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Jesús López-Fidalgo Universidad de Navarra, Spain
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Abstract

In this work, we derive some novel properties of the bimodal normal distribution. Some of
its mathematical properties are examined. We provide a formal proof for the bimodality,
present a stochastic representation, and assess identifiability. We also provide a closed
formula for the moments of the bimodal normal distribution. We then discuss the max-
imum likelihood estimates as well as the existence of these estimates, and also some
asymptotic properties of the estimator of the parameter that controls the bimodality. A
bivariate version of the bimodal normal distribution is derived and some characteristics
such as covariance and correlation are analyzed. We study stationarity and ergodicity
and a triangular array central limit theorem. Finally, a Monte Carlo study is carried
out for evaluating the performance of the maximum likelihood estimators empirically.

Keywords: Bimodality · Bivariate distribution · Central limit theorem · Ergodicity
· Identifiability · Maximum likelihood method · Stationarity.

Mathematics Subject Classification: Primary 60E99 · Secondary 62E99.

1. Introduction

Bimodal distributions play an important role in the applied statistical literature; see, for
example, Eugene et al. (2002), Hassan and El-Bassiouni (2016), and Alizadeh et al. (2017).
The use of mixture-free bimodal distributions is very important as often real-world data are
better modeled by these models, and in general, mixtures of distributions may su�er from
identifiability problems in the parameter estimation; see Vila et al. (2020).

Recently, Gómez-Déniz et al. (2021) introduced a family of continuous distributions ap-
propriate to describe the behavior of bimodal data. This family can accommodate any
symmetric distribution and includes the bimodal normal (BN) as a special case. Bivariate
distributions are of interest; see, for example, Saulo et al. (2020).

In this work, we derive some novel properties of the BN distribution. Particularly, in
Section 2, we describe some preliminary properties, including the behavior of the density
and hazard functions, median, moment generating function, mean, variance, among others.
In Section 3, we obtain some results on the bimodality property of the BN distribution,
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126 Vila et al.

and the stochastic representation and moments are derived in Section 4. Also, in this sec-
tion, we study some aspects of identifiability. In Section 5, we discuss maximum likelihood
(ML) estimation, existence of the ML estimates, and some asymptotic properties of the ML
estimators. A bivariate version of the BN distribution is derived and some characteristics
such as covariance and correlation are analyzed in Section 6. In Section 7, the concepts of
stationarity and ergodicity of a BN random process are studied. Ergodicity is an important
ingredient to study functions of the distributional characteristics of the process when we
have one realization of it. We find out that the BN random process is non-stationary. This
result allows us to study, in Section 8, the triangular array central limit theorem, which is
of vital importance in statistics. All theoretical results in this paper are new in the litera-
ture. In Section 9, we carry out Monte Carlo simulations. Finally, in Section 10, we discuss
conclusions.

2. Preliminary properties

The random variable X follows a BN distribution if its probability density function (PDF)
is given by

f–,’(x) =
Ô

2fi sech(’–)„(–)„(x)cosh[–(x ≠ ’)], x œ , (1)

where ’ œ and – œ are shape and location parameters, respectively, „ is the standard
normal PDF, and sech(z) = 1/cosh(z), with cosh(z) = [exp(z)+exp(≠z)]/2. The parameter
’ presented in Equation (1) controls the skewness and the parameter – is related to the
bimodality; see Gómez-Déniz et al. (2021).

In this work, we derive some novel properties of a special case of Equation (1), more
specifically when ’ = 0. Then, we say that a real-valued random variable X has a BN
distribution with parameter vector parameter ◊ = (µ, ‡, –)€, with µ œ , ‡ > 0, and
– œ , denoted by X ≥ BN(◊), if its PDF is expressed as

f(x; ◊) = 1
Ô

2fi‡2
exp

5
≠

1
2

3
x ≠ µ

‡

42
≠

–
2

2

6
cosh

5
–

3
x ≠ µ

‡

46
, x œ , (2)

where µ is a location parameter, ‡ is a scale parameter, and – is a parameter that controls the
unimodality or bimodality of the distribution. When – approaches zero (that is, |–| Æ 1) the
distribution becomes unimodal and when – grows (that is, |–| > 1) the bimodality becomes
more accentuated. When – = 0, we have the known normal distribution. For more details,
see Theorem 3.1.

Let X ≥ BN(◊) with PDF f(x; ◊) given in Equation (2). Then, the behavior of f(x; ◊)
with x æ 0 or x æ ±Œ is stated as

lim
xæ0

f(x; ◊) =
Ô

2fi „µ,‡2(0)„(–) cosh
1

–µ

‡

2
and lim

xæ±Œ
f(x; ◊) = 0, (3)

where „µ,‡2(x) is the PDF of the normal distribution with mean µ and variance ‡
2, and

then we denote it by „(x) instead of „0,1(x).
Observe that the cumulative distribution function (CDF) of X ≥ BN(◊) is given by

F (x; ◊) = 1
4

5
2 + erf

3
x ≠ µ ≠ –‡

‡
Ô

2

4
+ erf

3
x ≠ µ + –‡

‡
Ô

2

46
, (4)
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where erf(x) = 2
s x

0 exp(≠t
2) dt/

Ô
fi is the error function. Note that lim–æ0 F (x; 0, 1, –) =

(1/2)[1 + erf(x/
Ô

2)] = �(x), with � being the CDF of the standard normal distribution.
The CDF presented in Equation (4) is a special case of the bimodal skewed symmetric

distribution of Hassan and El-Bassiouni (2016).
The hazard function h(x; ◊) = f(x; ◊)/[1≠F (x; ◊)] has the following behavior when x æ 0

or x æ ±Œ: limxæ≠Œ h(x; ◊) = 0, limxæ+Œ h(x; ◊) = +Œ and

lim
xæ0

h(x; ◊) = 4
Ô

2fi „µ,‡2(0)„(–) cosh(–µ/‡)
2 ≠ erf

1
≠µ≠–‡

‡
Ô

2

2
≠ erf

1
≠µ+–‡

‡
Ô

2

2 .

