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José M. Angulo Universidad de Granada, Spain

Robert G. Aykkroyd University of Leeds, UK

Narayanaswamy Balakrishnan McMaster University, Canada

Michelli Barros Universidade Federal de Campina Grande, Brazil

Carmen Batanero Universidad de Granada, Spain

Ionut Bebu The George Washington University, US

Marcelo Bourguignon Universidade Federal do Rio Grande do Norte, Brazil
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Yolanda Gómez Universidad de Atacama, Chile

Emilio Gómez-Déniz Universidad de Las Palmas de Gran Canaria, Spain

Daniel Gri�th University of Texas at Dallas, US

Eduardo Gutiérrez-Peña Universidad Nacional Autónoma de Mexico

Nikolai Kolev Universidade de São Paulo, Brazil

Eduardo Lalla University of Twente, Netherlands

Shuangzhe Liu University of Canberra, Australia
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Abstract

The Chaudhry-Ahmad distribution is a two-parameter continuous probability distribu-
tion obtained as a solution to a generalized Pearson system of di↵erential equation. Al-
though its probability density curve resembles the inverse-Gaussian, gamma, log-normal,
Weibull and other distributions, it has been neglected in the analysis of right-skewed
data. The purpose of this paper is three folded. Firstly, to reparametrize the Chaudhry
and Ahmad distribution and present some of its basic properties. Secondly to derive
the analytical bias-corrected maximum likelihood estimators applying the Cox-Snell
methodology and thirdly to study, by MC simulations, the small-sample properties of
the maximum likelihood estimators and their bias-corrected versions, obtained from
the Cox-Snell formula and by parametric bootstrap technique. The numerical results
show, for both parameters, that the maximum likelihood estimators are highly biased,
especially in small samples. On the other hand, both, the analytical and bootstrap
methodologies, significantly reduce the biases and the mean-squared errors. It is appar-
ent from the results that the analytical bias-correction is more e�cient than bootstrap
resamples. Finally, wind speed data from six weather stations distributed in the state
of Tocantins in Brazil is used to illustrate the applicability of the proposed methods.

Keywords: Bootstrap bias correction · Cox-Snell bias-correction · Maximum
likelihood estimation · Monte Carlo simulation · Wind speed data.

Mathematics Subject Classification: Primary 60E05 · Secondary 62F10.

1. Introduction

Chaudhry and Ahmad (1993) introduced a nonnegative two-parameter probability dis-
tribution, called the Chaudhry-Ahmad (CA) distribution as a solution of the generalized
Pearson system of di↵erential equation. It is noteworthy that from the generalized Pearson
system of probability distributions, many continuous probability density functions (PDFs)
can be generated (Sankaran et al., 2003; Stavroyiannis, 2014). Indeed, as discussed in
Shakil et al. (2010, 2016), the well known families of distributions such as the normal and
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Student-t (known as Pearson type VII), beta distribution (known as Pearson type I) and
gamma distribution (known as Pearson type III), introduced by Karl Pearson during the
late 19th century (Pearson, 1893, 1895, 1901, 1916), can be generated as a solution to
Equation (1) by proper choice of its parameters.
Although the CA PDF curve resembles the inverse-Gaussian (IG), gamma, log-normal,

Weibull and other distributions, it has not been widely explored in the statistical liter-
ature. Recently, Shakil et al. (2010) derived a family of distribution, which includes the
CA distribution as a special case. To the best of our knowledge, there are only two real
data analysis considering the CA distribution. Nanos and Montero (2001) showed that
CA distribution fitted better than the Weibull distribution in a problem involving predic-
tion of the diameter distribution of a stand. In Nanos et al. (2000) the Weibull and CA
distributions were used to model resin production distributions for maritime pine stands.
It is important to point out that the CA distribution is capable of modeling increasing

hazard rate funtions (HRFs). There are many situations where only increasing HRFs
are used or observed: Woosley and Cossman (2007) observed that drugs during clinical
development have increasing HRFs; Tsarouhas and Arvanitoyannis (2010) showed that
machines of the bread production display increasing HRFs; Koutras (2011) observed that
software degradation times have increasing HRFs; Lai (2013) investigated the optimum
number of minimal repairs for systems have increasing hazard rates and so on.
Although the maximum likelihood (ML) estimators have many appealing properties

