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Abstract

Recently, some authors have introduced in the literature stationary stochastic processes
in the time and spatial domains, whose finite-dimensional marginal distributions are
multivariate skew-normal. In this paper, we show with a counter-example that the char-
acterizations of these processes are not valid and so these processes do not exist. In par-
ticular, we exhibit through a marginalization argument that the set of finite-dimensional
marginal distributions of these processes is not self-coherent. In addition, we point our
attention to some valid constructions of stationary stochastic processes, which can be
used to model skewed data.
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1. Introduction

In the recent past, considerable attention has been devoted in the literature to multivariate
versions of the skew-normal distribution, first systematically dealt with in the seminal
paper by Azzalini (1985). Among the many multivariate versions appeared in the literature,
the multivariate skew-normal distribution studied by Azzalini and Dalla Valle (1996) and
by Azzalini and Capitanio (1999) seems to be the one that has received so far the widest
attention by the statistical community. We say that a random vector Z = (Z1, . . . , Zn)⊤

has an extended skew-normal distribution (see, e.g., Azzalini, 2005) with parameters µ,
Σ, α and τ , and we write Z ∼ ESNn(µ,Σ,α, τ), if it has density of the form

f(z) = φn(z − µ;Σ)
Φ(α0 + α⊤D−1(z − µ))

Φ(τ)
, z ∈ R

n, (1)
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where µ ∈ R
n is a vector of location parameters, φn(·;Σ) is the n-dimensional normal

density with zero mean and (positive-definite) variance-covariance matrix Σ having ele-
ments σij, Φ(·) is the scalar N(0,1) distribution function, D = diag(σ11, . . . , σnn)1/2 is
the diagonal matrix formed with the standard deviations of the scale matrix Σ, α ∈ R

n

is a vector of skewness parameters, and τ ∈ R is an additional parameter. Moreover,
α0 = τ(1 + α⊤Rα)1/2, where R is the correlation matrix associated with Σ, that is,
R = D−1ΣD−1. Clearly, this distribution extends the multivariate normal distribution
through the parameter vector α, and, for α = 0, it reduces to the latter. When τ = 0, also
α0 = 0 and Equation (1) reduces to

f(z) = 2φn(z − µ;Σ)Φ(α⊤D−1(z − µ)), z ∈ R
n. (2)

In this case, we simply say that Z has a skew-normal distribution and we write, more
concisely, Z ∼ SNn(µ,Σ,α).

The growing interest in these and other related multivariate families of distributions (see,
e.g., Genton, 2004; Azzalini, 2005; Arellano-Valle and Azzalini, 2006) has led some authors
to the specification of stochastic processes in the time and spatial domains, that is, with
indexing parameter in R or in R

2 (or in some suitable subset of it), having their univari-
ate marginal distributions, or their multivariate finite-dimensional marginal distributions,
to belong to some skew-normal family. Indeed, in many applications, the availability of
such skew-normal stochastic processes is potentially of great importance. For example,
confining ourselves to the spatial domain, in many environmental or ecological studies, the
variable under investigation, observed at, say, n sampling sites, is not Gaussian and may
show some degree of skewness. In these cases, together with the spatial autocorrelation
structure, it is important also to model the distribution of the data to account for the
observed skewness. In particular, this is necessary if we are seeking for minimum mean
square error predictions, which cannot be supplied in these non-Gaussian cases by stan-
dard kriging predictions. Let us notice that in these last situations, it is not sufficient
to model the observed data using some multivariate skew-normal distribution. Although
the observed data by itself could indeed be fitted using some multivariate skew-normal
distribution of a given finite dimension n, the prediction problem would require the adop-
tion of some stochastic process. In fact, for predicting the value assumed by the variable
under investigation at an unobserved spatial location, we would need (for carrying out
predictions with minimum mean square error) the conditional distribution of our variable
at the unobserved spatial location, given the observed data at the n sampling sites, which
means that we would need the (n+1)-dimensional joint distribution of our variable at the
n + 1 spatial locations in question. Thus, since we usually need to carry out predictions
at many (ideally infinite) unobserved spatial locations, the modeling of the observations
with a multivariate distribution is not sufficient and we need to assume that the observed
data is a partial realization of a stochastic process with its indexing parameter varying in
some suitably infinite set.

