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Abstract

The classical Hotelling T 2
control chart using classical mean and covariance estimators

is not e�cient in case of outliers existence in data. To overcome this issue, robust mean

and covariance estimators are used in literature. Hence, a robust Hotelling T 2
control

chart is proposed based on the adaptive reweighted minimum covariance determinant

estimator which is a good option to the classical multivariate T 2
chart in case of outliers

presence. The new proposed chart’s performance is evaluated by false alarm rates and

probability of detection/percentage of outliers detection, later a comparison is made

with the performance of the classical Hotelling T 2
chart and the chart obtained using

the minimum covariance determinant estimator. Simulation and real data application

results are indicated that proposed control chart has better performance in comparison

to robust control chart based on the minimum covariance determinant especially in terms

of false alarm rates and it performs better than classical chart in terms of probability

of detection.

Keywords: Hotelling T 2 · Minimum covariance determinant · Multivariate control

chart · Robust estimator · Statistical quality control.

Mathematics Subject Classification: Primary 62P30 · Secondary 62F35.

1. Introduction

In manufacturing process, multiple quality characteristics of a product are generally ob-
served. Hence, multivariate control charts may be a suitable tool to observe the process.
The Hotelling T

2 chart is the most commonly known one because it’s application is easy, it
is flexible, it is sensitive to little process modifications and the software for it’s application is
available. The Hotelling T

2 uses the classical mean and covariance matrix, is reactive to the
outlier. Because in case of more quality characteristics are considered, the risk of multiple
outliers existence is getting higher. In case of outliers existence, the classical control chart’s
performance decreases. Because of the masking e�ect, the classical method is not e�ective
for multiple outliers case (Alfaro and Ortega, 2009). The masking e�ect in the monitoring
process occurs as a result of the outlier, which cannot be detected by the control chart. To
overcome the problem that arises, several robust methods have been proposed for reducing

ú
Corresponding author. Email: espolat@hacettepe.edu.tr

ISSN: 0718-7912 (print)/ISSN 0718-7920 (online)
c• Chilean Statistical Society – Sociedad Chilena de Estadística

http://www.soche.cl/chjs



172 Polat

the e�ect of multiple outliers by substituting the existing estimators with the more robust
ones. Furthermore, the performance of Hotelling T

2 control chart, in detecting the shift
of mean vector, is increasing when the robust covariance matrix estimator is implemented
(Williams et al., 2006; Ahsan et al., 2019).

Similar to control charts observing variability in a process, its structure arises from Phase
I, Phase II (Alt, 1985), as well called retrospective and prospective analysis, in order of. The
significant point of Phase I is the analysis of historical data for determining if the process
is under control or not by estimation of the in-control parameters and control limits of
the process. However, in case of Phase II, the focus is to monitor on-line data for rapidly
finding shifts of process from the estimated in-control parameter values in Phase I. Outliers
in Phase I may cause the increment of control limits and decrease of power for the detection
of process changes in Phase II. Hence, Phase II analysis achievement based on a success in
Phase I analysis in the estimation of in-control mean, variance and covariance parameters.

Ordinal Hotelling T
2 chart is a safe method when the underlying process data really has

the normal distribution. In contrast to this, in case of outliers presence in data it is not a safe
method for detecting out of control points properly. Because classical mean and covariance
estimators in the original formulae cannot resist the outliers. Thereby, the classical Hotelling
T

2
Õs chart ability for monitoring future process data is debatable. One of the way of getting

rid of this issue is using control chart which is robust in case of outliers existence.
Up to now, many robustified versions of the Hotelling T

2 control chart have been pro-
posed by utilizing from robust estimators. Abu-Shawiesh and Abdullah (2001) estimated
the mean vector using Hodges-Lehmann and the variance-covariance matrix using Shamos-
Bickel-Lehman. Vargas (2003) and Jensen et al. (2007) presented robust control charts using
minimum covariance determinant (MCD) and minimum volume ellipsoid (MVE) estimators.
They detected and omitted the outliers in Phase I data and later compute the traditional
estimators using the remained clean observations in case of Phase II data. Although in this
method, the breakdown point and calculation of the estimators become more significant,
however, statistical e�ciency does not become as critical as the extremely robust estimators
change place with by classical estimators in Phase II case. When MVE and MCD are used
in Phase I, they recognized some problems, such as T

2 obtained by using MVE performed
badly under large sample size. However, T

2 obtained by using MCD requires more sample
size if a lot of outlying observations is skeptical to guarantee that MCD estimator loses its
ability especially in case of monitoring with higher dimensions (p) and it does not break-
down. Alfaro and Ortega (2008) introduced robust Hotelling T

2 control charts by changing
the arithmetic mean with trimmed one and sample covariance with sample trimmed covari-
ance. Chenouri et al. (2009) presented a robust chart based on reweighted MCD (RMCD)
estimator that it is not overly a�ected by outlying observations and has better e�ciency
than MCD. The di�erence of their method from Vargas (2003) and Jensen et al. (2007)
that they use RMCD estimators instead of traditional estimators in establishing Hotelling
T

2 chart for Phase II data set. Alfaro and Ortega (2009) compared the performance of
Hotelling T

2 control charts using robust MVE, trimmed, MCD and RMCD estimators. The
result of this study was that the recommendation of the use of T

2 charts obtained by using
RMCD and trimmed estimator in case of not many outlying observations in the production
process since these two methods are able to control false alarm rates (FAR).

