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Bernardo Lagos-Álvarez, and Germán Ibacache-Pulgar
Modeling bounded data with the trapezoidal Kumaraswamy distribution

and applications to education and engineering 163



Chilean Journal of Statistics
Vol. 11, No. 2, December 2020, 73–93

UNCORRECTED PROOFS
Functional and Nonparametric Statistics

Research Paper

Robust kernel regression estimator of the scale parameter

for functional ergodic data with applications

Ibrahim M. Almanjahie1, Mohammed Kadi Attouch2, Omar Fetitah2, and
Hayat Louhab2

1College of Science, Department of Mathematics, King Khalid University, Saudi Arabia
2Laboratoire de Probabilités Statistique Processus Stochastiques,

Sidi Bel Abbes University, Algeria

(Received: 19 October 2020 · Accepted in final form: 22 December 2020)

Abstract

In this paper, we propose a family of robust nonparametric estimators for a regres-
sion function with unknown scale parameter based on the kernel method. We establish
the asymptotic normality of the estimators for functional explanatory variables when
the observations exhibit some kind of dependence (stationary ergodic process). This
approach can be used for predicting and for building confidence regions. A simulation
study is conducted to support our theoretical results and to exhibit the good behavior
of the proposed estimator for finite samples with di�erent rates of dependency, and
particularly in the presence of several outliers in the data set. In addition, a real data
study is provided to illustrate the good behavior of our estimator.

Keywords: Confidence bands · Functional data · Lindeberg condition
· Nonparametric kernel estimate · Robust equivariant regression.

Mathematics Subject Classification: Primary 62G35 · Secondary 62G20.

1. Introduction

Nonparametric kernel regression estimation is a familiar tool to explore the underlying
relation between the response variable and covariates. In the functional data studies, these
estimators are largely studied in Ramsay and Silverman (2002), and Ferraty and Vieu (2006).
As in parametric regression estimation, the kernel estimator may be a�ected by outliers and
then it is needed to consider robustness estimation.

Recall that robust regression modeling is an old subject in statistics. It was started by
Huber (1964) who studied estimation of a location parameter. We cite Collomb and Hardle
(1986) and Laïb and Ould Saïd (2000) for some results on multivariate time series (mixing
and ergodicity conditions). Robust regression is widely studied in nonparametric functional
statistics. Indeed, it was firstly introduced by Azzedine et al. (2008) who proved the almost
complete convergence of this model in the independent and identically distributed case. Since
their work, several results on nonparametric robust functional regression were considered.
Key references on this topic are Crambes et al. (2008), Chen and Zhang (2009), Attouch et
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al. (2009), Attouch et al. (2010), Gheriballah et al. (2013), Boente and Fraiman (1990) and
the references therein.

Notice that all these results are obtained when the scale parameter is known. Boente and
Vahnovan (2015, 2017) proposed robust equivariant M-estimators for regression and partial
linear models. In this paper, we consider the more general case, that is, when the scale is
unknown and the data are dependent. Specifically we model ergodic functional time series.

It is well known that ergodicity is a fundamental hypothesis in statistical physics, ther-
modynamics and signal processing. In all these areas, ergodicity is studied on a continuous
path. Thus, it is necessary to develop statistical tools allowing one to treat the continuous
ergodic process in its own dimension by exploring its functional character. This is the general
framework of the present work.

Note that the ergodicity assumption is less restrictive than the mixing condition usually
assumed in functional time series studies. In particular, this is implied by most mixing
conditions. The literature on ergodic functional time series data is still limited. The few
existing results are in Laïb and Louani (2011, 2010), Gheriballah et al. (2013), Benziadi et
al. (2016a,b). Among the extensive literature on functional data analysis, we only refer to
the overviews for parametric models given by Bosq (2000), Ramsay and Silverman (2002)
and to the monograph of Ferraty and Vieu (2006) for nonparametric models.

The main objective of this paper is to generalize the results of Boente and Vahnovan
(2015) from the independent case to the ergodic case. Specifically we prove the asymptotic
normality of an estimator constructed by combining the concepts of robustness with those of
unknown scale parameter. This result is obtained under standard conditions allowing us to
explore the di�erent structural axes of the subject, such as the robustness of the regression
function and the correlation between the observations. We point out that, unlike the case
of fixed scale, here the scale parameter must be estimated, which makes the establishment
of its asymptotic properties more di�cult.

The reminder of this paper is organized as follows. Section 2 is dedicated to the presen-
tation of the robust estimator with unknown scale parameter. The needed assumptions and
notations are given in Section 3. We state and proof our main results in Section 4. Some
simulation results are reported in Section 5 to compare the M-estimator (for known and
unknown scale parameter) with the kernel regression estimator. Section 6 deals with a real
data application. The proofs of the main results are relegated to the Appendix. In Section
7, the main conclusions of this study and ideas for future research are provided.

2. The robust equivariant estimators and their related functional

Let (Xi, Yi)i=1,...,n be a sequence of strictly stationary dependent random variables and
identically distributed as (X, Y ), which is a random pair valued in F ◊ IR, where (F , d) is
a semi-metric space. We study the nonparametric estimation of the robust regression ◊(x),
when the scale parameter is unknown and strong dependencies are present (ergodicity). In
fact, for any x œ F , ◊(x) is defined as a zero with respect to the parameter a by means of

� (x, a, ‡) = E
5
Âx

3
Y ≠ a

‡

4
|X = x

6
= 0,

where Âx is a real valued function which satisfies some regularity conditions, to be stated
below, and ‡ is a robust measure of the conditional scale. In what follows, we assume, for
all x œ F , that the robust regression ◊(x) exists and is unique; see, for example, Boente and
Fraiman (1989).
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Consider a functional stationary ergodic process Zi = (Xi, Yi)i=1,...,n; see Laïb and Louani
(2011) for some definitions and examples. When the scale parameter is unknown, a robust
estimator may be constructed following two steps. Firstly, we estimate the scale parameter ‡
by the local median of the absolute deviation from the conditional median (MED), ‚mMED(x),
of the conditional distribution of Y given X = x, denoted F (y|X = x) = E(1(≠Œ,y](Y )|X =
x), for any y œ R, where 1A denotes the indicator function on the set A. Then, for x œ F ,
the kernel estimator ‚s(x) of ‡(x) is the zero of the equation given by ‚F (s|X = x) = 1/2,
with

‚F (y|X = x) =
qn

i=1 K
1

d(x,Xi)
h

2
1(≠Œ,y] (Yi)

qn
i=1 K

1
d(x,Xi)

h

2 ,

where K is a kernel function, d(x, Xi) denotes the distance between the fixed point x and
the realization of the functional random variable Xi, and the bandwidth parameter h = hn

is a sequence of positive numbers which goes to zero as n goes to infinity. Next, the kernel
estimator ‚◊(x), of the robust regression ◊(x), is the zero, with respect to a, of ‚�(x, a, ‚s) = 0,
where

‚� (x, a, ‚s) =
qn

i=1 K
1

d(x,Xi)
h

2
Âx

1
Yi≠a

‚s
2

qn
i=1 K

1
d(x,Xi)

h

2 .