Among others, skew-normal processes in the time domain have been put forward
by Gualtierotti (2004, 2005), Pourahmadi (2007), and Corns and Satchell (2007), whereas
skew-normal spatial processes have been defined by Kim and Mallick (2002, 2004, 2005),
Kim et al. (2004), Naveau and Allard (2004), Allard and Naveau (2007), Zhang and El-
Shaarawi (2010), and Hosseini et al. (2011). Although some of these works contain sig-
nificant contributions, in this paper, we point our attention to the poor characterization
of some of these skew-normal stochastic processes. Though at a first sight some of these
characterizations might appear appealing, they are nevertheless not correct. Indeed, in
some of these works, the characterization of the underlying skew-normal process mimics,
wrongly, the definition of a Gaussian process. In these cases, then, it is possible to show
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with a counter-example that the characterizations are not valid and so that the advocated
stochastic processes do not exist. The reason is that the assumption made in these char-
acterizations that any finite collection of random variables making up the process has a
multivariate skew-normal joint distribution is not compatible with the use of a (station-
ary) autocorrelation function to characterize their scale matrices. To clarify our point, let
us underline that our negative result does not have anything to do with the existence
of (stationary) stochastic processes having, for instance, univariate marginal distributions
that are skew-normal. Apart from the trivial sequence of independent and identically dis-
tributed (i.i.d.) univariate skew-normal random variables, a well know example in this
direction is given by the particular self exciting threshold autoregressive (SETAR) model

Zt = −δs|Zt−1| + εt, t = 0,±1,±2, . . . , (3)

where {εt: t = 0,±1,±2, . . .} are i.i.d. random variables with standard normal distribution,
and δs is a real parameter. Here, a sufficient condition for the (strong) stationarity of the
stochastic process {Zt: t = 0,±1,±2, . . .} is that |δs| < 1, and, following Azzalini (1986)
and Tong (1990, p. 140), for |δs| < 1, the univariate marginal stationary density given in
Equation (3) is

f̃Zt
(z) =

√

2(1 − δ2
s)

π
exp

(

− 1

2
(1 − δ2

s)z
2

)

Φ(−δsz), −∞ < z < ∞,

that is, by f̃Zt
(z) = 2φ1(z; (1 − δ2

s)
−1)Φ(−δsz), where φ1(·; (1 − δ2

s)
−1) is the one-

dimensional normal density with zero mean and variance (1 − δ2
s )−1. In other words, for

each t = 0,±1,±2, . . ., the random variables Zt are marginally distributed as skew-normals,
precisely as SN1(0, (1 − δ2

s )−1,−δs/
√

1 − δ2
s). However, this fact does not imply that also

the multivariate finite-dimensional marginal distributions given in Equation (3) are (mul-
tivariate) skew-normal. For instance, without loss of generality, consider the case in which
δs = 1/

√
2. Then,

f̃Zt
(z) = 2

1√
2π

1√
2

exp

(

− z2

4

)

Φ

(

− z√
2

)

,

and the bivariate marginal density of Zt−1 and Zt is given, for each t = 0,±1,±2, . . ., by

f̃Zt−1,Zt
(z1, z2) = f̃Zt|Zt−1

(z2|z1)f̃Zt−1
(z1)

=
1√
2π

√

1

π
exp

(

− 1

2

(

z2 +
|z1|√

2

)2)

exp

(

− z2
1

4

)

Φ

(

− z1√
2

)

,

which does not belong to any of the commonly considered multivariate skew-normal fam-
ilies. Thus, Equation (3) specifies a stationary stochastic process having univariate, but
not multivariate, marginal distributions that are skew-normal, according, for instance, to
the definition in Azzalini and Dalla Valle (1996).

The paper is organized as follows. In Section 2, we first consider a counter-example show-
ing the wrong characterization of a particular spatial skew-normal stationary stochastic
process that appears in the literature and then provide some general discussion. In Sec-
tion 3, in a geostatistical setting and following a hierarchical approach, we consider a simple
way to characterize a stationary stochastic processes having univariate skew-normal con-
ditional and marginal distributions, for which we can derive some of its moments. Lastly,
in Section 4 we conclude with some remarks.



160 M. Minozzo and L. Ferracuti

2. Skew-Normal Stationary Processes

In this section, to start our discussion on the existence of stationary stochastic processes
having all their finite-dimensional marginal distributions (multivariate) skew-normal. Let
us first focus on a particular characterization (which somehow mimics the characterization
of a Gaussian process) appeared in the literature and show with a counter-example that
it is faulty.

2.1 A spatial skew-normal stationary process that does not exist

Consider the following characterization of a spatial skew-normal stationary stochastic pro-
cess as appeared in Kim and Mallick (2004). Indicating with {Z(x): x ∈ R

2} a spatial
random function (let us assume here, without loss of generality, that this random function
is defined all over the plane, and so that it is not restricted to a subregion of it), they as-
sume that, for every fixed n, the vector Z = (Z(x1), . . . , Z(xn))⊤, where x1,. . . ,xn are n
fixed spatial locations, has the following skew-normal density (Formula (3) of their paper)

f(z) = 2 φn(z − F β;σ2Kθ)Φ

(

α

σ
1⊤

n (z − F β)

)