From the above limits, it can be concluded that the hazard function is non-decreasing.
A routine calculation shows that, if X ≥ BN(◊), then:
(P.1) (PDF) The random variable Z = (X ≠ µ)/‡, where µ œ and ‡ > 0, has PDF

given by f(z; 0, 1, –) = (1/
Ô

2fi) exp[≠(z2 + –
2)/2] cosh(–z), for z œ , that is,

Z ≥ BN(0, 1, –);
(P.2) If f is a Borel measurable function then

[f((X ≠ µ)/‡)] = exp(≠–
2
/2) �[f(Z) cosh(–Z)],

where Z ≥ N(0, 1) and � denotes the expectation with respect to distribution
function �;

(P.3) (Symmetry) f(µ ≠ x; ◊) = f(µ + x; ◊) for all real numbers x;
(P.4) (Median) The median m satisfies that

erf[(m ≠ µ ≠ –‡)/(‡
Ô

2)] = erf[(≠m + µ ≠ –‡)/(‡
Ô

2)], so that m = µ;

(P.5) (Moment generating function) MX(t) = exp
!
µt + ‡

2
t
2
/2

"
cosh(–‡t), t œ ;

(P.6) (Characteristic function) „X(t) = exp(iµt ≠ ‡
2
t
2
/2) cosh(i–‡t), for t œ ;

(P.7) (Mean) (X) = µ;
(P.8) (Variance) Var(X) = ‡

2(1 + –
2);

(P.9) (Skewness) v = 0, that is, the distribution is approximately symmetrical;
(P.10) (Kurtosis) Ÿ = –

2(–2 + 6) + 3;
(P.11) (Mean absolute deviation) MAD = [2„(–) + –erf(–/

Ô
2)]‡;

(P.12) (Shannon entropy) SE = log(
Ô

2fi‡2) + 2–
2 + 1/2 ≠ exp(≠–

2
/2)[exp(2–

2) + 1]/2.

3. Unimodality and bimodality of the BN distribution

In this section, we provide unimodal and bimodal features of the BN distribution.

Theorem 3.1 The PDF of the BN distribution given in Equation (2) is unimodal when
|–| Æ 1 and is bimodal when |–| > 1.

Proof Let us suppose that – ”= 0 because for the case – = 0 the unimodality is well known.
The derivative of f(x; ◊) with respect to x is given by

f
Õ(x; ◊) = f(x; ◊)

‡

;
– tanh

5
–

3
x ≠ µ

‡

46
≠

3
x ≠ µ

‡

4<
.
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Then, f
Õ(x; ◊) = 0 if and only if

tanh
5
–

3
x ≠ µ

‡

46
= x ≠ µ

–‡
. (5)

Let g(x; ◊) = tanh[–(x ≠ µ)/‡] ≠ (x ≠ µ)/(–‡). Note that, for all – ”= 0, x = µ is a root
of g(x; ◊). We divide the proof in the following two steps:

(i) First step: proving unimodality. Note that, g
Õ(x; ◊) = (1/‡){–sech2[–(x≠µ)/‡]≠1/–} < 0

on (≠Œ, +Œ) when 0 < – Æ 1, and g
Õ(x; ◊) > 0 on (≠Œ, +Œ) when ≠1 Æ – < 0,

because sech2(x) Æ 1. Since the function g(x; ◊) has opposite signs at the extremes of the
interval (that is, limxæ≠Œ g(x; ◊) = +Œ, limxæ+Œ g(x; ◊) = ≠Œ when 0 < – Æ 1, and
limxæ≠Œ g(x; ◊) = ≠Œ, limxæ+Œ g(x; ◊) = +Œ when ≠1 Æ – < 0) and it is monotonic,
it will have a single zero at x = µ. Then, since limxæ±Œ f(x; ◊) (3)= 0, the unimodality of
the BN distribution with PDF stated in Equation (2) is guaranteed.

(ii) Second step: proving bimodality. Without loss of generality, now we assume that – > 1
because the other case – < ≠1 is verified using similar arguments. For this case, note
that g(x; ◊) > 0 when x Æ µ ≠ ‡– and g(x; ◊) < 0 when x Ø µ + ‡–. Then, there is no
root of g(x; ◊) outside of the interval (µ≠‡–, µ+‡–). Using Intermediate value theorem,
g(µ≠‡–; ◊) = 1≠tanh(–2) > 0, Á

≠ = limxæµ≠ g(x; ◊) < 0, and Á
+ = limxæµ+ g(x; ◊) > 0,

g(–; ◊) = tanh(–2) ≠ 1 < 0. Thus, there are c1 œ (µ ≠ ‡–, Á
≠) and c3 œ (Á+

, µ + ‡–):
g(ci; ◊) = 0 for i = 1, 3. Now, we prove uniqueness of root on (µ≠‡–, Á

≠). Indeed, assume
that g(x; ◊) has two solutions g(a; ◊) = g(b; ◊) = 0, µ ≠ ‡– < a < b < Á

≠, then according
to the Rolle theorem there is c

ú
œ (a, b): g

Õ(cú; ◊) = 0. But g
Õ(x; ◊) = (1/‡)[–sech2(–x) ≠

1/–] < 0 on (µ ≠ ‡–, Á
≠) with – > 1, and has no solutions, contradiction. Therefore,

g(x; ◊) has exactly one real solution on (µ ≠ ‡–, Á
≠). Similarly, it is verified that on

(Á+
, µ + ‡–), g(x; ◊) has exactly one real solution. Thus, for – > 1, g(x; ◊) has exactly

three real roots, denoted by x1, x2, x3, such that x1 < x2 = µ < x3. Therefore, since
limxæ±Œ f(x; ◊) (3)= 0, the bimodality of the BN distribution expressed in (2) follows. ⌅

Remark 1 The modes of the BN distribution belong to the interval (µ ≠ ‡–, µ + ‡–). By
symmetry, there is ” = ”(‡, –) œ (0, ‡–) so that x1 = µ ≠ ” and x3 = µ + ”. Moreover,
when |–| > 1 and |x| is su�ciently large, the modes of the BN distribution are given by
x1 ¥ µ ≠ ‡– and x3 ¥ µ + ‡–, because limxæ±Œ tanh[–(x ≠ µ)/‡] = ±1.

Corollary 3.2 The modal point x0 = x0(◊) is a non-decreasing function of µ whenever
|–| Æ 1.

Proof By Equation (5), a modal point x0 of the BN distribution satisfies

x0 = –‡ tanh
5
–

3
x0 ≠ µ

‡

46
+ µ. (6)

Di�erentiating x0 with respect to µ, we obtain

ˆx0
ˆµ

= 1 ≠ –
2sech2

5
–

3
x0 ≠ µ

‡

46
Ø 0,

whenever |–| Æ 1. Hence, x0 is a non-decreasing function of µ. ⌅
Corollary 3.3 The modal point x0 = x0(◊) is a non-decreasing function of ‡ (respectively
of –) whenever x0 Ø µ and a non-increasing function of ‡ (respectively of –) whenever
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x0 < µ.

