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Abstract

The valuation of real estates is of extreme importance for decision making. Their sin-
gular characteristics make valuation through hedonic pricing methods difficult since the
theory does not specify the correct regression functional form nor which explanatory
variables should be included in the hedonic equation. In this article, we perform real
estate appraisal using a class of regression models proposed by Rigby and Stasinopoulos
(2005) called generalized additive models for location, scale and shape (GAMLSS). Our
empirical analysis shows that these models seem to be more appropriate for estimation
of the hedonic prices function than the regression models currently used to that end.

Keywords: Cubic splines · GAMLSS regression models · Hedonic prices function
· Nonparametric smoothing · Semiparametric models.

Mathematics Subject Classification: Primary 62P25 · Secondary 62P20 · 62P05.

1. Introduction

The real estate, apart from being a consumer good that provides comfort and social status,
is one of the economic pillars of all modern societies. It has become a form of stock capital,
given the expectations of increasing prices, and a means of obtaining financial gains through
rental revenues and sale profits. As a consequence, the real estate market value has become
a parameter of extreme importance.
The estimation of a real estate value is usually done using a hedonic pricing equation

according to the methodology proposed by Rosen (1974). This is seen as a heterogeneous
good comprised of a set of characteristics and it is then important to estimate an explicit
function, called hedonic price function, that determines which are the most influential
attributes, or attribute “package”, when it comes to determining its price. However, the
estimation of a hedonic equation is not a trivial task since the theory does not determine
the exact functional form nor the relevant conditioning variables.
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The use of classical regression methodologies, such as the classical normal linear regres-
sion model (CNLRM), for real estate appraisal can lead to biased, inefficient and/or incon-
sistent estimates given the inherent characteristics of the data (for example, nonnormality,
heteroskedasticity and spatial correlation). The use of generalized linear models (GLM) is
also subject to shortcomings, since the data may come from a distribution outside the expo-
nential family and the functional relationship between the response and some conditioning
variables may not be the same for all observations. There are semiparametric and nonpara-
metric hedonic price estimations available in the literature, such as Pace (1993), Anglin
and Gencay (1996), Gencay and Yang (1996), Thorsnes and McMillen (1998), Iwata et al.
(2000) and Clapp et al. (2002). We also highlight the work of Martins-Filho and Bin (2005),
who modeled data from the real estate market in Multnomah County (Oregon-USA) non-
parametrically. We note that the use of nonparametric estimation strategies require very
large datasets in order to avoid the “curse of dimensionality”. Overall, however, most he-
donic price estimations are based on traditional methodologies such as the classical linear
regression model and the class of generalized linear models.
This article proposes a methodology for real estate mass appraisal1 based on the class of

GAMLSS models. The superiority GAMLSS modeling relative to traditional methodologies
is evidenced by an empirical analysis that employs data on urban land lots located in
the city of Aracaju, Brazil. We perform a real estate evaluation in which the response
variable is the unit price of land lots and the independent variables are reflect the land lots
structural, location and economic characteristics. We estimate the location and scale effects
semiparametrically in such a way that some covariates (the geographical coordinates of the
land lot, for instance) enter the predictor nonparametrically and their effects are estimated
using smoothing splines (see Silverman, 1984; Eubank, 1999) whereas other regressors are
included in the predictor in the usual parametric fashion. The model delivers a fit that is
clearly superior to those obtained using the usual approaches. In particular, we note that
our fit yields a very high pseudo-R2.
The paper unfolds as follows. In Section 2, we briefly present the class of GAMLSS models

and highlight its main advantages. In Section 3, we describe the data used in the empirical
analysis. In Section 4, we present and discuss the empirical results. Finally, Section 5 closes
the paper with some concluding remarks.

2. GAMLSS Modeling

Rigby and Stasinopoulos (2005) introduced a general class of statistical models called “addi-
tive models for location, scale and shape” (GAMLSS). It encompasses both parametric and
semiparametric models, and includes a wide range of continuous and discrete distributions
for the response variable. It also allows the simultaneous modeling of several parameters
that index the response distribution using parametric and/or nonparametric functions.
With GAMLSS models, the distribution of the response variable is not restricted to the
exponential family and different additive terms can be included in the regression predictors
for the parameters that index the distribution, like smoothing splines and random effects,
which yields extra flexibility to the model. The model is parametric in the sense that the
specification of a distribution for the response variable is required and at the same time it
is semiparametric because one can model some conditioning effects through nonparametric
functions.
The probability density function of the response variable y is denoted as f (y|θ), where

θ = (θ1, . . . , θp)> is a p-dimensional parameter vector. It is assumed to belong to a wide

1Evaluation of a set of real properties through methodology and procedures common to all of them.
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class of distributions that we denote by D. This class of distributions includes continuous
and discrete distributions as well as truncated, censored and finite mixtures of distributions.
In the GAMLSS regression framework the p parameters that index f(y|θ) are modeled using
additive terms.
Let y = (y1, . . . , yn)> be the vector of independent observations on the response

variable, each yi having probability density function f (yi|θi), for i = 1, . . . , n. Here,
θi = (θi1, . . . , θip)> is a vector of p parameters associated with the explanatory variables
and with random effects. When the covariates are stochastic, f(yi|θi) is taken to be con-
ditional on their values. Additionally, for k = 1, . . . , p, gk(·) is a strictly monotonic link
function that relates the kth parameter θk to explanatory variables and random effects
through the additive predictor

gk(θk) = ηk = Xkβk +
Jk∑
j=1

Zjkγjk, (1)

where θk and ηk are n×1 vectors, βk = (β1k, . . . , βJ ′
kk)
> is a vector of parameters of length

