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Carlos D. Paulino Instituto Superior Técnico, Portugal
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Abstract

In this paper, we investigate the asymptotic properties of a nonparametric estimator

of the relative error regression given a dependent functional explanatory variable, in

the case of a scalar censored response. We use the mean squared relative error as a

loss function to construct a nonparametric estimator of the regression operator of these

functional censored data. We establish the almost surely convergence (with rates) and

the asymptotic normality of the proposed estimator. A simulation study and real data

application are performed to lend further support to our theoretical results and to

compare the quality of predictive performances of the relative error regression estimator

than those obtained with standard kernel regression estimates.

Keywords: Almost surely convergence · –-mixing data · Censored data · Functional

data analysis · Mean square relative error · Nonparametric estimation.

Mathematics Subject Classification: Primary 62G35 · Secondary 62G20.

1. Introduction

Functional data analysis is a branch of statistics that has gained popularity in recent years,
either mathematically or in terms of applications. There are numerous practical applications
for this data format, such as continuous phenomena (climatology, economics, linguistics,
medicine, and so on). Since the publication of Ramsay and Dalzell (1991)’s work, numerous
developments have been examined in order to produce theories and methodologies that are
based on functional data (Almanjahie et al., 2020).

The monographs of Ramsay and Silverman (2005) provide an overview of both the theo-
retical and practical elements of functional data analysis, whereas the monographs of Ferraty
and Vieu (2006) provide an overview of nonparametric techniques. Numerous nonparametric
models have been developed. For example, Ferraty and Vieu (2004) established the strong
consistency of the regression function when the explanatory variable is functional and the
response is scalar, and their study extended to non-standard regression problems such as
time series prediction and curve discrimination (Ferratyet al., 2002; Ferraty and Vieu, 2003);
for robust estimation, see also Attouch et al. (2009).
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Masry (2005) establishes the asymptotic normality of the same estimator under an –-
mixing assumption. According to Dabo-Niang (2004), density estimation in a Banach space
was investigated, as well as the density estimation of a di�usion process with respect to the
Wiener measure. Ferraty and Vieu (2006) introduced the kernel type estimation (Azevedo
et al., 2011) of some characteristics of the conditional cumulative distribution function
(CDF) as well as the successive derivatives of the conditional density; the almost complete
convergence (ACC) with rates for the kernel type estimates is established and illustrated by
an application to El Niño data. It is common practice to estimate the regression function by
minimizing the mean-squared loss function. When data contains outliers, this loss function
is predicated on some restrictive constraints, such as the variance of the residual being
equal for all observations. As a result, in order to overcome this limitation, we investigate
an alternate strategy that allows us to create an e�ective predictor even when the data is
influenced by the existence of outliers. As a result, the constraints of classical regression
are addressed in this study by estimating the regression function with respect to the mean
squared relative error (MSRE). The latter is a better indicator of a predictor’s performance
than the usual inaccuracy in the prediction.

The literature on the relative error regression in nonparametric functional data analysis
(NFDA) is still limited. The first consistent results were obtained in by Campbell and Don-
ner (1989), where relative regression was used as a classification tool. Jones et al. (2008)
studied the nonparametric prediction via relative error regression. They investigated the
asymptotic properties of an estimator minimizing the sum of the squared relative errors by
considering both (kernel method and local linear approach). Recently, Mechab and Laksaci
(2016) analyzed this regression model when the observations are weakly dependent. For spa-
tial data, Attouch et al. (2017) proved the almost complete consistency and the asymptotic
normality of this estimator. Fetitah et al. (2020) investigated the relative error in functional
regression under random censorship when data are independent.

Nonparametric analysis of incomplete functional data, on the other hand, has a limited
extensive literature. There are limited works on this issue (for example, Altandji et al.
(2018) estimates the relative error in functional regression under the random left-truncation
model). Carbonez et al. (1995) presented the kernel estimator of classical regression in the
right censorship model, and improved it in Ould-Saïd and Guessoum (2008). To estimate
the conditional quantile when regressors are functional, this approach was later employed
by Horrigue and Ould-Saïd (2014). Additionally, using truncated data, Helal and Ould-Saïd
(2016) used the same model.

In this paper we define and study a new estimator of the regression function when the
interest random variable is subject to random right-censoring and the explanatory variable
is functional. Notice that the main feature of our approach is to develop a prediction model
alternative to the classical regression which is not sensitive to the presence of the outliers.

The paper is organized as follows. In Section 2 we define our parameter of interest and its
corresponding estimators. In Section 3 we give some assumptions and state an almost sure
(AS) consistency and asymptotic normality for the proposed estimator. A simulation study
and real data application are performed in Section 4, whereas the technical details and the
proofs are deferred to Section 4.2.

2. Model

2.1 Background

Let consider that (Yi, Xi), for i = 1 . . . n, is a stationary –≠mixing couples, where Yi is
real-valued and Xi takes values in some functional space F . Assume that IE|Yi| < Œ and
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define the regression functional as

r(x) = IE[Yi|Xi = x], x œ F , ’i œ IN. (1)

The model given in Equation (1) can be written as

Yi = r(Xi) + ‘i, i = 1, . . . , n,

where ‘i is a random variable such that IE[‘i|Xi] = 0 and IE[‘2
i |Xi] = ‡

2(Xi) < +Œ.
Unlike to the multivariate case, there exists various versions of the functional regression

estimate. However, all these versions are based on two common procedures. The first one is
the functional operator which is supposed smooth enough to be locally well approximated
by a polynomial. The second one is the use of the least square error given by

r (x) = arg min
rú

1
IE

Ë
(Y ≠ r

ú (x))2 |X = x

È2
, (2)

as a loss function to determine the estimates of r. In complete data, a typical kernel regression
estimator based on Equation (2) (Ferraty et al., 2007) is given by

rn (x) =
qn

i=1 YiK
!
h

≠1
d(x, Xi)

"
qn

i=1 K (h≠1d(x, Xi))
,

where K is a kernel and (h := hn) is a sequence of bandwidths.
For results on both theoretical and application points of view considering independent or

dependent case, we refer the reader to the studies of Attouch et al. (2017) and Chahad et
al. (2017). Note that Amiri et al. (2014) analyzed the regression function of a real random
variable with functional explanatory variable by using a recursive nonparametric kernel
approach.