, z ∈ R
n, (4)

where F is a known design matrix (of dimension n × q) with full column rank, β ∈ R
q

are unknown regression parameters, σ ∈ R
+ is a scale parameter, α ∈ R is a skewness

parameter, and 1n is the n-dimensional column vector of ones. Moreover, they also assume
that Kθ is a positive definite matrix (of dimension n×n) with each entry given by Kθ(||xi−
xj||), where ||xi − xj|| denotes the Euclidean distance between xi and xj , and Kθ(·) is
an isotropic spatial (stationary) autocorrelation function, depending on some (in general
multivariate) parameter θ ∈ Θ. This autocorrelation function Kθ(d), for d ≥ 0, where
d is the (Euclidean) distance between two given and generic locations, is nonnegative,
decreases monotonically with d. For d = 0, we have Kθ(0) = 1, and limd→∞ Kθ(d) = 0. In
particular, they consider the power (general) exponential autocorrelation function

Kθ(d) = exp(−νdθ2), d ≥ 0,

where ν > 0 and θ2 ∈ (0, 2], which can also be expressed as Kθ(d) = θdθ2

1 , putting
θ1 = exp(−ν). In passing, note that for the stochastic process {Z(x): x ∈ R

2} to be
stationary, we must have at least β = 0; and that the scale matrix σ2Kθ is not, in general,
the variance-covariance matrix of Z = (Z(x1), . . . , Z(xn))⊤. Indeed, Kim and Mallick
(2004) used the function Kθ(d) to characterize a matrix of parameters of the process.
The function Kθ(d) would represent the spatial autocorrelation function of the process
{Z(x): x ∈ R

2} only in the case in which α = 0.
Though this definition of a skew-normal spatial stochastic process might appear appeal-

ing, it is nevertheless not correct. The reason is that, although the marginal densities of
the above density in Equation (4) are still skew-normal, they are not of the same form. In-
deed, the assumption that any finite collection of random variables making up the process
should have a multivariate skew-normal joint distribution is at clash with the adoption of
a spatial (stationary) autocorrelation function to characterize their scale matrices.

To show our point, consider three distinct and fixed spatial locations x1,x2,x3 ∈ R
2.

Let Kθ(·) be a given (isotropic) spatial autocorrelation function as before, and let
k12

.
= Kθ(||x1 − x2||), k13

.
= Kθ(||x1 − x3||) and k23

.
= Kθ(||x2 − x3||). Then, being

{Z(x): x ∈ R
2} a spatial random function, applying Formula (3) of Kim and Mallick

(2004), where we consider for simplicity β = 0 and σ2 = 1, the joint distribution of the
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vector (Z(x1), Z(x2), Z(x3))
⊤ should be multivariate skew-normal with density

f(z1, z2, z3) = 2 φ3









z1

z2

z3



 ;





1 k12 k13

k12 1 k23

k13 k23 1







Φ
(

α(z1 + z2 + z3)
)

, (5)

whereas the joint distribution of (Z(x1), Z(x2))
⊤ should be multivariate skew-normal with

density

f(z1, z2) = 2 φ2

([

z1

z2

]

;

[

1 k12

k12 1

])

Φ
(

α(z1 + z2)
)

. (6)

Now, if Formula (3) of Kim and Mallick (2004) was indeed characterizing the finite-
dimensional marginal distributions of a stochastic process, we should be able (at least)
to obtain the joint distribution given in Equation (6) of (Z(x1), Z(x2))

⊤ by marginaliza-
tion of the joint distribution given in Equation (5) of (Z(x1), Z(x2), Z(x3))

⊤ with respect
to Z(x3). Starting from Equation (5), using, for instance, the marginalization Formulas
(19) and (20) of Azzalini (2005), with τ = 0, ξ = 0 and Ω = Ω̄ (due to the presence of
some misprints, we cannot use Formula (7) of Kim and Mallick, 2004), the distribution of
(Z(x1), Z(x2))

⊤ is given by

f(z1, z2) = 2 φ2

([

z1

z2

]

;

[

1 k12

k12 1

])

Φ

(

α⊤
1(2)

[

1 0
0 1

]−1 [
z1

z2

]

)

, (7)

where

α1(2) =

[

α
α

]

+ α
1 − k2

12

[

1 −k12

−k12 1

] [

k13

k23

]

√

1 + α2

(

1 − k2
13 − 2k13k12k23 + k2

23

1 − k2
12

)

=
1

√

1 − k2
12 + α2(1 − k2

12 − k2
13 − k2

23 + 2k13k12k23)
1 − k2

12







α +
α(k13 − k12k23)

1 − k2
12

α +
α(k23 − k12k13)

1 − k2
12






.

