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Abstract

In a model-based clustering context, one often interested in the estimation of a multivari-
ate mixture model. In this paper we discuss the importance of distinguishing between
the number of components in a mixture model and the clusters or groups. We explore
the possibility of describing groups as submixtures of Gaussian distributions.
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1. Introduction

Several authors have considered clustering problems based on finite mixture models and in
particular, mixtures of k Gaussian distributions, see Banfield and Raftery (1993), Bensmail
et al. (1997). A fully Bayesian approach provides posterior probability information about
the number of clusters, component parameters and cluster membership of the observa-
tions. In fact, we are interested in the estimation of finite multivariate Gaussian mixtures
with an unknown number of components. This not only gives a posterior distribution for
the number of components but also provides information on the clustering through the
assignment of the observations to the components.

If a mixture of k fixed Gaussian distributions is considered, inference for the model
could be carried out through the well known EM or MCMC samplers, such as the Gibbs
sampler, (see McLachlan and Peel, 2000). However, if a mixture with an unknown number
of components is considered, one possibility is the use of trans-dimensional samplers, see
Sisson (2005) for a comprehensive review, to achieve across-model simulations.

In practical applications, the description of one group by only one component of the
mixture model may prove to be ambiguous. That is, in general it is inappropriate to
assume that a group is well described by a multivariate normal distribution. Hence, recent
literature has explored other approaches such as those based on Bayesian nonparametric
posterior distributions (see Lijoi et al., 2007), the clustering inherent to the partition
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induced by Bayesian nonparametric posterior distributions, (see Lau and Green , 2009)
or clustering based on the posterior similarity matrix (see Fritsch and Ickstadt, 2009).
However, if one thinks of an extreme example given by a dense doughnut shaped cloud of
points, it is not clear what a parametric or non-parametric model could conclude in terms
of the identification of a single group as would be desirable in some contexts.

In this paper we will consider a feasible model to address the latter situation, a mixture
of Gaussian distributions with restricted covariance matrices as the underlying model for
the cluster analysis. The fitted model will be used to define groups as sub-mixtures of
components, that is each group will be modeled by a subsum of some components of the
mixture model. The submixture models will be determined using two criteria in combina-
tion. These criteria indicate when a large proportion of observations is swapped between
components whilst preventing the merging of components which only swap observations
when the sampled parameters are in the tails of the corresponding distributions.

The paper is organized as follows. In section 2 we introduce the basic formulation of
the Bayesian hierarchical model emphasizing some difficulties faced during the sampling
procedures. Sections 3 and 4 describe the restricted model and the merging criteria re-
spectively. In section 5 we discuss the performance of the method through some examples.
Finally in section 6 we give some concluding remarks.

2. Basic formulation in a Bayesian framework

Let yj be a random vector, j = 1, . . . , n. There are p measurements of the features of
interest for the j-th observation. The density f(yj |Ψ) is assumed to be a k-component
finite mixture of the form

f(yj |Ψ) =

k∑
i=1

wi Np(yj |µi,Σi) (1)

where Np denotes a multivariate normal density in Rp and
Ψ = (w, (µ1,Σ1), (µ2,Σ2), . . . , (µk,Σk)), with w = (w1, w2, . . . wk−1), 0 ≤ wi ≤ 1 and∑k

i=1wi = 1.
From the point of view of cluster analysis, we are mainly interested in identifying and

interpreting this underlying mixture structure and its relationship with the sample obser-
vations. In order to do so we make use of allocation variables which indicate the cluster
membership of each observation.

Consider a vector of categorical random variables Zj that take values in 1, 2, . . . , k.
Regarded as allocation variables for the observations, they are assumed to be independent
draws from the distributions

pr(Zj = i|Ψ) = wi for i = 1, 2, . . . , k.

Conditional on the Zj = i, the density of Yj is given by f(yj |θi). If the allocation
probabilities are of interest, they are given as

pr(Zj = i|yj ,Ψ) =
wiNpi(yj ;µi,Σi)∑k
l=1wlNpl(yj ;µl,Σl))

, for i = 1, . . . , k.

The vector (z1, z2, . . . , zn)T is frequently called the missing data part of the sample. In
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many schemes Z is integrated out, but for clustering it plays a pivotal role.
Assume k, is unknown and modeled by a prior distribution with density p(·) . The

unknown parameters Ψ = (k,w,µ,Σ)) are drawn from a set of appropriate prior distribu-
tions. Suppose that a joint prior for Ψ = (k,w,µ,Σ)) is given for each k in a countable set
K. Here it is assumed that all probability densities are proper. Considering the allocation
variables and imposing further conditional independence that reflects the fact that allo-
cation variables summarize information on the number of components and its weights, so
that p(µ,Σ)|z,w, k) = p(µ,Σ)|k) and the likelihood p(y|θ, z,w, k) = p(y|µ,Σ, z), then

p(k,w, z,µ,Σ,y) = p(k)p(w|k)p(z|w, k)p(µ,Σ|k)p(y|µ,Σ, z). (2)

where p(·|·) is used to denote generic conditional distributions. We want to sample from
p(k,w, z,µ,Σ|y), which is proportional to p(k,w, z,µ,Σ,y). Several alternatives to sam-
ple from the latter are given in recent literature. These methods are extensions of MCMC
methods and known as trans-dimensional MCMC. One common choice is the reversible
jump MCMC proposed by Green (1995), with multivariate extensions discussed for ex-
ample in Dellaportas and Papageorgiou (2006), Fuentes-Garćıa (2004) and Zhihua et al.
(2004). Another option is the BDMCMC proposed by Stephens (2000 A), this method is
used to estimate the models discussed in this paper. The BDMCMC sampler consists of
the construction of a continuous time Markov birth-death process with the appropriate
stationary distribution.