In the presence of right random censoring, the problem has been analyzed by Buckley and
James (1979) using parametric methods. For nonparametric approaches, we refer to Amiri
and Khardani (2018) and Stute (1993). Some asymptotic properties were established with
a particular application to the conditional mode and quantile by Chaouch and Khardani
(2015) and Khardani and Thiam (2016). Horrigue and Ould-Saïd (2014) considered a regres-
sion quantile estimation for dependent functional data. Nevertheless, the use of previous loss
function given in Equation (2) as a measure of prediction performance may be not suitable
in some situation. In particular, the presence of outliers can lead to unreasonable results
since all variables have the same weight. Now, to overcome this limitation we propose to
estimate the function r by an alternative loss function.

In the relative regression analysis, r is obtained by minimizing the MSRE, that is, r (x)
is the solution of the optimization problem:

r (x) = arg min
rú

A

IE

C3
Y ≠ r

ú (X)
Y

42
|X = x

DB

.

As mentioned in Jones et al. (2008), where outlier data are present and the response variable
of the model is positive, the MSRE is minimized.

It is clear that this criterion is a more meaningful measure of prediction performance than
the least squares error, in particular when Y > 0, it often is that the ratio of prediction
error to the response level, (Y ≠r(X))/Y , is of prime interest: the expected squared relative
loss, IE[{(Y ≠ r(X))/Y }2|X], which is the MSRE, is minimized (specially in the presence of
outliers). Moreover, the solution of this problem can be expressed by the ratio of first two
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conditional inverse moments of Y given X. As discussed by Park and Stefanski (1998), for
Y > 0

r(x) = IE
#
Y

≠1|X = x
$

IE [Y ≠2|X = x] := g1(x)
g2(x) , (3)

where gl(x) = IE[Y ≠l|X = x], for l = 1, 2, with r being the best MSRE predictor of Y given
X = x.

2.2 Construction of the estimator

To construct our estimator, let us recall that in the case of complete data, a well-known
estimator of the regression function is based on the Nadaraya-Watson weights. Let {Zi =
(Xi, Yi)1ÆiÆn} be n pairs, identically distributed as Z = (X, Y ) and valued in F ◊ IR, where
(F , d) is a semi-metric space (that is, X is a functional random variable (FRV) and d a
semi-metric). Let x be a fixed element of F . For the complete data, see Demongeot et al.
(2016).

It is well known that the kernel estimator of Equation (3) is given by

r̂(x) =

nÿ

i=1
Y

≠1
i K

3
d(x, Xi)

h

4

nÿ

i=1
Y

≠2
i K

3
d(x, Xi)

h

4 := ĝ1(x)
ĝ2(x) ,

where ĝl(x) =
qn

i=1 Y
≠l

i K(d(x, Xi)/h)/(nIE(K(d(x, X1)/h))), for l = 1, 2, with K is an
asymmetrical kernel and h = hn (depending on n) is a strictly positive real. It is a functional
extension of the familiar Nadaraya-Watson estimate. The main change comes from the semi-
metric d which measures the proximity between functional objects.

In the censoring case, instead of observing the lifetimes Y , which has a continuous CDF
F , we observe the censored lifetimes of items under study, that is, assuming that (Ci)1ÆiÆn

is a sequence of independent and identically distributed censoring random variable (RV)
with common unknown continuous CDF G. Then, in the right censorship model, we only
observe the n pairs (Ti, ”i) with Ti = Yi · Ci and ”i = 1{YiÆCi}, for 1 Æ i Æ n, where 1A

denotes the indicator function of the set A.
In what follows, we define the endpoints of F and G by ·F = sup{t: F̄ (t) > 0}, and

·G = sup{t: Ḡ(t) > 0} where F̄ (x) = 1 ≠ F (x) and Ḡ(x) = 1 ≠ G(x). We assume that
·F < Œ and Ḡ(·F ) > 0, (this implies ·F < ·G).

In censorship model, only the (Xi, Ti, ”i)1ÆiÆn are observed. We define Âr(x) as an estimate
of r(x) by

Âr(x) =

nÿ

i=1

”iT
≠1
i

Ḡ(Ti)
K

3
d(x, Xi)

h

4

nÿ

i=1

”iT
≠2
i

Ḡ(Ti)
K

3
d(x, Xi)

h

4 =:
Âg1(x)
Âg2(x) , (4)
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where

Âgl(x) =

nÿ

i=1

”iT
≠l
i

Ḡ(Ti)
K

3
d(x, Xi)

h

4

nIE
1
K

1
d(x,X1)

h

22 , l = 1, 2.

In practice, G is unknown. We use the Kaplan-Meier estimator (Deheuvels and Einmahl,
2000) of Ḡ given by

Ḡn(t) =
I rn

i=1
1
1 ≠ 1≠”(i)

n≠i+1

21{T(i)Æt}
, if t Æ T(n),

0, otherwise,

where T(1) Æ · · · Æ T(n) are the order statistics of (Ti)1ÆiÆn and ”(i) is the concomitant of
T(i). Therefore, the estimator of r (Fetitah et al., 2020) is stated as

Ârn(x) =

nÿ

i=1

”iT
≠1
i

Ḡn(Ti)
K

3
d(x, Xi)

h

4

nÿ

i=1

”iT
≠2
i

Ḡn(Ti)
K

3
d(x, Xi)

h

4 :=
Âg1,n(x)
Âg2,n(x) , (5)

where

Âgl,n(x) =

nÿ

i=1

”iT
≠l
i

Ḡn(Ti)
K

3
d(x, Xi)

h

4

nIE
1
K

1
d(x,X1)

h

22 , l = 1, 2.

Remark 2.1 In Equations (4) and (5), the sums are taken for the subscripts i, where
Ḡn(Ti) ”= 0 and Ḡ(Ti) ”= 0. The same convention is followed in the forthcoming formulas.
Note that, under the assumptions on the model, the sets {i, Ḡ(Ti) = 0} and {i, Ḡn(Ti) = 0}
are IP-negligible.

3. Assumptions and main results

3.1 General context

Throughout this paper, x is a fixed element of the functional space F . To formulate our
assumptions, some notations are required. and we denote by Nx a neighborhood of the point
x. Hereafter, when no confusion is possible, we denote by c and c

Õ some strictly positive
generic constants.