In the producing of products that concentrates mostly on determining the outlying ob-
servations compared to the false alarms, that is, a point outside the control limits for an
in-control process (Da Silva et al, 2019), T

2 obtained by using MCD may be taken into
consideration as the best option. Because Hotelling T

2 control charts based on MCD has a
better performance in terms of probability of detection (POD). In theory, if the POD gets
higher, the chart could also control the overall FAR – (Jensen et al., 2007). In spite of this,
the results in Alfaro and Ortega (2009) revealed a discordance between the capability of
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robust control chart in controlling the overall FAR and POD in case of specific situations.
Yañez et al. (2010) constructed the T

2 control chart by using the biweight S estimators for
mean and covariance estimators. Their chart outperformed the T

2 chart based on MVE for
a small number of observations. Yahaya et al. (2011) presented the minimum variance vector
(MVV) estimator in T

2 chart in order to observe the Phase II data. Overall, the robust con-
trol chart gave a quick detection in out-of-control status and at the same time, capable for
controlling the overall FARs nevertheless as the p is increased. The only disadvantage was
a large upper control limits (UCLs) in comparison to the classical T

2 chart. An improved
version of the MVV chart was further suggested by Ali et al. (2013) to obtain desired UCLs
whilst still it performs well in terms of FAR and POD. This was achieved by making the
MVV estimators consistent at normal distribution as well as unbiased for finite samples. Ali
et al. (2014) investigated the performance of reweighted version of MVV (RMVV) in con-
structing the Hotelling T

2 chart. Yahaya et al. (2019) introduced three robust Hotelling T
2

control charts using trimmed estimators. The modified Mahalanobis distance with median
used as the location measure and one of the scale estimators MADn, Sn (mean absolute
average) or Tn as the scale measure. As a consequence of these alternatives, three dissimilar
trimmed estimators are introduced. The findings of their study revealed that their three
control charts performance is moderate in terms of false alarms and magnificently for POD,
outperform the classical control chart in any case of conditions. In case of outliers existence
or samples deviation from normality, all of the studies revealed that the robust control charts
surpass the classical Hotelling T

2 control chart.
In this study, following the robust Hotelling T

2 control chart literature, a robust Hotelling
T

2 control chart is introduced that uses a robust adaptive reweighted minimum covariance
determinant (ARWMCD) estimator. The new control chart’s performance is evaluated by
FARs and POD by doing a simulation and a real data application. Moreover, the perfor-
mance of the new method is compared with robust control chart using MCD estimator and
the classical chart.

The rest of the paper is organized as follows. Section 2 reviews the ARWMCD estimator.
In Section 3, we present the new proposed Hotelling T

2 control chart. Section 4 contains
a simulation study where the performance of the new robust Hotelling T

2 chart using AR-
WMCD estimator is compared to classical Hotelling T

2 chart and the robust Hotelling T
2

chart using MCD. In Section 5, we illustrate the performance of the new proposed robust
Hotelling T

2 chart based on ARWMCD on the real data that is given in Ali et al. (2013).
Finally, Section 6 collects some conclusions about the present study.

2. Adaptive reweighted minimum covariance determinant estimator

In addition to maximum robustness against to outliers, robust multivariate estimators must
also propose a sensible e�ciency for the normal distribution and a controllable asymptotic
distribution. Nevertheless, MCD and MVE estimators do not satisfy that condition. Gervini
(2003) expressed that considering the both of being robust and e�cient, the best way uti-
lizing a two-stage process. Rousseeuw and Van Zomeren (1990) also expressed that in this
process, first of all, a tremendously robust nevertheless maybe not e�cient estimator is
calculated and it is used for observing outlying observations and calculating the sample
location and covariance of the good data. This process comprises of omitting sample points
whose Mahalanobis distances go beyond a certainly fixed threshold value. As beginning es-
timator for that processes, Rousseeuw and Van Driessen (1999) suggested an algorithm for
computing MCD estimator, which does not ensure that the precise estimator is obtained,
it is quicker and more precise than formerly obtained algorithms also for highly bigger data
(n ∫ p). The advantage of the 1/

Ô
n convergence rate, in addition to this truth, could in-

dicate that the MCD technique uses the FAST-MCD algorithm is the best preference when
compared to MVE for beginning estimator of a two-step process (Gervini, 2003).
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MCD is investigating for those h observations for which the determinant of the tradi-
tional covariance matrix is minimum. Therefore, the MCD estimators are the location and
covariance matrix of that h observations. The computation of MCD estimation is hard.
The application of MCD estimator on data sets could merely be in case of the number of
observations exceeds the number of variables (n > p). Because in case of p > n then also
p > h, and often the covariance matrix of any h observations is going to be singular, tends
to zero determinant. Henceforth, each subset of h observations would tend to the minimum
feasible determinant, resulting in a non-unique solution (Filzmoser et al., 2009). FAST-MCD
algorithm can handle with larger sizes of sample such as tens of thousands. This algorithm
obtains precise solution for small sizes of data and it is quicker and more precise than for-
merly proposed algorithms, yet for extremely big data sets. Since it is e�cient and fast in
calculation, Rousseeuw and Van Driessen (1999) proposed of using FAST-MCD algorithm
for estimating mean and covariance. Since the raw MCD estimators of mean and covari-
ance are reweighted for improving the finite sample e�ciency, named as reweighted MCD
(RMCD) estimators (Hubert and Vanden-Branden, 2003). Since it is very popular algorithm
for robust literature, a brief information about FAST-MCD is given. Any interested reader
could find for detailed information in Rousseeuw and Van Driessen (1999). The algorithms
steps for p dimensional vector xi, for i = 1, . . . , n, as follows.
Step 1: The MCD estimates could withstand (n ≠ h) outlying observations, therefore h (or
equally the fraction – = h/n) specifies the robustness of the estimator. (1≠–) measures the
fraction of outliers the algorithm should resist. Any value between 0.5 and 1 may be specified
(default = 0.75). In FAST-MCD algorithm by taking [(n+p+1)/2] as the accepted value of
h, highly resist against outliers. Nevertheless, any integer h in the interval [(n + p + 1)/2] Æ
h < n could be used by researcher. In case of a huge fraction of outliers is assumed in data
set, thereby, h must be selected as h = [0.5n]. Also, if it is correct that the data includes not
much than 25% of outliers that is often the condition, a better balance between statistical
e�ciency and breakdown value is captured by choosing h = [0.75n] (Rousseeuw and Van
Driessen, 1999). In this study, we have also used the default value of h = [0.75n].
Step 2: From here on h < n and p Ø 2. If n is small (say, n < 600) then:

• Repeat (say) 500 times:
X Construct an initial h-subset H1 using method given in Rousseeuw and Van Driessen

(1999), that is, starting from a random (p + 1)-subset.
X Carry out two C-steps described in Rousseeuw and Van Driessen (1999).