Let Ωk denote the parameter space of the mixture model with k components. Ignoring
the labelling of the components, let Ω = ∪k≥1Ωk. In a k component mixture model the
set of exchangeable parameters {(w1,θ1), . . . , (wk,θk)} can be seen as points in [0, 1]×Θ

where θi = (µi,Σi) and
∑k

i=1wi = 1.
Suppose that the prior distribution for (k,w,θ) given the corresponding hyperparame-

ters denoted as ω is of the form r(k,w,θ) = p(k|ω)p(w,θ|k, ω). The posterior distribution
p(k,w,θ|y, ω) is then seen as a marked point process on [0, 1] × Θ, with each θi associ-
ated with a mark wi ∈ [0, 1]. The number of components is allowed to vary by continuous
births and deaths of new model parameters defined by a continuous time Markov pro-
cess with p(k,w,θ|y, ω) as stationary distribution keeping ω fixed. This process combined
with standard MCMC update steps creates a Markov chain with stationary distribution
p(k,w,θ, ω|y).

Consider a k component mixture where parameters are denoted y={(w1,θ1),. . ., (wk,θk)}.
Births and deaths are restricted so that when the process is at y at time t, if a birth occurs,
the process jumps to a new state with k + 1 components:

y ∪ (w,θ) := {(w1(1− w),θ1), . . . , (wk(1− w),θk), (w,θ)},

if a death ocurrs the process jumps to a new state, with k − 1 components:

y \ (wi,θi) :=

{(
w1

(1− wi)
,θ1

)
, . . . ,

(
wk

(1− wi)
,θk

)}
.

When the process is at y, births and deaths occur as independent Poisson processes.
Births occur with overall rate β(y) and new parameters are chosen according to density
b(y; (w,θ)). A component dies independently of others with rate

δj = d(y \ (wj ,θj); (wj ,θj)),

for some d : Ω× ([0, 1]×Θ)→ R+, the overall death rate is given by δ(y) =
∑

j δj(y). The
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time to the next birth/death event is then exponentially distributed with mean 1/(β(y) +
δ(y)) and it will be a birth with probability

Pr(birth) =
β(y)

(β(y) + δ(y))

and a death of component j with probability

pr(death) =
δj(y)

(β(y) + δ(y))
.

Stephens (2000 A) showed that, assuming the general hierarchical prior on (k,w,θ)
given by r(y) = p(k|ω)p̃(θ1|ω)p̃(θ2|ω) · · · p̃(θk|ω) and keeping ω fixed, the birth and death
process defined above has the desired stationary distribution, provided that when the
process is at y = {(w1,θ1), . . . , (wk,θk)}, each point (wj ,θj) dies independently of the
others as a Poisson process with a rate

d(y \ (wj ,θj); (wj ,θj)) = λb
L(y \ (wj ,θj))

L(y)

p(k − 1|ω)

kp(k|ω)
, (3)

where L(y) is the likelihood in state y and

β(y) = λb, a constant,

b(y, (w,θ)) = k(1− w)k−1p̃(θ|ω).

for p̃(θ|ω) taken as the sampling distributions for the birth move in the reversible jump
sampler. The simulation of the process involves the following steps, starting with the initial
model y = {(w1,θ1), . . . , (wk,θk)}:

(1) Compute the death rate for each component given by equation (3).
(2) Compute the total death rate δ(y) =

∑
j δj(y).

(3) Simulate the time to the next jump from an exponential distribution.
(4) Simulate the type of jump and adjust y to reflect the jump.
(5) Return to step 1.

Assuming the necessary conjugate priors for the hierarchical model, the algorithm de-
scribed above is combined with MCMC update steps allowing ω to vary. To do this we use
Gibbs sampler steps which consider the allocation variables. Given the state Φ(t) = φ(t) at
time t, simulate a value for Φ(t+1) = φ(t+1) by

(1) Sampling (k(t)′ ,w(t)′ ,θ(t)′) by running the birth and death process for a fixed time

t0, starting from (k(t),w(t),θ(t)) and fixing ω to be ω(t). Set k(t+1) = k(t)′.

(2) Sample z
(t+1)
j from p(zj = i|k(t+1),w(t)′ ,θ(t)′ , ω(t),y).

(3) Sample ω(t+1) from p(ω|k(t+1),w(t)′ ,θ(t)′ ,y, z).