Let B(x, h) be the closed ball centered at x with radius h, and consider the CDF of d(x, X)
defined by

Ïx(h) = IP(X œ B(x, h)) = IP(d(x, X) Æ h),

with h being positive and satisfies Ïx(0) = 0 and Ïx(h) æ 0 when h æ 0. Let us consider
the following definition.
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Definition 3.1 Let (Zn)nœIN be a sequence of RVs. Given a positive integer n, set

–(n) = sup
k

sup
)
|IP(A fl B) ≠ IP(A)IP(B)|, A œ Fk

1 (Z) and B œ FŒ
k+n(Z)

*
,

where Fk
i (Z) denotes the ‡≠field generated by {Zj , i Æ j Æ k}. The sequence is said to be

–≠mixing if the mixing coe�cient –(n) æ 0 when n æ Œ.

3.2 Asymptotic consistency

Our main first result is the pointwise almost sure convergence. In order to state this result,
we need some assumptions which are gathered together in order to make our results reading
easier. In what follows, we assume that the following assumptions hold:

(H1) IP(X œ B(x, h)) =: Ïx(h) > 0, for all h > 0.
(H2) For all (x1, x2) œ N 2

x , we have

|gl(x1) ≠ gl(x2)| Æ cd
kl(x1, x2) for an integer kl > 0 and l = 1, 2.

(H3) The kernel K is a bounded and Lipschitzian function on its support (0, 1) and satisfying:

0 < c Æ K(x) Æ c
Õ
< +Œ.

(H4) The bandwidth h satisfies h æ 0, log(n)/(nÏx(h)) æ 0 as n æ Œ.

(H5) The inverse moments of the response variable verify:

for all m Ø 2, IE[Y ≠m|X = x] < cm < Œ.

where cm is positive constant.
(H6)

(i) (Xn, Yn)nØ1 is a sequence of stationary –≠mixing RVs with coe�cient –(n) = O(n≠a),
for some a œ (0, Œ).

(ii) (Cn)nØ1 and (Xn, Yn)nØ1 are independent.
(H7) For all i ”= j, IE[Y ≠1

i Y
≠2

j |(Xi, Xj)] Æ c < Œ, and

0 < sup
i”=j

Ó
IP ((Xi, Xj) œ B(x, h) ◊ B(x, h))

Ô
= O

A
(Ïx(h))(a+1)/a

n1/a

B

.

(H8) There exists ÷ > 0, such that, cn
3≠a
a+1 +÷ Æ Ïx(h) Æ c

Õ
n

1
1≠a , with a > 2.

We are in state to give our main result.
Theorem 3.2 Under Assumptions (H1)-(H8), we have

|Ârn(x) ≠ r(x)| = O
!
h

k1
"

+ O
!
h

k2
"

+ OAS

AÛ
log(n)
nÏx(h)

B

.

3.3 Asymptotic normality

Here, we study of the asymptotic normality of Ârn(x). To do that, we replace assumptions
(H1), (H3) and (H4) respectively by the following hypotheses:
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(N1) The concentration property (H1) holds. Moreover, there exists a function ‰x(.) such that,

for all s œ [0, 1], lim
ræ0

Ïx(sr)
Ïx(r) = ‰x(s).

(N2) For “ œ {1, 2}, the functions �“(x) = IE [g“(X) ≠ g“(x)|d(x, X) = x] are derivable at
zero.

(N3) The kernel function K satisfies (H3) and is a di�erentiable function on ]0, 1[ where its
first derivative function K

Õ is such that: ≠Œ < c < K
Õ(x) < c

Õ
< 0.

(N4) The small ball probability satisfies: nÏx(h) ≠æ Œ.
(N5) For m œ {1, 2, 3, 4}, the functions qm(x) = IE[Ḡ(Y )≠1

Y
≠m|X = x] are continuous in a

neighborhood of x.
Assumption (H1) is the same as that used by Ferraty and Vieu (2006) which is linked

to the functional structure of the functional covariate. Assumptions (H2), (H3) and (H7)
deal with the functional aspect of the covariate and the associated small ball probability
techniques used in this paper. Assumptions (H6) and (H8) specify the model and the rate of
mixing coe�cient. Condition (N5) stands as regularity condition that is useful to establish
the asymptotic properties of the estimators. Assumptions (H3), (H4), (N3) and (N4) concern
the kernel K and the smoothing parameter h and are technical conditions.

The fractal or geometric process is a family of infinite dimensional processes for which
the small balls have the property Ïx(t) = IP (Îx ≠ XÎ < t) ≥ cxt

“ , where cx and “ are
positive constants. In this case, setting hn = An

≠a with 0 < a < 1 and 0 < A implies
Ïx(h) = cxAn

≠“a. Thus, (H1), (H4) and (H8) hold when “ < 1/a.

Theorem 3.3 Under Assumptions (H6)-(H8)and (N1)-(N5), we have

3
nÏx(h)
‡2(x)

41/2 1
Ârn(x) ≠ r(x) ≠ hBn(x) ≠ o(h)

2 Dæ N (0, 1), as n æ Œ.

where Dæ denotes convergence in distribution,

Bn(x) =
!
�Õ

1(0) ≠ r(x)�Õ
2(0)

"
—0

—1g2(x)

and

‡
2(x) =

!
q2(x) ≠ 2r(x)q3(x) + r

2(x)q4(x)
"
—2

—2
1

”= 0,

with —0 = K(1) ≠
s 1

0 (sK(s))Õ
‰x(s)ds and —j = K

j(1) ≠
s 1

0 (Kj)Õ(s)‰x(s)ds ”= 0, for j = 1, 2.

Remark 3.4 (Comeback to complete data). In absence of censoring (Ḡ(x) = 1), the asymp-
totic variance becomes

‡
2(x) =

!
a2(x) ≠ 2r(x)a3(x) + r

2(x)a4(x)
"
—2

—2
1

,

where aj(x) = IE[Y ≠j |X = x], which is the result obtained by Demongeot et al. (2016).
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4. Simulation and application

4.1 Simulation study

In this section, we treat a simulation example to show the behaviour of our estimator Ârn(x)
and to compare the sensitivity to outliers of the classical regression defined as the conditional
expectation m(x) = IE[Y |X = x] estimated by

‚m(x) =

nÿ

i=1

”iTi

Ḡn(Ti)
K

1
h

≠1
d (x, Xi)

2

nÿ

i=1
K

1
h

≠1
d (x, Xi)

2 ,

and the relative error estimator Ârn(x) previously defined. To do this, we consider the classical
nonparametric functional regression model stated as

Y = r(X) + ‘,

where the operator r is defined by r(X) = 10/[1 +
s 1

0 X
2(t)dt].

We consider two di�usion processes on the interval [0, 1], Z1(t) = 2 ≠ cos(fitW ) and Z2(t) =
cos(fitW ), and we take X(t) = AZ1(t) + (1 ≠ A)Z2(t), where A is a Bernoulli distributed
RV and W is an –-mixing process generated by the model expressed as

Wi = 1Ô
2

(Wi≠1 + ÷i) , i = 1, . . . , 200,

with ÷i being centered Gaussian distributed RVs with variance 0.5 and independent of ÷i.
We carried out the simulation with n = 200 sample of the curve X. The error variable
‘i ≥ N (0, 0.5). We also, simulate n independent and identically distributed RV Ci, for
i = 1, . . . , n, with law E(⁄) (that is, exponentially distributed with density ⁄e

≠⁄x1{xØ0}).
Simulated data from our model are plotted in Figure 1. To compute our estimator based on
the observed data (Xi, Ti, ”i), for i = 1, . . . , n, where Ti = Yi · Ci and ”i = 1{YiÆCi}.

