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Pranab K. Sen University of North Carolina at Chapel Hill, US

Giovani Silva Universidade de Lisboa, Portugal

Julio Singer Universidade de São Paulo, Brazil

Milan Stehlik Johannes Kepler University, Austria

Alejandra Tapia Universidad Católica del Maule, Chile
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Abstract

Lifetime percentile is an important indicator of product reliability. Recently, numerous
quality control charts have been built for the quantiles of di↵erent distributions. Because
of the positive support and flexibility, the Pareto distribution is one of the useful distri-
butions to model lifetime. But the statistical quality control for the Pareto percentiles
has not been considered. The current work aims to establish quality control charts for
the Pareto distribution percentiles. The least squared error, maximum likelihood and a
modified moment method estimators are proposed for monitoring the Pareto distribu-
tion percentiles. However, the sampling distributions of percentile estimators are neither
known nor bell shape. As a result, the well-known Shewhart-type control chart may not
be appropriately applied to monitor the Pareto distribution percentiles. The bootstrap
procedure and normality approximations are proposed to establish control charts. An
intensive Monte Carlo simulation study is conducted to compare the performance among
the proposed bootstrap and Shewhart-type control charts. The simulation study shows
that the bootstrap control chart based on the maximum likelihood estimator outper-
forms the rest control charts considered. Finally, a numerical example is utilized to
illustrate the application of the bootstrap control chart based on maximum likelihood
estimator.

Keywords: Average run length · False alarm rate · Quality control chart · Parametric
bootstrap · Percentile.

Mathematics Subject Classification: Primary 62F40 · secondary 62P30.

1. Introduction

As product lifetime is a key aspect metric in industry, certain standards for the quality of
a product lifetime are often required to prevent faulty or inferior products from reaching the
consumer (Aykroyd et al., 2019). The statistical quality control charts have been very useful
tools to improve product lifetime quality as well as reliability. Therefore, researchers have
developed percentile control charts for many di↵erent lifetime distributions recently. For
example, Lio and Park (2008) studied control charts for Birnbaum-Saunders percentiles,
Lio and Park (2010) explored control charts for the inverse Gaussian percentiles, Lio et
al. (2014) developed quality control charts for the Burr type-X percentiles, Rezac et al.
(2015) developed percentile control charts for the Burr type-XII distribution that has been
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published in the ChJS and Chiang et al. (2017) investigated the percentile control charts
for the generalized exponential distributions.
Since Pickands (1975) introduced the Pareto distribution, many authors have studied

the properties of the Pareto distribution and eventually developed the two-parameter gen-
eralized Pareto distribution that has the rate and shape parameters. Some of these authors
include Hosking and Wallis (1987), Hüsler et al. (2011), Chen et al. (2017) and Salmasi
and Yari (2017). Due to the flexibility of the two-parameter generalized Pareto distribu-
tion with positive support, the generalized Pareto distribution would have been useful for
lifetime modeling. However, based on our best knowledge, no any research work has ad-
dressed the generalized Pareto distribution percentiles. Therefore, the goal of this study is
to investigate the quality control of the generalized Pareto distribution percentiles.
When the exact sampling distribution of the parameter estimator is not available, the

approximated sampling distributions, such as asymptotic normal or bootstrap sample dis-
tribution, would be used to inference the parameter concerned. However, the asymptotic
normal distribution is usually for large sample size case or the bell-shape sampling distri-
bution. For the quality control chart established based on small sample size, the commonly
used Shewhart-type control chart that is based on normal distribution may not be appro-
priate because the sampling distribution of a percentile estimator is usually not either
known nor near a bell shape one. Hence, the parametric bootstrap procedure has been
proposed to approximate the sampling distribution of the percentile estimator such that
the control chart could be built. For more information, readers may refer to the afore-
mentioned works on percentile quality control charts. For a thorough introduction to the
bootstrap method, see Gunter (1992), Efron and Tibshirani (1993) and Young (1994).
One distinct advantage of the bootstrap method is it allows the establishment of control
chart limits when the sampling distribution of an estimator is unknown. This paper uses
this fact extensively while using the least square error (LSE), maximum likelihood (ML)
and modified moment method (MMM) estimations, respectively. A minor disadvantage
could be the computational time of the bootstrap method. Recently, with access to more
powerful computers, the runtime can be reduced to a reasonable amount.
While studying in di↵erent areas, many authors confirmed the superiority of the boot-

strap method to the Shewhart chart and shown significant characteristics of bootstrapping.
To name a few, Nichols and Padgett (2005) found that a parametric bootstrap chart could
detect an out of control process faster than a Shewhart-type chart. Lio and Park (2008),
Lio and Park (2010), Lio et al. (2014), Rezac et al. (2015) and Chiang et al. (2017) showed
that bootstrap charts based on the maximum likelihood estimate or the moment method
estimate performed better than the Shewhart-type chart when monitoring the lifetime
percentiles. The above discussions motivate the current investigation of the parametric
bootstrap control charts based on the ML, MMM and LSE estimators, respectively, for
the generalized Pareto percentiles. Then, all the proposed parametric bootstrap control
charts and the Shewhart-type chart are compared using the computer simulation.
In order to create the control charts, Section 2 presents the three di↵erent estimation

methods, which include the ML, MMM and LSE methods, for the unknown distribution
parameters. The procedures of the Shewhart-type and parametric bootstrap charts are
addressed in Section 3. After the control charts are developed based on the aforementioned
four di↵erent estimation methods, the average of run lengths (ARLs), standard error of
the ARL (SEARL) as well as the average of upper control limits (UCLs) and lower control
limits (LCLs), and their respective standard deviations, are obtained through a simulation
study and used to compare and determine which method is the best for monitoring the
generalized Pareto percentiles in Section 4. In this same section, a numerical example is
given for the illustration purpose. Finally, some remarks and suggestions is addressed in
Section 5.
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2. Parameter estimation

In this section, we introduce the two-parameter generalized Pareto distribution and three
di↵erent estimation methods.

2.1 The generalized Pareto distribution

Let X be the random variable of the two-parameter generalized Pareto distribution that
has the probability density function (PDF), cumulative distribution function (CDF) and
percentile function respectively given as,

f(x;↵,�) = ↵�(1 + x�)�(↵+1), x > 0,

F (x;↵,�) = 1� (1 + x�)�↵, x > 0 (1)

Q(p;↵,�) =
1

�
((1� p)�1/↵ � 1), 0 < p < 1,

where � > 0 is the rate parameter and ↵ > 0 is the shape parameter. Three estimation
procedures for the unknown distribution parameters and percentiles is presented next.

2.2 The ML estimators

Let X1, . . . , Xn be a random sample of size n from the generalized Pareto distribution
given in Equation (1). The corresponding log-likelihood function is given as

l(↵,�) = n log(↵) + n log(�)� (↵+ 1)
nX

i=1

log(1 +Xi�).

Setting the partial derivative of l(↵,�) with respect to ↵ and � equal to zero, respectively,
two normal equations are obtained as

n

↵
=

nX

i=1

log(1 +Xi�)

n

�
= (↵+ 1)

nX

i=1

Xi

1 +Xi�
. (2)

The system of Equation (2) produces

↵ =
n

nP
i=1

log(1 +Xi�)
(3)

and

n

�
=

0

BB@
n

nP
i=1

log(1 +Xi�)
+ 1

1

CCA
nX

i=1

Xi

1 +Xi�
. (4)



6 Burkhalter and Lio

The solution of � to Equation (4) could be obtained by the unit-root function, unit-root,

in R and labeled by b�n. Plugging b�n into Equation (3), the solution b↵n is obtained. The

solutions, b↵n and b�n, are called the ML estimates of ↵ and �, respectively. b↵n and b�n may
also be simultaneously obtained by optimization function optim of R. The ML estimate of
the pth quantile can be stated as

bQn(p; b↵n, b�n) =
1
b�n

⇣
(1� p)�1/b↵n�1

⌘
, 0 < p < 1.