(4) Sample w(t+1),θ(t+1) from p(w,θ|k(t+1), ω(t+1),y, z).

In a mixture model, if all the k components belong to the same parametric family,
then f(y|Ψ) is invariant under the k! permutations of the component labels in Ψ. This is
known as label switching and causes identifiability problems, for example when following
the evolution history of components during an MCMC sampler,Figure 1 illustrates traces
of component means of a four component mixture.
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Figure 1. Traces of component means

This problem is often handled by imposing an artificial identifiability constraint on Ψ,
for example ordering the mixing proportions so that w1 ≤ w2 ≤ . . . ≤ wk. However,
several authors (Celeux et al. (2000), Richardson and Green (1997), Stephens (2000 B) and
Frühwirth-Schnatter (2001)) have pointed out that this does not always give a satisfactory
solution. That is, the constraint may not be effective in breaking the symmetry of the
prior, leaving densities that exhibit multimodality. Although our main interest is not to
estimate the density but to obtain information on the number and composition of groups
in the observed population, label switching must be taken into account at the simulation
stage as it is a prerequisite for convergence of a trans-dimensional sampler, see Jasra et al.
(2005).

In particular, following Stephens (2000 B), a simple procedure was used in Celeux et al.
(2000) to identify one modal region and estimate the component parameters. We used this
procedure and in particular we concentrate on the component means. The method selects
one modal region using the early iterations of the Markov chain Monte Carlo sampler.
The choice of the initial set of iterations is not highly sensitive but should be enough to
ensure that the resulting estimates are a reasonable approximation of the posterior means
and should correspond to a set observed before the label switching occurs. The component
labels corresponding to the following iterations are permuted according to a k-means-type
algorithm to select the permutation that is closest to the current set of means as described
below.

Following this procedure, we post-processed the output of the BDMCMC sampler. We
consider the sequence of d-dimensional vector samples of size T, conditional on the number
of components k, ψ1, . . . , ψm, where d = kp, ψi = (µ1,i, . . . , µp,i, . . . , µk,i, . . . , µk,p) and m
is the longest period observed before the label switching occurs. We focused on the mean
values because they have shown to be the most stable parameter which is covered rapidly
by the sampler. The length of period m is determined in practice by looking at the number
of observations allocated to each component. The period m is the period before the number
of components allocated to each component has changed in more that one observation for
all components.

Initial reference centers for j = 1, . . . , d are defined as
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ψj =
1

m

m∑
i=1

ψij ,

with corresponding variances

si =
1

m

m∑
i=1

(ψij − ψj)2,

We denote s
[0]
i = si for i = 1, . . . , d. If we take ψ

[0]
= ψ, the other (k − 1) centers can

be deduced by permuting the labelling of the mixture components. The rth iteration is
relabelled with the permutation j that minimizes the normalized square distance,

‖ψm+r
j − ψ [r−1]‖ =

d∑
i=1

(ψm+r
j − ψ [r−1]

i )2

s
[r−1]
i

,

for j = 1, . . . , k and r = 1, . . . , T −m.
The centers and normalizing coefficients are updated after each iteration so

ψ
[r]

=
m+ r − 1

m+ r
ψ

[r−1]
+

1

m+ r
ψm+r

s
[r]
i =

m+ r − 1

m+ r
s

[r−1]
i +

m+ r − 1

m+ r
(ψ

[r−1]
i − ψ [r]

i )2 +
1

m+ r
(ψm+r

i − ψ [r]
i )2.

We have found the procedure to be efficient and helpful, it allows us to identify posterior
component parameters for the fitted mixture so that their values can be used to determine
the submixture of components that describes a group.

The assessment of convergence in trans-dimensional MCMC samplers is particularly
difficult. As Brooks et al. (2003 B), Castelloe and Zimmerman (2004) and Sisson and Fan
(2007) highlight, the challenge lies in finding parameters that retain the same interpretation
throughout different models.

We consider the proposal Castelloe and Zimmerman (2004), which is viable for high di-
mensional problems, to assess convergence for the BDMCMC sampler. Generally speaking,
we will select a group of observations from the data set and monitor the parameters of
the components to which these data are allocated at each iteration, denoted θ∗. Using the
number of components k in the current iteration as the parameter that retains the same
interpretation across models. We run C > 1 chains of the trans-dimensional MCMC sam-
pler, which are started from overdispersed states with the same number of sweeps. Since
the monitored observations are allocated at the end of each sweep, this would allow us to
overcome the label switching problem. This set of parameters retains a coherent interpre-
tation across models, a crucial feature for the convergence assessment of trans-dimensional
samplers. The selected observations are chosen so that their behavior is expected to vary
across sweeps of the sampler in different ways. Namely, we will look for data that are be-
tween two clusters, that is between potential competitors when allocating the observations,
potential outliers and also data near the centre of a cluster. The convergence assessment
looks for evidence that indicates lack of convergence for the set of monitored parameters
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both across iterations and across chains.
Then, a number m of successive overlapping batches for each chain are analyzed. The

