493 �0.007 �0.014 0.332 0.332
b�1 1.294 �0.006 �0.005 0.434 0.434
b�2 �0.705 �0.005 0.008 0.442 0.442
b�0 0.669 0.369 1.232 6.398 6.408
b�1 �0.774 �0.274 0.547 14.265 14.268

200 b�0 0.498 �0.002 �0.004 0.200 0.200
b�1 1.298 �0.002 �0.001 0.263 0.263
b�2 �0.702 �0.002 0.003 0.271 0.271
b�0 0.523 0.223 0.744 2.101 2.113
b�1 �0.732 �0.232 0.465 3.488 3.496

500 b�0 0.498 �0.002 �0.004 0.152 0.152
b�1 1.298 �0.002 �0.002 0.196 0.196
b�2 �0.699 0.001 �0.001 0.194 0.194
b�0 0.410 0.110 0.365 0.694 0.702
b�1 �0.612 �0.112 0.223 1.234 1.239

1000 b�0 0.499 �0.001 �0.001 0.105 0.105
b�1 1.297 �0.003 �0.002 0.133 0.133
b�2 �0.699 0.001 �0.001 0.138 0.138
b�0 0.344 0.044 0.148 0.397 0.400
b�1 �0.524 �0.024 0.048 0.687 0.687
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Table 3. Summary statistics of carbon dioxide emissions.

Min 1st Quantile Median Mean 3rd Quantile Max Variance

0.100 1.400 3.400 4.953 6.500 29.800 27.597

After testing di↵erent combinations of link functions, the link functions that provided the
best fit were the logarithm and probit link functions for the mean and precision submodels,
respectively, resulting in the regression structures stated as

log(µt) = �1FARt + �2CINt + �3EAGt and ��1 (�t) = �1HDIt, t = 1, 2, . . . , 123.
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Figure 1. Plot for DEC versus FAR, CIN, EAG and HDI with corresponding smooth curves.

We compare the fitted Lomax regression model with the reparametrized gamma, repa-
rameterized Weibull, and normal linear regression models using the gamlss package
(Stasinopoulos and Rigby, 2007) in R. Some information about the regression structure
of these models is summarized in Table 4.

Table 4. Regression structures for the gamma, Weibull, and normal models, with µ and �2 representing
the mean and variance of the distribution, respectively.

Distribution Reparametrization Link function

gamma(✓1, ✓2)
µ = ✓1✓2 g1(µ) = log(µ)
� = ✓2

p
✓1 g2(�) = log(�)

Weibull(✓1, ✓2)
µ = ✓1�(1 + 1/✓2) g1(µ) = log(µ)
� = ✓2 g2(�) = log(�)

normal(✓1, ✓22)
µ = ✓1 g1(µ) = µ
� = ✓2 g2(�) = log(�)

Table 5 presents the parameter estimates, corresponding standard errors (SE), p-values
associated with hypothesis testing based on the Wald square root statistic, and model
selection criteria for the four fitted regression models. For comparison purposes, we fitted
the reparametrized gamma, reparameterized Weibull, and normal linear regression mod-
els considering the same covariates. The two information criteria evaluated indicate that
the Lomax regression model presented a better fit when compared to the other models.
Considering the nature of the response variable, the Gamma and Weibull distributions
are usual models for modeling continuous and positive data and that compete with the
Lomax distribution, as their densities can assume a decreasing format. This is confirmed
by the observed values of AIC and BIC. The normal model is one of the best known and
most widely used in practice, but it is suitable for data with the supported in reals, and its
probability density function does not assume a decreasing format. The values of AIC and
BIC confirm that the normal model is not a competing model of the proposal presented
here.
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Table 5. Fit regression models for carbon emissions data.

Model E↵ect Parameter Estimate (SE) p-value AIC BIC

Lomax
FAR �1 0.0305 (0.0036) < 0.01

650.94 662.19CIN �2 0.0466 (0.0045) < 0.01
EAG �3 �0.0424 (0.0048) < 0.01
HDI �1 0.0174 (0.0090) 0.0530

Gamma
FAR �1 0.0304 (0.0036) < 0.01

652.01 663.26CIN �2 0.0468 (0.0044) < 0.01
EAG �3 �0.0427 (0.0047) < 0.01
HDI �1 0.0002 (0.0007) 0.7658

Weibull
FAR �1 0.0304 (0.0036) < 0.01

651.97 663.22CIN �2 0.0467 (0.0044) < 0.01
EAG �3 �0.0427 (0.0047) < 0.01
HDI �1 �0.0003 (0.0008) 0.7251

Normal
FAR �1 0.0509 (0.0163) < 0.01

742.36 753.60CIN �2 0.0959 (0.0189) < 0.01
EAG �2 �0.0724 (0.0172) < 0.01
HDI �1 0.0211 (0.0008) < 0.01

Figure 2 presents the half-normal plots with simulated envelopes for the randomized
quantile residuals based on 100 replicates for the considered models. From these plots, we
note that, except for the normal regression model (Figure 2 (d)), almost all observations
appear inside the envelope bands, indicating a good fit of the regression models to the
the carbon dioxide emissions per capita (Atkinson, 1981). Figure 3 presents the residuals
against the index and estimated probability density function of the residuals in a non-
parametric way against the normal standard probability density function. As expected,
the residuals seems to be oscillating around zero with constant variance and approximately
normally distributed.
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Figure 2. Half-normal plot of residuals for the fitted models in this study.
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Figure 3. Residual plots for the proposed Lomax regression model.
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The interpretation of the estimated parameters of the Lomax regression model are as
follows:

(i) For each 1% that on forest area increases, the mean of the carbon dioxide increases by

3.10% (e
b�1 = 1.0310).

(ii) For each 1% that on concentration index of exports increases, the mean of the carbon

dioxide increases by 4.77% (e
b�2 = 1.0477).

(iii) For each 1% that the employment in agriculture increases, the mean of the carbon

dioxide decreases by 4.15% (e
b�3 = 0.9585).

(iv) The coe�cient of �1 is 0.0174, so when the HDI increases, the precision increases.

5. Conclusion

In this paper, we proposed a frequentist approach for the mean-parameterized Lomax re-
gression model with varying precision. The main advantage of this reparametrization is its
ability to model the mean directly. This makes the interpretation of the regression coe�-
cients easier in terms of the expectation of the response variable and the proposed model
more comparable with other models in the class of generalized linear models. The estima-
tion of the regression model parameters is based on the maximum likelihood approach. We
provided closed-form expressions for the score vector, observed information matrix, and
Fisher information matrix. Through Monte Carlo simulations, we evaluated the asymptotic
properties of maximum likelihood estimators. The simulation results showed that these es-
timators present a good performance. Finally, we illustrated the practical applicability of
the proposed framework through an empirical application.

Supplementary materials

The computational routine implemented in R is available online at https://gist.github.
com/moizesmelo/75a365ed957ae1ddbd9da9c3852597f3.
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