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
1

2
3

t

X
(t
)

Figure 1. The curves Xi=1,...,100(t), for t œ [0, 1[.
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We choose the quadratic kernel defined by

K(x) = 3
2

1
1 ≠ x

2
2
1(0,1).

In practice, the semi-metric choice is based on the regularity of the curves X which are
under analysis. In our case, we take the semi-metric based on the second derivatives of the
curves X. More precisely, we take

d(Xi, Xj) =
3⁄ 1

0
(X ÕÕ

i (t) ≠ X
ÕÕ
j (t))2dt

41/2
’Xi, Xj œ F ,

where X
ÕÕ denotes the second derivative of the curve X. For the bandwidth, we choose

the automatic selection with a cross validation procedure introduced by (Ferraty and Vieu,
2006, Ch.13).

We split the data generated from the model above into two subsets: a training sample
(Xi, Ti, ”i), for i = 1, . . . , 150, and a test sample (Xj , Tj , ”j), for j = 151, . . . , 200. Then, we
calculate the estimator r̃(Xj) for any j œ {151, . . . , 200}.

The performance of both estimators is described by the mean squared error (MSE) for-
mulated as

MSE = 1
50

200ÿ

j=151
(r(Xj) ≠ r̃(Xj))2

,

where r̃(Xj) means the estimator of both regression models and r(Xj) the response vari-
able. We note that the result of our simulation study is evaluated over 100 independent
replications.

The obtained results are shown in Figure 2 with the censorship rate CR = 20.67%. It is
clear that there is no meaningful di�erence between the two estimation methods: the classical
kernel estimator (CKE) has an MSECKE = 0.2209, whereas the relative error estimator
(REE) has an MSEREE = 0.1579.
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Figure 2. comparison between the CKE and the REE without outliers.

The results of a second illustration are given in Table 1, where from we observe that, in
the presence of outliers (0, 10, 20) with di�erent values of CR = 3%, 30%, 60%), the relative
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error regression performs better than the classical method, even if the MSE of both methods
increases substantially relatively to the number of the perturbed points and censorship rate,
it remains very low in terms of the relative error.

Table 1. MSE of the CKE and REE according to numbers of introduced artificial outliers and di�erent
censorship rate.

Number of artificial outliers æ 0 10 20
CR

¿

3% 0.0921 2856.646 6499.6945
Classical kernel estimator 30% 0.8766 14126.2706 19358.5386

MSECKE 60% 2.8038 32182.8188 56681.7038
3% 0.0551 0.0579 0.0665

Relative error estimator 30% 0.0949 0.1048 0.1258
MSEREE 60% 0.1455 0.1903 0.2712

Our main application of Theorem 3.3 is to build confidence intervals (CIs) for the true
value of r(x) given curve X = x. A plug-in estimate for the asymptotic standard deviation
(nÏx(h)/‡

2(x))1/2 and the bias term hBn(x) + o(h). Precisely, we estimate qm(x) by means
of

Âqm(x) =
qn

i=1 Ki”iḠ
≠2
n (Ti)T ≠m

iqn
i=1 Ki

,

whereas we estimate empirically —1 and —2 by using

—̂1 = 1
nÏx(h)

nÿ

i=1
Ki and —̂2 = 1

nÏx(h)

nÿ

i=1
K

2
i .

Thus, the practical estimator of the normalized deviation is stated as

Â‡n(x) =
A!qn

i=1 K
2
i

" !
Âq2(x) ≠ 2Âr(x)Âq3(x) + Âr2(x)Âq4(x)

"

(
qn

i=1 Ki)2 Âq2
2(x)

B1/2

.

We point out that the function Ïx do not intervene in the calculation of the CI by sim-
plification. Hence, the approximate (1 ≠ ’/2) ◊ 100% CI for r(x), for any x œ F , is given
by

Ë
Ârn(x) ≠ z1≠’/2Â‡n(x), Ârn(x) + z1≠’/2Â‡n(x)

È
,

where z1≠’/2 denotes the (1 ≠ ’/2) ◊ 100th quantile of the standard normal distribution.
In order to compare our CI with that of the classical regression (Ferraty et al., 2007), we

have
Ò

nÏx(h) —1
‡‘(x)

Ô
—2

( ‚m(x) ≠ m(x)) Dæ N (0, 1),

where ‡
2
‘ (x) = IE

#
(Y ≠ m(x))2|X = x

$
and —1, —2 are define previously.
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With simple calculus, we can estimate ‡
2
‘ (x) based on

‚‡2
‘ (x) = ‚fl2(x) ≠ 2 ‚m(x)‚fl1(x) + ‚m2(x),

where

‚fll(x) =
qn

i=1 Ki”iḠ
≠1
n (Ti)T l

iqn
i=1 Ki

, ’ l œ {1, 2}.

Therefore, the approximate (1 ≠ ’/2) ◊ 100% CI for m(x) (the classical regression), for any
x œ F , is formulated as

S

U ‚m(x) ≠ z1≠’/2

Ò
‚—2‚‡‘(x)

‚—1
, ‚m(x) + z1≠’/2

Ò
‚—2‚‡‘(x)

‚—1

T

V

In order to construct confidence bands (for both CKE and REE), we proceed by the following
algorithm:

Step 1 Split our data into randomly chosen subsets: (Xi, Yi)iœI (training set) and (Xj , Yj)jœJ

(test set).
Step 2 Calculate the estimator Ârn(Xi) for all i œ I by using the training sample.
Step 3 For each Xj in the test sample, set i

ú := arg miniœI d(Xj , Xi).
Step 4 For all j œ J , define the confidence bands by means of

[Ârn(Xiú) ≠ z0.975Â‡n(Xiú), Ârn(Xiú) + z0.975Â‡n(Xiú)] ,

where z0.975 t 1.96 is the 97.5% quantile of a standard normal distribution.
Step 5 We present our results by plotting the extremities of the predicted values versus the true

values and the confidence bands.
Figures 3 and 4 shows clearly a good behaviur of our estimator compared to the classical
regression, with censorship rate (CR = 30%) and in the presence of outliers. In these figures,
the solid black curve connects the true values. The dashed blue curves connect the lower
and upper predicted values. The solid red curve connects the crossed points which give the
predicted values.
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Figure 3. Extremities of the predicted values versus the true values and the confidence bands (simulation data
without outliers).
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Figure 4. Extremities of the predicted values versus the true values and the confidence bands (simulation data in
the presence of 10 outliers).