length of these batches increases and each length is a multiple of a base batch length b.
The convergence diagnostic aims to find conditions that would indicate that convergence
has not been reached. Some aspects it will detect are: variation between chains; an inter-
action between models and chains, which indicates between-model variation that differs
from chain to chain; and significant differences in frequencies of model visits from one
chain to another. The convergence diagnostics are based on the following quantities, which
could be interpreted as: V̂ , the total variation; Wc, variation within chains; Wm variation
within models and WmWc, variation within models and chains. They showed that the
ratio EV̂ /EWc ≥ 1, with EV̂ /EWc = 1 indicating the absence of a chain effect. The
greater the value of this ratio, the stronger the chain effect. Both, numerator and denom-
inator, stabilize as T → ∞. It can also be shown that the ratio EWm/EWmWc ≥ 1,
with EWm/EWmWc = 1 indicating: (a) the absence of chain effect, (b) the absence of
chain×model interaction and (c) either no model effect or equality of the set of within-
chain model frequencies across chains or both. The greater the violation of any of these
aspects, the larger this ratio becomes. Here the authors emphasized that the sensitivity of
this ratio to the violation of the mentioned aspects is not yet fully understood in terms of
the relative weight of the three aspects as T →∞.

Therefore, the convergence diagnostics proposed which are based on both ratios, are
called potential scale reduction factors (PSRF). Using these ratios any potential violations
of convergence is monitored. For a parameter vector θ = (θ1, . . . , θp)

T , we have

PSRF1(θi) =
EV̂ (θi)

EWc(θi)
, (4)

PSRF2(θi) =
EWm(θi)

EWmWc(θi)
. (5)

A multivariate version is also defined to monitor the entire vector rather than considering
each element separately. The corresponding multivariate scale reduction factors are

MPSRF1(θ∗) = maximum eigenvalue of [Wc(θ∗)]
−1V̂ (θ∗), (6)

MPSRF2(θ∗) = maximum eigenvalue of [WmWc(θ∗)]
−1Wm(θ∗). (7)

We simulate C = 3 chains of equal length T with overdispersed starting values and choose
a base batch size b, Brooks et al. (2003 B) suggested for example b ≈ T

20 . For q = 1, . . . , T20 ,

we compute PSRF1(q)(θi), PSRF2(q)(θi), MPSRF1(q)(θ∗) and MPSRF2(q)(θ∗), the
latter two when numerically available. We look for the q0 such that for q > q0: (a) the
plots for PSRF1(q)(θi), PSRF2(q)(θi), MPSRF1(q)(θ∗) and MPSRF2(q)(θ∗) are close to
1; (b) the plots for pairs of numerator and denominator for PSRF1(q)(θi), PSRF2(q)(θi),
maximum eigenvalue of Wm(θ∗) and maximum eigenvalue of WmWc(θ∗) have settled
approximately to a common value. The first q0b observations could then be discarded and
use the remaining ones used for inference.

3. Restricted covariance mixture model

We consider a mixture of spherical multivariate normal distributions with a probability
density function which has a simplified covariance structure, given by the following equa-
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tion:

f(yj ; Ψ) =

k∑
i=1

wiNp(yj |µi, τ−1
i Ip), (8)

where Ip denotes the p dimensional identity matrix.
The importance of allowing the volumes of the normal components to be different when

considering the same shape and the same orientation has been pointed out by Celeux and
Govaert (1995). They showed that these models are capable of detecting many cluster-
ing structures without needing complex algorithms. However, they only considered two
dimensional data. Our main concern is to prevent the use of highly dispersed distributions
misrepresenting the data. We allow the τ ’s to vary from component to component to pre-
serve some flexibility in the model but place a tight restriction on their size through the
prior distributions we assign, as we shall now describe.

Consider observations y1, . . . ,yn, where yj has a distribution given in equation (8). The
Bayesian hierarchical model has the following prior structure

w ∼ Dirichlet(δ1, . . . , δk),

µi ∼ Np(ξ, κ
−1),

τi ∼ Gamma(α, αβ),

for i = 1, . . . , k. Where ξ is an p× 1 vector, κ is a p× p matrix and δi, α and β are scalars.
Note that E[τi] = 1/β. The prior distribution on the number of components is a truncated
Poisson distribution.

The corresponding posterior full conditional distributions for the Gibbs sampler step in
the trans-dimensional algorithm that will be used are

w ∼ Dirichlet(δ1 + n1, . . . , δk + nk),

µi| · · · ∼ N((κ+ niτiIp )−1(niτiIp yi + κξ), (κ+ niτiIp )−1),

τi| · · · ∼ Gamma(α+ (pni)/2, αβ +
1

2

ni∑
j=1

(yj − µi)
′Ip (yj − µi)),

where ni = #{j : zj = i} for the allocation variables zj and yi = 1/ni
∑ni

{j:zj=i} yj .

In particular, we take ξj as the midpoint of the corresponding observed interval of
variation. Let Rj denote the length of these intervals for j = 1, . . . , p, the matrix κ is a
diagonal matrix given as

κ =

1/R2
1 . . . 0

...
. . .