3. Notations, hypotheses and comments

Throughout the paper, when no confusion is possible, C and C
Õ are some strictly pos-

itive generic constants, x is a fixed point in F and Nx is a fixed neighborhood of x.
For r > 0, let B(x, r) := {x

Õ œ F/d(xÕ
, x) < r}. Moreover, for i = 1, . . . , n, Fk is the

‡≠field generated by ((X1, Y1), . . . , (Xk, Yk)) and we pose Bk is the ‡≠field generated by
((X1, Y1), . . . , (Xk, Yk), Xk+1).

Our basic assumptions are:
(A1) The function Âx is continuous and monotone in the second component.
(A2) The processes (Xi, Yi)iœN satisfies: (i) „ (x, r) = P (X œ B (x, r)) > 0, and „i (x, r) =

P (Xi œ B (x, r) |Fi≠1) > 0, ’r > 0; and (ii) for all r > 0, 1/(n„ (x, r))
qn

i=1 „i (x, r) pæ 1,
and n„ (x, h) æ Œ as h æ 0, with pæ meaning convergence in probability.

(A3) The function � is such that: (i) the function � (x, ., ‡) is of class C1 in Nx, a fixed
neighborhood of ◊(x); (ii) for each fixed t in Nx, the functions � (., t, ‡), and ⁄2 (·, t, ‡) =
E

#
Â2

x ((Y ≠ t)/‡) |X = ·
$

are continuous at x; and (iii) the derivative of � (x, z, ‡) =
E [� (X1, z, ‡) ≠ � (x, z, ‡) |d (x, X1) = s] exists at s = 0, and is continuous in the second
component in Nx.

(A4) For each fixed t in the neighborhood of ◊(x), and ’j Ø 2,

E
Ë
Âj

x ((Y ≠ t)/‡) |Bi≠1
È

= E
Ë
Âj

x ((Y ≠ t)/‡) |Xi

È
< c < Œ, a.s.,

with “a.s.” meaning almost sure convergence.
(A5) The kernel K is a positive function with support in (0, 1) , its derivative K

Õ exists in (0, 1),
and satisfies K

Õ (t) < 0 for 0 < t < 1.
(A6) There exists a function ·x, such that ’t œ [0, 1], limhæ0 „ (x, th)/„ (x, h) = ·x (t), K2 (1)≠

s 1
0

!
K2 (u)

"Õ
·x (u) du > 0 and K (1) ≠

s 1
0 K

Õ (u) ·x (u) du ”= 0.
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(A7) The functions fx (x) and p (x) are bounded on S such that Ap = infxœS p (x) > 0, and
Af = infxœS fx (x) > 0. Moreover, p (x) is a continuous function in a neighborhood of S.

(A8) First, we have that: (i) F (y|X = x) is a continuous function of x in a neighborhood of
S and besides it satisfies the equicontinuity condition ’Á > 0, ÷” > 0 : |u ≠ v| < ” =∆
supxœS (|F (U |X = x) ≠ F (v|X = x)|) < Á; and second (ii) F (y|X = x) is symmetric
around ◊(x) and a continuous function of y for each fixed x.

(A9) The sequence h = hn is such that hn æ 0, n„ (h) æ Œ and (n„(h)) /n æ Œ.
(A10) The sequence k = kn is such that kn/n æ 0, kn æ Œ and kn/ log(n) æ Œ.

Remark It is well known that a fundamental property of robust M-estimators is the convex-
ity and the boundedness of the score function. Convexity is important for the existence and
uniqueness of the estimate, whereas the boundedness is essential for reducing the influence
of atypical values. In this work, convexity is controlled by means of the monotonicity condi-
tion (A1). However, we opt for a presentation without the boundedness condition to cover,
for example, the classical regression, which is studied under the ergodic process framework
by Laïb and Louani (2011). Assumptions (A2) and (A3) are the same conditions used in
Gheriballah et al. (2013), while conditions (A4), (A5) and (A6) are very similar to those
used by Ferraty et al. (2010). In addition, (A7) and (A8) are the regularity conditions on
the marginal density of X and on the conditional distribution function which imply that, for
any set S œ F , 0 < infxœS s (x) Æ supxœS s (x) < Œ and that ◊(x) is a continuous function
of x. Assumptions (A9) and (A10) are standard conditions imposed for brevity of proofs.

4. Asymptotic results

The result in Proposition 4.1 ensures the uniform consistency on a set S œ F , for both
kernel or nearest neighbor with kernel estimates. Theorem 4.2 deals with the asymptotic
normality of the proposed estimator.
Proposition 4.1 Assume that assumptions (A5), (A7) and (A8) holds. Moreover, assume
that (A9) hold for kernel weights, and that (A10) holds for nearest neighbor with kernel
weights. Then, for any set S, we have that

(a) Under (A1) and (A8-ii), we have that supxœS |‚◊(x) ≠ ◊(x)| a.s.æ 0.
(b) If F (y|X = x) has a unique median at ◊(x), then we reach supxœS | ‚mMED(x)≠◊(x)| a.s.æ 0.

Theorem 4.2 Assume that (A1)-(A6), and (A8-ii) hold. Then, as ‚◊(x) pæ ◊(x) and ‚s (x) pæ
‡ (x) , we have that

3
n„ (x, h)

‡2 (x, ◊(x))

41/2 1
‚◊ (x) ≠ ◊(x) ≠ Bn (x)

2
dæ N (0, 1) as n æ Œ,

where dæ meaning convergence in distribution, Bn(x) = h�Õ(0, ◊(x))—0/—1 + o(h) and
‡2(x, ◊(x)) = —2⁄2(x, ◊(x), ‡)/(—2

1(�1(x, ◊(x), ‡))2), with —0 = ≠
s 1

0 (sK(s))Õ
—x(s)ds, —j =

≠
s 1

0 (Kj)Õ(s)—x(s)ds, for j = 1, 2, �1(x, ◊(x), ‡) = ˆ�(x, ◊(x), ‡)/ˆt, and A = {z œ
F , ⁄2(z, ◊(z), ‡)�1(z, ◊(z), ‡) ”= 0}.

In order to remove the bias term Bn, we need an additional condition on the bandwidth
parameter h.
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Corollary 4.3 Under the assumptions of Theorem 4.2, and if the bandwidth parameter
h satisfies nh2„ (x, h) æ 0 as n æ Œ, then

3
n„ (x, h)

‡2 (x, ◊(x))

41/2 1
‚◊(x) ≠ ◊(x)

2
dæ N (0, 1) as n æ Œ.