So, for Equations (6) and (7) to be equal, we should have

α(z1 + z2) = α⊤
1(2)[z1 z2]

⊤, (8)

and, with a little algebra, we see that a necessary condition for Equation (8) to be true is
that the elements of α1(2) must be equal, that is,

α +
α(k13 − k12k23)

1 − k2
12

= α +
α(k23 − k12k13)

1 − k2
12

,

which is guaranteed whenever

(k13 − k23)(1 + k12) = 0, (9)
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that is, whenever either k12 = −1 or k13 = k23. Since (one or both of) these two condi-
tions should be satisfied for every choice of x1,x2,x3, it follows that ‘admissible’ isotropic
spatial autocorrelation functions Kθ(d) are found among the constant functions of the
Euclidean distance d. Thus, there are no spatial autocorrelation functions Kθ(d) which are
nonnegative and monotonically decreasing with d, with Kθ(0) = 1 and limd→∞ Kθ(d) = 0,
for which Equation (9), and so Equation (8), hold true.

This counter-example shows that the characterization of Kim and Mallick (2004) is
improper and so the advocated spatial skew-normal stationary process does not exist. In
the context of their paper, this means, among other things, that the predicted values of
the process at unobserved spatial locations (obtained through a Bayesian Markov chain
Monte Carlo (MCMC) algorithm) are not self-coherent.

2.2 Other examples of skew-normal stationary processes

A problem very much similar to the poor characterization of a spatial stationary skew-
normal process by Kim and Mallick (2004) can be found in the paper by Allard and Naveau
(2007); see also Naveau and Allard (2004) and Allard and Soubeyrand (2012). Basically, in
Allard and Naveau (2007), to characterize a spatial stochastic process {Z(x): x ∈ R

2}, the
authors assume that for any given set of n spatial locations x1, . . . ,xn in R

2, the random
variables Z(x1), . . . , Z(xn) are jointly distributed (see Formula (5) of Allard and Naveau,
2007) as a multivariate closed skew-normal distribution as defined by González-Faŕıas
et al. (2004a) and González-Faŕıas et al. (2004b), with the elements of the scale matrix
specified through a (stationary) covariance function. In particular, given n spatial locations
x1, . . . ,xn, they assume that the n-dimensional random vector Z = (Z(x1), . . . , Z(xn))⊤

has a multivariate closed skew-normal distribution, denoted by CSNn,m(µ,Σ,Dc,ν,∆),
with density

f(z) =
1

Φm(0;ν,∆ + D⊤
c ΣDc)

φn(z;µ,Σ)Φm(D⊤
c (z − µ);ν,∆), z ∈ R

n,

where m is an integer greater than 0; φn(·;µ,Σ) and Φn(·;µ,Σ) are the density and the
distribution function, respectively, of the n-dimensional normal distribution with mean
vector µ and variance-covariance matrix Σ; µ = µ01n, where µ0 ∈ R; ν = 0 is the null
vector in R

m; and Dc ∈ R
n×m is given by Dc = dA, where d ∈ R and A ∈ R

n×m is a non
null matrix; Σ ∈ R

n×n and ∆ ∈ R
m×m are positive-definite matrices both built using some

(real valued, stationary and ergodic) spatial covariance function c(h) = Cov
(

Z(x), Z(x +

h)
)

. Of course, in this case, we can write c(h) = c(0)ρ(h), where c(0) = Var
[

Z(x)
]

and

ρ(h) = Corr
(

Z(x), Z(x+h)
)

is some real valued spatial autocorrelation function for which
ρ(0) = 1 and ρ(h) → 0, as ||h|| → ∞.

To simplify our discussion, consider the case in which m = 1, µ = 0, Σ is a correlation
matrix with ones along the diagonal, ∆ = 1, A = 1n, and the autocorrelation function
ρ(h) is isotropic (actually, Allard and Naveau, 2007, consider the constraint A⊤ΣA = ∆,
but this does not change the rationale of our discussion). In this case, it is immediate to
see that the n-dimensional random vector Z = (Z(x1), . . . , Z(xn))⊤ is distributed as a
CSNn,1(0,Σ, d1n, 0, 1) with density

f(z) = 2φn(z; 0,Σ)Φ1(d1
⊤
n z; 0, 1), z ∈ R

n,

that is, as the SNn(0,Σ, d1n) distribution of Azzalini (2005) and Azzalini and Capitanio
(1999) as in Equation (2). Now, by considering three distinct spatial locations x1, x2 and
x3, the joint distribution of the random vector (Z(x1), Z(x2), Z(x3))

⊤ should be mul-
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tivariate skew-normal with density as in Equation (5). So, following exactly the same
argument and using the same marginalization formulas considered in Section 2.1, we can
conclude that, for m = 1, also some instances of the spatial skew-normal processes ad-
vocated by Allard and Naveau (2007), in which the matrices Σ and ∆ are built using a
spatial autocorrelation function ρ(h), such that ρ(0) = 1 and ρ(h) → 0, as ||h|| → ∞, do
not exist. That is, we can conclude that the class of processes advocated by these authors
is not properly defined. It is not known whether, for m = 1 or m > 1, a proper choice of
the parameter values might lead to valid coherent processes (apart from the trivial case in
which the finite dimensional marginal distributions are multivariate normal), in particular
for m equal to the (fixed) number of sampling sites where observations have been gathered,
as used in the application by Allard and Naveau (2007).