...
0 . . . 1/R2

p

 .

The values for the scalars are taken as follows: δi = 1, α = R2
max and β =

√
(γ)/Rmax,

where Rmax = max{R1, . . . , Rp}. We wish to make a sensible choice of the parameters
α and β to ensure that we induce the use of more components without heading for the
extreme case where a lot of observations are isolated.

To determine the value of γ we consider an initial analysis of the data set. This constant
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will give information on whether the groups in the data set exhibit important gaps or they
are likely to overlap. We consider the projection of all data points onto the direction of
the variable with the maximum observed range Rmax. The projected data (y′1, y

′
2, . . . , y

′
n)

are used to find the largest gap between adjacent y′i’s, defining γ as the largest difference
between adjacent y′i’s. When there are well separated groups in the data set, γ tends to be
much larger than when the groups overlap. We do not claim these values to be optimal,
however, in terms of an exploratory technique they offer a option to obtain initial clustering
results.

4. The Merging Criteria

We are interested in criteria to indicate which of the fitted components might be merged
to form a submixture that represents the same group. We propose two criteria: one will
consider the proportion of allocated data that are swapped between components throughout
the sampler and the other will give information on the distance between the densities of
the components based on the affinity .

Broadly speaking, we are interested in measuring the distance between components. If
a group is described by more than one component we expect their distributions to be “
close ”. Now, when the distance between two components is small, we want to learn about
the proportion of observations whose ownership is disputed by the two components to
which they are allocated. If this proportion is large, then the components are more likely
to be describing one cluster. We suggest that a possible way to obtain straightforward
information on the proportion of disputed observations is simply to look at how much
data is swapped between components from iteration to iteration. We suggest to merge
two components into one group if the proportion of observations exchanged between these
components is large and the distance between the components is small, assessed by the
affinity between two components. Using these criteria in combination gives information on
particular situations. First it helps detecting when a pair of components swaps observations
when values on the tails of the distributions of the component parameters are sampled.

Computations to obtain the proportion of swapped observations and the affinity between
pairs of component will be made conditional on a given value of k, the number of com-
ponents. The output of the trans-dimensional sampler will be post-processed. We expect
results based on different number of components, which have similar and high posterior
probability, to be consistent in terms of the groups they define. Once a value of k is fixed,
the label switching is removed, identifying values for the parameters of each component
and corresponding allocation vector for the data at each iteration.

4.1 Proportion of observations swapped between components

For the computation of the swaps, consider the allocation variable Zi,j for observation
i = 1, . . . , n at iteration j = 1, . . . , J , which takes a value k = 1, . . . , kj . To deal with the
label switching we have extracted all the cases for kj = k, that is, the calculation is done
with an output that includes all the variables for a fixed value of k. Suppose that there
are R ≤ J of such iterations.

We then consider the allocation variable Zir for observation i = 1, . . . , n at iteration
r = 1, . . . , R, which takes a value in (1, . . . , k). We compare it with the value for the same
observation i but in the next iteration r + 1. A k × k matrix C is initialized to zeros and
for h = 1, . . . , k and l = h+ 1, . . . , k, we add 1/(nh,r + nl,r) to the element C(h,l), if either
Zi,(r+1) = h and Zi,r = l or Zi,(r+1) = l and Zi,r = h, where nh,l and nl,r are the number of
observations allocated to components h and l at iteration r. Once the matrix is computed
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for all r, we divide it by R to get an approximate value of the proportion of observations
that were exchanged between components.

4.2 The affinity between components

The Bhattacharyya (1943) distance also known as the affinity is used as a measure of
similarity between two probability distributions. The affinity between distributions P1 and
P2 with corresponding densities p1 and p2 is defined as

A(p1, p2) =

∫
y

√
p1
√
p2 dy

The affinity is related to the Hellinger distance between two distributions P1 and P2,
with corresponding densities p1, p2 which is given as

H(P1, P2) =


∫
y

(
√
p1 −

√
p2 )2 dy


1

2

(9)

Consider now H2

H(P1, P2)2 = 2− 2

∫
y

√
p1
√
p2 dy (10)

Hence, H =
√

2− 2A(p1, p2), where A(p1, p2) is the affinity between P1 and P2.
The affinity between two multivariate normal distributions, N(µ1,Σ1) and N(µ2,Σ2) is

obtained in the Appendix.
In the particular case where Σ1 and Σ2 are diagonal matrices, the affinity between p1

and p2 is given by

A(p1, p2) =

p∏
i=1

(
2σ1,iσ2,i

σ2
1,i + σ2

2,i

) 1

2

exp

{
−1

4

p∑
i=1

(µ1,i − µ2,i)
2

σ2
1,i + σ2

2,i

}
.

We compute the average affinity between all pairs of components. We denote as A the
k×k matrix that shows the average value of the affinity for each pair of the k components,
we will refer to it as the average affinity matrix. This will be done for all iterations of the
sampler where the specified value of k is observed.