However, the exact sampling distributions of b↵n, b�n and bQn(p; b↵n, b�n) are unknown.
Therefore, the exact quality control chart for Q(p;↵,�) cannot be established through
bQn(p; b↵n, b�n). It can be shown that

p
n((b↵n, b�n) � (↵,�)) ! N2(0, I�1(↵,�)) where N2is

the bivariate normal distribution with mean vector as the two-dimension zero vector, 0
and two by two variance covariance matrix as the inverse of the Fisher information matrix,
I(↵,�), given as

I(↵,�) = � 1

n

2

4
E(@

2l(↵,�)
@↵2 ) E(@l(↵,�)@↵@� )

E(@l(↵,�)@�@↵ ) E(@
2l(↵,�)
@�2 )

3

5 =

"
I11 I12

I21 I22

#
=

2

6664

1

↵2

1

�(↵+ 1)

1

�(↵+ 1)

1

�2
� 2

�2(↵+ 2)

3

7775
.

More detail calculation procedures for the four entries of I(↵,�) are as follows. The Fisher
information matrix is presented as

I(↵,�) =

2

4
I11 I12

I21 I22

3

5 ,

where I11, I12, I21, I22 can be obtained through

I11 = � 1

n
E

✓
@2l(↵,�)

@↵2

◆
=

1

↵2

I12 = I21 = � 1

n
E

✓
@l(↵,�)

@↵@�

◆
= � 1

n
E

 
�

nX

i=1

xi
1 + xi�

!

=
1

n

nX

i=1

Z 1

0

x

1 + x�
f(x)dx = ↵�

Z 1

0

x(1 + x�)�↵�2dx =
1

�(↵+ 1)
,

I22 = � 1

n
E

✓
@2l(↵,�)

@�2

◆
= � 1

n
E

 
� n

�2
+ (↵+ 1)

nX

i=1

Xi
2

(1 + xi�)2

!
=

1

�2
� 2

�2(↵+ 2)

It can be shown that

bQn(p; b↵n, b�n)�Q(p;↵,�)

�p,n
! N(0, 1), 0 < p < 1,

where �2
p,n = (1/n)rQ(p;↵,�)>I�1(↵,�)rQ(p;↵,�), for 0 < p < 1, andrQ(p;↵,�) is the

gradient of Q(p,↵,�) with respect to ↵ and �. Thus, a Shewhart chart can be constructed
using the asymptotic normal distribution to monitor the generalized Pareto percentile.
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2.3 The MMM estimators

Given n sample observations, x1, . . . , xn, from the generalized Pareto distribution. In
order to find the moment method estimates of ↵ and �, let the first order sample moment
about zero be equal to the population mean and the second order sample moment about
zero be equal to the population second moment about zero. Then, two required equations
for moment method estimates can be expressed as

E(X) =
1

n

nX

i=1

xi, E(X2) =
1

n

nX

i=1

x2i , (5)

where X is the generalized Pareto distribution random variable. However, the solutions
to the system of Equation (5) are di�cult to obtain. Also the ↵ solution is restricted to
↵ > 2 to ensure E(X2) finite. Hence, a modified moment method is needed so that the
solutions are easier to solve and there is no restriction on ↵.
Let U = ↵ log(1 + �X), then it can be easily shown that U has exponential distribution

with mean equal 1. Let X(1) < · · · < X(n) be the ordered statistic of X1, . . . , Xn. Then,
U(1) < · · · < U(n) is the ordered statistic of Ui = ↵ log(1 + �Xi) for i = 1, . . . , n. Denote
Y1 = nU(1), . . . , Yn = U(n) � U(n�1) or alternatively, Y1 = n↵ log(1 + �X(1)), Y2 = (n �
1)↵(log(1+�X(2))� log(1+�X(1))), . . . , Yn = ↵(log(1+�X(n))� log(1+�X(n�1))). It can
be shown that Y1, . . . , Yn are random sample from the exponential distribution with mean
equal to one. Let g(�) = 2

Pn�1

i=1
(log(Tn)�log(Ti)), where Ti =

Pi
j=1

Yj/↵. It can be shown
that g(�) has a chi-square distribution with degree of freedom 2n�2 and ↵Tn has a gamma
distribution G(1, n). Following Wang (2008) and Rezac et al. (2015), � can be estimated
by the unique solution of g(�̃) = 2(n � 2) and ↵ can be estimated by ↵̃ = (n � 1)/Tn.
The estimates, �̃n and ↵̃n, are called MMM estimations of � and ↵, respectively. Then,
the MMM estimator of the generalized Pareto percentile Q(p,↵,�) based on the MMM
estimators, ↵̃n and �̃n, is defined as Q̃n(p; ↵̃n, �̃n) = (1/�̃n)

�
(1� p)�1/↵̃n � 1

�
, for 0 < p <

1. However, the exact sampling distributions of ↵̃n, �̃n and Q̃n(p; ↵̃n, �̃n) are unknown.

2.4 The LSE estimators

The LSE estimators of the generalized Pareto distribution parameters are obtained by
minimizing the following sum of squares with respect to ↵ and �,

nX

i=1

✓
F (X(i);↵,�)�

i

n+ 1

◆2

,

where F (X(i);↵,�) = 1 � (1 + X(i)�)
�↵ for i = 1, . . . , n. The solutions of ↵ and � can

be obtained simultaneously by optimization function, optim, in R and are labeled by ↵n

and �n, respectively. Then, the LSE estimator of Q(p;↵,�) is defined as Qn(p;↵n,�n) =
(1/�n)((1� p)�1/↵n � 1), for 0 < p < 1. Again, the exact sampling distributions of ↵n,�n

and Qn(p;↵n,�n), respectively, are unknown.

3. Statistical control charts

In this section, we perform the Shewhart-type and parametric bootstrap charts.
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3.1 Assumptions

In Phase I, there are several assumptions, which are that the k in-control subgroup
samples of size m are randomly collected from the generalized Pareto PDF of Equation
(1) for the control chart setting. Let n = m⇥ k denote the total sample size used in Phase

I and b↵n and b�n be the ML estimates of ↵ and �, respectively. The process for creating
the Shewhart-type and parametric bootstrap charts is illustrated in the following sections.

3.2 The Shewhart-type charts

Using the ML estimation procedure described in Section 2.2, the ML estimate of the
100pth percentile for 0 < p < 1 based on each subgroup sample of size m from the Phase I
process is bQm(p; b↵m, b�m) = (1/b�m)((1� p)�1/b↵m � 1) where (b↵m, b�m) is the ML estimates
of (↵,�). Then, the Shewhart-type chart for monitoring the 100pth percentile, Q(p;↵,�),

by using bQm(p; b↵m, b�m) for 0 < p < 1 can be constructed with the steps:

(1) Using all n sample observations from Phase I in-control process, the ML esti-
mates of ↵ and � were obtained above. Then the asymptotic standard error of
bQm(p; b↵m, b�m) can be estimated by

b� bQm
=

r
1

m
rQ>(p; b↵n, b�n)bI�1

n (b↵n, b�n)rQ(p; b↵n, b�n).

(2) For the jth subgroup sample of size m, the ML estimates of ↵, � and Q(p;↵,�)

are found by using the procedure of Section 2.2 and denoted by b↵j
m, b�j

m and
bQj
m(p; b↵j

m, b�j
m), respectively, for j = 1, . . . , k. The sample mean, b̄Qm(p), of

bQj
m(p; b↵j

m, b�j
m) for j = 1, . . . , k is obtained as

b̄Qm(p) =
1

k

kX

j=1

bQj
m(p; b↵j

m, b�j
m).

(3) The control limits of the Shewhart-type chart are given as

LCLSH = b̄Qm(p)� z(1��/2)b� bQm
, UCLSH = b̄Qm(p) + z(1��/2)b� bQm

,

where b̄Qm(p) is the center line (CL), z1��/2 satisfies �(z1��/2) = 1 � �/2 with
0 < � < 1, � is the standard normal CDF and � is the false alarm rate (FAR).

After the control limits of the Shewhart-type chart are determined, future samples of size
m (Phase II samples) are drawn from the generalized Pareto process to compute the plot

statistic bQm(p; b↵m, b�m). If bQm(p; b↵m, b�m) is between the control limits found above, then
the process is assumed to be in control. If not, signal that the process is out-of-control.