(Edwards, 1992; Lehmann and Casella, 1998), it is also well known that ML estimators
could be biased, especially when the study is being done in small samples. Owing to
this reason, researchers strive to develop nearly unbiased estimators for the parameters of
several probability distributions. Notable among them are Saha and Paul (2005), Lemonte
et al. (2007), Giles and Feng (2009), Lagos-Àlvarez et al. (2011), Giles (2012a), Giles
(2012b), Schwartz et al. (2013), Giles et al. (2013), Teimouri and Nadarajah (2013), Ling
and Giles (2014), Zhang and Liu (2015), Teimouri and Nadarajah (2016), Reath (2016),
Schwartz and Giles (2016), Wang and Wang (2017), Mazucheli and Dey (2018), Mazucheli
et al. (2018), Mazucheli et al. (2020) and references cited therein.
The objective of this paper is to perform improved parameter estimation of the CA

distribution. We consider the analytical methodology introduced by Cox-Snell (1968) and
the parametric bootstrap resampling method (Efron, 1982). We describe two corrective
approaches to bias-correction, both methods reduce the biases of the ML estimators to the
second order magnitude.
After this introduction, the paper is organized as follows. In Section 2, we introduce the

CA distribution and deduce expressions used to obtain the ML estimators of its parameters,
calculating the expected Fisher information matrix. In Section 3, by using the Cox-Snell
formula, we derive analytical expressions for the second order biases of the maximum
likelihood estimators, and also discuss the bootstrap bias correction. A Monte Carlo (MC)
simulation study is carried out in Section 4 to compare the ML estimators and their
bias-corrected versions, obtained from the Cox-Snell formula and parametric bootstrap
technique. An application by using wind speed data from Brazil is provided also in this
section. As a result of this application, we are able to provide, for example, better estimates
of most frequent wind speeds observed at various stations. Some concluding remarks are
presented in Section 5.

2. Preliminaries, model description and estimation

In this section, we provide background on the CA distribution and the ML estimators
of its parameters, as well as the corresponding expected Fisher information matrix.
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2.1 Background on the Chaudhry-Ahmad distribution

Chaudhry and Ahmad (1993) developed a two-parameter probability distribution as a
solution of the generalized Pearson system of di↵erential equation

d

dx
f(x) =

c0 + c1 x+ c2 x2 + · · ·+ cm xm

c0
0
+ c0

1
x+ c0

2
x2 + · · ·+ c0n x

n
f(x), (1)

where m,n � 1 are integers, and the coe�cients c and c0 are real numbers. These authors
considered a special case of Equation (1) taking m = 4, n = 3, c0

0
= c0

1
= c0

2
= 0,

c4/2 c03 = �2↵, c0/2 c03 = 2� and c0
3
6= 0. This distribution, which now bear their names,

can also be obtained as the root reciprocal of the inverse Gaussian distribution, that is, the
distribution of the random variable X = 1 /

p
Y , where Y ⇠ IG(µ,�) with µ = (↵ /�)1/2

and � = 2↵.
The cumulative distribution function (CDF) of the CA distribution is given by
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where x, ↵, � > 0 and � denotes the CDF of a standard normal distribution.
Solving the orthogonality di↵erential equation of Cox and Reid (1987), we consider in

Equation (2) � = ↵�4, such that � will be the mode of the PDF. The advantage of such
parametrization is that � has a direct interpretation and it is orthogonal to ↵. Thus, from
Equation (2), the PDF of a CA distributed random variable with parameters ↵ and � can
be written as

f(x;↵,�) = 2

r
↵

⇡
exp

h
�
�p

↵x� �2
p
↵x�1

�2i
. (3)

Figure 1 displays the PDF and the HRF curves considering di↵erent values of ↵ and
� = 1 (� is a location parameter). We observe that the PDF is skewed to the right and
unimodal with turning point at xmax = � = 1. We also observe that the HRF of CA
distribution is monotone increasing.
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Figure 1. PDF and HRF of the CA distribution for ↵ = (0.5, 1.0, 2.0 and 4.0) and � = 1.
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The kth moment about the origin of CA distribution is given by