5. Simulation study

Next, we show the e�ciency of the proposed estimator in terms of consistency.
The first direct use of Theorem 4.2 is to predict a functional time series process. Let

(Zt)tœ[0,b[ be a continuous-time real-valued random process. From the process Zt, we may
construct N functional random variables (Xi)i=1,...,N defined by Xi (t) = ZN≠1((i≠1)b+c),
’t œ [0, b] . The predictor estimator of Y is defined by ‚Y = ‚◊ (XN ). Then, by applying the
above results, we obtain the following corollary.

Corollary 5.1 Under the assumptions of Corollary 4.3, we have

3
N„ (x, hN )

‡2 (XN , ◊ (XN ))

41/2 1
‚◊ (XN ) ≠ ◊ (XN )

2
dæ N (0, 1) as N æ Œ.

The second direct result obtained in Theorem 4.2 is to build the conditional confidence
curve. Note that an important application of the asymptotic normality result is the con-
struction of confidence intervals for the true value of ◊(x) given that X = x. However, the
latter requires an estimation of the bias Bn(x) term and of the standard deviation ‡(x, ◊(x)).
For the sake of shortness, we neglect the bias term and we estimate ‡(x, ◊(x)) by plug-in
method as follows. E�ectively, if Âx is of class C1, with respect to the second component,
the quantities ⁄2 (x, ◊(x), s) and �1 (x, ◊(x), s) can be estimated by

‚⁄2
1
x, ‚◊(x), ‚s

2
=

qn
i=1 K

1
d(x,Xi)

h

2
Â2

x

3
Yi≠‚◊(x)

‚s

4

qn
i=1 K

1
d(x,Xi)

h

2 ,

‚�1
1
x, ‚◊(x), ‚s

2
=

qn
i=1 K

1
d(x,Xi)

h

2
ˆ
ˆtÂx

3
Yi≠‚◊(x)

‚s

4

qn
i=1 K

1
d(x,Xi)

h

2 .

We estimate —1 and —2 by

‚—1 = 1
n„ (x, h)

nÿ

i=1
K

3
d (x, Xi)

h

4
, ‚—2 = 1

n„ (x, h)

nÿ

i=1
K2

3
d (x, Xi)

h

4
.

It follows that ‚‡(x, ‚◊(x)) = (‚—2‚⁄2(x, ‚◊(x), ‚s)/(‚—1)2‚�2
1(x, ‚◊(x), ‚s))1/2.

Then, from the asymptotic normality result in Section 4, we have

�n =
3

n„ (x, h)
‡2 (x, ◊(x))

41/2 1
‚◊ (x) ≠ ◊(x)

2
dæ N (0, 1) as n æ Œ.
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Therefore, we get an approximate (1 ≠ ’)100% confidence interval for ◊(x) stated as

‚◊(x) ± t1≠’/2 ◊

Q

a
‚‡2

n

1
x, ‚◊(x)

2

n„ (x, h)

R

b
1/2

,

where t1≠’/2 denotes the (1 ≠ ’/2)100th standard normal quantile.
To verify the theoretical results, it is possible to visualize the data histogram and then

compare its shape to the normal density. The histogram of �n is almost symmetric around
zero and to well-shaped like the standard normal density. To do that, we consider the
functional nonparametric model given by

Yi = r (Xi) + ‘i, i = 1, . . . , n,

where the ‘is are generated independently according to a normal distribution with mean 0.
Now, we describe how our functional ergodic data are generated. Firstly, we use an R rou-

tine named simul.far of the far package to generate the functional explanatory variables
(Xi)i=1,...,n. This routine simulates a functional autoregressive process white Wiener noise.

For this simulation experiments, we consider sinusoidal basis, with five functional axis,
of the continuous functions from [0, 1] to R. Recall that, as it is shown in Laïb and Louani
(2011), this kind of process satisfies the ergodicity condition. The curves Xis are discretized
in the same grid composed by 100 points and are plotted in Figure 1.

Time

0 20 40 60 80 100

−
3

−
2

−
1

0
1

2
3

Figure 1. A sample of 100 curves, for dfl = (0.45, 0.90, 0.34, 0.45)

Secondly, the scalar response Yi is computed by considering the operator defined as

r(x) = 5
⁄ 1

0
exp {x (t)} dt.

We compare our estimator (robust equivariant regression –RER–) ‚◊(x) with the kernel
robust regression (KRR) ◊̃(x) introduced by (Azzedine et al., 2008) and the functional
kernel regression (FKR) (Ferraty and Vieu, 2006), where ‚◊(x), ◊̃(x) and ‚m(x) are defined
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as ‚◊(x) is the zero with respect to a of

qn
i=1 K

1
d(x,Xi)

h

2
Âx

1
Yi≠a
‚s(x)

2

qn
i=1 K

1
d(x,Xi)

h

2 = 0,

and Â◊(x) is the zero with respect to a of

qn
i=1 K

1
d(x,Xi)

h

2
Âx (Yi ≠ a)

qn
i=1 K

1
d(x,Xi)

h

2 = 0, ‚m(x) =
qn

i=1 YiK
1

d(x,Xi)
h

2

qn
i=1 K

1
d(x,Xi)

h

2 .

The e�ciency of the predictors is evaluated by the empirical mean square errord (MSEs)
expressed as

MSE‚◊ = n≠1
nÿ

i=1

1
◊(Xi) ≠ ‚◊(Xi)

22
,

MSE◊̃ = n≠1
nÿ

i=1

1
◊(Xi) ≠ ◊̃(Xi)

22
,

MSE‚m = n≠1
nÿ

i=1
(◊(Xi) ≠ ‚m(Xi))2 .

Through this simulation study, we chose the quadratic kernel K defined as K(u) = (3/4)(1≠
u2)1[0,1](u). The choice of bandwidth parameter h is a crucial question in nonparametric
estimation, we propose to choose the optimal bandwidth by using cross-validation (CV)
procedure. We adopt the selection rule proposed by Ferraty and Vieu (2006) and given by
h = arg minh CV(h), where CV(h) =

qn
i=1(Yi ≠ ‚◊≠i(Xi))2, with ‚◊≠i(·) being the leave-one-

out CV –values of the estimator ‚◊(·) calculate at Xi–; see Ferraty and Vieu (2006) for more
details.

We use the semi-metric given by he first derivative of sample curves stated as

d (Xi, Xj) =
Û⁄ 1

X Õ
i(t) ≠ X Õ

j(t)
22

dt.