• For the 10 results with lowest det( ‚⌃3):
X Conduct C-steps until convergence

• Report the solution (‚µ, ‚⌃) with lowest det( ‚⌃).

Step 3: If n is larger (say, n Ø 600), then:

• Construct up to five disjoint random subsets of size nsub according to given in Rousseeuw
and Van Driessen (1999) (say, subsets of size nsub = 300).

• Inside each subset, repeat 500/5=100 times:
X Construct an initial subset H1 of size hsub = [nsub(h/n)].
X Carry out two C-steps, using nsub and hsub.
X Keep the 10 best results (‚µsub, ‚⌃sub).

• Pool the subsets, yielding the merged set (say, of size nmerged = 1500).
• In the merged set, repeat for each of the 50 solutions (‚µsub, ‚⌃sub):
X Conduct two C-steps, using nmerged and hmerged = [nmerged(h/n)].
X Keep the 10 best results (‚µmerged, ‚⌃merged).
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• In the full data set, repeat for the mfull best results:
X Take several C-steps, using n and h.
X Keep the best final result (‚µfull,

‚⌃full).
Here, mfull and the number of C-steps (preferably, until convergence) depend on how large
the data set is (Rousseeuw and Van Driessen, 1999; Polat and Gunay, 2019). This algorithm
is called as FAST-MCD. It is a�ne equivariant: when the data are translated or subjected to
a linear transformation, the resulting (‚µfull,

‚⌃full) transforms accordingly. For convenience,
the computer program contains two more steps (Rousseeuw and Van Driessen, 1999).
Step 4: In order to obtain consistency when the data come from a multivariate normal
distribution, ‚µMCD = ‚µfull and ‚⌃MCD = (medi d

2

(‚µfull,‚⌃full)
(i)/‰

2

p,0.5) ‚⌃full are placed.

Step 5: One-step reweighted estimates could be obtained by reweighting each observation
as

wi =
I

1, if (xi ≠ ‚µMCD)€ ‚⌃≠1

MCD
(xi ≠ ‚µMCD) Æ ‰

2

p,0.975
,

0, otherwise.

Therefore, using the weights wi, the RMCD estimators are calculated as

‚µRMCD =
qn

i=1
wixiqn

i=1
wi

and ‚⌃RMCD =
qn

i=1
wi(xi ≠ ‚µRMCD)(xi ≠ ‚µRMCD)€

qn
i=1

wi
.

If it is desirable that the estimator to be robust and e�cient, a two-step process is suggested
as a best preference. Gervini (2003) suggested basically enhancement above Rousseeuw and
Van Zomeren (1990) that a reweighted one-stage estimator using adaptive threshold values.
This adaptive reweighting system can keep the outlier robustness of the starting estimator
in bias and breakdown, at the same time, reach 100% e�ciency for the normal distribution.
For the first time, Gervini and Yohai (2002) suggested this type of adaptive reweighting for
the linear regression model. This conception is widened by Gervini (2003) that he suggested
an adaptive technique for multivariate mean and covariance estimation.

Since x1, . . . , xn is a sample of under consideration in Rp and beginning robust estimators
of mean and covariance are ‚µ0n, ‚⌃0n (in our study, they are obtained by MCD estimator
using FAST-MCD algorithm) then the Mahalanobis distances are stated as (Gervini, 2003;
Polat and Gunay, 2019).

di := d

1
xi, ‚µ0n, ‚⌃0n

2
=

Ó
(xi ≠ ‚µ0n)€ ‚⌃≠1

0n (xi ≠ ‚µ0n)
Ô

1/2

.

Under normality assumption, d
2

i nearly have a ‰
2

p distribution and logically, being suspicious
about data points with d

2

i Ø ‰
2

p,0.975
as an outlier. Rousseeuw and Van Zomeren (1990)

suggested to omit those outlying data points and calculated the sample mean and covari-
ance matrix of left of the data set. Hence, by this method, they obtained new estimators
(‚µ1n, ‚⌃1n); see Gervini (2003).

Gervini (2003) expressed that MCD estimators can be taken under consideration as the
beginning robust estimators of mean and covariance in the adaptive reweighted procedure
because the MCD technique computed using FAST-MCD algorithm is developed as a good
option instead of MVE. Therefore, similar as in Polat and Gunay (2019), adaptive reweighted
technique including the MCD estimators (‚µMCD, ‚⌃MCD) is used as beginning robust estima-
tors of mean and covariance (‚µ0n = ‚µMCD, ‚⌃0n = ‚⌃MCD). This technique had been named
as ARWMCD and robust estimators, denoted as ‚µARWMCD, ‚⌃ARWMCD.



176 Polat

This reweighting stage rises up the beginning estimators e�ciency and also keeps its
robustness mostly. The threshold ‰

2

p,0.975
is a subjective value. Although they show a normal

distribution, in case of big data sets noticeable number of data points must to be omitted
out of analysis. For this issue, it is found that the best option constructing an adaptive
threshold values, which gets higher related to n in case of the data are uncontaminated,
however, stays bounded in case of outliers presence in the sample. The procedure of this
method is as in follows. Note that the expression stated as

Gn(u) = 1
n

nÿ

i=1

I

1
d

2

1
xi, ‚µMCD, ‚⌃MCD

2
Æ u

2
,

where Gp(u) is the ‰
2

p distribution function, shows the experimental distribution of the
squared Mahalanobis distances (Gervini, 2003; Polat and Gunay, 2019).