5. Examples.

We will consider two data sets often used in literature which discusses fuzzy and robust
clustering to make an assessment of the performance of the proposed methodology.

Old Faithful data

This well known data set comprises the duration (mins) and waiting time (mins) before
the next eruption for 272 eruptions of the Old Faithful geyser in Yellowstone National
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Park (the data version used in Härdle (1991), Venables and Ripley (1997) and Stephens
(2000 A)).

Ruspini data

As a second example we consider the well known artificial Ruspini (1969) data set.
The fact that small weighted components often reflect departures from normality

becomes evident with this data set.

Before we discuss the results obtained using submixtures to describe clusters we display
the above mentioned data sets, with the resulting classification we would obtain by fitting
a mixture of Gaussian distributions with unrestricted covariance matrices and an unknown
number of components through a BDMCMC sampler as described in Stephens (2000 A).
We select the model defined by the posterior mode for the number of components k,
namely p(k = 3) = 0.66 for the Old Faithful dataset and p(k = 5) = 0.47 for the Ruspini
dataset. The classification for all the models we will be discussing is obtained following
O’Hagan in the discussion of Richardson and Green (1997). He suggested estimating the
clusters by generic hierarchical clustering with dissimilarity based on the number of times
each pair of observations occurs together in the same component. Figure 2(a) shows the
corresponding three component and five component estimate obtained by this approach
with average linkage aggregation, the results were robust to the choice of aggregation
method. It is worth mentioning that it has been widely discussed in literature that the
posterior distribution for the number of components k is highly dependent on the prior
assumptions taken.
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Figure 2. Classification for the unrestricted model: (a) Old Faithful data; (b) Ruspini data.

Results

The primary task in clustering data is to establish the number and composition of the
clusters. In general terms, it would be desirable to have a way of assessing whether the
smaller components described in Figure 2 are a different group or are used to cope with
departures from normality. We will consider the two data sets we have described rescaled
so that they are centered at zero and they have the identity matrix as covariance matrix,
see Figure 3. This will be more in accordance with the restricted model if there are no
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groups in the population of interest and will reduce the effect related to difference in
scale. The MCMC sampler described in section 2 was used to fit the mixtures of restricted
multivariate normal distributions to two data sets. In each case the samplers were run for
a burn-in period of 300000 iterations followed by 100000 iterations, thinned every 50, the
resulting 2000 iterations were used for inference.
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Figure 3. Transformed data sets: (a) Old Faithful data; (b) Ruspini data; (c) Posterior predictive density for the
Old Faithful data (d) Posterior predictive density for the Ruspini data.

The prior assumptions are kept as described in section 2. Values for t0, the fixed time
for which the birth and death process is run, and λb, the overall birth rate, are required
to use the algorithm. We will consider t0 = 1 and λb = 1, as done by Stephens (2000
A). The posterior number of components is sensitive to the choice of λb. However, we are
already restricting a model to favor a larger number of components, hence the changes
in the choice of λb have no significant change on the resulting number of clusters and its
composition.

To asses convergence of the samplers, three chains were run for each one, from an over
dispersed starting point. The first 300000 iterations were discarded as burn-in and the
following 100000 were thinned every 50 iterations to end with a total T = 2000 sweeps for
each chain. We selected b = 100 and evaluated the corresponding diagnostic statistics for
each of the resulting 10 batches.

The number of components, k, was used as a “model” indicator and for each exam-
ple eight observations were selected and the parameter vector θ∗ was formed by all the
mean vectors to which each observation was allocated. The first two observations were
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selected by obtaining the minimum spanning tree and keeping the two observations that
were joined by the largest edge in the tree. After removing this edge, we repeated the pro-
cedure again for the two resulting data subsets and kept the four observations that were
joined with the largest edge in each tree. Finally, we selected the observations alternating
the minimum and maximum with each dimension. We hope to select observations that
exhibit a different behaviour across sweeps. That is we expect them to be either between
two clusters that compete for the allocation of the observation or potential outliers. The
selected observations for the Ruspini data set were: 1, 31, 48, 20, 17, 73, 43 and 44. For the
Old Faithful data were: 1, 131, 149, 218, 244, 265, 7 and 89. Results for the Old Faithful
and the Ruspini data are shown in Figures 4 and 5 respectively.

In general, we conclude that there is no evidence to support the hypothesis that the chain
has not reached equilibrium for the long runs we have used. Trans-dimensional MCMC
samplers may require longer runs to reach equilibrium than many MCMC samplers in fixed
parameter spaces, particularly in high dimensional problems. Despite having considered a
long burn-in period and a long set of iterations, we have seen that the first few hundred
iterations still display some instability and could be discarded before carrying out inference.

For the Old Faithful data, the sampler has a mode in an eight-component mixture model
with posterior probability, p(k = 8) = 0.47. The matrix A below corresponds to the average
affinity matrix, some of the values are too small and appear as zeros. The closer pairs of
densities are those whose affinity is closer to 1.