Proof Di�erentiating x0 in Equation (6) with respect to ‡ and –, we get

ˆx0
ˆ‡

= –tanh
5
–

3
x0 ≠ µ

‡

46
≠ –

2
3

x0 ≠ µ

‡

4
sech2

5
–

3
x0 ≠ µ

‡

46

and

ˆx0
ˆ‡

= ‡

;
tanh

5
–

3
x0 ≠ µ

‡

46
+ –

3
x0 ≠ µ

‡

4
sech2

5
–

3
x0 ≠ µ

‡

46<
.

From the above equations, it follows that ˆx0/ˆ‡ Ø 0 (respectively ˆx0/ˆ– Ø 0) whenever
x0 Ø µ and ˆx0/ˆ‡ < 0 (respectively ˆx0/ˆ– < 0) whenever x0 < µ. ⌅

4. Stochastic representation, moments, and identifiability

In this section, we provide the stochastic representation, moments, and identifiability of the
BN distribution.

Proposition 4.1 Suppose Zµ,‡2 has a normal distribution with expected value µ and
variance ‡

2. Let W have the Bernoulli distribution, so that W = –‡ or W = ≠–‡, each
with probability 1/2, and assume W is independent of Zµ,‡2 . If X = Zµ,‡2 + W then
X ≥ BN(◊). Conversely, if X ≥ BN(◊), then X = Zµ,‡2 + W .

Proof By law of total probability and by independence, we get

(X Æ x) = (Zµ,‡2 + –‡ Æ x) (W = –‡) + (Zµ,‡2 ≠ –‡ Æ x) (W = ≠–‡)

= (Zµ,‡2 + –‡ Æ x) 1
2 + (Zµ,‡2 ≠ –‡ Æ x) 1

2

= �
3

x ≠ µ ≠ –‡

‡

4 1
2 + �

3
x ≠ µ + –‡

‡

4 1
2 .

By using the identity �(x) = (1/2)[1 + erf(x/
Ô

2)], the above expression is equal to

1
4

5
2 + erf

3
x ≠ µ ≠ –‡

‡
Ô

2

4
+ erf

3
x ≠ µ + –‡

‡
Ô

2

46
(4)= F (x; ◊), x œ .

Then, we have completed the proof. ⌅
Proposition 4.2 Let X ≥ BN(◊). Then,

(Xn) =

Y
]

[

‡n2 n≠2
2

�( n+1
2 )

Ô
fi

#
1F1

!
≠ n

2 , 1
2 ; ≠ {µ+–‡}2

2‡2

"
+1F1

!
≠ n

2 , 1
2 ; ≠ {µ≠–‡}2

2‡2

"$
, n even,

‡n≠12 n≠1
2

�( n
2 +1)
Ô

fi

#
(µ + –‡)1F1

! 1≠n
2 , 3

2 ; ≠ {µ+–‡}2

2‡2

"
+ (µ ≠ –‡)1F1

! 1≠n
2 , 3

2 ; ≠ {µ≠–‡}2

2‡2

"$
, n odd,

where 1F1(a, b; x) = [�(b)/�(a)]
qŒ

k=0[�(a + k)/�(b + k)](xk
/k!) is the Kummer confluent

hypergeometric function; see Winkelbauer (2014).
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Proof By Proposition 4.1, we have

(Xn) = 1
2

#
�µ+–‡,‡2 (Xn) + �µ≠–‡,‡2 (Xn)

$
,

where �µ+–‡,‡2 denotes the expectation with respect to distribution function �µ+–‡,‡2 . By
combining the above equality with the following known identity (Winkelbauer, 2014), for
Y ≥ N(µ, ‡

2),

(Y n) =

Y
_]

_[

‡
n2n/2 �( n+1

2 )Ô
fi 1F1

!
≠

n
2 ,

1
2 ; ≠

µ2

2‡2
"
, n even,

µ‡
n≠12(n+1)/2 �( n

2 +1)Ô
fi 1F1

!1≠n
2 ,

3
2 ; ≠

µ2

2‡2
"
, n odd,

the proof follows. ⌅
Proposition 4.3 Let X ≥ BN(◊). Then,

53
X ≠ µ


Var(X)

4n 6
=

Y
__]

__[

1
(1+–2)n/2

ÿ

0ÆkÆn
k even

!n
k

"
–

n≠k2≠ k
2 k!

(k/2)! , n even,

0, n odd.

Proof By using Proposition 4.1 and that Var(X) = ‡
2(1 + –

2), we get

53
X ≠ µ


Var(X)

4n 6
= 1

2(1 + –2)n/2

I

�µ+–‡,‡2

53
X ≠ µ

‡

4n 6
+ �µ≠–‡,‡2

53
X ≠ µ

‡

4n 6J

,

where �µ+–‡,‡2 denotes the expectation with respect to distribution function �µ+–‡,‡2 .
Taking the changes of variable z = (x ≠ µ)/‡ and dz = dx/‡, and a binomial expansion,
we have

53
X ≠ µ


Var(X)

4n 6
= 1

2(1 + –2)n/2
)

�
#
(Z + –)n $

+ �
#
(Z ≠ –)n $*

= 1
2(1 + –2)n/2

nÿ

k=0

A
n

k

B
#
1 + (≠1)n≠k$

–
n≠k

�(Zk). (7)

A simple observation shows that, when n is even,

1
2(1 + –2)n/2

nÿ

k=0

A
n

k

B
#
1 + (≠1)n≠k$

–
n≠k

�(Zk) = 1
(1 + –2)n/2

ÿ

0ÆkÆn
k even

A
n

k

B

–
n≠k

�(Zk),

(8)

and, when n is odd,

1
2(1 + –2)n/2

nÿ

k=0

A
n

k

B
#
1 + (≠1)n≠k$

–
n≠k

�(Zk) = 1
(1 + –2)n/2

ÿ

0ÆkÆn
k odd

A
n

k

B

–
n≠k

�(Zk).