The approximation of Gn to Gp is assumed in case of the sample has normal distribution.
Hence, comparing the tails of Gn with the tails of Gp is a technique of detection for outliers.
In case of ÷ = ‰

2

p,1≠– for a fixed small –, for example – = 0.025, we have (Gervini, 2003;
Polat and Gunay, 2019)

–n = sup
uØ÷

{Gp(u) ≠ Gn(u)}+
, (1)

where {·}+ denotes the positive part. Note that –n could be considered as an outlier measure-
ment in the sample. It only allows positive di�erences in Equation (1) because a negative
di�erence does not show existence of outliers. If d

2

(i) shows the ith order statistic of the
squared Mahalanobis distances and i0 = max{i: d

2

(i) < ÷}, then Equation (1) comes down
to as (Gervini, 2003; Polat and Gunay, 2019)

–n = max
i>i0

;
Gp

1
d

2

(i)

2
≠ i ≠ 1

n

<
+

.

Those data points giving the largest Â–nnÊ distances are taken under consideration as out-
lying points and omitted in the reweighting stage, with ÂaÊ showing the largest integer that
is Æ a. The cut-o� value is given by

cn = G
≠1

n (1 ≠ –n),

where G
≠1

n (u) = min{s: Gn(s) Ø u}, cn = d
2

(in)
, with in = n ≠ Â–nnÊ and that in > i0 as a

outcome of the description of –n. Therefore, cn > ÷. To describe the reweighted estimator,
weights are stated as (Gervini and Yohai, 2002; Polat and Gunay, 2019)

wi,n = w

Q

a
d

2

1
xi, ‚µMCD, ‚⌃MCD

2

cn

R

b. (2)

The weight function defined as w: [0, Œ) æ [0, 1] is non-increasing, with w(u) = 0 when
u œ [1, Œ) and w(u) > 0 when u œ [0, 1), w(0) = 1. The simplest choice among those
functions satisfying it is the hard-rejection function w(u) = I(u < 1), which is the one most
commonly used in practice.
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Once the weights in Equation (2) are calculated, the one-stage reweighted
(‚µARWMCD, ‚⌃ARWMCD) are given as

‚µARWMD =
qn

i=1
wi,nxiqn

i=1
wi,n

(3)

and

‚⌃ARWMCD =
qn

i=1
win(xi ≠ ‚µARWMCD)(xi ≠ ‚µARWMCD)€

qn
i=1

wi,n
. (4)

3. The new proposed Hotelling T
2

control chart

The p dimensional random sample of n observations of prior data in case of Phase I is shown
by xi = {x1, . . . , xn}, where xi are supposed to be independent and have a multivariate
normal distribution with covariance matrix ⌃ and mean vector µ. In case of µ and ⌃
are not known then the estimation of them utilizing an in-control data set is needed. The
procedure of describing the in-control data set from xi is mentioned as Phase I action. Using
preliminary data set, x and S are computed. These estimates are used to compute T

2

(i) for
i = 1, . . . , n based on

T
2

(i) = (xi ≠ x̄)S≠1(xi ≠ x̄)€
,

To obtain an in-control data set, describe outliers utilizing UCL established on the beta
distribution given by

UCL1 ≥
C

(n ≠ 1)2

n

D

B(–, p
2 , n≠p≠1

2 ),

where B(–, p/2, (n ≠ p ≠ 1)/2) is the 100 ◊ (1 ≠ –)% quantile of the beta distribution with
p/2 and (n ≠ p ≠ 1)/2 degrees of freedom, whereas – is the overall FAR.

The sample points where T
2

(i) > UCL1 are omitted that since they are outliers. The clean
data set that the outlying observations are omitted (nc) is then used for computing the new
estimations, xN and SN . These estimations are used for computing T

2

(g)
statistic for Phase

II observation, where xg /œ xi, such that

T
2

(g)
= (xg ≠ xN )S≠1

N (xg ≠ xN )€
.

By using the desired values of –, p and nc, compute the LCL and UCL using the F distri-
bution as

UCL ≥
5

p(nc + 1)(nc ≠ 1)
nc(nc ≠ p)

6
F(–,p,nc≠p) and LCL = 0,

where F(–,p,nc≠p) is the 100(1≠–)% quantile of the F distribution with p and n≠p degrees of
freedom and – is the overall FAR. Nevertheless, this classical procedure is merely e�ective in
excluding very unusual outlying observations and observing large shift in the mean vector
in small sample sizes, however, it is not successful for detecting more moderate outlying
observations specifically when number of variables inflated (Vargas, 2003; Jensen et al.,
2007; Chenouri et al., 2009). To overcome this issue of the process, in this study, ARWMCD
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estimator is used in Phase I data of xi. As it is known that ARWMCD gives robust estimators
of covariance and mean, those are used as in-control estimators in Phase II, where the Phase
II observations are xg = {xn+1, xn+2, . . . }, xg /œ xi.

The procedure for new robust chart is as follows. First, from the Phase I data set, xi,
the ARWMCD location vector and covariance matrix estimators xARWMCD(‚µARWMCD) and
SARWMCD( ‚⌃ARWMCD) are obtained as in Equations (3) and (4). Then, a robust Hotelling
T

2 (T 2

ARWMCD(g)
) for Phase II data, xg, is defined based on these ARWMCD estimates

(obtained from Phase I data) as

T
2

ARWMCD(g)
= (xg ≠ xARWMCD)S≠1

ARWMCD
(xg ≠ xARWMCD)€

. (5)

The UCL, FAR and POD calculations are explained under Section 4 in detail.