In a spatial hierarchical framework, adopting the closed skew-normal distribution, a
similar approach to the definition of the latent random field has been taken by Hosseini
et al. (2011). Also in this case, it is possible to show that this latent random field is not
properly defined and so that it does not exist.

Another characterization somehow similar in spirit to the characterization of Kim and
Mallick (2004) has been put forward by Gualtierotti (2005) (see also Gualtierotti, 2004,
who introduced a skew-normal stochastic process) with indexing parameter varying in the
real line, in the context of statistical communication theory. Essentially, this stochastic
process is characterized assuming that all its finite-dimensional marginal distributions
belong to a particular family of multivariate skew-normal distributions, which, in turn,
is characterized following a construction similar to that of the multivariate skew-normal
distribution of Arellano-Valle et al. (2002). Though in Gualtierotti (2005) no claim is made
about the stationarity of the process, if we tried to build the scale matrices of its finite-
dimensional marginal distributions using a (stationary) covariance function decaying to
zero, as the separation distance goes to infinity, then we would still get in trouble. In fact,
it is easy to see that the family of skew-normal distributions put forward by Gualtierotti
(2005) overlaps with the family of skew-normal distributions of Azzalini and Capitanio
(1999), and so, following exactly the same argument used in Section 2.1, that, in general,
in the class of skew-normal processes proposed by Gualtierotti the scale matrices cannot
be constructed using a stationary covariance function.

2.3 Skew-normal stationary processes: some negative results

Consider now the following general question. Are there strictly stationary stochastic pro-
cesses having an autocorrelation function decaying to zero, as the separation distance goes
to infinity, for which all the finite-dimensional marginal distributions are (multivariate)
skew-normal? Somehow, similar queries were posed by Pourahmadi (2007), which in the
context of autoregressive and moving average models tries to argue that there is a consid-
erable trade-off between stationarity and skewness. As far as we are concerned, here, by
recalling and adapting to our case some of the arguments of Pourahmadi (2007), we argue
that we might encounter some problems.

To this aim, consider a real-valued stochastic process Z, with indexing parameter x vary-
ing in some indexing set (which might be R, R

2, or some subset of it), for which, for every
integer n ≥ 1, and every set of indexing values x1, . . . ,xn, the n-dimensional random vector
Z = (Z(x1), . . . , Z(xn))⊤ has an extended skew-normal distribution ESNn(µn,Σn,αn, τ)
as in Equation (1), where µn, Σn and αn depend on n, and for which the hypothesis of
strict stationarity holds. That is, for every integer n ≥ 1, and every set of indexing values
x1, . . . ,xn and x1 + h, . . . ,xn + h, the n-dimensional random vector (Z(x1), . . . , Z(xn))⊤

has the same distribution as (Z(x1 + h), . . . , Z(xn + h))⊤. In this case, it follows that Z
is also second-order stationary, that is, for all couples of indexing values x and x + h:
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i) E
[

Z(x)
]

is a constant that does not depend on x;

ii) Cov
(

Z(x + h), Z(x)
)

is a function of h that does not depend on x.

Remember that for any given random vector Z = (Z(x1), . . . , Z(xn))⊤ of dimension n,
since it must have an extended skew-normal distribution, it is well known that we can
express E

[

Z
]

and Cov
(

Z
)

in terms of µn, Σn, αn and τ through the formulas

E
[

Z
]

= µn + ζ1(τ)Dnδn and Cov
(

Z
)

= Σn + ζ2(τ)Dnδnδ⊤
n Dn,

where δn = (1 + α⊤
n Rnαn)−1/2Rnαn, and

ζ1(τ) =
φ(τ)

Φ(τ)
, ζ2(τ) = −ζ1(τ){τ + ζ1(τ)},

where, as usual, φ(·) is the one-dimensional standard normal density of mean zero and
variance one.