(9)
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Thus, by combining the known identities, �(Zk) = 0 for k odd, and

�(Zk) = 2≠ k
2

k!
(k/2)! ,

for k even, considering Equations (7), (8) and (9), the proof follows. ⌅
As a consequence of Proposition 4.1, we know that the BN PDF f(x; ◊) given in Equation

(2), with parameter vector ◊ = (µ, ‡, –)€, can be written as a finite mixture of two normal
distributions with di�erent location parameters, that is, given by

f(x; ◊) = 1
2

#
„µ+–‡,‡2(x) + „µ≠–‡,‡2(x)

$
. (10)

Let N be the family of normal distributions stated as

N =
;

F : F (x; µ, ‡) =
⁄ x

≠Œ
„µ,‡2(y) dy, µ œ , ‡ > 0, x œ

<
.

In addition, let HN be the class of all finite mixtures of N . It is well-known that the class
HN is identifiable; see Teicher (1963). The following result proves the identifiability of the
BN distribution.

Proposition 4.4 The mapping ◊ ‘≠æ f(x; ◊), for all x œ , is one-to-one.

Proof Let us suppose that f(x; ◊) = f(x; ◊Õ) for all x œ . Thus, by Equation (10), we
have that

1
2

#
„µ+–‡,‡2(x) + „µ≠–‡,‡2(x)

$
= 1

2
#
„µÕ+–Õ‡Õ,‡Õ2(x) + „µÕ≠–Õ‡Õ,‡Õ2(x)

$
.

Since HN is identifiable, we have µ ± –‡ = µ
Õ
± –

Õ
‡

Õ and ‡
2 = ‡

Õ2. From where immediately
follows that µ = µ

Õ, ‡ = ‡
Õ and – = –

Õ. Therefore, ◊ = ◊Õ, and the identifiability of
distribution follows. ⌅

5. Asymptotic properties

Let X be a random variable with BN distribution that depends on a parameter vector
◊ = (µ, ‡, –)€, with ◊ being an open subset of 3, where distinct values of ◊ yield distinct
distributions for X (see Section 4). Let X = (X1, . . . , Xn)€ be a random sample of X.
Then, the log-likelihood function for ◊ is given by

l(◊; X) Ã ≠n log(‡) ≠
n–

2

2 ≠
1
2

nÿ

i=1

3
Xi ≠ µ

‡

42
+

nÿ

i=1
log

;
cosh

5
–

3
Xi ≠ µ

‡

46<
.
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A simple computation shows that

ˆl(◊; X)
ˆµ

= n

‡

3
X ≠ µ

‡

4
≠

–

‡

nÿ

i=1
tanh

5
–

3
Xi ≠ µ

‡

46
, (11)

ˆl(◊; X)
ˆ‡

= ≠
n

‡
+ 1

‡

nÿ

i=1

3
Xi ≠ µ

‡

42
≠

–

‡

nÿ

i=1

3
Xi ≠ µ

‡

4
tanh

5
–

3
Xi ≠ µ

‡

46
, (12)

ˆl(◊; X)
ˆ–

= ≠–n +
nÿ

i=1

3
Xi ≠ µ

‡

4
tanh

5
–

3
Xi ≠ µ

‡

46
. (13)

The log-likelihood equations for the estimators ‚µ, ‚‡, ‚– are given by

‚µ = X ≠
‚–
n

nÿ

i=1
tanh

5
‚–

3
Xi ≠ ‚µ

‚‡

46
,

‚‡2 = 1
(1 + ‚–2)n

nÿ

i=1
(Xi ≠ ‚µ)2

,

‚– = 1
n

nÿ

i=1

3
Xi ≠ ‚µ

‚‡

4
tanh

5
‚–

3
Xi ≠ ‚µ

‚‡

46
.

In the following two propositions, we study the existence of the ML estimator when two
parameters are assumed to be known.

Proposition 5.1 If the parameters ‡ and – are known, then Equation (11) has at least
one root on the interval (≠Œ, +Œ).

Proof One can readily verify that limµæûŒ ˆl(◊; X)/ˆµ = ±Œ. Hence, by Intermediate
value theorem, there exists at least one solution on the interval (≠Œ, +Œ). ⌅
Proposition 5.2 If the parameters µ and ‡ are known, then Equation (13) has at least
one root on the interval (≠Œ, +Œ).

Proof Since lim–æûŒ ˆl(◊; X)/ˆ– = ±Œ, the proof follows the same reasoning as the
proofs of Proposition 5.1. ⌅

Now, we calculate the expectation of the score defined by Equations (11), (12) and(13)
when n = 1. Indeed, by using the partial derivatives in Equations (11)-(13), with n = 1,
and the fact that x ‘≠æ x cosh(–x) and x ‘≠æ sinh(–x) are odd functions, we obtain

5
ˆ log{f(X; ◊)}

ˆµ

6
= n

‡

3
X ≠ µ

‡

4
≠

–

‡

;
tanh

5
–

3
X ≠ µ

‡

46<

= exp
3

≠
–

2

2

4 ;
n

‡
�

#
Z cosh(–Z)

$
≠

–

‡
�

#
sinh(–Z)

$<
= 0,

where in the second line, the changes of variables z = (x≠µ)/‡, dz = dx/‡ were considered.
Analogously, since �

#
Z

2 cosh(–Z)
$

= (–2 + 1) exp
!
–

2
/2

"
and �

#
Z sinh(–Z)

$
=
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– exp
!
–

2
/2

"
, we get

5
ˆ log {f(X; ◊)}

ˆ‡

6
= ≠

1
‡

+ 1
‡

53
X ≠ µ

‡

42 6
≠

–

‡

;3
X ≠ µ

‡

4
tanh

5
–

3
X ≠ µ

‡

46<

= ≠
1
‡

+ 1
‡

exp
3

≠
–

2

2

4
�

#
Z

2 cosh(–Z)
$

≠
–

‡
exp

3
≠

–
2

2

4
�

#
Z sinh(–Z)

$

= 0

and let

5
ˆ log {f(X; ◊)}

ˆ–

6
=

;3
X ≠ µ

‡

4
tanh

5
–

3
X ≠ µ

‡

46<
≠ –

= exp
3

≠
–

2

2

4
�

#
Z sinh(–Z)

$
≠ – = 0. (14)

In what remains of this section, for the sake of simplicity of presentation, we will assume that
µ and ‡ are known parameters and – is unknown. We are interested in knowing the large
sample properties of ML estimator ‚– of the parameter – that generates uni- or bimodality
in the BN distribution. We emphasize that similar results can be studied for µ and ‡ when
the other parameters are known. Since