A =



0 0.0007 0.0144 0.2549 0.0004 0.0135 0.2326 0.0070
0 0 0.0005 0.0003 0.3763 0.0339 0.0117 0.0134
0 0 0 0.0268 0.0034 0.0001 0.0012 0.1815
0 0 0 0 0.0002 0.0134 0.0234 0.0023
0 0 0 0 0 0.0040 0.0032 0.1770
0 0 0 0 0 0 0.2531 0.0007
0 0 0 0 0 0 0 0.0076
0 0 0 0 0 0 0 0



It only makes sense to look at the values of the average affinity matrix and the swap
matrix when the stationarity of the chain has been reached. We monitored the entries
of the affinity matrix for convenance of presentation the plots are not shown. The initial
values showed more variation which was slightly accentuated where there were jumps
in dimension. The entries A(i, j) with very small values showed more variability but in
general, the matrix shows a stable behavior. We display the matrix A graphically as a
dendrogram in Figure 6 (b), the dendrogram is built using 1−A as a dissimilarity matrix
in an average linkage hierarchical clustering algorithm.

The results for the swap matrix showed more variability at the beginning of the sampler
than those observed for the affinity matrix. However, variation of the swaps when dimension
jumps are made shows less effects than with the affinity matrix. The entries with smaller
values showed more variability but in general the matrix tends to stabilize after the first
600 monitored iterations. Results are also displayed graphically as a dendrogram that again
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Figure 4. Convergence assessment for Old Faithful data set. (a) Solid line: MPSRF1(q)(θ∗) by batch number

q. Dashed lines: PSRF1(q)(θi) by batch number q. (b) Solid line: MPSRF2(q)(θ∗) by batch number q. Dashed

lines: PSRF2(q)(θi) by batch number q. (c) Solid lines: Maximum eigenvalues for V̂ (q)(θ∗) and Wc(q)(θ∗) by batch

number q. Dashed lines: V̂ (q)(θi) and Wc(q)(θi) (for some observations) by batch number q. (d) Solid lines: Maximum

eigenvalues for Wm(q)(θ∗) and WmWc(q)(θ∗) by batch number q. Dashed lines: Wm(q)(θi) and WmWc(q)(θi) (for
some observations) by batch number q.

is built using the dissimilarity matrix 1− S, where S is the swap matrix, in Figure 6 (c).

S =



0 0.0006 0.0004 0.1086 0.0001 0.0055 0.0959 0.0015
0 0 0.0005 0 0.1745 0.0225 0.0049 0.0021
0 0 0 0.0051 0.0004 0 0.0001 0.0840
0 0 0 0 0 0.0121 0.0110 0.0005
0 0 0 0 0 0.0005 0.0014 0.0621
0 0 0 0 0 0 0.1080 0.0002
0 0 0 0 0 0 0 0.0041
0 0 0 0 0 0 0 0


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Figure 5. Convergence assessment for Ruspini data set. (a) Dashed lines: PSRF1(q)(θi) by batch number q. (b)

Dashed lines: PSRF2(q)(θi) by batch number q. (c) Solid lines: Maximum eigenvalues for V̂ (q)(θ∗) and Wc(q)(θ∗)

by batch number q. Dashed lines: V̂ (q)(θi) and Wc(q)(θi) (for some observations) by batch number q. (d) Solid

lines: Maximum eigenvalues for Wm(q)(θ∗) and WmWc(q)(θ∗) by batch number q. Dashed lines: Wm(q)(θi) and

WmWc(q)(θi) (for some observations) by batch number q.

From the dendrograms in Figures 6 (b) and (c) we would merge the components into
two groups, the first including components 4, 1, 7 and 6 and the second group includes
components 3, 8, 5 and 2. The resulting classification has some slight variations from the
results obtained from the nonrestricted model but in general it is consistent with what one
would visually expect.

Results for the Ruspini data set show the mode is at a 4-component mixture with
posterior probability, p(k = 4) = 0.94. The corresponding mean affinity and swap matrices
are:

A =


0 0.0006 0.0164 0.0068
0 0 0.0180 0.0103
0 0 0 0.0001
0 0 0 0

 ; S =


0 0 0.0016 0
0 0 0 0
0 0 0 0
0 0 0 0


The results are shown in Figures 7 (a)-(d) and from the affinity and swap matrices we

would not merge any components. This analysis will define four groups in this data set
and the corresponding classification is given in Figure 7 (d). In this case the rescaling of
the data gives a smaller number of components but the classification is consistent with the
classification obtained with the nonrestricted and restricted models fitted to the original
data.
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Figure 6. Old Faithful data. (a) Sampled mean values for a 8-component mixture after removing the label switching,
for the rescaled data set. (b) Swap matrix. (c) Affinity matrix. (d) Classification of the Old Faithful data.

6. Concluding remarks

We begin with some remarks about the performance of multivariate normal distributions
when faced with data that is inconsistent with such a model. We have often observed that
small weighted components are often included possibly to accommodate departures from
normality, including outliers. The fitted model frequently copes with non-normality by
preferring a small number of highly dispersed components to a more complex model with
a larger number of components.