µ0
k = 2

r
↵

⇡
exp

�
2↵�2

�
�k+1K k

2
+

1
2
(2↵�2), (4)

whereK⌫ denotes the modified Bessel function of the second kind (Abramowitz and Stegun,
1974). In particular, from Equation (4), the first four moments about the origin are stated
as
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2.2 Maximum likelihood estimation

Suppose that X = (X1, . . . , Xn)> is a random sample of size n from CA distribution
with PDF given by Equation (3) and x = (x1, . . . , xn)> its observations. The log-likelihood
function for ✓ = (↵,�) is given by

`(✓;x) /
n

2
log(↵) + 2n↵�2

� ↵
nX

i=1

x2i � �4 ↵
nX

i=1

x�2

i . (5)

Di↵erentiating in Equation (5) with respect to ↵ and �, we have the score vector U✓ =
(U↵, U�)> with components given by

U↵ =
n

2↵
+ 2n�2

�

nX
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nX

i=1
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After simple algebraic manipulation of Equations (6) and (7), note that the ML estimates

of ↵ and � can be written as b� = (m0
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The expected Fisher information matrix of ✓ is given by

I(✓) = [Iij ] = �nE

✓
@2

@✓i@✓j
log(f(xi;✓))

◆
=

"
�

n

2↵2
0

0 �8n↵

#
, i, j = 1, 2. (8)

From Equation (8), we observe that the information matrix is diagonal, which means
that the ML estimators are asymptotically independent. Hence, the asymptotic variance
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of b↵ and b� are given, respectively, by

Var(b↵) = 2↵2

n
, Var(b�) = 1

8n↵
. (9)

The asymptotic variance of b� only depends on ↵. Thus, as ↵ decreases, the variance of
b� increases. The asymptotic 100(1 � �) confidence intervals for ↵ and � can be obtained
respectively as

b↵± z�/2

q
dVar(b↵), b�± z�/2

q
dVar(b�), (10)

where z�/2 indicated in Equation (10) denotes the 100(1� �/2) percentile of the standard
normal distribution.

3. Bias-corrected maximum likelihood estimators

In this section, we derive analytical expressions for the second order biases of the maxi-
mum likelihood estimators by using the Cox-Snell formula, and also discuss the bootstrap
bias correction.

3.1 Cox-Snell analytic bias correction

Let `(✓;x) denote the log-likelihood function of a p-dimensional parameter vector ✓
based on a sample of observations x. We assume the following regularity conditions on the
behavior of the log-likelihood function (Cox and Hinkley, 1979):

(a) Xi, for i = 1, . . . , n, are independent and identically distributed random variables.
(b) The parameter space of ✓ is compact.
(c) The true but unknown parameter value ✓0 is identified, that is,

✓0 = argmax
✓

E✓0
[log (f (xi;✓))] .

(d) The likelihood function

` (✓;x) =
nX

i=1

log (f (xi;✓))

is continuous in ✓.
(e) E✓0

[log (f (xi;✓))] exists.
(f) The log-likelihood function is such that (1/n)`(✓;x) converges almost surely (in

probability) to E✓0
[log(f(xi;✓))] uniformly in ✓.

Conditions (a) to (d) are clearly satisfied for the CA distribution. Conditions (e) and (f)
are also satisfied since, for all ↵ > 0 and � > 0,
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The joint cumulants of the derivatives of ` are given by

Iij = E


@2 `

@ ✓i @ ✓j

�
, Iijl = E


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�
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@ ✓i @ ✓j

◆ ✓
@ `
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◆�
,

for i, j, l = 1, . . . , p. All these expression are assumed to be of order O(n).
Cox-Snell (1968) showed that when the samples are independent, but not necessarily

identically distributed, the bias of the rth element of the ML estimator of ✓, b✓, can be
expressed as