ˆ
2
f(x; ◊)
ˆ–2 =

5
–

2 +
3

x ≠ µ

‡

42
≠ 1

6
f(x; ◊) ≠ 2–

3
x ≠ µ

‡

4
tanh

5
–

3
x ≠ µ

‡

46
f(x; ◊),

�
#
Z

2 cosh(–Z)
$

= (–2 + 1) exp
!
–

2
/2

"
and �

#
Z sinh(–Z)

$
= – exp

!
–

2
/2

"
, for Z ≥

N(0, 1), we have

⁄ +Œ

≠Œ

ˆ
2
f(x; ◊)
ˆ–2 dx =

5
–

2 +
3

X ≠ µ

‡

42
≠ 1

6
≠2–

;3
X ≠ µ

‡

4
tanh

5
–

3
X ≠ µ

‡

46<

= –
2 + exp

3
≠

–
2

2

4
�

#
Z

2 cosh(–Z)
$

≠ 1 ≠ 2– exp
3

≠
–

2

2

4
�

#
Z sinh(–Z)

$

= 0, (15)

where in the second line, the changes of variables z = (x ≠ µ)/‡ and dz = dx/‡ were
considered. In addition,

ˆ
2 log {f(x; ◊)}

ˆ–2 =
3

x ≠ µ

‡

42
sech2

5
–

3
x ≠ µ

‡

46
≠ 1. (16)
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Then, by Equations (15) and (16), the Fisher information may also be written as

I(–) =
5

ˆ log {f(X; ◊)}
ˆ–

62
= ≠

5
ˆ

2 log {f(X; ◊)}
ˆ–2

6
+

⁄ +Œ

≠Œ

ˆ
2
f(x; ◊)
ˆ–2 dx

=1 ≠

;3
X ≠ µ

‡

42
sech2

5
–

3
X ≠ µ

‡

46<

=1 ≠ exp
3

≠
–

2

2

4
�

#
Z

2sech(–Z)
$
. (17)

Theorem 5.3 Let us suppose that µ and ‡ are known parameters and – unknown, and
� = {– œ : |–| > 0} be the parameter space. Then, with probability approaching one, as
n æ +Œ, the log-likelihood equation ˆl(◊; X)/ˆ– = 0 has a consistent solution, denoted
by ‚–.

Proof Since ˆ log{f(x; ◊)}/ˆ–, ˆ
2 log{f(x; ◊)}/ˆ–

2, ˆ
3 log{f(x; ◊)}/ˆ–

3] exist for all – œ

� and every x, by Cramér (1946) it is su�cient to prove that:
(i) [ˆ log{f(X; ◊)}/ˆ–] = 0 for all – œ �;
(ii) ≠Œ < [ˆ2 log{f(X; ◊)}/ˆ–

2] < 0 for all – œ �;
(iii) There exists a function H(x) such that for all – œ �, l|ˆ

3 log{f(x; ◊)}/ˆ–
3
| < H(x)

and [H(X)] < Œ.
In what follows we show the validity of items (i), (ii) and (iii) above. By Equa-
tion (14), the statement of item (i) follows. In order to verify item (ii), note that
exp

!
≠–

2
/2

"
�

#
Z

2sech(–Z)
$

Æ �(Z2) = 1 for all – œ �. Moreover, the two sides
are equal if and only if – = 0. Since – œ � (that is, – ”= 0), it follows that
exp

!
≠ –

2
/2

"
�

#
Z

2sech(–Z)
$

< 1. Hence,

≠1 Æ

5
ˆ

2 log {f(X; ◊)}
ˆ–2

6
(17)= exp

3
≠

–
2

2

4
�

#
Z

2sech(–Z)
$

≠ 1 < 0. (18)

Then, item (ii) is valid. Thus, since |sech2(–x)| Æ 1 and |tanh(–x)| Æ 1,

----
ˆ

3 log {f(x; ◊)}
ˆ–3

---- =
-----2

3
X ≠ µ

‡

43
sech2

5
–

3
X ≠ µ

‡

46
tanh

5
–

3
X ≠ µ

‡

46-----

Æ 2
----

3
x ≠ µ

‡

4----
3

= H(x), (19)

with [H(X)] < Œ. Therefore, we have completed the proof. ⌅
The following result supports the intuitive appeal of the ML estimator (Bahadur, 1971).

Proposition 5.4 Under hypothesis of Theorem 5.3, we have that

lim
næ+Œ

⁄

n {y œ
n : exp[l(◊Õ; y)] > exp[l(◊; y)]}(x) exp[l(◊Õ; x)] dx = 1,

for any ◊ = (µ, ‡, –)€, ◊Õ = (µ, ‡, –
Õ)€

œ � with – ”= –
Õ. Here, A(x) is the indicator

function of a set A having the value 1 for all x in A and the value 0 for all x not in A.
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Proof Since X = (X1, . . . , Xn)€ is a random sample of X ≥ BN(◊), X1, . . . , Xn are inde-
pendent and identically distributed random variables with PDF f(x; ◊), ◊ œ �. Therefore,
as the BN distribution is identifiable (see Section 4), by Bahadur (1971), the proof follows.
⌅

Next, we state a central limit theorem for the ML estimator ‚–, which is important for
studying confidence intervals and hypothesis tests, for example. Note that, under hypothesis
of Theorem 5.3, the following conditions are satisfied:
(A.1) The mapping – ‘≠æ f(x; ◊) is three times continuously di�erentiable on �, ’x œ ;
(A.2) By Equation (14),

s +Œ
≠Œ ˆf(x; ◊)/ˆ– dx = [ˆ log{f(X; ◊)}/ˆ–] = 0 and, by Equa-

tion (15),s +Œ
≠Œ ˆ

2
f(x; ◊)/ˆ–

2 dx = 0;
(A.3) By Equations (17) and (18), 0 < I(–) = 1 ≠

#
X

2sech2(–X)
$

Æ 1, ’– œ �;
(A.4) By Equation (19), there exists a function H(x) such that for all – œ �,

----
ˆ

3 log {f(x; ◊)}
ˆ–3

----< H(x), [H(X)] < Œ;

(A.5) By Theorem 5.3, the log-likelihood equation ˆl(◊; X)/ˆ– = 0 has a consistent so-
lution ‚–.

Since conditions (A.1)-(A.5) are satisfied, by Cramér (1946), we have the following result.

Theorem 5.5 Under hypothesis of Theorem 5.3, it holds that,
Ô

n(‚– ≠ –) converges in
distribution to N(0, 1/I(–)) as n æ +Œ.