For this comparison study, we treat three estimators in the same conditions.
The first illustration concerns the asymptotic normality of ‚◊ (x). In order to conduct a

Monte Carlo study of the asymptotic normality, we fix one curve, X0 say, from the previous
data. Then, we draw 100 independent replication with samples of size n = 50, 100, 500 of
the same data and we compute, for each sample a quantity established as

‚�n =

Q

ca

1
‚—1

22 ‚�2
1

1
X0, ‚◊ (X0) , ‚s

2

‚—2‚⁄2
1
X0, ‚◊ (X0) , ‚s

2

R

db

1/2
1

‚◊ (X0) ≠ ◊ (X0)
2

.

We point out that the functions „(x, h) did not intervene in the computation of the nor-
malized deviation by simplification. Thus, the simulation results indicate that ‚�n obeys the
standard normal law when n is large; see Figure 2 (a)-(c).
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Figure 2. Histograms and density curves.

Now, in order to explore the two structural axes of our study, such as the correlation of
data and the robustness of the estimate, we compare the performance of our estimator with
various values of n and various parameters of the functional autoregressive Xi. Typically, we
consider three values of n = 50, 100, 500, and three matrix dfl = diag(0.225, 0.45, 0.17, 0.225),
dfl = diag(0.45, 0.90, 0.34, 0.45) and dfl = diag(0.90, 1.80, 0.68, 0.90). We emphasize that the
results of our simulation study are evaluated over 100 independent replications. The most
significant results are gathered in Figure 2 (a)-(c). Note the performance of the estimator
is closely related to the degree of correlation expressed by ÎflÎ. In sense that the histogram
density converge significantly with respect to the value of ÎflÎ.

The second result concern the confidence intervals presented in Figures 3 and 4, where
three curves corresponding to the predicted interval (green and blue curves) the estimated
value (red curve) are drawn. Note that Figure 4 shows the good behavior of our functional
forecasting procedure for the robust method in presence of outliers.
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Figure 3. Extremities of the predicted values versus the true values and the confidence bands for the FKR, KRR
and RER models respectively (simulation data without outliers).

5 10 15 20

−
40

0
−

20
0

0
20

0
40

0

Classic

pr
ed

ic
tio

n 
IC

5 10 15 20

−
15

0
−

10
0

−
50

0
50

10
0

15
0

Robust

pr
ed

ic
tio

n 
IC

5 10 15 20

0
5

10
15

Robust Equivariant

pr
ed

ic
tio

n 
IC

Figure 4. Extremities of the predicted values versus the true values and the confidence bands for the FKR, KRR
and RER models respectively (simulation data with 7% of outliers).

Table 1. Comparison between the both methods in the presence of outliers.
Number of the perturbed

observations by M MSE‚◊ MSE◊̃ MSE‚m
2 2.3118 2.8112 36.786
14 5.5197 21.8335 2513.116
100 50.716 220.506 331002.4

6. A real data application

Air pollution is one of the most influential factors in human health. Many di�erent chemical
substances contribute to the air quality. These substances come from a variety of sources. On
the one hand, there are natural sources such as forest fires, volcanic eruptions, wind erosion,
pollen dispersal, evaporation of organic compounds, and natural radioactivity. Furthermore,
on the other hand, human industrial activity represents the artificial air pollution sources.
Ozone (O3), nitric oxide (NO) and nitrogen dioxide (NO2) are among the most important
contaminants in urban areas, as they have been associated with adverse e�ects on human
health and the natural environment.

We apply the theoretical results obtained in the previous sections to real data. More
specifically, in functional prediction context, we examine the performance of the proposed
estimator by the robust equivariant approach ‚◊(x).

In this real data example, we are interested in the prediction of the future O3, NO and
NO2 concentrations given the curve of it is previous days. For this purpose application, we
consider hourly concentrations of the 3 air pollution gases for the year 2018 (Zt)tœ[0,8760[. We
consider the data collected from the Leicester University monitoring site in the UK. These
observations are available on the following website: https://uk-air.defra.gov.uk. Table
2 gives descriptive statistics of these.

https://uk-air.defra.gov.uk
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Table 2. Descriptive statistics of the air pollution data.
O3 NO NO2

Minimum 0.00 0.000 0.00
1st quartile 25.35 1.288 12.26
Median 42.11 3.346 19.56
Mean 42.52 7.027 23.07
3rd quartile 57.73 7.347 30.75
Maximum 149.58 190.765 115.43

We assume that the observations are linked by the model defined as

Yi = r (Xi) + ‘i, i = 1, . . . , n ≠ 1,

where n = 365, the functional random variables (Xi)i=1,...,n defined by Xi(t) = Z(24(i≠1)+t),
’t œ [0, 24[, and the scalar response variable Y is defined by Yi = (Z24i+s)i=1,...,n≠1 for a
fixed s œ [0, 24[. Indeed, Zt designs the O3, NO and NO2 concentrations for 8760 hours
between January 01st, 2018 and 31 December 2018. We cut this functional time series in
n ≠ 1 = 364 pieces Xi of 24 hours (one day). These functionals variables Xi are presented
in Figure 5.
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Figure 5. Hourly O3 (left), NO (center) and NO2 (right) concentrations of the year 2018.

We want to compare our proposed estimator ‚◊(x) (RER) with the robust one Â◊(x) (KRR),
and the (FKR) ‚m (x). The kernel K is chosen to be quadratic defined as

K(u) = 3
4

1
1 ≠ u2

2
1[0,1](u).

The choice of bandwidth parameter h is a crucial question in nonparametric estimation. We
propose to choose the optimal bandwidth by using the CV procedure. As mentioned, we
adopt the selection rule proposed by Ferraty and Vieu (2006). Regarding the shape of the
curves Xi, we suggest to use standard functional principal components analysis semi-metrics
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(Ferraty and Vieu, 2006), and we adapt it to the data set under analysis obtaining

dq (Xi, Xj) =
ı̂ıÙ

qÿ

k=1

3⁄
[Xi(t) ≠ Xj(t)] vk(t)dt

42
.

Here, we take q = 4, and vk is selected among the eigenfunctions of the empirical covariance
operator defined as

�n
X(s, t) = 1

n

nÿ

i=1
Xi(s)Xi(t).

We randomly split our data set (Xi, Yi)i=1...364 into two subsets, that is, in (i) a learning
sample (Ti, Xi, Yi)iœI (75% of the observations); and (ii) in a test sample (Xi, Yi)iœIÕ , cor-
responding to a 25% of the observations. We use the relative mean square error RMSE as
accuracy measure defined as

RMSE = 1
#(I Õ)

ÿ

iœIÕ

A
Yi ≠ ÂYi

Yi

B2

,

where ÂYi is the estimator for the three FKR, KRR and RER methods, and #(I Õ) is the size
of I Õ.