B(b✓r) =
pX

i=1

pX

j=1

pX

l=1

Iri Ijl [0.5Iijl + Iij,l] +O
�
n�2

�
, (11)

where r = 1, . . . , p and Iij denotes the (i, j)th element of the inverse of the expected Fisher
information matrix.
In respect to the orthogonally parametrization of CA distribution, after extensive alge-

bra, it can be shown that I111 = �24n↵/�, I122 = I212 = I221 = �8n, I222 = n/↵3,
I11,1 = 24n↵/�, I12,2 = I21,2 = 8n and all other terms are equal to zero. Hence, the
second-order bias of the ML estimators of ↵ and � are given respectively by

B(b↵) = 3↵

n
(12)

and

B(b�) = 3

16n↵�
, (13)

Using Equations (12) and (13), we define the bias-corrected (BC) estimator as

b↵BC = b↵� bB(b↵), b�BC = b�� bB(b�). (14)

Note that b↵BC and b�BC defined in Equation (14) have bias of order O(n�2) as indicated
in (11). Thus, it is expected that they have superior sampling properties relative to b↵
and b�. We also empathize that the bias-corrected ML estimator for � in the original

parametrization Equation (2) is obtained from b� � (3
p
b↵ b� + 1.5

q
b�)/

p
b↵n.

3.2 Parametric bootstrap bias correction

An alternative approach to analytically bias-corrected ML estimators is based on boot-
strap resampling scheme (Efron and Tibshirani, 1993; Davison and Hinkley, 1997). In this
method the bias correction is performed numerically without deriving analytical expression
for the bias function. In fact, the parametric bootstrap bias correction (PB) estimates use
the ML estimates of the data to generate pseudo-random samples from the distribution to
estimate the bias and then subtract the bias from the ML estimates.
Let b✓(·) be the average value of the ML estimator from B bootstrap replications, based

on a pseudo-sample of size n generated from Equation (3) using the parameters of the ML

estimates b✓. The estimated bias of b✓ is defined as bB(b✓) = b✓(·) � b✓. Then, the bootstrap

bias-corrected estimator is b✓PB = 2 b✓ � b✓(·).
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4. Numerical evaluations

In this section, we carry out a MC simulation study to compare the ML estimators
and their bias-corrected versions. In addition, we illustrate the applicability of the CA
distribution for bias corrections to the wind speed data.

4.1 Simulation study

Our MC simulation study is conducted to compare the finite-sample behavior of the
ML estimators and their bias-corrections obtained by Cox-Snell methodology (BC) and
parametric bootstrap scheme (PB) for the parameters that index the CA distribution.
For this purpose, we generate samples of size n = 10, 20, 30, 40 and 50 from Equation (3)
considering ↵ = 0.5, 1.0, 1.5, 2.0 and 4.0 and fixed � = 1, since it is a location parameter
and the estimators are scale invariant. The behavior of PDF and HRF for these parameters
values were illustrated in Figure 1. It is important to note that the mean, variance, skewness
and kurtosis of a CA distributed random variable decrease as ↵ increases.
To simulate random variables from a CA distribution, we generated samples from a

random variable Y with inverse Gaussian distribution and we used the transformation
X = 1/

p
Y .

To assess the performance of the methods under consideration, we calculated the bias and
root mean-squared error (RMSE). The number of MC simulations was fixed atM = 10, 000
and B = 1, 000 bootstrap replicates were used. All simulations were carried out in Ox

Console which is a matrix programming language with object-oriented support developed
by Jurgen Doornik (Doornik, 2007).
Table 1 depicts the estimated bias and root mean-squared error, in parentheses, for

di↵erent values of ↵ and � = 1. We can observe that all the estimates show the property
of consistency, that is, the RMSEs decrease as sample size increases. We also note that
the ML estimates of ↵ are highly biased, particularly when the sample size is small. For
instance, the biases of the ML estimates of ↵ for (n,↵) = (10, 0.5) and (n,↵) = (10, 4) are
approximately 22% and 169%, respectively. Also the biases of the ML estimates of ↵ for
(n,↵) = (20, 0.5) and (n,↵) = (20, 4) are approximately 9% and 68%, respectively. The
estimates b↵BC and b↵PB clearly outperform the ML estimates as far as the bias goes. For
example, the biases of the BC estimates of ↵ for (n,↵) = (10, 0.5) and (n,↵) = (10, 4)
are approximately 0.3% and 1.5%, respectively. The biases of the PB estimates of ↵ for
(n,↵) = (10, 0.5) and (n,↵) = (10, 4) are approximately 8.9% and 74.6%, respectively.
Thus, the proposed estimators achieve substantial bias reduction, especially for the small
and moderate sample sizes and therefore, we consider them as better alternatives of the
ML estimates of ↵. We also observe that the bias-corrected estimates are closer to the true
parameter values than the unadjusted estimates as sample size increases. Additionally, the
estimated root mean-squared errors for ↵ of the bias corrected estimates are smaller than
those of the uncorrected estimates. On the other hand, the RMSE of � are very similar
for all estimators.
Now, in order to evaluate the overall performance of each estimation method with respect