6. The bivariate BN distribution

We said that a real random vector X = (X1, X2)€ has bivariate BN (BBN) distribution
with parameter vector parameter Â = (µ1, µ2, ‡1, ‡2, –)€, µi œ , ‡i > 0, – œ , denoted
by X ≥ BBN(Â), if its PDF is given by, for each x = (x1, x2)€

œ
2,

f(x; Â) = exp[–2(fl2
≠ 2)/2]

‡1‡2
„

3
x1 ≠ µ1

‡1
,
x2 ≠ µ2

‡2
; fl

4
cosh

5
–

3
x1 ≠ µ1

‡1

4
+ –(1 ≠ fl)

3
x2 ≠ µ2

‡2

46
,

where fl œ (≠1, 1) and

„(z; fl) = 1
2fi


1 ≠ fl2 exp

5
≠

1
2(1 ≠ fl2)

!
z

2
1 ≠ 2flz1z2 + z

2
2
"6

, z = (z1, z2)€
œ

2
,

is the PDF of the standard bivariate normal distribution with correlation coe�cient fl.
A simple algebraic manipulation shows that

⁄ Œ

≠Œ
f(x; Â) dx1 = f(x2; ◊2) and

⁄ Œ

≠Œ
f(x; Â) dx2 = f(x1; ◊1),

where f(xi; ◊i) is the PDF of the BN distribution stated in Equation (2) with parameter
vector ◊i = (µi, ‡i, –)€, for i = 1, 2. Thus, if X = (X1, X2)€

≥ BBN(Â) then X1 ≥ BN(◊1)
and X2 ≥ BN(◊2).



136 Vila et al.

By using previous results, a laborious algebraic calculation gives

(X1|X2 = x2) = µ1 + fl‡1

3
x2 ≠ µ2

‡2

4
+ (1 ≠ fl

2)‡1tanh
5
–

3
x2 ≠ µ2

‡2

46
,

that is,

(X1|X2) = µ1 + fl‡1

3
X2 ≠ µ2

‡2

4
+ (1 ≠ fl

2)‡1tanh
5
–

3
X2 ≠ µ2

‡2

46
almost sure.

In consequence,

(X1X2) = [X2 (X1|X2)]

= µ1 (X2) + fl‡1

5
X2

3
X2 ≠ µ2

‡2

46
+ (1 ≠ fl

2)‡1

;
X2tanh

5
–

3
X2 ≠ µ2

‡2

46<
.

Since X2 ≥ BN(◊2), we get

(X1X2) = µ1µ2 + fl‡1‡2(1 + –
2) + (1 ≠ fl

2)‡1‡2–.

Hence, as (Xi) = µi and Var(Xi) = ‡
2
i (1 + –

2) (see properties P.7 and P.8 in Section 2),

Cov(X1, X2) = ‡1‡2[fl(1 + –
2) + (1 ≠ fl

2)–]; (20)

fl(X1, X2) = fl(1 + –
2) + (1 ≠ fl

2)–
(1 + –2) .

The covariance matrix is given by

� =

S

U
‡

2
1(1 + –

2) ‡1‡2[fl(1 + –
2) + (1 ≠ fl

2)–]

‡1‡2[fl(1 + –
2) + (1 ≠ fl

2)–] ‡
2
2(1 + –

2)

T

V .

Some immediate observations are the following:

• When – = 0, we have the following known facts corresponding to bivariate normal distri-
bution: Cov(X1, X2) = fl‡1‡2 and fl(X1, X2) = fl.

• When fl = 0, we have Cov(X1, X2) = ‡1‡2– and fl(X1, X2) = –/(1 + –
2).

• When fl = – = 0, X1 and X2 are independent.

7. Stationarity and ergodicity

In this section, we provide stationarity and ergodicity properties of the BN distribution.

Definition 7.1 A process Xt is strict-sense stationary (SSS) if its finite-dimensional dis-
tributions at times t1 < · · · < tn, ’n œ , are the same after any time interval of length
time interval of length t0. Thus, for each n œ and t1 < · · · < tn and (x1, . . . , xn)€

œ
n

we have

(Xt1+t0 Æ x1, . . . , Xtn+t0 Æ xn) = (Xt1 Æ x1, . . . , Xtn Æ xn),
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for any time t0.

We say that a process Xt is a BN random process if Xt ≥ BN(◊t), where ◊t = (µt, ‡t, –)€,
with µt œ , ‡t > 0 and – œ .

Proposition 7.2 The BN random process is not SSS when µt and ‡t are not independent
of time.

Proof If a random process is SSS, then all expected values of functions of the random
process must also be stationary. Since (Xt) = µt and Var(Xt) = ‡

2
t (1+–

2) (see properties
P.7 and P.8 in Section 2) change depend on t, we have that the PDF changes with time.
Then, the non-stationarity of random process follows. ⌅
Definition 7.3 A process Xt is weak-sense stationary (WSS) if:

• (Xt) = µ is independent over time;
• (X2

t ) < Œ;
• CX(t, s) = Cov(Xt, Xs) only depends on the distance between the times considered.

If Xt is a BN random process, it is known that (Xt) = µt, (X2
t ) = ‡

2
t (1 + –

2) + µ
2
t (see

Section 2) and that CX(t, s) (20)= ‡t‡s[fl(1 + –
2) + (1 ≠ fl

2)–]. Then, the next result follows.

Proposition 7.4 The BN random process is not WSS when µt and ‡t are not independent
of time.

Remark 1 In the case that µt and ‡t [or fl = – = 0] are independent of time, it is clear that
the BN process is SSS and WSS.

In many real-life situations, it is not always possible to have many realizations of the ran-
dom process available to estimate a population parameter (for example, the mean, variance
and covariance function of process), as in classical estimation, but rather a single one. In this
case, in order to study the process, we calculate the temporal characteristic of the process.

Definition 7.5 Let Xt be a random process. Then, we define the temporal mean of Xt as

ÈmXÍT = 1
2T

⁄ T

≠T
Xt dt, T > 0.

Definition 7.6 A process Xt with mean µ independent of time is mean ergodic if

lim
T æŒ

Var(ÈmXÍT ) = lim
T æŒ

(ÈmXÍT ≠ µ)2 = 0.

Proposition 7.7 The BN random process with mean µ independent of time is mean
ergodic whenever

lim
T æŒ

1
2T

⁄ T

≠T
‡t dt = 0. (21)

For example, we can take ‡t = exp(≠t
2).