3.3 Parametric bootstrap charts

The parametric bootstrap chart based on the ML estimation method is constructed as

(1) Using all n observations collected during the Phase I in-control process, the ML

estimates, b↵n and b�n, of ↵ and � were obtained above.
(2) Generate m parametric bootstrap observations from the generalized Pareto distri-

bution given in Equation (1), with ↵ = b↵n and � = b�n. Denote the parametric
bootstrap observations by x⇤

1
, . . . , x⇤m.
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(3) Find the ML estimates of ↵ and � using x⇤
1
, . . . , x⇤m from Step 2. The obtained ML

estimates of ↵ and � are labeled by b↵⇤
m and b�⇤

m, respectively.
(4) Find the bootstrap estimate of the 100pth percentile, denoted bQ⇤

m(p; b↵⇤
m, b�⇤

m) by

plugging b↵⇤
m and b�⇤

m into the quantile function, Q(p;↵,�), that is,

bQ⇤
m(p; b↵⇤

m, b�⇤
m) = Q(p; b↵⇤

m, b�⇤
m) =

1
b�⇤
m

((1� p)�1/b↵⇤
m � 1).

(5) Repeat Steps 2 through 4 M times to obtain a size M bootstrap sample,
bQ⇤
m,j(p; b↵⇤

m,j ,
b�⇤
m,j), j = 1, . . . ,M , where M is a given large positive integer.

(6) Given a FAR,�, find the (�/2)th and (1-�/2)th empirical quantiles of the bootstrap
sample from Step 5 as the LCL and UCL, respectively, where the empirical quantiles
can be obtained by using R quantile function. The CL is given as

b̄Q
⇤
m(p) =

1

M

MX

j=1

bQ⇤
m,j(p; b↵⇤

m,j , b�⇤
m,j).

The LCL and UCL developed above and the plot statistic, bQ⇤
m(p; b↵⇤

m, b�⇤
m) is called the ML

bootstrap chart. Following the same steps established in this section and replacing b↵(b↵⇤)

and b�(b�⇤) by ↵̃(↵̃⇤) and �̃(�̃⇤), respectively. Then, the corresponding MMM bootstrap

chart is obtained. Similarly, replacing b↵(b↵⇤) and b�(b�⇤) by ↵(↵⇤) and �(�
⇤
), respectively.

Then, the corresponding LSE bootstrap chart is developed.

4. Numerical studies

In this section, based on the aforementioned four di↵erent estimation methods, we ob-
tain the ARL, SEARL, UCL, LCL, and their respective standard deviations, through a
simulation study and used to compare and determine which method is the best for moni-
toring the generalized Pareto percentiles. We close this section with a numerical example
to show potential applications.

4.1 Simulation scenario

To compare the performance among the proposed generalized Pareto distribution quan-
tile control charts for monitoring lower quantiles below median, a Monte Carlo simulation
study was executed using R, a programming language and environment originally developed
by Ihaka and Gentleman (1996). The R code is available from the authors on request.
The performance quality of the control charts was based on the ARL and its SEARL.

The average LCL and average UCL and their corresponding standard errors were also
recorded for each method discussed in Section 2. From a practical standpoint, very few
samples are available for lifetime testing in industry for quality control because the lifetime
test is destructive and expensive. Hence, in the simulation, only sample sizes of m = 4, 5
and 6 with k = 20 subgroups were collected randomly. This simulation also considered a
variety of false alarm rates (FARs), specifically, 0.1, 0.01, 0.0027, and 0.002. The control
limits of 100pth percentiles, where p = 0.01, 0.05, 0.10 and 0.25, were found using the em-
pirical distribution of M = 10, 000 bootstrap observations for bootstrap control charts.
The simulation process was repeated 10,000 times to find an accurate estimation of the
ARL, SEARL, average of LCL, average of UCL and their respective standard errors run-
ning a self developed R program through the hp laptop with window 10. It took about 16.5
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hours to run each one submission of R program for monitoring one percentile to product
10, 000 LCLs, UCLs and run lengths for four control charts with FAR = 0.1, 0.01, 0.0027
and 0.002, respectively. The ARL, average LCL and average UCL are the average of 10, 000
run lengths, LCLs and UCLs, respectively. The SEARL and standard deviations of the av-
erage of LCL and UCL are calculated by using standard deviations of 10, 000 run lengths,
LCLs and UCLs divided by squared root of 10, 000, respectively.

4.2 Simulation results

In Tables 1 through 4, the ARLs and SEARLs are compared. An appropriate control
chart has ARL near 1/FAR that is also known as the nominal ARL. The simulated ARLs
and SEARLs for the Shewhart-type chart are shown in Table 1. The Shewhart-type chart
overestimates the nominal ARL for FAR=0.1 and underestimates for FAR=0.01, 0.0027,
and 0.002. That indicates overall narrow control limits except the case of FAR = 0.1.
Table 2 shows the simulated ARLs and SEARLs for the LSE bootstrap chart. This process
highly overestimates the nominal ARL. Table 3 shows the simulated ARLs and standard
deviations for the MMM bootstrap chart. This chart is simply inconsistent. For FAR=0.1,
it does fairly well across the percentiles tested. However, for smaller FAR, it underestimates
the nominal ARL for smaller percentiles and overestimates for larger percentiles. Finally,
Table 4 shows the simulated ARLs and SEARLs for the ML bootstrap chart. The ARLs in
this chart stay close to the nominal ARL with small SEARL relative to the corresponding
ARL across all percentiles and sample sizes used. All SEARLs shown in Tables 1 through
4 are very small compared with their respective ARLs. In Tables 5 through 8, the averages
of LCLs and UCLs of each chart are compared. In Table 5, notice that the Shewhart-type
chart has a negative average lower bound. Since the charts are used to monitor lifetime
data, a negative lower bound implies that the normal approximation is not appropriate
and the Shewhart-type chart is not appropriate for detecting a low percentile deteriorate.
Also note that some of the average LCLs shown in Table 7 for the MMM bootstrap charts
are set at 0+. Actually those numbers are very small positive. Again, the MMM bootstrap
charts are not appropriate to use particularly monitoring a low percentile deteriorate. The
calculated standard errors of average LCLs and UCLs for each control chart from 10, 000
simulation runs are displayed in Tables 9 through 12. Some calculated standard errors
for the LCLs and UCLs of the MMM bootstrap chart shown in Table 11 are 0+ that
are actually very small positive numbers. Tables 9 through 12 show all standard errors
are very small. As the Shewhart-type chart, the LSE bootstrap chart, and the MMM
bootstrap chart have all been eliminated from consideration, the only chart left is the ML
bootstrap chart. This chart’s ARL stays close to the nominal ARL (Table 4) with small
SEARL relative to the corresponding ARL, its LCLs and UCLs are reliable (Table 8), and
the standard error for the averages of LCLs and UCLs are small. As a result, the ML
bootstrap chart is assessed for monitoring the out of control.
Out of control testing analyzes how quickly the ML bootstrap chart detects a downward

shift in the distribution percentiles. This type of downward shift indicates a product’s
lifetime is shortening. Looking at the Pareto quantile function, it is clear that as the ↵
and (or) � increase, the quantile function decreases. As a result, when running the out of
control testing on ML bootstrap chart, the parameters ↵ and (or) � were shifted upwards.
The results of this test are mainly based on the ARL and SEARL. To calculate ARL
and SEARL for each out of control setting, the simulation study were conducted 10, 000
runs and each run with 10, 000 bootstrap sample observations. Table 13 through Table
15 display the simulation results. In Table 13, both ↵ and � shifted upwards. Let ↵0 and
�0 be the in-control parameter inputs and increase the values of ↵0 and �0 to ↵1 and �1.
In Table 14, �0 from the in-control process is fixed and ↵0 from the in-control process
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is increased to ↵1. In Table 15, ↵0 from the in-control process is fixed and �0 from the
in-control process is increased to �1. In viewing of Table 13 through Table 15, it can been
seen that all ARLs are relatively small compared to the nominal ARL and all SEARLs are
very small, too. These results confirm that the ML bootstrap control chart is reliable for
monitoring generalized Pareto percentiles.