To further explore the performances of our models, we carry out M = 100 independent
replications which allows us to compute 100 values for RMSE and to display their distribu-
tion by means of a scatter-plots. Figures 6 (a)-(c) shows the scatter-plots of the RMSE of
the prediction values for the O3, NO and NO2, respectively.

(a) O3 (b) NO (c) NO2

Figure 6. Comparison of the RMSE among the FKR, KRR and RER methods for the variable indicated.

The obtained results of the scatter-plots of the RMSE proves that the Robust equivariant
regression gives better results than the Classical and the robust methods. In addition, we
give in Figure 7 (a)-(c) the 90% predictive intervals of the concentrations for the three gases
of the last 15 values in the sample test by using the three modeles FKR, KRR and RER.
The solid black curve the true values. the gray area represents the confidence zone between
the dashed Blue curves which represents the lower and upper predicted values.
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Figure 7. Comparison of the 90% predictive intervals among the listed methods for the variable indicated.

7. Conclusion and future research

We have provided in this work a generalization of the results given in Boente and Vahno-
van (2015) to the functional ergodic data. More precisely, we have proven the asymptotic
normality of the robust regression function in the case of unknown scale parameter. These
results were obtained under su�cient standard conditions that allowed us to explore di�erent
structural axes of the subject, such as the functional naturalness of the model and the data
as well as the robustness of the regression function and the correlation of the observation.

Based on the results of this paper on robust regression with unknown scale parameter,
we guess that most of the techniques using nonparametric functional kernel smothers could
be e�ciently extended. For instance, challenging open questions in this sense could concern
as extensions to other forms of nonparametric predictors (like functional local linear ones,
functional kNN ones, and many other ones). Extensions to other kinds of prediction models
in which a preliminary kernel stage plays a crucial role. This would include many semipara-
metric regression models like functional single index models, and partial linear models, and
many other ones. In addition, we see the possibility of extending our asymptotic result to
other kinds of dependency data, more particularly the data associated positively (Azevedo
and Oliveira, 2011).
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Appendix

Proof of Proposition 4.1 In order to prove Proposition 4.1, we begin by fixing some notation.
We prove that, for any measurable A µ R, ‚„A (x) = ‚rA (x)/‚p (x), where

‚rA (x) =
nÿ

i=1
Wi,n (x) IA (yi) , ‚p (x) =

nÿ

i=1
Wi,n, Wi,n (x) =

K
1

d(xi,x)
hn

2

qn
j=1 K

1
d(xj ,x)

hn

2 , (1)

denote the kernel weights. Next, we prove (a) and (b). Note that:
(a) Arguing as in Theorem 3.3 in Boente and Fraiman (1990), we only need to prove that

sup
xœS

sup
yœR

--- ‚F (y|X = x) ≠ F (y|X = x)
--- a.s.æ 0.

Theorems 3.1 or 3.2 from Boente and Fraiman (1990) entail that

sup
xœS

sup
yœR

|‚r (y, x) ≠ r (y, x)| a.s.æ 0, sup
xœS

|‚p (x) ≠ p (x)| a.s.æ 0, (2)

where r (y, x) = „(≠Œ,y] (x) = p (x) F (y|X = x) and ‚r (y, x) = ‚„(≠Œ,y] (x) , with ‚„(≠Œ,y] (x) and
‚p (x) being defined in Equation (1).

Note that Equation (2) can be derived for kernel weights using Proposition 2 in Collomb and
Hardle (1986). Now, Equation (2) follows from using (A7) and the inequality

sup
xœS

sup
yœR

--- ‚F (y|X = x) ≠ F (y|X = x)
--- Æ

sup
xœS

sup
yœR

|‚r (y, x) ≠ r (y, x)| + sup
xœS

|‚p (x) ≠ p (x)|

Ap
‚Ap

,

where Ap = infxœS p (x) and ‚Ap = infxœS ‚p (x).
(b) The equicontinuity condition given in (A8), and the uniqueness of the conditional median, imply

that ◊(x) is a continuous function of x. Thus, for any fixed a œ R, the function ha (x) =
F (a + ◊(x)|X = x) also is continuous with respect to x.

Given ‘ > 0, let 0 < ” < ‘, such that

|u ≠ v| < ” =∆ sup
xœS

(|F (U |X = x) ≠ F (v|X = x)|) <
‘

2 . (3)

Then, from the uniqueness of the conditional median and Equation (3), we get that

1
2 < F (◊ (x) + ”|X = x) <

1
2 + ‘

2 , (4)

1
2 ≠ ‘

2 < F (◊ (x) ≠ ”|X = x) <
1
2 . (5)

Consider ÿ (”) = infxœS F (◊(x) + ”|X = x) and ‹ (”) = supxœS F (◊(x) ≠ ”|X = x). The con-
tinuity of h” (x) and h≠” (x) together with Equations (4) and (5), entail that ‹ (”) < 1/2 <
ÿ (”), and so ÷ = min (ÿ (”) ≠ 1/2, 1/2 ≠ ‹ (”)) > 0. If Equation (2) holds, P (N ) = 0, and
supxœS supyœR | ‚F (y|X = x) ≠ F (y|X = x) | æ 0, then, for n large enough, we have that
supxœS supyœR | ‚F (y|X = x) ≠ F (y|X = x) | < min (÷/2, ‘/2) = ‘1. Then, for x œ S, we get

F (◊(x) + ”|X = x) ≠ ‘1 < ‚F (◊(x) + ”|X = x) < F (◊(x) + ”|X = x) + ‘1,

F (◊(x) ≠ ”|X = x) ≠ ‘1 < ‚F (◊(x) ≠ ”|X = x) < F (◊(x) ≠ ”|X = x) + ‘1,

which entails that
1
2 < ‚F (◊(x) + ”|X = x) <

1
2 + ‘,

1
2 ≠ ‘ < ‚F (◊(x) ≠ ”|X = x) <

1
2 ,

and hence, supxœS | ‚mMED (x) ≠ ◊ (x)| Æ ” < ‘, which concludes the proof. ⇤
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Proof of Theorem 4.2 and Corollary 4.3 We give the proof for the case of increasing
Âx, with the decreasing case being obtained by considering ≠Âx. Thus, we define, for all u œ R,
z = ◊(x) ≠ Bn (x) + u [n„ (x, h)]≠1/2 ‡ (x, ◊(x)) . Notice that

P
A3

n„ (x, h)
‡2 (x, ◊(x))

41/2 1
‚◊ (x) ≠ ◊(x) + Bn (x)

2
< u

B
= P

1
‚◊ (x) < ◊(x) ≠ Bn (x) + u [n„ (x, h)]≠1/2 ‡ (x, ◊(x))

2

= P
1

0 < ‚� (x, z, ‚s)
2

.