Proof A simple calculus shows that

Var(ÈmXÍT ) = 1
4T 2

⁄ T

≠T

⁄ T

≠T
CX(t, t

Õ) dt
Õdt.
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Since CX(t, s) (20)= ‡t‡tÕ [fl(1 + –
2) + (1 ≠ fl

2)–], it follows that

Var(ÈmXÍT ) = [fl(1 + –
2) + (1 ≠ fl

2)–]
3 1

2T

⁄ T

≠T
‡t dt

42
.

Letting T æ Œ in the above equality, from condition stated in Equation (21), the proof
follows. ⌅

Definition 7.8 A WSS process Xt is covariance-ergodic if

lim
T æŒ

Var
5 1

2T

⁄ T

≠T
(Xt ≠ µ)(Xt+s ≠ µ) dt

6
= 0.

When s = 0 the WSS process is called variance ergodic.

In general, the BN random process Xt is not a WSS process (see Proposition 7.4). Then,
it is clear that Xt is not a covariance ergodic process.

Proposition 7.9 When µt is independent of time and fl = – = 0, the BN process is
variance ergodic whenever

lim
T æŒ

1
4T 2

⁄ T

≠T

⁄ T

≠T
Cov(X2

t , X
2
tÕ) dt

Õdt = lim
T æŒ

1
4T 2

⁄ T

≠T

⁄ T

≠T
Cov(X2

t , XtÕ) dt
Õdt = 0. (22)

Proof When fl = – = 0, CX(t, t
Õ) = 0. A simple calculus shows that

Var
5 1

2T

⁄ T

≠T
(Xt ≠ µ)2 dt

6
= 1

4T 2

⁄ T

≠T

⁄ T

≠T
Cov[(Xt ≠ µ)2

, (XtÕ ≠ u)2] dt
Õdt.

Since CX(t, t
Õ) = 0, the above expression is given by

= 1
4T 2

⁄ T

≠T

⁄ T

≠T

#
Cov(X2

t , X
2
tÕ) ≠ 2µCov(X2

t , XtÕ) ≠ 2µCov(Xt, X
2
tÕ)

$
dt

Õdt.

By using condition stated in Equation (22), the proof follows. ⌅

8. A triangular array central limit theorem

In this section, we provide a triangular array central limit theorem for the BN distribution.

Definition 8.1 Two random variables X and Y are said to be positively quadrant depen-
dent (PQD) if, for all x, y œ ,

G(x, y) = (X > x, Y > y) ≠ (X > x) (Y > y) Ø 0.

It is usual to rewrite G(x, y) using CDFs as

G(x, y) = (X Æ x, Y Æ y) ≠ (X Æ x) (Y Æ y). (23)
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Remark 1 If F is a CDF, for all x, y œ
2 and – œ , then

F (min{x, y} ≠ –) + F (min{x, y} + –) Ø
1
2

#
F (x ≠ –) + F (x + –)

$#
F (y ≠ –) + F (y + –)

$
.

Indeed, without loss of generality, assume that x < y. Thus,

F (min{x, y} ≠ –) + F (min{x, y} + –) = F (x ≠ –) + F (x + –)

Ø
1
2

#
F (x ≠ –) + F (x + –)

$#
F (y ≠ –) + F (y + –)

$
,

because 0 Æ F (y ≠ –) + F (y + –) Æ 2.

By the stochastic representation of Proposition 4.1, if Xj ≥ BN(◊j), there are Zj ≥ N(0, 1)
and Aj ≥ Bernoulli(1/2), with Aj œ {±–}, so that Xj = ‡j(Zj + Aj) + µj . From now on,
in this section, we assume that variables Zj and Aj are independent of j, that is, we have

Xj = ‡j(Z + A) + µj . (24)

Proposition 8.2 The random variables X ≥ BN(◊X) and Y ≥ BN(◊Y ) are PQD, where
◊X = (µX , ‡X , –), µX œ , ‡X > 0 and – œ .

Proof By Equation (24), X = ‡X(Z + A) + µX and Y = ‡Y (Z + A) + µY . Then, we get

(X Æ x, Y Æ y) =
3

Z Æ
x ≠ µX

‡X
≠ A, Z Æ

y ≠ µY

‡Y
≠ A

4

=
3

Z Æ min
Ó

x ≠ µX

‡X
,
y ≠ µY

‡Y

Ô
≠ A

4
= (Z Æ Ïn;t0(A)).

Let ‚ be the expectation over A. By the Fubini theorem, we have

(Z Æ Ïn;t0(A)) = ‚
5
�

3
min

Ó
x ≠ µX

‡X
,
y ≠ µY

‡Y

Ô
≠ A

46

= 1
2

5
�

3
min

Ó
x ≠ µX

‡X
,
y ≠ µY

‡Y

Ô
≠ –

4
+ �

3
min

Ó
x ≠ µX

‡X
,
y ≠ µY

‡Y

Ô
+ –

46
.

Therefore,

(X Æ x, Y Æ y) = 1
2

5
�

3
min

Ó
x ≠ µX

‡X
,
y ≠ µY

‡Y

Ô
≠ –

4
+ �

3
min

Ó
x ≠ µX

‡X
,
y ≠ µY

‡Y

Ô
+ –

46
.

Now, by using the identity erf(x/
Ô

2) = 2�(x) ≠ 1, the CDF stated in Equation (4) of
X ≥ BN(◊X) is written as

(X Æ x) = 1
2

5
�

3
x ≠ µX

‡X
≠ –

4
+ �

3
x ≠ µX

‡X
+ –

46
.
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Hence, by Remark 1, we get

G(x, y) (23)= (X Æ x, Y Æ y) ≠ (X Æ x) (Y Æ y)

= 1
2

5
�

3
min

Ó
x ≠ µX

‡X
,
y ≠ µY

‡Y

Ô
≠ –

4
+ �

3
min

Ó
x ≠ µX

‡X
,
y ≠ µY

‡Y

Ô
+ –

46

≠
1
4

5
�

3
x ≠ µX

‡X
≠ –

4
+ �

3
x ≠ µX

‡X
+ –

465
�

3
y ≠ µY

‡Y
≠ –

4
+ �

3
y ≠ µY

‡Y
+ –

46

Ø 0.

This completes the proof. ⌅

Definition 8.3 We define a sequence of random variables {Xj} to be linearly positive
quadrant dependent (LPQD) if for any disjoint A, B and positive {⁄j},

q
kœA ⁄kXk andq

lœB ⁄lXl are PQD.

A reasoning similar to the proof of Proposition 8.2 gives the following result.