4. Simulation study

Robust estimators are used in place of the traditional mean and covariance in T
2 chart, which

causes the replacing of distributional properties of the classical T
2 control chart (Williams et

al., 2006). As the sampling distribution of the suggested Hotelling T
2 chart T

2

ARWMCD
is not

known, the UCL is estimated with simulation. Moreover, as the distribution of T
2

ARWMCD

is not known, simulations were done for estimating the quantiles of the T
2

ARWMCD
, for few

combines of dimensions and sample sizes as shown in Table 1. Even, the finite sample
distribution of the MCD estimators is still questionable, thus, the distribution of T

2

MCD
is

also unknown (Vargas, 2003; Jensen et al., 2007; Chenouri et al., 2009; Alfaro and Ortega,
2009). Therefore, quantile is also used in estimating the distribution of T

2

MCD
obtained via

Monte Carlo method.
First of all, data sets are originated from the standard multivariate normal distribution

Np(0, Ip). Then, robust estimators are computed from this distribution. Next, a new ad-
ditional sample point from the standard multivariate normal distribution is generated and
robust Hotelling T

2 statistic for this new sample point is computed. This process is repeated
5000 times and the 95th percentile of the 5000 robust Hotelling T

2 statistics considered as
the UCL. For assessing the performance of T

2

ARWMCD
by comparison with classical T

2

0
and

robust T
2

MCD
control charts, several conditions are generated by changing number of dimen-

sions (p), observations (n) and percentage of outliers (Á) and a variety of mean shifts values
(µ1) as shown in Table 1.

Table 1. The Simulation settings

Variables Values
Number of quality characteristics (p) 2, 5, 10

Proportion of contamination (Á) 0.1, 0.2
Mean shift (µ1) 0 (no shift), 3, 5
Group size (n) 50, 100, 200

To estimate the 95% quantile of T
2

ARWMCD(g)
firstly, for a Phase I case with a sample

size n and dimension p, K = 5000 samples of size n from a standard multivariate nor-
mal distribution Np(0, Ip) are generated. For di�erent sample sizes n, the ARWMCD mean
vector and covariance matrix estimates are computed, µARWMCD(k) and SARWMCD(k), for
k = 1, . . . , K. Additionally, for each data set, a new observation Xg,k is randomly gen-
erated that it is handled as a Phase II sample point from Np(0, Ip) and the correspond-
ing T

2

ARWMCD(g,k)
values are computed as given by Equation (5). The simulated values as
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T
2

ARWMCD(g,1)
, . . . , T

2

ARWMCD(g,K)
are used to obtain the empirical distribution function of

T
2

ARWMCD(g)
. Then, T

2

ARWMCD(g,K)
values are sorted in ascending order and the UCL is the

95th quantile of the 5000 statistics. The UCL values for classical and MCD control charts
are also estimated by using this technique.

4.1 Performance evaluation

The classical and two Robust Hotelling T
2 charts success is evaluated in terms of the FAR

and POD for Phase II data. Hence, for Phase II sample points, 1000 new datasets were
simulated from the standard normal distribution Np(0, Ip) of various sample sizes (n) and
dimensions (p) as shown in Table 1. For deciding the FAR and POD, a Phase II sample
point is randomly generated with in-control and out of control parameters respectively from
Phase I and the robust Hotelling T

2 statistics are calculated. FAR is calculated using a new
sample point from the in-control distribution, however, the POD is computed with a new
sample point generated from the out-of-control distribution. The FAR or POD is predicted
as the percentages of statistic values which are over the control limits of 1000 repetitions.
In case of Phase I, several conditions of data sets are simulated by changing the number of
observations, dimensions and proportions of contamination. By mixing normal distributions
similar as in Alfaro and Ortega (2009), a contaminated model stated as

(1 ≠ Á)Np(µ0,⌃0) + ÁNp(µ1,⌃1) (6)

is used for investigating the e�ect of outliers on the charts success. Here, Á is the percentage
of outlying observations, µ0 and ⌃0 are the in-control parameters, however, µ1 and ⌃1

are the out-of-control parameters. Contamination with shift in the mean, however, not any
changes in covariance is assumed, henceforth, the covariance matrix ⌃0 and ⌃1 in Equation
(6) are p dimensional identity matrices (Ip). Four variables are changed to investigate the
strengths and the weaknesses of the classical and robust Hotelling T

2 charts namely number
of quality characteristics (p), proportion of contamination (Á), mean shift (µ1) and sample
size (n). The proportions of outliers as 0.1 or 0.2 and also the clean data set is taken under
consideration. As for the POD a modification which is based on the shift in the mean vector
µ1 is a vector of size with value of 0 (in case of not any di�erence), 3 or 5 (in case of good
leverage points) are considered. The setting values for the variables are listed in Table 1
following Alfaro and Ortega (2008), Vargas (2003) and Mohammadi et al. (2011). Changes
on the mean shifts and proportions of outlying observations produce 5 dissimilar kinds of
contaminated distributions stated as:

• Np(0, Ip) – ideal case (clean data set);
• (0.9)Np(0, Ip) + (0.1)Np(3, Ip) – slight contamination;
• (0.8)Np(0, Ip) + (0.2)Np(3, Ip) – medium contamination;
• (0.9)Np(0, Ip) + (0.1)Np(5, Ip) – medium contamination;
• (0.8)Np(0, Ip) + (0.2)Np(5, Ip) – excessive contamination.
Later, in Phase II, the data are simulated from multivariate normal distribution Np(µ1, Ip),
where µ1 shows the shift in the mean vector such as the case in Phase I (that is, 0, 3,
and 5). Then, the new control chart T

2

ARWMCD
is compared with robust Hotelling T

2 chart
based on MCD (T 2

MCD) and the classical Hotelling T
2 control chart. For the classical chart

T
2

0
, the method, which is without cleaning the outlying observations as stated in Alfaro and

Ortega (2009), is considered. The programs and simulations were done using MATLAB. The
FAST-MCD algorithm code named as mcdcov could be found in MATLAB LIBRA Toolbox
(Verboven and Hubert, 2005). The features of computer used for simulation is Intel(R)
Core(TM) i5-8250U CPU @ 1.60 GHz 1.80 Ghz.
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4.2 Simulation results

Here, the results of performance of the classical T
2

0
and robust T

2

MCD
, T

2

ARWMCD
charts are

presented in terms of FARs and POD at – = 0.05 in Tables 2 and 3.
4.2.1 False alarm rates