4.2 A real data application

First, we have acquired a large dataset, consisting of number of 8784 records, containing the
hourly energy consumption for the year 2016 (measured in MWh), retrieved from the smart
metering device of a commercial center type of consumer (a large hypermarket). We have
also acquired a dataset containing the historical hourly meteorological data regarding the
temperature (measured in Celsius degrees). These data were recorded by the meteorological
sensors of a specialized institute for the year 2016, consisting in a number of 8784 records;
see Pîrjan et al. (2017) and Mebsout et al. (2020) for more description on this data set.

Now, we are interested in the estimation of interval prediction of peak consumption of
energy. For a fixed day i, let us denote by (Ei(tj))j=1,...,24 the hourly measurements of some
consumption of energy. The peak demand observed for the day i is defined as

Pi = max
j=1,...,24

Ei (tj) .
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Figure 5. Sample of 15 daily temperature curves and the associated energy consumption curves.

It is well known that peak demand is very correlated with temperature measurements.
Figure 5 provides a sample of 15 curves of hourly temperature measures and the associated
electricity consumption curves. We split our sample of 366 days into a learning sample
containing the first 300 days and a testing sample with the last 66 days. From the learning
sample, we selected 30% of days within which we generated the censorship randomly. Figure
6 provides a sample of four censored daily load curves. For those days, we observe the
electricity consumption until a certain time tc œ [1, 24], which corresponds to the time of
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censorship which is plotted in a dashed line in Figure 6. For a censored day, we define the
censored random variable as

Ci = max
j=1,...,tc

Ei (tj) .

Therefore, our sample is formed as follows (Xi, Yi, ”i)i=1,...,300, where ”i = 1 if Yi = Pi and
”i = 0 if Yi = Ci. In order to introduce the outliers in this sample, we randomly multiplies
by 10 some response variable of a number of observations.
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Figure 6. Sample of four censored daily load curves, the dashed line corresponds to the time of censorship tc.

The selection of the bandwidth parameter is an important and basic problem in all kernel
smoothing techniques. Another important point for ensuring a good behavior of the method
is to use a semi-metric that is well adapted to the kind of data we have to deal with. Our
data are based on the m eigen-functions of the empirical covariance operator associated with
the m greatest eigenvalues (Ferraty and Vieu, 2006, Ch. 13). The estimators are obtained
by choosing the optimal bandwidths by L

1 cross-validation method and the kernel K is the
quadratic function defined by K(x) = 3/2

!
1 ≠ x

2"
1[0,1]. The error used is expressed by

MSECKE = 1
66

366ÿ

i=301
(Yi ≠ ‚m(Xi))2 and MSEREE = 1

66

366ÿ

i=301
(Yi ≠ Âr(Xi))2

.

The results are given in Figure 7, where two curves corresponding to the observed values
(black curve) the predicted values (dashed curve green for the classical regression and red for
the relative one) are drawn. Clearly, Figure 7 shows the good behavior of our procedure. We
observe that the relative approach gives better results than the classical regression approach
(MSECKE = 0.0883 and MSEREE = 0.0034).
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Figure 7. Prediction by classical and relative regression.

Now, we give in Table 2 the 90% predictive intervals of the concentrations for the peak
load of the 20 last values in the sample test. This conclusion shows the good performance
of our asymptotic normality.

Table 2. The 90% predictive intervals of the peak demand for the last 20 days.
True Predicted Predictive True Predicted Predictive
value value CI90% value value CI90%
0.851 0.8310 [0.6078, 1.0542] 1.062 1.0017 [0.8279, 1.1756]
0.819 0.8177 [0.7376, 0.8978] 0.796 0.8514 [0.7592, 0.9435]
0.896 0.8307 [0.7697, 0.8918] 1.259 1.0946 [0.9344, 1.2548]
0.877 0.8358 [0.4879, 1.1838] 1.076 1.0545 [0.8648, 1.2441]
0.813 0.8277 [0.4660, 1.1894] 1.152 1.0399 [0.9289, 1.1508]
0.857 0.8501 [0.5713, 1.1289] 0.974 0.8968 [0.7833, 1.0103]
0.862 0.8358 [0.7802, 0.8914] 0.790 0.8444 [0.7913, 0.8974]
0.847 0.8284 [0.3206, 1.3363] 0.823 0.7091 [0.0456, 1.3727]
0.832 0.8568 [0.7976, 0.9160] 0.804 0.7965 [0.6710, 0.9219]
0.859 0.8511 [0.7328, 0.9694] 1.129 1.1054 [0.8670, 1.3437]

Conclusions

In this paper, we have investigated the asymptotic properties of a nonparametric estimator of
the relative error regression given a dependent functional explanatory variable, in the case of
a scalar censored response. We have used the mean squared relative error as a loss function to
construct a nonparametric estimator of the regression operator of these functional censored
data. We have established the almost surely convergence and asymptotic normality of the
proposed estimator. A simulation study and real data application were performed to support
the theoretical results and to compare the quality of predictive performances of the relative
error regression estimator than those obtained with standard kernel regression estimates.
Our proposal provides interesting findings and is a tool that can be helpful to diverse
practitioners. Our proposal has some limitations that open some doors for further research,
which will be considered by the authors in future works.
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Appendix

Proof of Theorem 3.2 From Equation (5), we have

|Ârn(x) ≠ r(x)| Æ 1
|Âg2,n(x)|

Ó
|Âg1,n(x) ≠ Âg1(x)| + |Âg1(x) ≠ IE(Âg1(x))|

+ |IE(Âg1(x)) ≠ g1(x)|
Ô

+ |r(x)|
|Âg2,n(x)|

Ó
|Âg2,n(x) ≠ Âg2(x)|

+ |Âg2(x) ≠ IE(Âg2(x))| + |IE(Âg2(x)) ≠ g2(x)|
Ô

.