Proposition 8.4 The sequence of random variables {Xj}, with Xj ≥ BN(◊j), is LPQD,
where ◊j = (µj , ‡j , –), µj œ , ‡j > 0 and – œ .

Theorem 8.5 Let Sn =
qMn

j=1[Xn,j ≠ (Xn,j)] where for each n, Xn,j ≥ BN(◊n,j), with
◊n,j = (µn,j , ‡n,j , –), µn,j œ , ‡n,j > 0 and – œ . Suppose there exist c1, c2, c3 œ (0, Œ)
and a sequence ul æ 0 so that, for all n, j, l, we have that

‡
2
n,j Ø c1, ‡

3
n,j Æ c2; (25)

Mnÿ

k=1
‡n,j‡n,k Æ c3; (26)

Mnÿ

k=1
|k≠j|Øl

‡n,j‡n,k Æ ul. (27)

Then,

lim
næŒ

!
[Var(Sn)]≠1/2

Sn Æ x
"

= 1
Ô

2fi

⁄ x

≠Œ
exp(≠x

2
/2) dx, ’x œ .
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Proof Since for each n, {Xn,j} is LPQD (see Proposition 8.4) but not SSS (see Proposition
7.2), by Cox and Grimmett (1984), it is enough to verify that

Var(Xn,j) Ø Âc1, |Xn,j ≠ (Xn,j)|3 Æ Âc2; (28)

Mnÿ

k=1
Cov(Xn,j , Xn,k) Æ Âc3; (29)

Mnÿ

k=1
|k≠j|Øl

Cov(Xn,j , Xn,k) Æ Âul; (30)

where Âul æ 0. Indeed, since, by Equation (25), ‡
2
n,j Ø c1 and Var(Xn,j) = ‡

2
n,j(1 + –

2) (see
property P.8 in Section 2), we have that Var(Xn,j) Ø ‡

2
n,j Ø c1 = Âc1. Moreover, using the

representation in Equation (24) and the condition given in Equation (25), we obtain

|Xn,j ≠ (Xn,j)|3 = ‡
3
n,j |Z + A|

3
Æ 6

Ò
2/fi ‡

3
n,j Æ 5c2 = Âc2,

that is, Equation (28) is satisfied.
Now, since Cov(Xn,j , Xn,k) (20)= ‡n,j‡n,k[fl(1 + –

2) + (1 ≠ fl
2)–], by conditions given in

Equations (26) and (27), the statements in Equations (29) and (30) follow by taking Âc3 =
c3[fl(1 + –

2) + (1 ≠ fl
2)–] and Âul = [fl(1 + –

2) + (1 ≠ fl
2)–]ul, respectively. ⌅

Remark 2 The set of ‡n,k satisfying conditions stated in Equations (25), (26) and (27) is
non-empty. Indeed, let us take Mn = n and ‡n,k = r

≠k, with k Ø 1 and r > 1, for all n.
Immediately, we have ‡n,k > 0 and ‡n,k Æ 1, that is, Equation (25) is valid. Moreover,

nÿ

k=1
‡n,j‡n,k Æ

nÿ

k=1
‡n,k Æ

Œÿ

k=1

1
rk

= 1
r ≠ 1 , r > 1.

Then, Equation (26) is satisfied. Thus, since r
|k≠j|

Æ r
j+k for r > 1, we have ‡n,j‡n,k =

r
≠(j+k)

Æ r
≠|k≠j|

. Therefore,

nÿ

k=1
|k≠j|Øl

‡n,j‡n,k Æ

nÿ

k=1
|k≠j|Øl

1
r|k≠j| Æ

Œÿ

k=1
|k≠j|Øl

1
r|k≠j| =

Œÿ

m=l

1
rm

S

WWU
Œÿ

k=1
|k≠j|=m

1

T

XXV ,

where in the last equality we rearrange the summation terms. Since
# q

k:|k≠j|=m 1
$

is the
number of vertices at the boundary of the one-dimensional ball of radius m centered at j,
there is C > 0 independent of j such that

# q
k:|k≠j|=m 1

$
= C. Hence,

nÿ

k=1
|k≠j|Øl

‡n,j‡n,k Æ C

Œÿ

m=l

1
rm

= ul.

As
qŒ

m=0 r
≠m = r(r ≠ 1)≠1

< Œ, for r > 1, it follows that ul æ 0, when l æ Œ. Then,
Equation (27) follows.
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9. Numerical evaluation

In this section, a Monte Carlo simulation study was carried out to evaluate the performance
of the ML estimators of the BN model; see Section 5. All numerical evaluations were done
in the R software; see R-Team (2020).

The simulation scenario considers sample size n œ {10, 75, 250, 600}, location parameter
µ = 0.5, scale parameter ‡ = 1.0, location parameter – œ {≠2.0, ≠0.5, 0.8, 3.0}, with 1,000
Monte Carlo replications for each combination of above-given parameters and sample size.
The values of the location parameter – have been chosen in order to study the performance
under unimodality and bimodality.

The ML estimation results for the considered BN model are presented in Figures 1-2. The
empirical bias and root mean squared error (RMSE) are reported. A look at the results in
Figures 1-2 allows us to conclude that, as the sample size increases, the empirical bias and
RMSE both decrease, as expected. Moreover, we note that the performance of the estimate
of µ is better when |–| > 1 under bimodality.
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Figure 1. Empirical bias and RMSE from simulated data for the indicated ML estimates of the listed BN model
parameters, n and –.
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Figure 2. Empirical bias and RMSE from simulated data for the indicated ML estimates of the listed BN model
parameters, n and –.

10. Concluding remarks

We have stated novel properties of the bimodal normal distribution and discussed some
mathematical properties, as well as proven its bimodality and identifiability. We have also
analyzed some aspects related to the maximum likelihood estimation and its associated
asymptotic properties. We have derived a bivariate version of the bimodal normal distri-
bution and studied some of its characteristics such as covariance and correlation. We have
considered stationarity and ergodicity as well as a triangular array central limit theorem. Fi-
nally, we have carried out Monte Carlo simulations to evaluate the behavior of the maximum
likelihood estimators.
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A possible limitation of our proposal might be associated with the moments. In this
work, we have only derived the raw moments (moments of positive integer order). It would
be interesting, if possible, to find the real moments. In addition, this work has studied
consistency and a central limit theorem for one of the model parameters (since the others are
known). Note that this parameter generates bimodality. It would be interesting that, using
a more elaborate approach, considering an unknown parameter vector. As further research,
one might explore the multivariate case and then obtain ergodicity and stationarity results.
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