In addition, we have that

‚� (x, t, ‚s) = Bn (x, t, ‚s) + Rn (x, t, ‚s)
‚�D (x)

+ Qn (x, t, ‚s)
‚�D (x)

,

where

Qn (x, t, ‚s) =
1

‚�N (x, t, ‚s) ≠ �̄N (x, t, ‚s)
2

≠ � (x, t, ‚s)
1

‚�D (x) ≠ �̄D (x)
2

,

Rn (x, t, ‚s) = ≠
3

�̄N (x, t, ‚s)
�̄D (x)

≠ � (x, t, ‚s)
4 1

‚�N (x, t, ‚s) ≠ �̄N (x, t, ‚s)
2

,

Bn (x, t, ‚s) = �̄N (x, t, ‚s)
�̄D (x)

,

with

‚�N (x, a, ‚s) = 1
nE [K (h≠1d (x, X1))]

nÿ

i=1
K

!
h≠1d (x, Xi)

"
Âx

3
Yi ≠ a

‚s

4
,

�̄N (x, a, ‚s) = 1
nE [K (h≠1d (x, X1))]

nÿ

i=1
E

5
K

!
h≠1d (x, Xi)

"
Âx

3
Yi ≠ a

‚s

4
/Fi≠1

6
,

‚�D (x) = 1
nE [K (h≠1d (x, X1))]

nÿ

i=1
K

!
h≠1d (x, Xi)

"
,

�̄D (x) = 1
nE [K (h≠1d (x, X1))]

nÿ

i=1
E

#
K

!
h≠1d (x, Xi)

"
|Fi≠1

$
.

Then, it follows that

P
A3

n„ (x, h)
‡2 (x, ◊x)

41/2 1
‚◊ (x) ≠ ◊(x) + Bn (x)

2
< u

B
=

P
1

≠‚�D (x) Bn (x, z, ‚s) ≠ Rn (x, z, ‚s) < Qn (x, z, ‚s)
2

.

Therefore, our main result is a consequence of the following intermediate results. ⇤
Lemma 7.1 Under the assumptions of Theorem 4.2, we have, for any x œ A,

3
n„ (x, h) —2

1
—2⁄2 (x, ◊(x), ‚s)

41/2
Qn (x, z, ‚s) dæ N (0, 1) , as n æ Œ.

Proof of Lemma 7.1 For all i = 1, . . . , n, we denote by Ki (x) = K
!
h≠1d (x, Xi)

"
,

÷ni =
3

„ (x, h) —2
1

—2⁄2 (x, ◊(x), ‚s)

41/2 3
Âx

3
Yi ≠ z

‚s

4
≠ � (x, z, ‚s)

4
Ki (x)

E [K1 (x)] ,
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and we define ’ni = ÷ni ≠ E [÷ni|Fi≠1]. Then, we obtain
3

n„ (x, h) —2
1

—2⁄2 (x, ◊(x), ‚s)

41/2
Qn (x, z, ‚s) = 1Ô

n

nÿ

i=1
’ni.

Since ’ni is a triangular array of martingale di�erences according the ‡≠field (Fi≠1) , we can apply
the Central Limit Theorem based on the unconditional Lindeberg condition (Gaenssler et al., 1978).
More precisely, we must verify conditions:

1
n

nÿ

i=1
E

#
’2

ni|Fi≠1
$ pæ 1, (6)

1
n

nÿ

i=1
E

Ë
’2

niI’2
ni>‘n

È
pæ 0, ’‘ > 0, (7)

We begin by proving Equation (6). In order to do that, we write

E
#
’2

ni|Fi≠1
$

= E
#
÷2

ni|Fi≠1
$

≠ E2 [÷ni|Fi≠1] .

Therefore, it su�ces to prove that

1
n

nÿ

i=1
E2 [÷ni|Fi≠1] pæ 0,

1
n

nÿ

i=1
E

#
÷2

ni|Fi≠1
$ pæ 1. (8)

For the first convergence, we have

|E [÷ni|Fi≠1]| = 1
EK1 (x)

3
„ (x, h) —2

1
—2⁄2 (x, ◊(x), ‚s)

41/2
|E [(� (Xi, t, ‚s) ≠ � (x, t, ‚s) Ki (x)) |Fi≠1]|

Æ 1
E [K1 (x)]

3
„ (x, h) —2

1
—2⁄2 (x, ◊(x), ‚s)

41/2
sup

uœB(x,h)
|� (u, t, ‚s) ≠ � (x, t, ‚s)| E [Ki (x) |Fi≠1] .

Obviously, under (A2) and (A5), we have C„i (x, h) Æ E [Ki|Fi≠1] Æ C
Õ
„i (x, h) and C„ (x, h) Æ

E [�i (x)] Æ C
Õ
„ (x, h). In addition, condition (A3-ii) implies that

sup
uœB(x,h)

|� (u, t, ‚s) ≠ � (x, t, ‚s)| = o (1) .

Combining the lasts three results, we obtain

(|E [÷ni|Fi≠1]|)2 Æ sup
uœB(x,h)

----� (u, t, ‚s) ≠ � (x, t, ‚s)
3

—2
1

—2⁄2 (x, ◊(x), ‚s)

4----
1

„ (x, h)„2
i (x, h)

Æ sup
uœB(x,h)

----� (u, t, ‚s) ≠ � (x, t, ‚s)
3

—2
1

—2⁄2 (x, ◊(x), ‚s)

4----
1

„ (x, h)„i (x, h) .

Thus, by using the fact that
1

n„ (x, h)

nÿ

i=1
„i (x, h) pæ 1,

we obtain

1
n

nÿ

i=1
(E [÷ni|Fi≠1])2 = sup

uœB(x,h)
|� (u, t, ‚s) ≠ � (x, t, ‚s)|

3
—2

1
—2⁄2 (x, ◊x, ‚s)

4 A
1

n„ (x, h)

nÿ

i=1
„i (x, h)

B

= op (1) .
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Now, we analyze to the convergence in Equation (8). Consider

1
n

nÿ

i=1
E

#
÷2

ni|Fi≠1
$

= 1
n (EK1(x))2

3
„ (x, h) —2

1
—2⁄2 (x, ◊(x), ‚s)

4

◊
nÿ

i=1
E

C3
Âx

3
Yi ≠ z

‚s

4
≠ � (x, z, ‚s)

42
K2

i (x) |Fi≠1

D

= 1
n (EK1 (x))2

3
„ (x, h) —2

1
—2⁄2 (x, ◊x, ‚s)

4 A
nÿ

i=1
E

5
Â2

x

3
Yi ≠ z

‚s

4
�2

i (x) |Fi≠1

6B

≠ 2� (x, z, ‚s)
n (EK1 (x))2

3
„ (x, h) —2

1
—2⁄2 (x, ◊x, ‚s)

4 nÿ

i=1
E

5
Âx

3
Yi ≠ z

‚s

4
�2

i (x) |Fi≠1

6

+ 1
n (EK1 (x))2

3
„ (x, h) —2

1
—2⁄2 (x, ◊x, ‚s)

4
�2 (x, z, ‚s)

nÿ

i=1
E

#
�2

i (x) |Fi≠1
$

.