Therefore, Theorem 3.2’s result is a consequence of the following intermediate results.
Lemma 4.1 Under hypotheses (H2)-(H5), we have

|Âgl,n(x) ≠ Âgl(x)| = OAS

Q

a

Û
log(log(n))

n

R

b ,

for l œ {1, 2}.

Lemma 4.2 Under hypotheses (H1)-(H3) and (H5), we get

|IE(Âgl(x)) ≠ gl(x)| = O
!
h

kl
"
,

for l œ {1, 2}.

Lemma 4.3 Under hypotheses (H1)-(H4) and (H6)-(H8), we obtain

|Âgl(x) ≠ IE(Âgl(x))| = OACC

AÛ
log(n)
nÏx(h)

B

,

for l œ {1, 2}.

Corollary 4.4 Under the hypotheses of Lemma 4.1 and 4.2, we have that

there exists ” > 0; such that
Œÿ

n=1
IP

1
|Âg2,n(x)| < ”

2
< Œ.

Let denote Ki(x) by K(d(x, Xi)/h).

Proof of Lemma 4.1

The proof is similar to Lemma 3.1 of Fetitah et al. (2020).

Proof of Lemma 4.2

For all l = 1, 2, we get that

|IE(Âgl(x)) ≠ gl(x)| =
-----IE

A
K1(x)

IE(K1(x)) IE
C
IE(1Y1ÆC1 |Y1)Y ≠l

1
Ḡ(Y1)

|X1

DB

≠ gl(x)
-----

= 1
IE(K1(x))

---IE
ÓË

IE(Y ≠l
1 |X1) ≠ gl(x)

È
1B(x,h)(X1)K1(x)

Ô---.
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Then, by the Hölder hypothesis (H2) we obtain that

|gl(X1) ≠ gl(x)| Æ ch
kl .

Thus,

|IE(Âgl(x)) ≠ gl(x)| Æ ch
kl .

Proof of Lemma 4.3

For l = 1, 2 we put

�i(x) = ”iT
≠l
i

Ḡ(Ti)
K

3
d (x, Xi)

h

4
≠ IE

C
”iT

≠l
i

Ḡ(Ti)
K

3
d (x, Xi)

h

4D

.

The use of the Fuk-Nagaev inequality (Rio, 1999, p. 87, 6.19b), which is based on

S
2
n =

nÿ

i=1

nÿ

j=1
|Cov (�i(x), �j(x))|

=
ÿ

i”=j

|Cov (�i(x), �j(x))| + n Var (�1(x)) .

Now, by using (H5), we get

Var (�1(x)) Æ IE

C
”1Y

≠2l
1

Ḡ2(Y1)
K

2
1 (x)

D

+ IE2
C

”1Y
≠l

1
Ḡ(Y1)

K1(x)
D

Æ IE

C

K
2
1 (x)IE

A
IE(1Y1ÆC1 |Y1)Y ≠2l

1
Ḡ2(Y1)

|X1

BD

+IE2
C

K1(x)IE
A
IE(1Y1ÆC1 |Y1)Y ≠l

1
Ḡ(Y1)

|X1

BD

Æ c

Ḡ(·F )
IE

#
K

2
1 (x)IE

!
Y

≠2l
1 |X1

"$
+ IE2#

K1(x)IE
!
Y

≠l
1 |X1

"$

Æ c

Ḡ(·F )
IE

#
K

2
1 (x)

$
+ cÏ

2
x(h)

Æ c
!
Ïx(h) + Ï

2
x(h)

"
.

In addition, for i ”= j, we have

|Cov (�i(x), �j(x))| = |IE (�i(x)�j(x))|
Æ c |IE (Ki(x)Kj(x)) + IE (Ki(x)) IE (Kj(x))| .

Then, following Masry (1986), we define the sets given by E1 = {(i, j), such that 1 Æ |i≠j| Æ
‹n} and E2 = {(i, j) such that ‹n + 1 Æ |i ≠ j| Æ n}, where ‹n æ Œ as n æ Œ. Then, we
can write

q
i”=j |Cov (�i(x), �j(x))| = J1,n + J2,n, where J1,n and J2,n are the sums of the
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covariances over E1 and E2 respectively. Therefore, under (H7), we get

J1,n =
ÿ

E1

|Cov (�i(x), �j(x))| Æ c

ÿ

E1

--IE
!
Ki(x)Kj(x)

"
+ IE

!
K1(x)

"2--

Æ c

ÿ

E1

--IP
!

(Xi, Xj) œ B(x, h) ◊ B(x, h)
"

+ Ïx(h)2--

Æ cn‹nÏx(h)
C3

Ïx(h)
n

4 1
a

+ Ïx(h)
D

.

For the second term, we use the modified Davydov covariance inequality for mixing processes
(Rio, 1999, p.10). Then, we have

’i ”= j, |Cov (�i(x), �j(x))| Æ c–(|i ≠ j|).

Thus, we get by (H6) that

J2,n Æ
ÿ

E2

|Cov (Ki(x), Kj(x))| Æ n
2
‹

≠a
n .

Hence, for ‹n = (Ïx(h)/n)≠1/a, we have
q

i”=j |Cov (�i(x), �j(x))| = O(nÏx(h)).
Consequently, combining previous result, we obtain

S
2
n = O(nÏx(h)). (6)

Using the Fuk-Nagaev inequality, we get, for all l = 1, 2, Á > 0 and r > 1, that

IP
Ë---IE[Âgl(x)] ≠ Âgl(x)

--- > Á

È
= IP

C-----
1

nIE(K1(x))

nÿ

i=1
�i(x)

----- > Á

D

= IP

C-----

nÿ

i=1
�i(x)

----- > ÁnIE(K1(x))
D

Æ c

Y
]

[

A

1 + Á
2
n

2IE(K1(x))2

rS2
n

B≠r/2

+ nr
≠1

3
r

ÁnIE(K1(x))

4a+1
Z
^

\

Æ c(A1 + A2),

where

A1 =
A

1 + Á
2
n

2 (IE [K1(x)])2

rS2
n

B≠r/2

and A2 = nr
≠1

3
r

ÁnIE [K1(x)]

4a+1
.