to the bias and root mean squared error, for each value of n, we use two measures introduced
by Cribari-Neto and Vasconcellos (2002). The authors called these quantities as integrated
bias squared norm and average root mean squared error. They are calculated as follows

IBSQ(k) =

vuut 1

16

16X

h=1

(rh,k)
2, ARMSE(k) =

1

16

16X

h=1

RMSEh,k,
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Table 1. Estimated bias (root mean-squared error) for ↵ and �, (� = 1.0).

Estimator of ↵ Estimator of �
↵ n ML BC PB ML BC PB

0.5

10 0.2191 (0.5098) 0.0034 (0.3223) -0.0891 (0.2778) 0.0351 (0.1646) 0.0018 (0.1667) 0.0029 (0.1662)

20 0.0908 (0.2345) 0.0022 (0.1838) -0.0135 (0.1787) 0.0173 (0.1142) -0.0003 (0.1149) -0.0000 (0.1149)

30 0.0571 (0.1686) 0.0014 (0.1428) -0.0048 (0.1411) 0.0111 (0.0924) -0.0009 (0.0929) -0.0008 (0.0929)

40 0.0410 (0.1369) 0.0004 (0.1208) -0.0029 (0.1200) 0.0082 (0.0798) -0.0009 (0.0801) -0.0008 (0.0801)

50 0.0324 (0.1174) 0.0005 (0.1061) -0.0016 (0.1057) 0.0063 (0.0715) -0.0010 (0.0717) -0.0010 (0.0717)

1.0

10 0.4330 (0.9830) 0.0031 (0.6178) -0.1810 (0.5368) 0.0171 (0.1131) 0.0004 (0.1138) 0.0006 (0.1137)

20 0.1775 (0.4620) 0.0009 (0.3625) -0.0303 (0.3526) 0.0085 (0.0793) -0.0004 (0.0795) -0.0003 (0.0795)

30 0.1149 (0.3370) 0.0034 (0.2851) -0.0090 (0.2818) 0.0059 (0.0648) -0.0001 (0.0649) -0.0001 (0.0650)

40 0.0844 (0.2722) 0.0031 (0.2394) -0.0035 (0.2380) 0.0046 (0.0559) 0.0000 (0.0560) 0.0000 (0.0560)

50 0.0667 (0.2334) 0.0027 (0.2103) -0.0015 (0.2094) 0.0034 (0.0501) -0.0003 (0.0501) -0.0003 (0.0501)

1.5

10 0.6543 (1.5198) 0.0080 (0.9603) -0.2688 (0.8293) 0.0121 (0.0927) 0.0010 (0.0931) 0.0011 (0.0930)

20 0.2657 (0.6906) 0.0008 (0.5419) -0.0459 (0.5272) 0.0064 (0.0653) 0.0005 (0.0654) 0.0005 (0.0654)

30 0.1653 (0.4970) -0.0013 (0.4218) -0.0197 (0.4173) 0.0040 (0.0530) -0.0000 (0.0530) -0.0000 (0.0530)

40 0.1213 (0.4035) -0.0003 (0.3559) -0.0100 (0.3539) 0.0027 (0.0457) -0.0004 (0.0458) -0.0003 (0.0458)

50 0.0963 (0.3489) 0.0005 (0.3152) -0.0056 (0.3140) 0.0022 (0.0410) -0.0002 (0.0410) -0.0002 (0.0410)

2.0

10 0.8784 (2.0228) 0.0149 (1.2756) -0.3550 (1.1005) 0.0090 (0.0796) 0.0007 (0.0798) 0.0007 (0.0798)