Table 1. Shewhart-type in-control ARL estimates and corresponding standard deviations for generalized

Pareto percentiles with ↵ = 2.5 and � = 1.0.
Parameters n = 4 n = 5 n = 6

ARL SEARL ARL SEARL ARL SEARL
�0 = 0.1 (FAR) 1/�0 = 10

p = 0.01 15.4038 0.3053 16.1360 0.2922 15.7627 0.2674
p = 0.05 15.2520 0.3026 15.9680 0.2886 15.6154 0.2619
p = 0.10 15.2592 0.3036 15.6528 0.2785 15.3232 0.2564
p = 0.25 14.6227 0.2501 15.1762 0.2680 14.6056 0.2441

�0 = 0.01 (FAR) 1/�0 = 100
p = 0.01 37.9077 0.8082 43.0204 0.8511 45.0765 0.8593
p = 0.05 37.4736 0.7973 42.5070 0.8302 44.4339 0.8347
p = 0.10 37.0809 0.7489 41.5448 0.7988 43.4403 0.8132
p = 0.25 35.0311 0.6345 39.4974 0.7754 40.9858 0.7740

�0 = 0.0027 (FAR) 1/�0 = 370.37
p = 0.01 55.3873 1.1429 65.0647 1.3018 70.2976 1.3643
p = 0.05 54.7378 1.1404 64.7746 1.3200 70.2678 1.3980
p = 0.10 53.9932 1.1237 63.4313 1.2958 68.8031 1.3463
p = 0.25 50.3986 0.9611 59.6773 1.2202 64.3715 1.2834

�0 = 0.002 (FAR) 1/�0 = 500
p = 0.01 59.9459 1.2528 70.5459 1.4171 78.2119 1.5724
p = 0.05 59.0701 1.2362 70.0550 1.4683 77.8436 1.5785
p = 0.10 58.2528 1.2071 68.6909 1.4198 76.4253 1.5344
p = 0.25 54.0512 1.0232 64.5977 1.3066 71.1732 1.4163

Table 2. LSE bootstrap in-control ARLs estimates and corresponding standard deviations for the gener-

alized Pareto percentiles with ↵ = 2.5 and � = 1.0.
Parameters n = 4 n = 5 n = 6

ARL SEARL ARL SEARL ARL SEARL
�0 = 0.1 (FAR) 1/�0 = 10

p = 0.01 12.740 0.1918 12.7904 0.1954 12.7874 0.1900
p = 0.05 12.7783 0.1901 12.7938 0.1982 12.7571 0.1914
p = 0.10 12.7063 0.1947 12.9092 0.1978 12.8133 0.1892
p = 0.25 13.1900 0.2027 13.1257 0.2076 13.2774 0.2036

�0 = 0.01 (FAR) 1/�0 = 100
p = 0.01 179.819 3.4544 186.3573 3.6381 189.9276 3.8459
p = 0.05 180.4755 3.4162 185.7970 3.7856 195.4479 4.1130
p = 0.10 180.9999 3.4464 187.6843 3.7808 190.5604 3.9170
p = 0.25 184.2501 3.6159 188.6343 3.7525 194.9903 4.0870

�0 = 0.0027 (FAR) 1/�0 = 370.37
p = 0.01 788.459 17.7730 812.0935 18.4439 844.5480 19.1808
p = 0.05 788.6242 17.1870 821.3853 18.4914 870.5871 19.7251
p = 0.10 771.9857 16.2963 819.5059 17.9659 852.3299 19.8192
p = 0.25 796.4193 17.0323 807.9862 17.5517 872.3674 21.6409

�0 = 0.002 (FAR) 1/�0 = 500
p = 0.01 1120.381 24.9256 1165.7726 29.7523 1234.9286 30.7898
p = 0.05 1127.6833 24.9995 1172.5420 28.1306 1245.6503 29.3309
p = 0.10 1101.3921 23.7495 1193.0949 29.3921 1221.7993 28.5823
p = 0.25 1118.6962 24.9399 1148.6458 27.4038 1272.1061 31.8478
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Table 3. MMM bootstrap in-control ARL estimates and corresponding standard deviations for the gener-

alized Pareto percentiles with ↵ = 2.5 and � = 1.0.

Parameters n = 4 n = 5 n = 6
ARL SEARL ARL SEARL ARL SEARL

�0 = 0.1 (FAR) 1/�0 = 10
p = 0.01 9.6570 0.1335 9.7628 0.1373 9.6871 0.1332
p = 0.05 9.3388 0.1352 11.6867 0.1609 10.9639 0.1515
p = 0.10 8.7744 0.1272 13.2327 0.2123 10.3124 0.1400
p = 0.25 9.6432 0.1406 12.4179 0.2023 10.7797 0.1503

�0 = 0.01 (FAR) 1/�0 = 100
p = 0.01 49.7678 0.7441 55.1232 0.8122 58.5411 0.8671
p = 0.05 89.8256 1.2590 116.3314 1.5610 88.5108 1.2978
p = 0.10 109.3266 1.9285 102.2867 1.2401 114.7982 1.6952
p = 0.25 102.24451 1.8508 113.6496 1.4729 137.2954 2.4680

�0 = 0.0027 (FAR) 1/�0 = 370.37
p = 0.01 60.9588 0.8813 68.8012 0.9745 74.45920 1.0695
p = 0.05 147.0226 2.2652 191.4860 3.0285 186.7040 2.4625
p = 0.10 445.3300 8.0744 383.9819 7.0894 427.8512 6.3043
p = 0.25 377.1021 7.2660 452.4614 7.5417 467.0340 7.4687

�0 = 0.002 (FAR) 1/�0 = 500
p = 0.01 62.1741 0.8982 70.4454 0.9950 76.7008 1.1057
p = 0.05 156.1286 2.3482 201.7414 2.9981 202.7630 2.5971
p = 0.10 561.8492 10.0323 720.5037 14.6875 564.9076 9.8149
p = 0.25 589.4910 9.4193 606.7636 9.4168 576.9963 10.5925

Table 4. ML bootstrap in-control ARL estimates and corresponding standard deviations for generalized

Pareto percentiles with ↵ = 2.5 and � = 1.0.

Parameters n = 4 n = 5 n = 6
ARL SEARL ARL SEARL ARL SEARL

�0 = 0.1 (FAR) 1/�0 = 10
p = 0.01 9.3209 0.1309 9.0851 0.1250 9.2029 0.1266
p = 0.05 9.2294 0.1313 9.2691 0.1294 9.2289 0.1295
p = 0.10 9.2964 0.1316 9.1935 0.1302 9.3212 0.1292
p = 0.25 9.1746 0.1280 9.3039 0.1285 9.2309 0.1278

�0 = 0.01 (FAR) 1/�0 = 100
p = 0.01 91.6366 1.6801 89.7949 1.5565 88.8241 1.4242
p = 0.05 90.2183 1.6010 90.1718 1.5683 88.2176 1.4181
p = 0.10 90.3458 1.6343 91.3064 1.5865 90.5653 1.4959
p = 0.25 93.2211 1.6978 90.6854 1.5839 87.6807 1.4678

�0 = 0.0027 (FAR) 1/�0 = 370.37
p = 0.01 343.0466 7.0766 336.3652 6.4181 335.8107 6.2239
p = 0.05 339.5141 6.7849 333.6685 6.5899 328.6546 6.2053
p = 0.10 337.7009 6.8637 339.3910 6.4750 340.7111 6.4211
p = 0.25 355.4715 7.5188 340.8538 6.7502 330.1604 6.1004

�0 = 0.002 (FAR) 1/�0 = 500
p = 0.01 472.3910 10.1697 456.5624 9.1939 449.1549 8.4255
p = 0.05 470.6944 10.0895 452.7038 9.4391 445.0275 8.8036
p = 0.10 459.5464 9.7480 464.8904 9.3621 458.1780 8.9725
p = 0.25 488.0070 10.7023 464.8904 10.4099 450.7093 8.8848
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Table 5. Shewhart-type in-control LCL and UCL for generalized Pareto percentiles with ↵ = 2.5 and

� = 1.0.
Parameters n = 4 n = 5 n = 6

LCL UCL LCL UCL LCL UCL

�0 = 0.1 (FAR)
p = 0.01 -0.0008 0.0104 -0.0003 0.0097 0.0001 0.0092
p = 0.05 -0.0037 0.0533 -0.0013 0.0495 0.0005 0.0469
p = 0.10 -0.0073 0.1096 -0.0022 0.1019 0.0016 0.0966
p = 0.25 -0.0152 0.3002 -0.0018 0.2800 0.0085 0.2658