Therefore, by Equation (6) and putting

Á = Á0

Û
log(n)
nÏx(h) and r = (log(n))2

,

it follow that A2 Æ cn
1≠(a+1)/2

Ïx(h)≠(a+1)/2(log(n))(3a≠1)/2
. Next, using the left side of

(H8), we obtain A2 Æ cn
≠1≠÷(a+1)/2(log(n))(3a≠1)/2

. Hence, it exists some real ‹ > 0 such
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that

A2 Æ cn
≠1≠‹

. (7)

Because of r = (log(n))2, we show that

A1 Æ
A

1 + Á
2
0

log(n)

B≠ (log(n))2
2

= e
≠ (log(n))2

2 log
A

1 + Á
2
0

log(n)

B

.

Using the fact that log(1 + x) = x ≠ x
2
/2 + o(x2), when x æ 0, we get

A1 Æ e
≠

Á2
0 log(n)

2 = n
≠

Á2
0
2 .

The last result allows us to get directly that there exist some Á0 and some ‹
Õ such that

A1 Æ cn
≠1≠‹Õ

. (8)

Therefore, by the results of Equations (8) and (7), we have

ÿ

nØ1
IP

C-----IE[Âgl(x)] ≠ Âgl(x)
----- > Á0

Û
log(n)
nÏx(h)

D

< Œ.

Proof of Corollary 4.4

The proof of this Corollary is analogous to Corollary 2 of Demongeot et al. (2016).

Proof of Theorem 3.3

From Equation (5), we adopt the decomposition stated as

Ârn(x) ≠ r(x) = Ârn(x) ≠ Âr(x) + Âr(x) ≠ r(x) =: I1n(x) + I2n(x)

where

I1n(x) =: Ârn (x) ≠ Âr(x) and I2n(x) =: Âr(x) ≠ r(x).

The proof is derived by showing first that I1n(x) is negligible whereas I2n(x) is asymptotically
normal distributed.

From Lemma 4.1 and Corollary 4.4, we deduce that

I1n(x) IP≠æ 0. (9)

Now, we can write that

I2n(x) = 1
Âg2(x)

Ë
Dn + An

1
IE [Âg2(x)] ≠ Âg2(x)

2È
+ An, (10)
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where

An = 1
IE [Âg2(x)] g2(x)

Ó
IE [Âg1(x)] g2(x) ≠ IE [Âg2(x)] g1(x)

Ô

Dn = 1
g2(x)

Ë
V1n (x) g2(x) ≠ V2n (x) g1(x)

È
,

whith Vln (x) = Âgl(x) ≠ IE [Âgl(x)] , for l = 1, 2.

Then, it follows from Equation (10) that

Âr(x) ≠ r(x) ≠ An = 1
Âg2(x)

Ë
Dn + An

1
IE [Âg2(x)] ≠ Âg2(x)

2È

= : Dn ≠ AnV2n(x)
Âg2(x) .

Consequently, the proof of Theorem 3.3 can be deduced from the convergence in Equation
(9) and the following intermediate results (cf. Lemmas 4.5, 4.6 and 4.7).

Lemma 4.5 Under hypotheses of Theorem 3.3, we have

3
nÏx(h)

g2
2(x)‡2(x)

41/2 1Ë
Âg1(x) ≠ IE [Âg1(x)]

È
g2(x) ≠

Ë
Âg2(x) ≠ IE [Âg2(x)]

È
g1(x)

2 Dæ N (0, 1).

Lemma 4.6 Under hypotheses of Theorem 3.3, we obtain

An = hBn + o(h).

Lemma 4.7 Under hypotheses of Theorem 3.3, we obtain

Âg2(x) IP≠æ g2(x),

and
3

nÏx(h)
g2

2(x)‡2(x)

41/2
An (IE[Âg2(x)] ≠ Âg2(x)) IP≠æ 0.

Proof of Lemma 4.5

It is easy to see that

Ò
nÏx(h)

C1
Âg2(x) ≠ IE [Âg2(x)]

2
g1(x) ≠

1
Âg1(x) ≠ IE [Âg1(x)]

2
g2(x)

È
= 1Ô

n

nÿ

i=1
Li(x),

where

Li(x) :=


Ïx(h)
IE [K1]

I
”i

Ḡ (Ti)
Ki

1
g1(x)T ≠2

i ≠ g2(x)T ≠1
i

2
≠ IE

C
”i

Ḡ (Ti)
Ki

1
g1(x)T ≠2

i ≠ g2(x)T ≠1
i

2DJ

.

The proof of this lemma is based on the central limit theorem of Doukhan et al. (1994).
We have then to consider the asymptotic behavior of the variance term and the following
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assumption

⁄ 1

0
–

≠1(u) (QL1(u))2 du < +Œ,

where QL1 is the upper tail quantile function defined by

QL1(u) = inf {t Ø 0 : IP (L1 > t) Æ u}

and –
≠1(u) =

q
nœIN 1u<–n . Clearly,

Var
3 1Ô

n

nÿ

i=1
Li(x)

4
= nÏx(h) Var

A
g1(x)

nIE [K1]

nÿ

i=1

”i

Ḡ (Ti)
KiT

≠2
i ≠ g2(x)

nIE [K1]

nÿ

i=1

”i

Ḡ (Ti)
KiT

≠1
i

B

= nÏx(h)
1

Var [Âg1(x)] g
2
2(x) + Var [Âg2(x)] g

2
1(x)

≠2g1(x)g2(x) Cov [Âg1(x), Âg2(x)]
2
.

By definition of Âgl(x) for l = 1; 2, we have

nÏx(h) Var [Âgl(x)] = Ïx(h)
(IE [K1])2 Var

C
”1

Ḡ (T1)
K1T

≠l
1

D

+ Ïx(h)
n (IE [K1])2

nÿ

i=1

nÿ

j=1
|i≠j|>0

Cov
C

”i

Ḡ (Ti)
KiT

≠l
i ,

”j

Ḡ (Tj)
KjT

≠l
j

D

= Ïx(h)
(IE [K1])2 J1,1 + Ïx(h)

n (IE [K1])2 J2,n

where

J1,1 = Var
C

”1
Ḡ (T1)

K1T
≠l
1

D

,

J2,n =
nÿ

i=1

nÿ

j=1
|i≠j|>0

Cov
C

”i

Ḡ (Ti)
KiT

≠l
i ,

”j

Ḡ (Tj)
KjT

≠l
j

D

.