20 0.3588 (0.9360) 0.0050 (0.7348) -0.0575 (0.7144) 0.0042 (0.0559) -0.0003 (0.0560) -0.0003 (0.0560)

30 0.2319 (0.6808) 0.0087 (0.5762) -0.0161 (0.5694) 0.0026 (0.0456) -0.0004 (0.0457) -0.0004 (0.0457)

40 0.1707 (0.5483) 0.0079 (0.4820) -0.0054 (0.4788) 0.0020 (0.0397) -0.0003 (0.0397) -0.0003 (0.0397)

50 0.1317 (0.4702) 0.0038 (0.4244) -0.0044 (0.4227) 0.0015 (0.0354) -0.0003 (0.0354) -0.0003 (0.0354)

4.0

10 1.6928 (3.8947) -0.0150 (2.4553) -0.7463 (2.1403) 0.0053 (0.0565) 0.0011 (0.0566) 0.0011 (0.0566)

20 0.6965 (1.8473) -0.0080 (1.4543) -0.1329 (1.4157) 0.0027 (0.0398) 0.0004 (0.0398) 0.0004 (0.0398)

30 0.4358 (1.3260) -0.0078 (1.1271) -0.0573 (1.1144) 0.0018 (0.0325) 0.0003 (0.0325) 0.0003 (0.0325)

40 0.3110 (1.0752) -0.0123 (0.9521) -0.0385 (0.9465) 0.0014 (0.0282) 0.0003 (0.0282) 0.0003 (0.0282)

50 0.2406 (0.9169) -0.0138 (0.8318) -0.0301 (0.8289) 0.0011 (0.0253) 0.0002 (0.0253) 0.0002 (0.0253)

where rh,k and RMSEh,k correspond to the 16 di↵erent values of the bias and the root
mean squared errors of each estimator given in Table 1. The results are reported in Tables
2-3.
From Table 2, we see that integrated bias squared norm of the corrected estimates (BC

and PB) are smaller than ML estimates for both parameter ↵ and �. From Table 2, we can
see that the average root mean-squared error of the corrected estimates (BC and PB) are
smaller than ML estimates for ↵, while for � the ARMSE are quite similar. Therefore, these
simulation results show that second-order bias reduction is quite successful in bringing the
corrected estimates closer to their true values.

Table 2. Integrated bias squared norm.

n
Estimator of ↵ Estimator of �

ML BC PB ML BC PB

10 0.9274 0.0103 0.3990 0.0189 0.0011 0.0015
20 0.3806 0.0043 0.0695 0.0094 0.0004 0.0004
30 0.2398 0.0055 0.0284 0.0061 0.0005 0.0004
40 0.1728 0.0067 0.0181 0.0045 0.0005 0.0004
50 0.1342 0.0065 0.0139 0.0035 0.0005 0.0005

Table 3. Average root mean-squared error.

n
Estimator of ↵ Estimator of �

ML BC PB ML BC PB

10 2.1352 1.3464 1.1701 0.1077 0.1086 0.1084
20 1.0034 0.7892 0.7680 0.0752 0.0755 0.0755
30 0.7226 0.6135 0.6066 0.0611 0.0613 0.0613
40 0.5852 0.5172 0.5141 0.0528 0.0530 0.0530
50 0.5004 0.4532 0.4515 0.0473 0.0474 0.0474
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4.2 Wind real data modeling

The data consist of annual maximum wind speed of six weather stations localized in
state of Tocantins, Brazil. The data were obtained from the website http://www.inmet.
gov.br/portal. Some descriptive statistics of the observed annual maximum wind speed
for the stations are summarized in Table 4. Note that the values of skewness are positive
for four stations, indicating that the data are right-skewed.

Table 4. Descriptive statistics of the wind speed data for all weather stations.