The success of a chart cannot only be evaluated by its capability in diagnosing outliers,
however, also in controlling the FAR, which is the probability of out-of-control signal in case
of a process is under control. In case of the process instability, the value gets larger because
of increment in variability. Expanded FAR could cause unrequired process regulations and
loss of confidence in the control chart as an observing instrument (Chang and Bai, 2004).
Therefore, a technique that could control the FAR to the wished level is essential. The
Bradley liberal criterion of robustness is used for evaluating the robustness of the control
charts. According to this criterion, a control chart is evaluated as robust in case of its empir-
ical FAR is within the robust interval between 0.5– and 1.5– (Bradley, 1978). Henceforth,
as the nominal value is accepted as – = 0.05, the control chart is taken under consideration
as robust if its FAR is within robust interval, 0.025 to 0.075. In Table 2, the FAR values
lying within the robustness interval are bolded. A control chart, which is considered as best,
the one has the ability of controlling the FARs within robust interval and also gives the
closest FAR to nominal value, 0.05 (Jamaluddin et al., 2018). For every condition, the FARs
given in Table 2 are presented in an ascending number of dimensions such as p = 2, 5 and
10, with – = 0.05. The sample sizes are given in the first column of this table, in second
column the proportions of outliers and in third column non-centrality values are provided.

Table 2. FAR values (%) of the three control charts in case of – = 0.05.

p = 2 p = 5 p = 10

n Á µ1 T 2
0 T 2

MCD T 2
ARWMCD T 2

0 T 2
MCD T 2

ARWMCD T 2
0 T 2

MCD T 2
ARWMCD

50 0 0 5.6 5.8 5.5 5.5 6.0 5.5 5.7 4.9 5.2
0.1 3 2.1 2.2 3.6 2.8 1.3 3.0 4.1 1.9 2.2

5 1.6 2.3 3.8 2.6 1.4 3.1 4.0 1.8 2.0
0.2 3 2.1 0.8 2.2 2.8 0.5 1.8 4.3 1.9 2.2

5 1.9 0.6 3.1 2.7 0.2 1.6 4.2 0.8 1.1
100 0 0 4.7 4.5 4.2 5.0 3.3 4.2 5.1 4.3 5.3

0.1 3 1.9 2.0 3.5 2.7 1.3 3.3 3.3 2.3 4.0
5 1.5 2.0 3.8 2.7 1.4 3.2 3.3 2.2 3.8

0.2 3 2.0 0.5 2.3 2.8 0.2 3.1 3.1 0.8 3.4
5 1.5 0.4 3.3 2.7 0.2 3.1 3.2 0.5 3.2

200 0 0 6.3 5.7 6.0 4.2 4.1 4.4 5.0 5.6 5.5
0.1 3 2.3 3.1 4.9 2.5 2.1 3.4 3.8 2.3 4.1

5 1.9 3.1 5.6 2.4 2.0 3.4 3.5 2.1 4.0
0.2 3 2.1 0.5 3.1 2.7 0.1 3.8 3.7 0.2 3.4

5 1.9 0.2 5.2 2.7 0.1 3.9 3.6 0.2 3.3

Table 2 shows robust T
2

MCD
and T

2

ARWMCD
charts that perform as good as the traditional

chart in controlling FAR under ideal condition (Á = 0,µ1 = 0), regardless of the sample sizes
n, outliers proportions Á and variable sizes p. However, the rates for all charts decrease when
contamination exists with some results below the Bradley limit.

If p = 2, it is clear in Table 2 all results on FARs demonstrate that the T
2

ARWMCD
control

chart has better performance than the T
2

0
and T

2

MCD
control charts. The T

2

ARWMCD
control

chart has the capability in controlling FARs for nearly whole of the circumstances explored
which is about 86% (13 out of 15) of the circumstances in comparison to T

2

0
and T

2

MCD

control charts, which are only e�ective for 20% (3 out of 15) and 33% (5 out of 15) of the
circumstances, respectively. The T

2

MCD
control chart is a�ected bad with high proportion of

outlying observations, Á = 20% for both moderate and high process mean shifts, that they
are confirmed by the proportions of false alarm far below the significance value, – = 0.05.
Henceforth, T

2

ARWMCD
control chart performs superior to the traditional chart T

2

0
and robust

control chart T
2

MCD
for bivariate case. In case of the dimensions raised to multivariate data,

p = 5, the FARs for traditional chart
!
T

2

0

"
improved. In contrast, the FARs for T

2

MCD
chart
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worsen with values as small as 0.001. In case of p = 5, the T
2

ARWMCD
control chart is still

maintains its good performance that it is still e�ective for 86 % (13 out of 15) of conditions
as compared to the T

2

MCD
control chart which is merely e�ective for 20 % (3 out of 15) of

the conditions. The results of the FARs for the multivariate case of p = 10 shows that the
T

2

ARWMCD
control chart has still a good performance in controlling FARs as it is e�ective

for 73% (11 out of 15) of conditions. Nevertheless, the performance of T
2

ARWMCD
control

chart diminishes in case of multivariate data in comparison with to bivariate data, where it
capable in controlling FARs for only 11 simulated conditions as compared to 13 simulated
conditions. An interesting result for T

2

0
, it is e�ective 93% (14 out of 15) of conditions for

p = 5 and 100% (all of 15) of conditions for p = 10. T
2

MCD
control chart which is still merely

e�ective for 20% (3 out of 15) of the conditions that means T
2

MCD
chart performs badly in

controlling FAR in all cases.

4.2.2 Probability detection of outliers

The performance in terms of POD is recorded in Table 3. The results are also presented as
graphs for a better visual and comparison, the values in Table 3 are translated into Figures
1, 2 and 3 based on the values of p. For each case, the performance of the control chart is
considered as better in detecting changes in case of the probabilities value is nearer to 1.