By conditioning on the random variable X1, by the same ideas in the proof of lemma 4.2,
Lemma 4 in Ferraty et al. (2007) and by using hypotheses (H5), (N1) and (N4), we get

IE

S

U
A

”1Y
≠l

1
Ḡ(Y1)

B2

K
2
1 (x)

T

V = IE

C

K
2
1 (x)IE

A
IE(1Y1ÆC1 |Y1)Y ≠2l

1
Ḡ2(Y1)

|X1

BD

=
C

IE

A
Y

≠2l
1

Ḡ(Y1)
|X1 = x

B

+ o(1)
D

IE
Ë
K

2
1 (x)

È

= Ïx(h)IE
C

Y
≠2l

1
Ḡ(Y1)

|X1 = x

D 3
K

2(1) ≠
⁄ 1

0

1
K

2(s)
2Õ

‰x(u)du

4
+ o(Ïx(h))
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and

IE

A
”1

Ḡ(Y1)
Y

≠l
1 K1

B

= O(Ïx(h)).

Thus:

Var
C

”1
Ḡ(T1)

T
≠l
1 K1

D

= Ïx(h)IE
Ë
Ḡ

≠1(Y1)Y ≠2l
1 |X1 = x

È 3
K

2(1) ≠
⁄ 1

0

1
K

2(s)
2Õ

‰x(u)du

4

+O

1
Ï

2
x(h)

2
.

We obtain

Ïx(h)
(IE [K1])2 J1,1 æ q2l(x)—2

—2
1

. (11)

Let us turn to J2,n, for this we use the technique of Masry (1986). We define the same sets
E1 and E2 in the proof of Lemma 4.3. Let J

1
2,n and J

2
2,n be the sums of covariances over E1

and E2 respectively. On the one hand, we have

J
1
2,n =

ÿ

E1

-----Cov
C

”i

Ḡ (Ti)
KiT

≠l
i ,

”j

Ḡ (Tj)
KjT

≠l
j

D----- Æ C

ÿ

E1

|IE [KiKj ] ≠ IE [Ki] IE [Kj ]| .

Because of the assumptions of Lemma 4.3 we can write

J
1
2,n Æ cn‹nÏx(h)

A3
Ïx(h)

n

4 1
a

+ Ïx(h)
B

.

Hence, for the summation over E2, we use the Davydov-Rio inequality (Rio, 1999, p. 87),
for mixing processes. This leads, for all i ”= j, to

|Cov (Ki, Kj)| Æ c–(|i ≠ j|),

Therefore,
ÿ

E2

|Cov (Ki, Kj)| Æ n
2
‹

≠a
n .

The choice ‹n = 1/[Ïx(h) log(n)], motivated by the upper bound in (H8), permits to get

nÿ

i”=j

Cov (Ki, Kj) = o (nÏx(h)) ,

then

Ïx(h)
n (IE [K1])2 J2,n = o(1) as n ≠æ Œ. (12)
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Thanks to Equations (11) and (12), we have

nÏx(h) Var (Âgl(x)) ≠æ —2q2l(x)
—2

1
as n ≠æ Œ. (13)

Concerning the covariance term, we follow the same steps as for the variance given in
Equation (13) then we get:

nÏx(h) Cov (Âg1(x), Âg2(x)) ≠æ —2q3(x)
—2

1
as n ≠æ Œ. (14)

Let us now prove the claimed result. Clearly, the function QL1 is nonincreasing, then

Œÿ

n=1

⁄ –n

0
[QL1(u)]2 du Æ

Œÿ

n=1
–nQ

2
L1(0).

By hypotheses (H1), (H3) and (H5) we can write

c
1


Ïx(h)

Æ |L1| Æ c
Õ 1


Ïx(h)
.

Then,

QL1(0) Æ c
Õ 1


Ïx(h)
.

Therefore, we have

Œÿ

n=1

⁄ –n

0
[QL1(u)]2 du Æ

Œÿ

n=1
–n (Ïx(h))≠1

.

It follows from (H7) and (H8) that

Œÿ

n=1

⁄ –n

0
[QL1(u)]2 du < Œ. (15)

From Equations (13), (14) and by noting

‡
2(x) =

1
q2(x) ≠ 2r(x)q3(x) + r

2(x)q4(x)
2
—2

—2
1

,

we conclude that

Var
A

1Ô
n

nÿ

i=1
Li(x)

B

≠æ ‡
2(x) as n ≠æ Œ. (16)

Now, the lemma can be easily deduced from Equations (15), (16) and the central limit



Chilean Journal of Statistics 167

theorem of Doukhan et al. (1994) as

1
Ò

ng2
2‡2(x)

nÿ

i=1
Li(x) =

3
nÏx(h)

g2
2(x)‡2(x)

41/2

◊
1Ë

Âg1(x) ≠ IE [Âg1(x)]
È
g2(x) ≠

Ë
Âg2(x) ≠ IE [Âg2(x)]

È
g1(x)

2 Dæ N (0, 1).

Proof of Lemma 4.6

As in Ferraty et al. (2007) we show that:

IE[Ârn(x)] = IE [Âg1(x)]
IE [Âg2(x)] + O

3 1
nÏx(h)

4
.

So, it su�ces to evaluate IE[Âgl(x)] for l œ {1, 2}, we obtain

IE [Âg1(x)] = 1
IE [K1] IE

1
K1(x)IE

Ë
Y

≠l
1 |X1

È 2

= 1
IE [K1]

1
gl(x)E [K1] + E

Ë
K1E

1
gl (X1) ≠ gl(x)|d (X1, x)

2È2

= gl(x) +
E

Ë
K1

1
�l (d (X1, x))

2È

IE [K1]

= gl(x) +
s 1

0 K(t)�l(ht)dIPd(x,X)/h(t)
s 1

0 K(t)dIPd(x,X)/h(t)
.

By using the first-order Taylor expansion for �l around 0, where �l(0) = 0, we have

E [Âgl(x)] = gl(x) + h�Õ
l(0)

Cs 1
0 tK(t)dIPd(x,X)/h(t)
s 1

0 K(t)dIPd(x,X)/h(t)

D

+ o(h).

According to Lemma 2 of Ferraty et al. (2007) we get, under (N1)
s 1

0 tK(t)dIPd(x,X)/h(t)
s 1

0 K(t)dIPd(x,X)/h(t)
≠æ —0

—1
and

⁄ 1

0
K(t)dIPd(x,X)/h(t) ≠æ —1.

Consequently

E [Âgl(x)] = gl(x) + h�Õ
l(0)—0

—1
+ o(h)

then we deduce that:

An = IE [Âg1(x)]
IE [Âg2(x)] ≠ r(x) = hBn + o(h).

Proof of Lemma 4.7

The same idea in the proof of Lemma 3.6 of Fetitah et al. (2020).
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