The intuitive idea we pursued in this paper was to exclude the assumption that one
component is used to describe one cluster in a model-based context. Instead, we allowed
a submixture of such components to represent a cluster. Thus we need to produce more,
possibly many more model components than groups and subsequently find a method of
combining some components into submixtures that describe sensible clusters. This can be
achieved by restricting the covariance structure of the multivariate normal components
which also has the benefit of introducing simpler parametric forms for the basic element
of our model, allowing for a simpler fitting. More flexibility can easily be introduced by
relaxing the assumptions made for the covariance matrices used in this paper. However,
care is needed to avoid the extreme situation where one component is used to describe a
single observation which belongs to a compact group.

In cluster analysis based on submixture models, the most significant aspect to consider
was the proportion of observations that were exchanged between components, always ver-
ifying that those components are closer to each other than other pairs in the fitted model.
That will determine which of the pairs should be merged helping to identify some over-



Chilean Journal of Statistics 91

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

µ1

µ 2

 

 
1
2
3
4

4 2

1 3

0.
99

85
0.

99
90

0.
99

95
1.

00
00

H
ei

gh
t

(a) (b)

4

1

2 3

0.
98

2
0.

98
4

0.
98

6
0.

98
8

0.
99

0

H
ei

gh
t

0 20 40 60 80 100 120
0

20

40

60

80

100

120

140

160

 

 

1
2
3
4

(c) (d)

Figure 7. Ruspini data. (a) Sampled mean values for a 4-component mixture after removing the label switching for
the rescaled data set. (b) Swap matrix. (c) Affinity matrix. (d) Classification of the Ruspini data.

lapping clusters in a more efficient way. It also would avoid merging pairs of components
which have swapped observations mainly when the sampled values for the parameters of
the components are in the tails of the corresponding distributions. However, we will al-
ways have the option of combining two different groups that are very close to each other
and have many observations in the boundaries of the two components. In this case, an
important number of observations would be exchanged between these components and the
criteria would suggest to consider them as only one group.
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Appendix

The Bhattacharyya (1943) distance also known as the affinity between two distributions
P1 and P2, with corresponding densities p1, p2 is given as

A(p1, p2) =

∫
y

√
p1
√
p2 dy. (11)

We calculate the affinity between two multivariate normal distributions, N(y|µ1,Σ1) and
N(y|µ2,Σ2).

A(p1, p2) =

∫
y

[
(2π)−

p

2 |Σ1|−
1

2 exp

{
−1

2
(y − µ1)TΣ−1

1 (y − µ1)

}] 1

2

×

×
[
(2π)−

p

2 |Σ2|−
1

2 exp

{
−1

2
(y − µ2)TΣ−1

1 (y − µ2)

}] 1

2

dy

=

∫
y

(2π)−
p

2 |Σ1|−
1

4 |Σ2|−
1

4 exp

{
−1

2
(y − µ1)T (2Σ1)−1(y − µ1)

}
×

× exp

{
−1

2
(y − µ2)T (2Σ2)−1(y − µ2)

}
dy. (12)

Recall the following property of Gaussian densities: the product of two Gaussian densities
is proportional to another Gaussian density

N(y|µ1,Σ1)×N(y|µ2,Σ2) ∝ N(y|µ∗,Σ∗), (13)

where µ∗ = Σ∗(Σ
−1
1 µ1 + Σ−1

2 µ2) and Σ∗ = (Σ−1
1 + Σ−1

2 )−1. Rewriting A in expression 12
to be able to use the latter property we get

A(p1, p2) = (2π)
p

2 |Σ1|−
1

4 |Σ2|−
1

4 |2Σ1|
1

2 |2Σ2|
1

2 ×

×
∫
y

(2π)−
p

2 |2Σ1|−
1

2 exp

{
−1

2
(y − µ1)T (2Σ1)−1(y − µ1)

}
×

× (2π)−
p

2 |2Σ2|−
1

2 exp

{
−1

2
(y − µ2)T (2Σ2)−1(y − µ2)

}
dy. (14)

Rewriting expression 14 in terms of a normal distribution with mean vector and covari-
ance matrix

µ∗ = Σ∗((2Σ1)−1µ1 + (2Σ2)−1µ2),

Σ∗ = ((2Σ1)−1 + (2Σ2)−1)−1,

and adding the required normalizing constant, we get

A(p1, p2) = |Σ1|−
1

4 |Σ2|−
1

4 |Σ∗|
1

2 ×

× exp

{
−1

4

(
µT1 Σ−1

2 µ1 − µT2 Σ−1
2 µ2

)
+

1

2

(
µT∗ Σ∗µ∗

)}
,
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where now µ∗ = ((2Σ1)−1µ1 + (2Σ2)−1µ2).
In the particular case where Σ1 and Σ2 are diagonal matrices, the affinity between p1

and p2 is given by

A(p1, p2) =

p∏
i=1

(
2σ1,iσ2,i

σ2
1,i + σ2

2,i

) 1

2

exp

{
−1

4

p∑
i=1

(µ1,i − µ2,i)
2

σ2
1,i + σ2

2,i

}
.
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