Now, following Pourahmadi (2007), for the stochastic process Z to be strictly station-
ary, it must be that at least all the shape parameters and variances of its univariate
marginal distributions should be the same. Then, for each n-dimensional random vector
Z = (Z(x1), . . . , Z(xn))⊤, this would force δn and Dn to be of the form δn = δ01n,
Dn = γ0In, where In is the identity matrix of dimension n, and hence would force the
scale matrix Σn and the covariance matrix Cov

(

Z
)

of the random vector Z to be equal,
up to an additive constant (which is equal to zero only when δn and so αn are equal to
zero). For instance, if the indexing parameter of Z varies in the integers and for some n
the random vector Z = (Z(x1), . . . , Z(xn))⊤ is such that the indexing values x1, . . . ,xn

are equally spaced, then, since the covariance matrix of Z should have a Toeplitz structure
(with constant entries along diagonals), also the scale matrix Σn should have a Toeplitz
structure. Thus, since Corr

(

Z(x + h), Z(x)
)

and Cov
(

Z(x + h), Z(x)
)

differ only by a
multiplicative constant, we can conclude that there cannot be strictly stationary stochastic
processes for which all the finite-dimensional marginal distributions are skew-normal, the
autocorrelation Corr

(

Z(x+h), Z(x)
)

decays to zero, as ||h|| → ∞, and, at the same time,
the scale matrices Σn are constructed using a covariance function decaying to zero, as
||h|| → ∞. Though processes having an autocorrelation function decreasing to zero might
be thought of as a particular subclass of processes, they are nevertheless extremely impor-
tant for real applications, where it is often necessary to recover the probabilistic structure
of the process from a single (partial) realization of it.

Notice that this negative result is in agreement with a remark by Zhang and El-Shaarawi
(2010). In Section 2 of their paper, they briefly discussed the spatial process

Z(x) = δ|X0| +
√

1 − δ2 X(x), x ∈ R
2,

where X(x) is a stationary Gaussian process with mean zero and variance one and X0 is
a scalar random variable with standard normal distribution, independent of the process
X(x), and −1 ≤ δ ≤ 1. For the Gaussian process X(x), let ρ(h) be its (real valued)
autocorrelation function for which ρ(0) = 1 and ρ(h) → 0, as ||h|| → ∞. By construction,
the process Z(x) is weakly and also strongly stationary, and all finite-dimensional marginal
distributions are multivariate skew-normal according to the definition in Azzalini and Dalla
Valle (1996). In particular, the (stationary) univariate marginal distribution of the process
Z(x) is SN1(0, 1, δ/

√
1 − δ2). Whereas, in general, for any given set of n spatial locations

x1, . . . ,xn, the n-dimensional random vector Z = (Z(x1), . . . , Z(xn))⊤ has distribution
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SNn(0,Σ,α), where Σ = (1 − δ2)Ψ + δ2,

α⊤ = δ(1 − δ2)−1/2[(1 − δ2) + δ21⊤
n Ψ−11n]−1/21⊤

n Ψ−1,

and Ψ is the n × n correlation matrix of the n-dimensional random vector
(X(x1), . . . ,X(xn))⊤ built using the autocorrelation function ρ(h).

For this process, the argument used in the counter-example in Section 2.1 does not lead
to any inconsistency, since its finite-dimensional marginal distributions are self-coherent.
However, as pointed out by Zhang and El-Shaarawi (2010), this process is useless for many
practical purposes, since it is not ergodic and has an autocorrelation function

Corr
(

Z(x), Z(x + h)
)

=
δ2(1 − 2/π) + (1 − δ2)ρ(h)

δ2(1 − 2/π) + (1 − δ2)
,

that does not decay to zero. It is easy to see that, when ||h|| → ∞, and ρ(h) → 0, the
correlation converges to a (strictly) positive value that depends on the skewness parameter
δ. Finally, it might be the case to note that if we do not require any particular condition,
we have a very simple way to define a stochastic process (made up of an infinite, but count-
able, number of random variables) having all its finite-dimensional marginal distributions
belonging to some family of multivariate skew-normal distributions closed under marginal-
ization (as the families defined by Equations (1) and (2)). For example, with respect to
the family defined by Equation (2), consider the following infinite sequence of multivariate
distributions of increasing dimension

SN1(µ1,Σ1,α1), SN2(µ2,Σ2,α2), SN3(µ3,Σ3,α3), . . .

such that, for every n, SNn−1(µn−1,Σn−1,αn−1) can be obtained by marginalization from
SNn(µn,Σn,αn). Though it might be somewhat impractical to work with such an infi-
nite sequence, this sequence of distributions properly defines the (probabilistic) law of a
stochastic process with indexing parameter in some countable set.

3. A Hierarchical Geostatistical Skew-Normal Stationary Process

In accordance with the remarks made in the Introduction, the negative results of the
previous sections do not prevent the existence of stationary stochastic processes with a
covariance function decreasing to zero, as the separation distance goes to infinity, having
univariate marginal distributions that are skew-normal. In addition to the SETAR model
recalled in Section 1, another example of a stationary stochastic process having a covariance
function decreasing to zero, and univariate skew-normal marginal distributions, has been
given, in the spatial domain, by Zhang and El-Shaarawi (2010), exploiting one of the
stochastic characterizations of the skew-normal distribution. As in the SETAR model, even
in this case, the finite-dimensional marginal distributions (with a number of dimensions
greater than one) of the process do not belong to any of the commonly considered families of
multivariate skew-normal distributions. In the continuous time domain, another interesting
characterization of a skew-normal process has instead been advanced by Corns and Satchell
(2007) to tackle the problem of pricing European options.