Let D1 =
qn

i=1 E
#
Â2

x ((Yi ≠ z)/‚s) �2
i (x) |Fi≠1

$
, D2 =

qn
i=1 E

#
Âx ((Yi ≠ z)/‚s) �2

i (x) |Fi≠1
$

, and
D3 =

qn
i=1 E

#
�2

i (x) |Fi≠1
$

. Observe that

D1 = ⁄2 (x, z, ‚s)
nÿ

i=1
E

#
K2

i (x) |Fi≠1
$

+
nÿ

i=1

5
E

5
K2

i (x) E
5
Â2

x

3
Yi ≠ z

‚s

4
|Bi≠1

6
|Fi≠1

66

≠
nÿ

i=1
⁄2 (x, z, ‚s) E

#
K2

i (x) |Fi≠1
$

= ⁄2 (x, z, ‚s)
nÿ

i=1
E

#
K2

i (x) |Fi≠1
$

+
nÿ

i=1
E

5
K2

i (x) E
5
Â2

x

3
Yi ≠ z

‚s

4
|Xi

6
|Fi≠1

6

≠
nÿ

i=1

#
⁄2 (x, z, ‚s) E

#
K2

i (x) |Fi≠1
$$

.

To evaluate the second term, we have

1
nE [K1 (x)]

nÿ

i=1

5
E

5
K2

i (x) E
5
Â2

x

3
Yi ≠ z

‚s

4
|Xi

6
|Fi≠1

6
≠ ⁄2 (x, z, ‚s) E

#
K2

i (x) |Fi≠1
$6

Æ sup
uœB(x,h)

|⁄2 (x, u, ‚s) ≠ ⁄2 (x, z, ‚s)|
A

1
n„ (x, h)

nÿ

i=1
P (Xi œ B (x, h) |Fi≠1)

B
.

Moreover, we use the continuity of ⁄2 (x, ., ‚s) to write

⁄2 (x, z, ‚s) = ⁄2 (x, ◊(x), ‚s) + o (1) .

Thus, we get

1
nE [K1 (x)]D1 = ⁄2 (x, ◊(x), ‚s) 1

nE [K1 (x)]

nÿ

i=1
E

#
K2

i (x) |Fi≠1
$

+ o (1) ,

and similarly, we can obtain

1
nE [K1 (x)]D2 = � (x, ◊(x), ‚s) 1

nE [K1 (x)]

nÿ

i=1
E

#
K2

i (x) |Fi≠1
$

+ o (1) = o (1) .
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Hence, we have

1
n

nÿ

i=1
E

#
÷2

ni|Fi≠1
$

= 1
n (E [K1 (x)])2

3
„ (x, h) —2

1
—2

4 nÿ

i=1
E

#
K2

i (x) |Fi≠1
$

+ o (1) .

In what follows, we employ the same ideas used in Ferraty et al. (2010) to reach

E
#
K2

i (x) |Fi≠1
$

= K2 (1) „i (x, h) ≠
⁄ 1

0
(K2(u))

Õ
„i (x, uh) du,

and E [K1 (x)] = K (1) „ (x, h) ≠
s 1

0 (K(u))Õ
„ (x, uh) du. Then, it follows that

1
n„ (x, h)

nÿ

i=1
E

#
K2

i (x) |Fi≠1
$

= K2 (1)
n„ (x, h)

nÿ

i=1
„i (x, h)

≠
⁄ 1

0
(K2(u))

Õ „ (x, uh)
n„ (x, h) „ (x, uh)

nÿ

i=1
„i (x, uh) du

= K2 (1) ≠
⁄ 1

0
(K2(u))

Õ
·x (u) du + op (1) = —2 + op (1) ,

and
1

n„ (x, h)E [K1 (x)] = —1 + o (1) .

We deduce that

lim
næŒ

1
n

nÿ

i=1
E

#
÷2

ni|Fi≠1
$

= 1,

which completes the proof of Equation (6).
Concerning Equation (7), we write

’2
niI’2

ni>Án Æ |’ni|2+”

Ò
(Án)”

, ’” > 0.

Observe that

E
#
’2+”

ni

$
= E

Ë
|÷ni (x) ≠ E [÷ni (x) |Fi≠1]|2+”

È

Æ 21+”E
Ë
|÷ni (x)|2+”

È
+ 21+”

---E
Ë
E [÷ni|Fi≠1]2+”

È--- .

Using the Jensen inequality, we obtain E[’2+”
ni ] Æ CE[|÷ni(x)|2+”]. Thus, it remains to evaluate

E[|÷ni(x)|2+”]. To that end, we once again use the Cr≠inequality obtaining

E
Ë
|÷ni (x)|2+k

È
Æ C

3
„ (x, h) —2

1
—2⁄2 (x, ◊(x), ‚s) E2 [K1 (x)]

41+”/2
E

5
K2+”

i (x) Â2+”
x

3
Yi ≠ t

‚s

46

+ �2+” (x, z, ‚s) E
#
K2+”

i (x)
$

.

We condition on Xi and use the fact that

E
5
Â2+”

x

3
Yi ≠ t

‚s

4
|Xi

6
< Œ,

to obtain

E
Ë
|÷ni (x)|2+”

È
Æ C

3
1

„ (x, h)

41+”/2
E

1
[Ki (x)]2+”

2
Æ C

3
1

„ (x, h)

4”/2
.
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Consequently, we get
1
n

nÿ

i=1
E

Ë
’2

niI’2
ni>Án

È
Æ C

3
1

n„ (x, h)

4”/2
æ 0,

and the proof is complete. ⇤
Lemma 7.2 (Laïb and Louani, 2010) Under assumptions (A1), (A2), (A5), and (A6), we have
‚�D (x) ≠ 1 = op (1).
Lemma 7.3 Under assumptions (A1)-(A3), (A5), and (A6), we have

3
n„ (x, h) —2

1
—2⁄2 (x, ◊(x), ‚s)

41/2
Bn (x, z, ‚s) = u + o (1) , as n æ Œ.

Proof of Lemma 7.3 From a simple manipulation, we obtain

�̄N (x, z, ‚s)
�̄D (x)

= 1qn
i=1 E [Ki (x) |Fi≠1]

nÿ

i=1
E [ Ki

5
E

5
Âx

3
Y ≠ z

‚s

4
|X1

6

≠ E
5
Âx

3
Y ≠ z

‚s

4
|X = x

66
|Fi≠1 ] + E

5
Âx

3
Y ≠ z

‚s

4
|X = x

6

≠ E
5
Âx

3
Y ≠ ◊(x)

‚s

4
|X = x

6
= D1 (x) + D2 (x) .