Table 3. Percentage of detecting outliers at – = 0.05.

p = 2 p = 5 p = 10

n Á µ1 T 2
0 T 2

MCD T 2
ARWMCD T 2

0 T 2
MCD T 2

ARWMCD T 2
0 T 2

MCD T 2
ARWMCD

50 0 0 5.6 5.8 5.5 5.5 6 5.5 5.7 4.9 5.2
0.1 3 49.8 88.2 91.7 37.8 98.6 99.8 25 100 100

5 74.8 100 100 46.4 100 100 26.7 100 100
0.2 3 17.6 69.3 75.4 12.5 95.1 98.1 11 55.2 58.7

5 17.2 100 100 11.8 100 100 10.9 84.2 85.0
100 0 0 4.7 4.5 4.2 5 3.3 4.2 5.1 4.3 5.3

0.1 3 49.6 90.3 92.3 38.8 99.8 100 28.1 100 100
5 76.9 100 100 46.5 100 100 29.4 100 100

0.2 3 16.4 72.8 73.0 10.5 98.6 99.9 10.2 84.4 84.9
5 15.7 100 100 10.1 100 100 10.2 95 94.9

200 0 0 6.3 5.7 6.0 4.20 4.1 4.4 5 5.6 5.5
0.1 3 57.1 93.5 94.6 45.5 100 100 36.7 100 100

5 84.6 100 100 54.6 100 100 39.7 100 100
0.2 3 20.1 80.3 79.7 12.3 99.5 100 11.6 98.6 98.6

5 21.2 100 100 12.6 100 100 12.2 99.9 99.9

Once the values of p and n increased, that could be obviously seen in Figures 2 and 3, the
line representing T

2

ARWMCD
consistently at the top location in the plots with the probability

value of almost 1 and overlapping with T
2

MCD
line under most of the situations. Overall,

the robust T
2

ARWMCD
and T

2

MCD
control charts steadily succeeded in high probability in

diagnosing outlying observations. It is obvious that the line represents traditional T
2

0
charts

is always at the lowest, producing a very large space between the other two lines (T 2

ARWMCD

and T
2

MCD
). Across Figures 1-3, it is observed that for all of the conditions, the robust

charts outperform the traditional chart by a large di�erence. The robust T
2

ARWMCD
chart

under most conditions achieved the 100% detection with the lowest rate of 58.7% while the
lowest rate for the robust T

2

MCD
chart is 55.2% and for traditional chart is 10.1%. Across

di�erent dimensions (p), there is no clear pattern of changes in performance among the
charts. Generally, the robust charts as well as traditional chart show decrease in POD when
Á increases, however, especially in case of the shift is µ1 = 5 and dimensions p = 2 or
p = 5, POD values do not di�er than the value of 100% for robust charts. The shift in
mean (µ1) shows positive e�ect on the POD performances of two robust charts regardless of
the proportion of contamination (Á). However, for the traditional chart, positive e�ect only
occurs when Á = 0.1. Moreover, the increase in sample sizes (n) brings some positive e�ect
on the POD values for all the charts in some of the conditions.
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Figure 1. Percentages detection of outliers at p = 2.

Figure 2. Percentages detection of outliers at p = 5.
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Figure 3. Percentages detection of outliers at p = 10.

5. Real data analysis

The proposed robust control chart T
2

ARWMCD
is applied on real data given by Asian Compos-

ites Manufacturing Sdn. Bhd. (ACM) that includes in the production of advanced composite
panels for the aircraft industry. ACM produces flat and contoured primary (Aileron Skins,
Spoilers and Spars) and secondary (Flat Panels, Leading Edges and MISC: Components)
structure composite bond assemblies and subassemblies for aerospace industries (Ali et al.,
2013). For demonstrating the Hotelling T

2, the company that the part of the production of
advanced for the aircraft industry has supplied the data on spoilers has shown in Table 4.
The data set is used before in both Yahaya et al. (2011) and Ali et al. (2013) studies. Spoilers
are critical instruments in an airplane which of them function is increasing lifts when the
airplane is flying. The products are used in civilian, defense and space applications, which
could not compromise any mistakes, albeit a minor one. Therefore, careful monitoring is
needed to confirm that none of variation appears in the process. Any small error can risk a
human life. A sample of 47 products (n = 47) that comprises of a few features like as trim
edge (X1), trim edge spar (X2), and drill hole (X3) was provided to Yahaya et al. (2011) by
the firm. Note that 21 products were gathered in 2009, however, the rest had been gathered
in 2010. Hence, they used the 2009 products data as Phase I historical data and they had
taken under consideration the products from 2010 as future data. Hence, following these
two studies, this data set is used in this study. The historical and future data are given in
Tables 4 and 6, respectively. The products comprise of 3 quality variables (dimensions) as
mentioned before known as trim edge, trim edge spar, and drill hole. The location vector
(x) and scatter matrix (S) estimations are given in Table 5. The calculations of the UCLs
for – = 0.05 based on the estimates are given in the last column of Table 5. The values
of the T

2 statistics based on the classic, MCD and ARWMCD estimators are shown in the
last three columns of Table 6. The graphical representations of the related control charts
are shown in Figure 4.
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Table 4. Historical data set (Phase I)

Product Trim edge (X1) Trim edge spar (X2) Drill hole (X3)
1 ≠0.0011 0.0003 0.0128
2 0.0011 0.0021 0.0246
3 0.0252 0.0308 0.0378
4 ≠0.0017 0.0109 0.0177
5 ≠0.0005 ≠0.0010 0.0106
6 0.0016 ≠0.0059 0.0128
7 0.0004 0.0001 0.0062
8 0.0078 0.0003 0.0159
9 0.0076 0.0089 0.0097
10 0.0020 0.0005 0.0071
11 0.0108 0.0011 0.0092
12 0.0039 0.0034 0.0425
13 0.0060 ≠0.0033 0.0160
14 0.0066 0.0100 0.0056
15 0.0045 ≠0.0067 0.0147
16 0.0110 ≠0.0207 0.0337
17 0.0047 0.0059 0.0065
18 0.0077 0.0003 0.0191
19 0.0015 0.0123 0.0124
20 0.0011 0.0038 0.0104
21 0.0056 0.0065 0.0063

Table 5. The location vector, covariance matrix and UCL estimations for real data

Types of control chart Location vector (x) Covariance matrix (S) UCL

T 2
0 [0.00504 0.00284 0.01579]