In the spatial domain, a strongly stationary geostatistical stochastic process, having
(univariate) skew-normal conditional and marginal distributions, can be defined by build-
ing on a latent stationary Gaussian process, adopting the hierarchical approach of Diggle
et al. (1998); see also Diggle and Ribeiro (2007).
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Let z(xi), for i = 1, . . . , n, be a set of geo-referenced data measurements relative to a
regionalized variable, gathered at n spatial locations xi. This regionalized variable is seen as
a partial realization of a random function {Z(x): x ∈ R

2}. Following Minozzo and Fruttini
(2004) and Ferracuti (2005), let {Y (x): x ∈ R

2} be an unobservable mean zero stationary
Gaussian process with Var

[

Y (x)
]

= ς2 > 0 and Cov
(

Y (x), Y (x+h)
)

= ς2ρ(h), where ρ(h)
is a real valued spatial autocorrelation function for which ρ(0) = 1 and ρ(h) → 0, as ||h|| →
∞. We assume that, given the latent process {Y (x): x ∈ R

2}, the random variables Z(x),
for x ∈ R

2, are conditionally mutually independent, and that the conditional distribution
of Z(x), for each x, depends only on the random variable Y (x). In particular, we assume
that, conditionally on the latent process {Y (x): x ∈ R

2}, the random variables Z(x),
for any given x, have conditional density fZ|Y (z;M(x)), specified by the value of the

conditional expectation M(x) = E
[

Z(x)
∣

∣Y (x)
]

, that is, Z(x)
∣

∣Y (x) ∼ fZ|Y (z;M(x)), and
that h(M(x)) = β + Y (x), for some real parameter β and some known link function h(·).

In the case in which fZ|Y (z;M(x)) is skew-normal and h(·) is a translation by a constant,

it is easy to verify that the process {Z(x): x ∈ R
2} is second-order, and also strongly

stationary. In particular, assume that

Z(x) = β + Y (x) + ωS(x), (10)

where ω ∈ R
+ and S(x), for x ∈ R

2, are mutually independently distributed as skew-
normals SN1(0, 1, α) such that, for every x ∈ R

2, the density of S(x) is given by

fS(s) = 2φ1(s; 1)Φ(αs), −∞ < s < ∞,

where α ∈ R. In assuming Equation (10), we have implicitly chosen the link function
h(M(x))

.
= M(x) − ω(2/π)1/2α/(1 + α2)1/2. Thus, we have that, for every x ∈ R

2,
Z(x)|Y (x) ∼ SN1(β + Y (x), ω2, α). Now, although the random variables Z(x), for
x ∈ R

2, are conditionally distributed as skew-normals, and also (see, e.g., Azzalini, 2005)

marginally distributed as SN1(β, ς2 + ω2, αω/
√

ς2(1 + α2) + ω2), the other (multivariate)
finite-dimensional marginal distributions of the process {Z(x): x ∈ R

2} are not skew-
normal; see also the comments in Gupta and Chen (2004). Let us mention that the spatial
process Z(x) just defined can be obtained as a particular instance (that is, as a subclass)
of the process given in Formula (4) of Zhang and El-Shaarawi (2010).

To derive the (stationary) autocorrelation structure of the process {Z(x): x ∈ R
2},

consider first that, since, for every x ∈ R
2,

E
[

S(x)
]

=

(

2

π

)1/2 α

(1 + α2)1/2
, Var

[

S(x)
]

= 1 − 2

π

α2

(1 + α2)
,

it follows that, for every x ∈ R
2,

E
[

Z(x)
∣

∣Y (x)
]

= β + Y (x) + ω

(

2

π

)1/2 α

(1 + α2)1/2
,

Var
[

Z(x)
∣

∣Y (x)
]

= ω2

[

1 − 2

π

α2

(1 + α2)

]

.

Then, with some algebra, we can derive both the autocovariance function and the vari-
ogram of the process {Z(x): x ∈ R

2} using standard techniques. For instance, for h 6= 0,
the variogram is given by



Chilean Journal of Statistics 167

γ(h) =
1

2
Var
[

Z(x + h) − Z(x)
]

=
1

2
E
[

Var
[

Z(x)|Y (x)
]]

+
1

2
E
[

Var
[

Z(x + h)|Y (x + h)
]]

+
1

2
Var
[

E
[

Z(x)|Y (x)
]]

+
1

2
Var
[

E
[

Z(x + h)|Y (x + h)
]]

−Cov
(

E
[

Z(x)|Y (x)
]

, E
[

Z(x + h)|Y (x + h)
])

=
1

2
ω2

[

1 − 2

π

α2

(1 + α2)

]

+
1

2
ω2

[

1 − 2

π

α2

(1 + α2)

]

+
1

2
ς2 +

1

2
ς2 − ρ(h)ς2

= ω2

[

1 − 2

π

α2

(1 + α2)

]

+ ς2
(

1 − ρ(h)
)

,

which is discontinuous at zero, that is, γ(0) 6= γ(0+), and we have

γ(0+) = ω2

[

1 − 2

π

α2

(1 + α2)

]

, lim
||h||→∞

γ(h) = ω2

[

1 − 2

π

α2

(1 + α2)

]

+ ς2.