�0 = 0.01 (FAR)
p = 0.01 -0.0039 0.0136 -0.0031 0.0125 -0.0025 0.0118
p = 0.05 -0.0199 0.0694 -0.0157 0.0639 -0.0126 0.0601
p = 0.10 -0.0403 0.1427 -0.0316 0.1314 -0.0253 0.1235
p = 0.25 -0.1044 0.3894 -0.0814 0.3597 -0.0643 0.3386

�0 = 0.0027 (FAR)
p = 0.01 -0.0054 0.0151 -0.0044 0.0138 -0.0037 0.0129
p = 0.05 -0.0272 0.0768 -0.0222 0.0705 -0.0186 0.0660
p = 0.10 -0.0554 0.1578 -0.0451 0.1448 -0.0376 0.1357
p = 0.25 -0.1451 0.4301 -0.1177 0.3961 -0.0974 0.3718

�0 = 0.002 (FAR)
p = 0.01 -0.0057 0.0154 -0.0047 0.0141 -0.0039 0.0132
p = 0.05 -0.0288 0.0784 -0.0236 0.0719 -0.0199 0.0673
p = 0.10 -0.0586 0.1610 -0.0479 0.1477 -0.0402 0.1383
p = 0.25 -0.1538 0.4387 -0.1254 0.4038 -0.1045 0.3788

Table 6. LSE bootstrap in-control LCL and UCL for the generalized Pareto percentiles with ↵ = 2.5 and

� = 1.0.
Parameters n = 4 n = 5 n = 6

LCL UCL LCL UCL LCL UCL

�0 = 0.1 (FAR)
p = 0.01 0.0011 0.0104 0.0012 0.0094 0.0014 0.0088
p = 0.05 0.0057 0.0538 0.0064 0.0486 0.0070 0.0454
p = 0.10 0.0117 0.1127 0.0133 0.1021 0.0146 0.0948
p = 0.25 0.0313 0.3344 0.0378 0.3008 0.0417 0.2779

�0 = 0.01 (FAR)
p = 0.01 0.0005 0.0221 0.0006 0.0183 0.0007 0.0160
p = 0.05 0.0025 0.1142 0.0031 0.0940 0.0038 0.0826
p = 0.10 0.0051 0.2376 0.0065 0.1970 0.0078 0.1714
p = 0.25 0.0142 0.6872 0.0181 0.5679 0.0219 0.4937

�0 = 0.0027 (FAR)
p = 0.01 0.0003 0.0329 0.0004 0.0257 0.0005 0.0215
p = 0.05 0.0016 0.1697 0.0022 0.1314 0.0027 0.1115
p = 0.10 0.0033 0.3523 0.0044 0.2756 0.0056 0.2307
p = 0.25 0.0091 1.0105 0.0124 0.7889 0.0158 0.6608

�0 = 0.002 (FAR)
p = 0.01 0.0003 0.0354 0.0004 0.0274 0.0005 0.0227
p = 0.05 0.0014 0.1825 0.0019 0.1399 0.0025 0.1178
p = 0.10 0.0029 0.3791 0.0040 0.2932 0.0052 0.2437
p = 0.25 0.0081 1.0857 0.0112 0.8393 0.0145 0.6969
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Table 7. MMM bootstrap in-control LCL and UCL for the generalized Pareto percentiles with ↵ = 2.5
and � = 1.0.

Parameters n = 4 n = 5 n = 6
LCL UCL LCL UCL LCL UCL

�0 = 0.1 (FAR)
p = 0.01 0.0005 0.0140 0.0006 0.0122 0.0007 0.0112
p = 0.05 0.0044 0.0577 0.0036 0.0633 0.0044 0.0577
p = 0.10 0.0070 0.1491 0.0084 0.1307 0.0098 0.1186
p = 0.25 0.0248 0.4184 0.0284 0.3636 0.0323 0.3306

�0 = 0.01 (FAR)
p = 0.01 0.0000+ 0.0254 0.0000+ 0.0210 0.0000+ 0.0183
p = 0.05 0.0004 0.0961 0.0002 0.1096 0.0004 0.0961
p = 0.10 0.0010 0.2700 0.0016 0.2247 0.0022 0.1943
p = 0.25 0.0051 0.7561 0.0069 0.6235 0.0091 0.5396

�0 = 0.0027 (FAR)
p = 0.01 0.0000+ 0.0336 0.0000+ 0.0269 0.0000+ 0.0230
p = 0.05 0.0000+ 0.1195 0.0000+ 0.1391 0.0000+ 0.1195
p = 0.10 0.0002 0.3583 0.0005 0.2878 0.0008 0.2443
p = 0.25 0.0019 1.0049 0.0029 0.8000 0.0042 0.6782

�0 = 0.002 (FAR)
p = 0.01 0.0000+ 0.0353 0.0000+ 0.0282 0.0000+ 0.0239
p = 0.05 0.0000+ 0.1240 0.0000+ 0.1456 0.0000+ 0.1241
p = 0.10 0.0001 0.3773 0.0004 0.3005 0.0006 0.2541
p = 0.25 0.0015 1.0573 0.0023 0.8373 0.0034 0.7046

Table 8. ML bootstrap in-control upper and lower control limits for generalized Pareto percentiles with

↵ = 2.5 and � = 1.0.
Parameters n = 4 n = 5 n = 6

LCL UCL LCL UCL LCL UCL

�0 = 0.1 (FAR)
p = 0.01 0.0011 0.0116 0.0012 0.0106 0.0013 0.0099
p = 0.05 0.0057 0.0595 0.0064 0.0546 0.0070 0.0510
p = 0.10 0.0120 0.1225 0.0134 0.1127 0.0146 0.1055
p = 0.25 0.0346 0.3408 0.0388 0.3166 0.0424 0.2918

�0 = 0.01 (FAR)
p = 0.01 0.0006 0.0210 0.0007 0.0181 0.0008 0.0161
p = 0.05 0.0030 0.1072 0.0036 0.926 0.0041 0.0828
p = 0.10 0.0062 0.2207 0.0075 0.1913 0.0085 0.1713
p = 0.25 0.0176 0.6149 0.0214 0.5284 0.0245 0.4729

�0 = 0.0027 (FAR)
p = 0.01 0.0004 0.0278 0.0005 0.0232 0.0006 0.0202
p = 0.05 0.0022 0.1418 0.0028 0.1185 0.0032 0.1039
p = 0.10 0.0045 0.2918 0.0058 0.2452 0.0068 0.2148
p = 0.25 0.0126 0.8144 0.0163 0.6761 0.0192 0.5923

�0 = 0.002 (FAR)
p = 0.01 0.0004 0.0292 0.0005 0.0242 0.0006 0.0211
p = 0.05 0.0020 0.1492 0.0026 0.1239 0.0031 0.1081
p = 0.10 0.0041 0.3068 0.0054 0.2564 0.0064 0.2238
p = 0.25 0.0116 0.8567 0.0151 0.7071 0.0181 0.6168
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Table 9. The Shewhart-type chart standard errors for the UCL and LCL.

Parameters n = 4 n = 5 n = 6
LCL UCL LCL UCL LCL UCL

�0 = 0.1 (FAR)
p = 0.01 7.39⇥ 10�6 2.33⇥ 10�5 5.55⇥ 10�6 1.97⇥ 10�5 4.40⇥ 10�6 1.69⇥ 10�5

p = 0.05 3.69⇥ 10�5 1.18⇥ 10�4 2.74⇥ 10�5 1.02⇥ 10�4 2.22⇥ 10�5 8.63⇥ 10�5

p = 0.10 7.31⇥ 10�5 2.42⇥ 10�4 5.52⇥ 10�5 2.07⇥ 10�4 4.50⇥ 10�5 1.77⇥ 10�4

p = 0.25 1.82⇥ 10�4 6.58⇥ 10�4 1.40⇥ 10�4 5.55⇥ 10�4 1.16⇥ 10�4 4.76⇥ 10�4

�0 = 0.01 (FAR)
p = 0.01 1.23⇥ 10�5 3.02⇥ 10�5 9.09⇥ 10�6 2.54⇥ 10�5 6.84⇥ 10�6 2.15⇥ 10�5