For D1 (x), the main idea of the proof follows from Ferraty et al. (2010). Under (A3-iii), obtaining

Ai = E
5
Ki

5
E

5
Âx

3
Y ≠ z

‚s

4
|Xi

6
≠ E

5
Âx

3
Y ≠ z

‚s

4
|X = x

66
|Fi≠1

6

= E [Ki [E [� (Xi, z, ‚s) ≠ � (x, z, ‚s) |d (x, Xi) |Fi≠1]]]
= E [Ki� (d (x, Xi) , z) |Fi≠1]

=
⁄

� (th, z) K (t) dPFi≠1 (th) = h�
Õ
(0, z)

⁄
tK (t) dPFi≠1 (th) .

We use the continuity of �Õ (0, ·), and the fact that
⁄

tK (t) dPFi≠1 (th) = K (1) „i (x, h) ≠
⁄ 1

0
(sK (s))

Õ
„i (x, sh) ds,

to obtain
1
n

nÿ

i=1
Ai = h�

Õ
(0, ◊(x))

3
K (1) ≠

⁄ 1

0
(sK (s))

Õ
·x (s) ds

4
+ op (h) .

In similar way, we have

1
n

nÿ

i=1
E [Ki (x) |Fi≠1] =

3
K (1) ≠

⁄ 1

0
K

Õ
(s) ·x (s) ds

4
+ op (1) .

Thus, we have D1 = Bn (x) + o (h) . Concerning D2, we use a Taylor expansion to get, under (A3),

D2 = ≠Bn (x) + u [n„ (x, h)]≠1/2 ‡ (x, ◊(x)) ˆ

ˆt
� (x, ◊(x), ‚s) + o

1
[n„ (x, h)]≠1/2

2
.

This completes the proof. ⇤
Lemma 7.4 Under assumptions (A1)-(A3), (A5), and (A6), we have

3
n„ (x, h) —2

1
—2⁄2 (x, ◊(x), ‚s)

41/2
Rn (x, z, ‚s) = o (1) .
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Proof of Lemma 7.4 Here, it su�ces to prove that

�̄N (x, t, ‚s) ≠ � (x, t, ‚s) �̄D (x)
�̄D (x)

= op (1)

and ---‚�N (x, t, ‚s) ≠ �̄N (x, t, ‚s)
--- = op (1) .

In addition, we have that

�̄N (x, t, ‚s) ≠ � (x, t, ‚s) �̄D (x)
�̄D (x)

= 1
nE [K1 (x)] �̄D (x)

nÿ

i=1
E

5
Ki (x) E

5
Âx

3
Yi ≠ t

‚s

4
|Bi≠1

6
|Fi≠1

6

≠� (x, t, ‚s) E [Ki (x) |Fi≠1]

= 1
nE [K1 (x)] �̄D (x)

nÿ

i=1
E

5
Ki (x) E

5
Âx

3
Yi ≠ t

‚s

4
|Xi

6
|Fi≠1

6

≠� (x, t, ‚s) E [Ki (x) |Fi≠1]

Æ 1
nE [K1 (x)] �̄D (x)

nÿ

i=1
E [Ki (x) |� (Xi, t, ‚s) ≠ � (x, t, ‚s)| |Fi≠1] .

Using (A2-ii), we deduce that
----
�̄N (x, t, ‚s) ≠ � (x, t, ‚s) �̄D (x)

�̄D (x)

---- Æ sup
xÕ œB(x,h)

---�
1

x
Õ
, t, ‚s

2
≠ � (x, t, ‚s)

--- æ 0.

Furthermore, we get ‚�N (x, z, ‚s) ≠ �̄N (x, z, ‚s) = op (1). Now, we must prove that E[‚�N (x, z, ‚s) ≠
�̄N (x, z, ‚s)] æ 0 and Var[‚�N (x, z, ‚s) ≠ �̄N (x, z, ‚s)] æ 0. The first one is a consequence of the defi-
nitions of ‚�N (x, z, ‚s), and �̄N (x, z, ‚s) . For the second one, we obtain ‚�N (x, z, ‚s) ≠ �̄N (x, z, ‚s) =qn

i=1 ”i (x, z, ‚s) , where

”i (x, z, ‚s) = 1
nE [K1]KiÂx

3
Yi ≠ z

‚s

4
≠ E

5
KiÂx

3
Yi ≠ z

‚s

4
|Fi≠1

6
.

By the Burkholder inequality, we have

E
C

nÿ

i=1
”i (x, z, ‚s)

D2

Æ
nÿ

i=1
E [”i (x, z, ‚s)]2 .

In addition, by the Jensen inequality, we arrive at

E2 [”i (x, z, ‚s)] Æ 1
n2E2 [K1]

E
5
K2

i Â2
x

3
Yi ≠ z

s

46
Æ 1

n2E2 [K1]
E

#
K2

i

$
Æ 1

n„2 (x, h)„i (x, h) .

Now, (A2) yields Var
Ë

‚�N (x, z, ‚s) ≠ �̄N (x, z, ‚s)
È

æ 0. ⇤

Lemma 7.5 Under assumptions (A1), (A2), (A5), and (A6), ‚◊ (x) exists a.s. for all su�ciently
large n.

Proof of Lemma 7.5
From the monotonicity of Âx(Y ≠ ./‚s), for all Á > 0, we have

� (x, ◊(x) ≠ Á, ‚s) Æ � (x, ◊(x), ‚s) Æ � (x, ◊(x) + Á, ‚s) .

By using a similar argument as those used in the previous Lemmas, we prove that

‚� (x, t, ‚s) pæ � (x, t, ‚s) m ’t œ Nx.
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Thus, for su�ciently large n and for all Á small enough, we reach ‚� (x, ◊(x) ≠ Á, ‚s) Æ 0 Æ
‚� (x, ◊(x) + Á, ‚s) , which holds with probability tending to one.

Since Âx is a continuous function, it follows that ‚� (x, t, ‚s) is a continuous function of t and,
there exists ‚◊ (x) œ [◊(x) ≠ Á, ◊(x) + Á] such that ‚�(x, ‚◊(x), ‚s) = 0. Hence, the uniqueness of ‚◊ (x)
is a direct consequence of the strict monotonicity of Âx in the second component and the fact that

P
A

nÿ

i=1
Ki = 0

B
= P

1
‚�D (x) = 0

2
æ 0 as n æ Œ,

which implies
qn

i=1 Ki ”= 0 with probability tending to 1. Moreover, since ‚◊(x) œ [◊(x)≠Á, ◊(x)+Á]
in probability, it follows that ‚◊(x) pæ ◊(x), as n æ Œ. ⇤
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