C
0.000040 0.000200 0.000030

0.000020 0.000090 0.000010

0.000030 0.000010 0.000110

D
11.035

T 2
MCD [0.00414 0.00207 0.01096]

C
0.000022 0.000005 0.000004

0.000005 0.000053 ≠0.000019

0.000004 -0.000019 0.000030

D
12.5435

T 2
ARWMCD [0.00414 0.00207 0.01096]

C
0.000012 0.000003 0.000002

0.000003 0.000028 ≠0.000010

0.000002 -0.000010 0.000016

D
13.0304

Table 6. The Hotelling T 2
values for the future (Phase II) data

Product Trim edge Trim edge spar Drill hole T 2
0 T 2

MCD T 2
ARWMCD

1 0.0041 0.0087 0.0129 0.5582 1.76591 3.32673

2 0.0047 0.0109 0.0124 0.90026 2.46944 4.65208

3 0.0031 0.0057 0.0096 0.49916 0.34367 0.64743

4 0.0035 -0.0020 0.0101 0.54633 0.54563 1.02789

5 0.004 -0.0028 0.0125 0.45922 0.45797 0.86276

6 0.0031 0.0008 0.0061 0.90130 1.25274 2.35998

7 -0.0019 0.0101 0.0112 3.09329 4.44043 8.36515

8 0.0009 0.0039 0.0082 0.80608 0.68370 1.28799

9 -0.0052 0.0090 0.0203 7.36021 14.97663 28.2139

10 -0.0008 0.0110 0.0184 3.61976 9.74168 18.3520

11 -0.0021 0.0139 0.0170 5.38392 11.87166 22.3645

12 -0.0017 0.0092 0.0061 2.73870 2.97882 5.61168

13 -0.0010 0.0133 0.0138 3.80577 7.40398 13.9481

14 -0.003 0.0002 0.0053 2.05480 3.30863 6.23300

15 0.0016 0.0134 0.0151 2.50731 6.80538 12.8204

16 0.0027 0.0086 0.0070 1.19755 1.06789 2.01176

17 0.0004 0.0086 0.0087 1.57979 1.75966 3.31495

18 -0.0036 0.0136 0.0129 5.79103 9.28168 17.4854

19 -0.0028 0.0003 0.0078 1.83044 2.41775 4.55471

20 0.0120 0.0123 0.0768 38.1397 214.923 404.885

21 -0.0015 0.0004 0.0115 1.26507 1.54862 2.9174

22 0.0009 0.0232 0.0202 8.41812 24.6552 46.4468

23 -0.0035 0.0088 0.0107 3.75884 4.87934 9.19198

24 0.0016 0.0061 0.0066 1.06020 0.93200 1.75576

25 -0.0228 -0.0466 0.0231 42.8447 68.63065 129.290

26 0.0037 -0.0038 0.0147 0.4831 0.77959 1.46863
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The comparisons of T
2 values in Table 6 with the related control limits in Table 5, it is

seen that T
2

MCD
signals observations {9, 20, 22, 25} as out-of-control, the T

2

ARWMCD
signals

observations {9, 10, 11, 13, 18, 20, 22, 25} as out-of-control, however, T
2

0
only signals 20 and

25 as out-of-control observations and it cannot signal other observations. The result for T
2

0

is not surprising as the analysis on the POD for simulated data revealed that T
2

0
is not as

e�ective as the other two robust charts in diagnosing outliers. For a clearer visualization on
the performance of the control charts in diagnosing out or control observations, graphical
representation of the three control charts are shown in Figure 4.

Figure 4. Hotelling T 2
control charts for real data.

6. Conclusion

In this study, an alternative to the classical Hotelling T
2 chart was proposed using a ro-

bust mean and covariance estimator called as adaptive reweighted minimum covariance
determinant. The performance of proposed robust T

2

ARWMCD
chart was compared with the

robust Hotelling T
2 chart using minimum covariance determinant (T 2

MCD
) and the classical

Hotelling T
2 chart (T 2

0
) in terms of false alarm rates and probability of detection.

Simulation results showed that both the robust Hotelling T
2 charts, T

2

MCD
and T

2

ARWMCD
,

provided the best performances in term of probability of detection when p = 2, p = 5 or
p = 10. In terms of false alarms, the best performance was detected by the robust T

2

ARWMCD

chart when p = 2 and T
2

0
chart when p = 5 and p = 10. Furthermore, the T

2

ARWMCD
chart

was the second one for these dimensions. Alfaro and Ortega (2009) revealed a confusing
result between the probability of detection and the overall false alarm rates such that, for
both T

2

0
and T

2

MCD
control charts when the probability of detection values increased, the

false alarm rates inflated away from the nominal value. This situation was also observed in
this study. Even though the classical T

2

0
control chart performed goodly in terms of false

alarm rates, particularly when the number of dimensions is getting larger. However, it fails
to achieve good probability of detection. In contrast to the T

2

0
chart, the robust Hotelling

T
2

MCD
control chart performed perfectly in diagnosing outliers, despite that it fails badly in

controlling false alarm rates. Nevertheless, the proposed T
2

ARWMCD
chart performed so well

both in terms of diagnosing outliers and in controlling false alarm rates.
Real data analysis results showed that the proposed robust T

2

ARWMCD
control chart showed

best performance in terms of diagnosing outliers and the T
2

MCD
control chart was the second

one. Nonetheless, the classical T
2

0
control chart failed to detect most of the outliers. The

real data application results showed consistency with the simulation results.
The overall findings reported that the performance of the robust T

2

ARWMCD
control chart

in controlling false alarm rates was very good. However, the robust T
2

MCD
control charts

performance in terms of controlling false alarm rates was not good. Nevertheless, both of
these two robust charts were superior to the classical chart in detecting outliers regardless
of the conditions imposed in this study. The traditional chart T

2

0
performed moderately in
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lower dimension, but better in higher dimensions in controlling false alarm. In contrast, it
reported inability to detect outliers. Overall, the proposed T

2

ARWMCD
control chart showed

the best performance since this control chart produced good values for both false alarm
rates and probability of detection.
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