p = 0.05 6.15⇥ 10�5 1.53⇥ 10�4 4.51⇥ 10�5 1.31⇥ 10�4 3.40⇥ 10�5 1.10⇥ 10�4

p = 0.10 1.22⇥ 10�4 3.14⇥ 10�4 9.02⇥ 10�5 2.66⇥ 10�4 6.80⇥ 10�5 2.25⇥ 10�4

p = 0.25 3.03⇥ 10�4 8.47⇥ 10�4 2.20⇥ 10�4 7.08⇥ 10�4 1.67⇥ 10�4 6.01⇥ 10�4

�0 = 0.0027 (FAR)
p = 0.01 1.52⇥ 10�5 3.34⇥ 10�5 1.13⇥ 10�5 2.80⇥ 10�5 8.61⇥ 10�6 2.36⇥ 10�5

p = 0.05 7.59⇥ 10�5 1.70⇥ 10�4 5.67⇥ 10�5 1.44⇥ 10�4 4.30⇥ 10�5 1.21⇥ 10�4

p = 0.10 1.52⇥ 10�4 3.47⇥ 10�4 1.13⇥ 10�4 2.92⇥ 10�4 8.60⇥ 10�5 2.46⇥ 10�4

p = 0.25 3.79⇥ 10�4 9.34⇥ 10�4 2.79⇥ 10�4 7.78⇥ 10�4 2.13⇥ 10�4 6.59⇥ 10�4

�0 = 0.002 (FAR)
p = 0.01 1.58⇥ 10�5 3.41⇥ 10�5 1.18⇥ 10�5 2.85⇥ 10�5 9.01⇥ 10�6 2.41⇥ 10�5

p = 0.05 7.91⇥ 10�5 1.73⇥ 10�4 5.92⇥ 10�5 1.47⇥ 10�4 4.50⇥ 10�5 1.23⇥ 10�4

p = 0.10 1.58⇥ 10�4 3.54⇥ 10�4 1.19⇥ 10�4 2.98⇥ 10�4 9.01⇥ 10�5 2.51⇥ 10�4

p = 0.25 3.96⇥ 10�4 9.52⇥ 10�4 2.92⇥ 10�4 7.93⇥ 10�4 2.24⇥ 10�4 6.71⇥ 10�4

Table 10. The LSE bootstrap chart standard errors for the UCL and LCL.

Parameters n = 4 n = 5 n = 6
LCL UCL LCL UCL LCL UCL

�0 = 0.1 (FAR)
p = 0.01 2.29⇥ 10�6 2.98⇥ 10�5 2.31⇥ 10�6 2.37⇥ 10�5 2.28⇥ 10�6 1.96⇥ 10�5

p = 0.05 1.18⇥ 10�5 1.56⇥ 10�4 1.21⇥ 10�5 1.22⇥ 10�4 1.19⇥ 10�5 1.03⇥ 10�4

p = 0.10 2.48⇥ 10�5 3.29⇥ 10�4 2.51⇥ 10�5 2.64⇥ 10�4 2.52⇥ 10�5 2.17⇥ 10�4

p = 0.25 7.17⇥ 10�5 1.01⇥ 10�3 7.35⇥ 10�5 7.94⇥ 10�4 7.37⇥ 10�5 6.50⇥ 10�4

�0 = 0.01 (FAR)
p = 0.01 1.16⇥ 10�6 1.15⇥ 10�4 1.33⇥ 10�6 7.85⇥ 10�5 1.41⇥ 10�6 5.86⇥ 10�5

p = 0.05 5.93⇥ 10�6 5.97⇥ 10�4 6.85⇥ 10�6 3.99⇥ 10�4 7.32⇥ 10�6 3.08⇥ 10�4

p = 0.10 1.24⇥ 10�5 1.24⇥ 10�3 1.41⇥ 10�5 8.55⇥ 10�4 1.53⇥ 10�5 6.37⇥ 10�4

p = 0.25 3.47⇥ 10�5 3.61⇥ 10�3 4.06⇥ 10�5 2.48⇥ 10�3 4.39⇥ 10�5 1.84⇥ 10�3

�0 = 0.0027 (FAR)
p = 0.01 8.45⇥ 10�7 2.36⇥ 10�4 1.04⇥ 10�6 1.46⇥ 10�4 1.16⇥ 10�6 1.03⇥ 10�4

p = 0.05 4.33⇥ 10�6 1.22⇥ 10�3 5.30⇥ 10�6 7.36⇥ 10�4 6.00⇥ 10�6 5.40⇥ 10�4

p = 0.10 8.92⇥ 10�6 2.54⇥ 10�3 1.09⇥ 10�5 1.57⇥ 10�3 1.25⇥ 10�5 1.12⇥ 10�3

p = 0.25 2.49⇥ 10�5 7.25⇥ 10�3 3.09⇥ 10�5 4.56⇥ 10�3 3.54⇥ 10�5 3.17⇥ 10�3

�0 = 0.002 (FAR)
p = 0.01 7.90⇥ 10�7 2.69⇥ 10�4 9.79⇥ 10�7 1.64⇥ 10�4 1.11⇥ 10�6 1.13⇥ 10�4

p = 0.05 4.05⇥ 10�6 1.39⇥ 10�3 5.01⇥ 10�6 8.22⇥ 10�4 5.80⇥ 10�6 6.01⇥ 10�4

p = 0.10 8.33⇥ 10�6 2.90⇥ 10�3 1.03⇥ 10�5 1.76⇥ 10�3 1.20⇥ 10�5 1.24⇥ 10�3

p = 0.25 2.32⇥ 10�5 8.23⇥ 10�3 2.92⇥ 10�5 5.10⇥ 10�3 3.40⇥ 10�5 3.50⇥ 10�3
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Table 11. The MMM bootstrap chart standard errors for the UCL and LCL.

Parameters n = 4 n = 5 n = 6

LCL UCL LCL UCL LCL UCL

�0 = 0.1 (FAR)

p = 0.01 1.51⇥ 10�6 3.12⇥ 10�5 1.71⇥ 10�6 2.42⇥ 10�5 1.92⇥ 10�6 2.03⇥ 10�5

p = 0.05 1.03⇥ 10�5 2.02⇥ 10�4 1.05⇥ 10�5 1.47⇥ 10�4 1.21⇥ 10�5 1.20⇥ 10�4

p = 0.10 2.43⇥ 10�5 4.08⇥ 10�4 2.41⇥ 10�5 2.98⇥ 10�4 2.69⇥ 10�5 2.35⇥ 10�4

p = 0.25 8.02⇥ 10�5 1.15⇥ 10�3 7.74⇥ 10�5 8.30⇥ 10�4 8.39⇥ 10�5 6.58⇥ 10�4

�0 = 0.01 (FAR)

p = 0.01 0.00+ 6.96⇥ 10�5 0.00+ 4.69⇥ 10�5 0.00+ 3.58⇥ 10�5

p = 0.05 8.13⇥ 10�7 3.70⇥ 10�4 1.47⇥ 10�6 2.53⇥ 10�4 2.50⇥ 10�6 2.07⇥ 10�4

p = 0.10 3.97⇥ 10�6 7.83⇥ 10�4 4.81⇥ 10�6 5.46⇥ 10�4 6.99⇥ 10�6 4.12⇥ 10�4

p = 0.25 1.71⇥ 10�5 2.27⇥ 10�3 1.89⇥ 10�5 1.54⇥ 10�3 2.59⇥ 10�5 1.14⇥ 10�3

�0 = 0.0027 (FAR)

p = 0.01 0.00+ 1.10⇥ 10�4 0.00+ 7.13⇥ 10�5 0.00+ 5.24⇥ 10�5

p = 0.05 0.00+ 5.36⇥ 10�4 0.00+ 3.72⇥ 10�6 0.00+ 2.45⇥ 10�4

p = 0.10 1.64⇥ 10�6 1.11⇥ 10�3 2.35⇥ 10�6 7.89⇥ 10�6 3.49⇥ 10�6 5.40⇥ 10�4

p = 0.25 7.87⇥ 10�6 3.22⇥ 10�3 1.08⇥ 10�5 2.22⇥ 10�6 1.36⇥ 10�5 1.55⇥ 10�3

�0 = 0.002 (FAR)

p = 0.01 0.00+ 1.19⇥ 10�4 0.00+ 7.71⇥ 10�5 0.00+ 5.63⇥ 10�5

p = 0.05 0.00+ 5.76⇥ 10�4 0.00+ 3.98⇥ 10�4 0.00+ 2.69⇥ 10�4

p = 0.10 1.25⇥ 10�6 1.20⇥ 10�3 1.71⇥ 10�6 8.37⇥ 10�4 3.01⇥ 10�6 5.78⇥ 10�4

p = 0.25 6.53⇥ 10�6 3.40⇥ 10�3 9.26⇥ 10�6 2.34⇥ 10�3 1.13⇥ 10�5 1.63⇥ 10�3

Table 12. The ML bootstrap chart standard errors for the UCL and LCL.