For the process given in Equation (10), it is easy to verify that, for h 6= 0, the autocovari-
ance function is given by

Cov
(

Z(x + h), Z(x)
)

= ς2ρ(h),

and so the autocorrelation function converges to zero, as ||h|| → ∞.
Though, as we have already noticed, the multivariate finite-dimensional marginal distri-

butions of the process {Z(x): x ∈ R
2} are not skew-normal (in the sense of Equation (2)),

it is easy to see that they are closed skew-normal, according to the definition of González-
Faŕıas et al. (2004a). To see this, consider n spatial locations x1, . . . ,xn, and the corre-
sponding n-dimensional random vector Z = (Z(x1), . . . , Z(xn))⊤. Recalling that for any
given x ∈ R

2 we can write Z(x) = β + Y (x) + ωS(x), the vector Z can be represented by

Z = β1n + Y + DωS = W + V ,

where W = β1n + Y , V = DωS, Y = (Y (x1), . . . , Y (xn))⊤, and S =
(S(x1), . . . , S(xn))⊤, with Dω being an n × n diagonal matrix with ω on the diag-
onal. Now, since S(x), for x ∈ R

2, are independently and identically distributed as
CSN1,1(0, 1, α, 0, 1), according to Theorem 3 of González-Faŕıas et al. (2004b), we have
that S ∼ CSNn,n(0, In,Dα, 0, In), where Dα is the n × n diagonal matrix with α on the
diagonal.

Since Y follows a multivariate normal distribution with mean 0 and covariance ma-
trix ΣY with entries given by Cov

(

Y (x), Y (x + h)
)

= ς2ρ(h), we also have that
Y ∼ CSNn,1(0,ΣY , 0, 0, 1). Moreover, being W distributed as a multivariate normal with
mean β1n and covariance matrix ΣY , we can write that W ∼ CSNn,1(β1n,ΣY , 0, 0, 1),
and using Theorem 1 of González-Faŕıas et al. (2004b) we can also write that V ∼
CSNn,n(0,Dω2 ,Dα/ω, 0, In), where Dω2 is the n×n diagonal matrix with ω2 on the diag-
onal, and Dα/ω is the n× n diagonal matrix with α/ω on the diagonal. Thus, considering
that Z = W + V , we can conclude, using Theorem 4 of González-Faŕıas et al. (2004b),
that Z ∼ CSNn,n+1(β1n,ΣY + ω2In,D∗, 0,∆∗), for some appropriate matrices D∗ and
∆∗.
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For this process, on the basis of the observations Z(x1), . . . , Z(xn) at a set of spatial
locations x1, . . . ,xn, likelihood inference can be carried out by implementing some Monte
Carlo EM algorithm, whereas a prediction at any given unobserved site x0 ∈ R

2 can
be obtained either by MCMC techniques (see also Zhang and El-Shaarawi, 2010), or by
noticing that the joint distribution of Z(x0), . . . , Z(xn) is closed skew-normal and so by
exploiting the closure property with respect to conditioning of this distribution to find
directly the conditional distribution of Z(x0), given the observed data Z(x1), . . . , Z(xn),
which is again closed skew-normal; see, e.g., Proposition 2.3.2 of González-Faŕıas et al.
(2004a). Let us finally mention that following, for instance, Minozzo and Fruttini (2004),
it would be possible to extend this (univariate) spatial process to a multivariate one hav-
ing univariate marginal skew-normal distributions and multivariate (for n ≥ 2) marginal
closed skew-normal distributions, by building on the classical geostatistical proportional
covariance model, or, more generally, on the linear model of coregionalization.

4. Conclusions

In this paper, we have raised the attention on some ill defined skew-normal processes
that have recently appeared in the literature and showed with a counter-example that
these processes do not exist. This counter-example is concerned with a particular, though
important, family of skew-normal distributions, and with the poor characterization of their
scale matrices. It does not prevent the existence of stationary stochastic processes with an
autocorrelation function decreasing to zero, for which all the finite-dimensional marginal
distributions are (multivariate) skew-normal, for some particular subclass or family of
multivariate skew-normal distributions. Indeed, adopting a constructive approach to the
definition of a stochastic process, we have built a strictly stationary spatial process having
all its (multivariate) finite-dimensional marginal distributions belonging to the closed skew-
normal family.
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