Station Period n Min Mean Med Max SD Skewn Kurt

82659 1980-2016 34 1.4667 3.0441 3.0667 5.0000 1.1491 0.1541 1.5672
82863 1977-2016 40 2.5667 4.8862 4.6667 8.3333 1.6084 0.4240 2.0874
83033 1993-2016 21 3.6667 5.4817 5.4667 7.1000 1.0460 -0.1572 2.1114
83064 1961-2016 56 2.2667 3.9939 3.9750 6.0000 0.9736 0.1973 2.3523
83228 1975-2016 42 3.1000 4.3657 4.3333 5.6667 0.6096 -0.1140 2.6386
83235 1961-2016 56 2.3333 3.9994 3.6667 6.6667 0.9424 0.8900 3.4780

In Table 5 we report the ML estimates and the bias corrections estimates along with
the asymptotic standard errors calculated from Equation (9). We can observe that the
maximum likelihood estimates of ↵ and � are greater than the second order bias corrected
estimates for all stations, this suggests that the ML estimates are overestimating the true
value of the parameters. We also observe that the corrected ML estimates of ↵ have smaller
standard errors than the uncorrected estimates.
In order to test whether the data sets fits the CA distribution and whether the bias-

corrected estimates yield better fits than the uncorrected estimates, we perform the
goodness-of-fit tests based on Kolmogorov-Smirnov (KS), Cramér-von-Mises (CM) and
Anderson-Darling (AD) statistics. The p-values of these statistics are shown in Table 8.
We have used the function mledist from fitdistrplus library, (Delignette-Muller, 2015),
available in R environment, (R Core Team, 2017), to find the ML estimates. The p-values
associated with Kolmogorov-Smirnov, Anderson-Darling and Cramér-von Mises tests were
calculated using 10,000 nonparametric bootstrap resamples applying the functions ks.test,
ad.test and cvm.test, available in goftest (Faraway et al., 2014) R library. Here we are to
note that CA distribution can be used to model the annual maximum wind speed data
for the six stations. We can see from Table 8 that the p-values of KS, CM and AD com-
puted from bias-corrected estimators are greater than the uncorrected estimator (except
KS for one station). This means that bias corrected estimates provide better fits than the
ML estimates. This conclusion is also supported by the empirical and fitted CDF plots
in Figure 2. Furthermore, in Table 6, we compare the suitability of the CA distribution
against eight commonly used probability distributions to modeling wind speed data. The
assessment of the goodness-of-fit is based on the log-likelihood values, since all distribu-
tions have the same number of parameters. The results are reported in Table 6 and we can
see that CA distribution is the best model among the others. The superscripts indicates
the rank obtained by the estimation method (the smaller the better). The line named as
rank total (TR) shows the sum of the ranks.

Table 5. Point estimates (standard errors) for all weather stations.

Estimator of ↵ Estimator of �
Station ML BC PB ML BC PB

82659 0.1081 (0.0262) 0.0986 (0.0239) 0.0978 (0.0237) 2.4341 (0.1844) 2.4132 (0.1931) 2.4121 (0.1939)

82863 0.0559 (0.0125) 0.0517 (0.0116) 0.0515 (0.0115) 4.1773 (0.2365) 4.1572 (0.2459) 4.1627 (0.2464)

83033 0.1148 (0.0354) 0.0984 (0.0304) 0.0962 (0.0297) 5.1707 (0.2277) 5.1556 (0.2459) 5.1539 (0.2487)

83064 0.1359 (0.0257) 0.1286 (0.0243) 0.1279 (0.0242) 3.6335 (0.1282) 3.6268 (0.1317) 3.6250 (0.1321)

83228 0.3323 (0.0725) 0.3086 (0.0673) 0.3075 (0.0671) 4.2329 (0.0946) 4.2297 (0.0982) 4.2315 (0.0984)

83235 0.1639 (0.0310) 0.1551 (0.0293) 0.1540 (0.0291) 3.7170 (0.1167) 3.7115 (0.1200) 3.7098 (0.1204)

http://www.inmet.gov.br/portal
http://www.inmet.gov.br/portal
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Figure 2. Empirical and fitted CDFs for all examined stations.
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Table 6. Negative of the log likelihood values, �2 log(L), of the competing distributions.