Parameters n = 4 n = 5 n = 6
LCL UCL LCL UCL LCL UCL

�0 = 0.1 (FAR)
p = 0.01 2.10⇥ 10�6 2.70⇥ 10�5 2.23⇥ 10�6 2.15⇥ 10�5 2.39⇥ 10�6 1.79⇥ 10�5

p = 0.05 1.09⇥ 10�5 1.38⇥ 10�4 1.15⇥ 10�5 1.10⇥ 10�4 1.24⇥ 10�5 9.28⇥ 10�5

p = 0.10 2.30⇥ 10�5 2.85⇥ 10�4 2.44⇥ 10�5 2.30⇥ 10�4 2.60⇥ 10�5 1.92⇥ 10�4

p = 0.25 6.98⇥ 10�5 7.98⇥ 10�4 7.25⇥ 10�5 6.33⇥ 10�4 7.49⇥ 10�5 5.36⇥ 10�4

�0 = 0.01 (FAR)
p = 0.01 1.19⇥ 10�6 6.53⇥ 10�5 1.17⇥ 10�6 4.63⇥ 10�5 1.15⇥ 10�6 3.50⇥ 10�5

p = 0.05 6.17⇥ 10�6 3.33⇥ 10�4 6.04⇥ 10�6 2.37⇥ 10�4 6.07⇥ 10�6 1.82⇥ 10�4

p = 0.10 1.29⇥ 10�5 4.95⇥ 10�4 1.29⇥ 10�5 4.95⇥ 10�4 1.29⇥ 10�5 3.78⇥ 10�4

p = 0.25 3.82⇥ 10�5 1.95⇥ 10�3 3.90⇥ 10�5 1.37⇥ 10�3 3.95⇥ 10�5 1.06⇥ 10�3

�0 = 0.0027 (FAR)
p = 0.01 1.00⇥ 10�6 1.04⇥ 10�4 1.01⇥ 10�6 7.03⇥ 10�5 1.01⇥ 10�6 5.07⇥ 10�5

p = 0.05 5.18⇥ 10�6 5.32⇥ 10�4 5.22⇥ 10�6 3.57⇥ 10�4 5.31⇥ 10�6 2.64⇥ 10�4

p = 0.10 1.08⇥ 10�5 1.10⇥ 10�3 1.11⇥ 10�5 7.45⇥ 10�4 1.12⇥ 10�5 5.46⇥ 10�4

p = 0.25 3.08⇥ 10�5 3.12⇥ 10�3 3.27⇥ 10�5 2.05⇥ 10�3 3.36⇥ 10�5 1.52⇥ 10�4

�0 = 0.002 (FAR)
p = 0.01 9.67⇥ 10�7 1.14⇥ 10�4 9.95⇥ 10�7 7.60⇥ 10�5 9.90⇥ 10�7 5.46⇥ 10�5

p = 0.05 4.97⇥ 10�6 5.80⇥ 10�4 5.11⇥ 10�6 3.86⇥ 10�4 5.21⇥ 10�6 2.84⇥ 10�4

p = 0.10 1.03⇥ 10�5 1.20⇥ 10�3 1.08⇥ 10�5 8.04⇥ 10�4 1.10⇥ 10�5 5.87⇥ 10�4

p = 0.25 2.93⇥ 10�5 3.40⇥ 10�3 3.18⇥ 10�5 2.22⇥ 10�3 3.28⇥ 10�5 1.63⇥ 10�3



Chilean Journal of Statistics 17

Table 13. Out of control ML estimate chart for the generalized Pareto distribution with out of control

parameters ↵ = 5.0 and � = 2.5.

Parameters n = 4 n = 5 n = 6
ARL SEARL ARL SEARL ARL SEARL

�0 = 0.1 (FAR) 1/�0 = 10
p = 0.01 1.3464 0.00706 1.2344 0.00562 1.1528 0.00435
p = 0.05 1.3357 0.00689 1.2183 0.00535 1.1515 0.00432
p = 0.10 1.3276 0.00686 1.2051 0.00505 1.1248 0.00383
p = 0.25 1.2960 0.00653 1.1751 0.00471 1.1023 0.00349

�0 = 0.01 (FAR) 1/�0 = 100
p = 0.01 3.0699 0.02886 2.3627 0.01966 1.9373 0.01421
p = 0.05 3.0619 0.02866 2.3092 0.01887 1.9441 0.01416
p = 0.10 3.0602 0.02856 2.2908 0.01862 1.8689 0.01348
p = 0.25 2.9571 0.02707 2.1870 0.01750 1.1782 0.01260

�0 = 0.0027 (FAR) 1/�0 = 370.37
p = 0.01 6.3779 0.07389 4.0018 0.03924 2.9852 0.02778
p = 0.05 6.3924 0.07448 3.9766 0.03851 2.9838 0.02724
p = 0.10 6.4617 0.07726 3.9563 0.03936 3.69870 0.02615
p = 0.25 6.3339 0.07325 3.8642 0.03799 2.7893 0.02583

�0 = 0.002 (FAR) 1/�0 = 500
p = 0.01 7.9494 0.09725 4.7668 0.04981 3.4133 0.03319
p = 0.05 7.9494 0.09697 4.7029 0.04788 4.99500 0.03261
p = 0.10 8.2089 0.10630 4.7029 0.04931 3.3173 0.03219
p = 0.25 7.9494 0.09476 4.6614 0.05051 4.99500 0.03142

Table 14. Out of control ML estimate charts for the generalized Pareto distribution with out of control

parameters ↵ = 5.0 and � = 1.0

Parameters n = 4 n = 5 n = 6
ARL SEARL ARL SEARL ARL SEARL

�0 = 0.1 (FAR) 1/�0 = 10
p = 0.01 4.5318 0.0438 4.0891 0.0391 3.8218 0.0349
p = 0.05 4.5271 0.0439 4.0515 0.0386 3.6853 0.0338
p = 0.10 4.4212 0.0429 3.9901 0.0375 3.6906 0.0344
p = 0.25 4.2499 0.0413 3.6662 0.0352 3.3230 0.0307

�0 = 0.01 (FAR) 1/�0 = 100
p = 0.01 25.8143 0.3380 20.2286 0.2511 16.6361 0.1876
p = 0.05 25.5503 0.3208 20.1428 0.2450 16.5277 0.1892
p = 0.10 25.5291 0.3254 19.6476 0.2364 16.0774 0.1877
p = 0.25 25.1304 0.3175 19.1412 0.2393 15.3536 0.1731

�0 = 0.0027 (FAR) 1/�0 = 370.37
p = 0.01 82.2897 1.1592 58.3665 0.8167 43.1321 0.5541
p = 0.05 80.8592 1.0892 57.2253 0.7818 43.2578 0.5656
p = 0.10 82.1383 1.1715 57.2081 0.7799 43.2304 0.5705
p = 0.25 81.1916 1.1376 56.9895 0.8237 41.4291 0.5506

�0 = 0.002 (FAR) 1/�0 = 500
p = 0.01 114.3089 1.7078 78.5059 1.1334 57.2333 0.8035
p = 0.05 112.5334 1.6530 78.3478 1.1540 57.5751 0.7900
p = 0.10 115.9670 1.7793 78.3478 1.1379 57.8656 0.8186
p = 0.25 112.5334 1.6395 78.3928 1.2019 55.6368 0.7737
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Table 15. Out of control ML estimate charts for the generalized Pareto distribution with out of control

parameters ↵ = 2.5 and � = 2.0

Parameters n = 4 n = 5 n = 6
ARL SEARL ARL SEARL ARL SEARL

�0 = 0.1 (FAR) 1/�0 = 10
p = 0.01 4.8353 0.0463 4.4966 0.0442 4.1259 0.0390
p = 0.05 4.8245 0.0471 4.3706 0.0429 4.0561 0.0376
p = 0.10 4.7334 0.0447 4.3496 0.0420 3.9753 0.0373
p = 0.25 4.6432 1.7211 4.1408 0.0401 3.7211 0.0352

�0 = 0.01 (FAR) 1/�0 = 100
p = 0.01 28.5761 0.3498 23.0087 0.2683 19.8312 0.2316
p = 0.05 28.6142 0.3493 22.8181 0.2667 19.6298 0.2276
p = 0.10 28.1088 0.3444 23.4356 0.2844 19.3925 0.2204
p = 0.25 28.5066 0.3539 22.4157 0.2812 18.4769 0.2127

�0 = 0.0027 (FAR) 1/�0 = 370.37
p = 0.01 88.7289 0.3498 67.6586 0.9705 52.6793 0.6839
p = 0.05 89.0722 1.2382 66.6053 0.8885 52.3929 0.6743
p = 0.10 88.4970 1.2085 66.2546 0.8827 50.8437 0.6362
p = 0.25 88.8254 1.2125 65.7238 0.9371 50.2462 0.6486

�0 = 0.002 (FAR) 1/�0 = 500
p = 0.01 122.4647 1.9951 93.4767 1.4172 69.6476 0.9444
p = 0.05 122.9314 1.7426 90.2651 1.2825 69.6476 0.9432
p = 0.10 120.3574 1.6882 90.2651 1.2781 68.2267 0.8971
p = 0.25 122.3561 1.7211 89.0618 1.2991 67.4059 0.9072

4.3 Illustrative example

Assume certain machine parts have failure times in terms of years that have a gener-
alized Pareto distribution with ↵ = 2.5 and � = 1.0. Since no real-world data could be
obtained during this study, an R program was created to generate twenty subgroups with
six machine part lifetimes a piece. Since � is a rate parameter, without the loss of gener-
ality � can be selected as one with a reasonable measurement unit in lifetime measure. ↵
is the shape parameter that should not be too large or too small. These subgroups were
made independently from the in-control generalized Pareto distribution with ↵ = 2.5 and
� = 1.0. These twenty subgroups are reported in Table 16. The designer of the parts is
concerned about the tenth percentile of the lifetime of his parts, Q(0.10;↵0,�0). After
the first twenty subgroups, assume that the process was shifted to out of control where
↵1 = 5.0 and �1 = 2.5 and another twenty subgroups were generated with six machine
part lifetimes a piece. These twenty subgroups are displayed in Table 17. The ML boot-
strap chart was developed based on the twenty in-control subgroups in Table 16 where the
FAR=0.0027 and B=10,000. The control limits were are LCL = 0.0129 and UCL = 0.1646.
The center line is CL = 0.06007. Figure 1 (top) shows the control chart for the in-control
percentiles and Figure 1 (bottom) shows the same control chart for monitoring the out of
control tenth percentile. In Figure 1 (top) all of the tenth percentiles calculated based on
twenty subgroups, respectively, are within the control limits and spread around the CL. In
Figure 1 (bottom), notice that the first tenth percentile signals an out of control process.
While not all of the tenth percentiles are outside of the control chart limits in this figure,
they are grouped rather tightly and are all well below the CL. Thus, the ML bootstrap
chart is successful in indicating that a process is out of control.
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Table 16. Twenty subgroups of machine part lifetimes generated from the generalized Pareto distribution

with ↵0 = 2.5 and �0 = 1.0.

Subgroup number Lifetime observations

1 0.5819 2.3860 0.1465 0.2941 0.3153 0.1461
2 1.1770 0.0462 0.1149 0.7403 0.2062 1.8740
3 0.0467 0.1225 0.0617 0.2224 0.9333 0.4332
4 5.2410 0.8200 0.4782 0.5241 0.0439 1.3510
5 0.6481 0.0607 0.1688 0.1478 0.8709 0.2992
6 0.9731 0.0956 0.0493 1.6600 0.3200 0.3037
7 0.1695 0.0998 1.2960 0.0525 0.0936 1.3860
8 0.2028 0.0197 0.8517 0.7443 0.6432 0.1275
9 0.0614 0.1126 0.1307 0.0167 0.5010 1.2790
10 0.6115 0.5098 1.0260 0.9001 0.2065 0.0695
11 1.7350 2.1580 1.1040 0.2383 0.3030 0.1099
12 0.0758 0.4705 0.0119 0.1444 0.0568 0.8328
13 1.2990 0.6935 0.2923 0.7409 0.4427 0.8387
14 0.7045 0.1364 3.5530 0.0713 0.1115 0.5185
15 0.2578 0.4141 0.2453 1.6400 0.2592 0.3155
16 1.3130 0.0240 1.1280 0.0591 0.1310 0.0676
17 0.5947 0.0189 0.4675 0.0356 1.4630 0.0643
18 0.2588 0.1155 0.4547 1.2500 0.7298 0.1451
19 0.1267 1.2390 0.0508 0.2061 0.2859 1.2500
20 0.3479 0.0243 0.2715 0.0724 0.0877 1.3420

Table 17. Twenty subgroups of machine part lifetimes generated from the generalized Pareto distribution

with ↵1 = 5.0 and �1 = 2.5.

Subgroup number Lifetime observations

1 0.0342 0.0787 0.2626 0.0460 0.0135 0.0040
2 0.2904 0.0627 0.0198 0.0252 0.0727 0.1682
3 0.0049 0.2299 0.0117 0.0375 0.0613 0.0088
4 0.0402 0.2255 0.0342 0.0958 0.1299 0.0905
5 0.0450 0.0422 0.2306 0.1699 0.0893 0.0174
6 0.0170 0.4364 0.2594 0.0518 0.2007 0.1366
7 0.0547 0.0112 0.0004 0.0023 0.0761 0.0094
8 0.0613 0.0013 0.7946 0.0365 0.1964 0.1364
9 0.0018 0.1491 0.0472 0.1392 0.1302 0.0829
10 0.0345 0.0032 0.0227 0.0420 0.0975 0.1786
11 0.0199 0.0141 0.0103 0.0709 0.0095 0.2356
12 0.0220 0.7481 0.0402 0.1396 0.0129 0.0989
13 0.0166 0.0034 0.0148 0.1722 0.2251 0.0620
14 0.0038 0.1211 0.2050 0.0061 0.2040 0.0528
15 0.0093 0.0105 0.0855 0.0156 0.1116 0.0153
16 0.0045 0.0648 0.2079 0.0912 0.0727 0.0258
17 0.1148 0.1332 0.1420 0.2850 0.0859 0.0154
18 0.1863 0.1126 0.2125 0.0102 0.0781 0.1808
19 0.0356 0.2005 0.0333 0.2909 0.1731 0.6069
20 0.0719 0.0411 0.1251 0.0564 0.4224 0.1394
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Figure 1. In control subgroups (top) and out control subgroups with FAR=0.0027.

5. Conclusions

In order to examine the Pareto percentiles, the Shewhart-type chart and three para-
metric bootstrap charts were constructed. As a result of the Monte Carlo simulation, it
was discovered that the Shewhart-type chart was inadequate in providing appropriate
control limits. Two of the parametric bootstrap charts were also shown to be unsuitable
for providing appropriate control limits. The least squared error control chart consistently
overestimated the nominal average run length and the modified moment method chart was
inconsistent. However the maximum likelihood chart was shown to be acceptable choice
for monitoring Pareto percentiles. As it also promptly detects an out of control process,
as shown in the simulation and illustrative example, it is recommended for practical use.
It should be mentioned that the conclusions from the current research may not be applied

to any other case with shape parameter, ↵, or rate parameter, �, too far from the current
values for generalized Pareto distribution. However, the current simulation procedures
provides a guideline to run simulation study for di↵erent ↵ and � to make a selection
of control chart method. When a real word application data are given, it is suggested
to use Kolmogorov-Smirnov test with Akaike and Bayesian information criteria to select
probability model. Then, the practitioners can follow the current research procedure to
decide the control chart method after the lifetime distribution has been decided. Further
research for multivariate control charts under non-normality can be explored (Marchant
et al., 2019, 2018).
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