Station CA Weibull Gamma Log-normal Log-logistic IG Gumbel BS Nakagami

82659 101.41171 103.08485 103.16926 103.61387 107.40959 103.07384 104.33798 102.98922 103.06803

82863 145.72021 149.65658 147.26385 146.97424 150.40229 146.59403 147.42526 146.57722 148.07467

83033 61.38164 60.07571 61.05463 61.63147 62.57278 61.60196 63.31809 61.58895 60.63202

83064 154.24223 155.75407 154.18212 155.13656 157.55659 155.00575 157.10368 154.96044 153.95161

83228 78.12604 77.54263 77.45112 78.24037 79.07058 78.23726 83.30999 78.22805 76.89401

83235 143.76405 156.27229 145.25597 143.52984 144.24176 143.47972 142.38881 143.51143 147.76918

RT 181 336 254 357 499 265 418 212 223

Table 7. Voung test (p-values) comparing CA distribution with others.

Weibull Gamma Log-normal Log-logistic IG Gumbel BS Nakagami

0.595 (0.276) 2.146 (0.016) 3.782 (0.000) 8.895 (0.000) 2.538 (0.006) 5.876 (0.000) 2.773 (0.003) 0.882 (0.189)

1.522 (0.064) 2.171 (0.015) 2.460 (0.007) 4.628 (0.000) 1.806 (0.035) 2.156 (0.016) 1.959 (0.025) 1.479 (0.070)

-0.650 (0.742) -0.788 (0.785) 1.378 (0.084) 1.218 (0.112) 1.564 (0.059) 2.545 (0.005) 1.482 (0.069) -1.014 (0.845)

0.497 (0.310) -0.072 (0.529) 2.107 (0.018) 1.929 (0.027) 2.267 (0.012) 3.379 (0.000) 2.203 (0.014) -0.192 (0.576)

-0.168 (0.567) -1.282 (0.900) 0.872 (0.192) 0.654 (0.256) 1.090 (0.138) 2.854 (0.002) 1.008 (0.157) -1.233 (0.891)

3.457 (0.000) 1.943 (0.026) -0.555 (0.711) 0.244 (0.404) -0.799 (0.788) -0.686 (0.754) -0.750 (0.773) 2.375 (0.009)

Table 8. p-values associated to goodness-of-fit measures for all weather stations.

KS CM AD
Station ML BC PB ML BC PB ML BC PB

82659 0.4697 0.5185 0.5205 0.3129 0.3970 0.4039 0.3247 0.4056 0.4112
82863 0.6574 0.7285 0.7192 0.7725 0.8539 0.8515 0.7825 0.8570 0.8547
83033 0.9390 0.9763 0.9775 0.8936 0.9252 0.9262 0.8599 0.9042 0.9047
83064 0.8883 0.8736 0.8684 0.7438 0.7689 0.7677 0.7557 0.7962 0.7976
83228 0.4790 0.4961 0.5090 0.6607 0.6748 0.6836 0.7368 0.7534 0.7578
83235 0.2996 0.3054 0.3097 0.4005 0.3801 0.3795 0.4824 0.4735 0.4731

Therefore, using the interpretation for � given in Section 1, the estimates given in Table
5 can be interpreted as follows. The most frequent wind speed at: station 82659 is around
2.4; station 82863 is around 4.2; station 83033 is around 5.2; station 83064 is around 3.6;
station 83228 is around 4.2; station 83235 is around 3.7.

5. Conclusions

In this paper, we have adopted a corrective approach to derive analytical expressions
for the second order biases of the maximum likelihood estimators of the parameters of the
Chaudhry-Ahmad distribution. Furthermore, we have also considered an alternative bias-
correction mechanism through bootstrap resampling. The biases of the proposed estimators
are of order O

�
n�2

�
, whereas for the maximum likelihood estimators they are of order

O
�
n�1

�
, indicating that the proposed estimates converge to their true value considerably

faster than those of the maximum likelihood estimates.
The numerical evidence shows that the proposed bias corrected estimators are quite

attractive because they outperform the maximum likelihood estimates in terms of biases,
integrated bias squared norm and root mean-squared error. Further, our analytic bias
correction is found to be superior to the alternative of bias-correction via the bootstrap in
terms of bias reduction. The proposed bias-corrected estimators are strongly recommended
over maximum likelihood estimator, especially when the sample size is small or moderate
since it has smaller bias and root mean-squared error
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