J ′k and Xk and Zjk are fixed (covariate) design matrixes of orders n × J ′k and n × qjk,
respectively. Finally, γjk is a qjk-dimensional random variable. Model given in Equation
(1) is called GAMLSS; see Rigby and Stasinopoulos (2005).
In many practical situations it suffices to model four parameters (p = 4), usually location

(θ1 = µ), scale (θ2 = σ), skewness (θ3 = ν) and kurtosis (θ4 = τ); the latter two are said
to be shape parameters. Thus, we have the models

Location and scale
parameters


g1(µ) = η1 = X1β1 +

∑J1
j=1Zj1γj1;

g2(σ) = η2 = X2β2 +
∑J2

j=1Zj2γj2;

Shape parameters


g3(ν) = η3 = X3β3 +

∑J3
j=1Zj3γj3;

g4(τ ) = η4 = X4β4 +
∑J4

j=1Zj4γj4.

It is also possible to add to the predictor functions hjk that involve smoothers like cubic
splines, penalized splines, fractional polynomials, loess curves, terms of variable coefficients,
and others. Any combination of these functions can be included in the submodels for µ, σ, ν
and τ . As Akantziliotou et al. (2002) pointed out, the GAMLSS framework can be applied
to the parameters of any population distribution and generalized to allow the modeling of
more than four parameters.
GAMLSS models can be estimated using the gamlss package for R (see Ihaka and

Gentleman, 1996; Cribari-Neto and Zarkos, 1999), which is a free software; see http:
//www.R-project.org. Practitioners can then choose from more than 50 response distri-
butions.

2.1 Estimation

Two aspects are central to the GAMLSS additive components fitting, namely: the backfit-
ting algorithm and the fact that quadratic penalties in the likelihood function follow from
the assumption that all random effects in the linear predictor are normally distributed.
Suppose that the random effects γjk in model given in Equation (1) are independent and

normally distributed with γjk ∼ Nqjk(0, G
−1
jk ), where G−1

jk is the qjk × qjk (generalized)
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inverse of the symmetric matrix Gjk = Gjk(λjk). Rigby and Stasinopoulos (2005) noted
that for fixed values of λjk, one can estimate βk and γjk by maximizing the penalized
log-likelihood function

`p = `− 1
2

p∑
k=1

Jk∑
j=1

γ>jkGjkγjk,

where ` =
∑n

i=1 log{f(yi|θi)} is the log-likelihood function of the data given θi, for i =
1, . . . , n. This can be accomplished by using a backfitting algorithm; for details, see Rigby
and Stasinopoulos (2005, 2007), Hastie and Tibshirani (1990) and Härdle et al. (2004).

2.2 Model selection and diagnostic

GAMLSS model selection is performed by comparing various competing models in which
different combinations of the components M = {D,G, T ,λ} are used, where D specifies
the distribution of the response variable, G is the set of link functions (g1, . . . , gp) for the
parameters (θ1, . . . , θp), T defines the set of predictor terms (t1, . . . , tp) for the predictors
(η1, . . . , ηp) and λ specifies the set of hiperparameters.
In the parametric GAMLSS regression setting, each nested model M can be assessed

from its fitted global deviance (GD), given by GD = −2`(θ̂), where `(θ̂) =
∑n

i=1 `(θ̂
i
).

Two nested competing GAMLSS models M0 and M1, with fitted global deviances GD0

and GD1 and error degrees of freedom (df), namely dfe0 and dfe1, respectively, can be
compared using the generalized likelihood ratio test statistic Λ = GD0 − GD1, which is
asymptotically distributed as χ2 with d = dfe0− dfe1 df underM0. For each modelM the
number of error df, namely dfe is dfe = n −

∑p
k=1 dfθk, where dfθk are the df used in the

predictor of the model for the parameter θk, for k = 1, . . . , p.
When comparing nonnested GAMLSS models (including models with smoothing terms),

the generalized Akaike information criterion (GAIC) (see Akaike, 1983) can be used to
penalize overfittings. This is achieved by adding to the fitted global deviances a fixed
penalty # for each effective df that are used in the model, that is, GAIC(#) = GD + #df,
where GD is the fitted global deviance. One then selects the model with the smallest
GAIC(#) value.
To assess the overall adequacy of the fitted model, we propose the randomized quantile

residual; see Dunn (1996). This is a randomized version of the residual proposed by Cox
and Snell (1989) defined as

rqi = Φ−1(ui), i = 1, . . . , n,

where Φ(·) denotes the standard normal distribution function, ui is a uniform random
variable on the interval (ai, bi], with ai = limy↑yi F(yi|θi) and bi = F(yi|θi). A plot of these
residuals against the index of the observations (i) should show no detectable pattern. A
detectable trend in the plot of some residual against the predictors may be suggestive of
link function misspecification.
Also, normal probability plots with simulated envelopes (see Atkinson, 1985) or worm

plots (see Buuren and Fredriks, 2001) are a helpful diagnostic tool. The worm plots are
useful for analyzing the residuals in different regions (intervals) of the explanatory variable.
If no explanatory variable is specified, the worm plot becomes a detrended normal QQ plot
of the (normalized quantile) residuals. When all points lie inside the (dotted) confidence
bands (the two elliptical curves) there is no evidence of model misspecification.
In the context of a fully parametric model GAMLSS we can use pseudo R2 measures.
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For example, R2∗
p = 1− log L̂/ log L̂0 (see McFadden, 1974) and R2

LR = 1− (L̂0/L̂)2/n (see
Cox and Snell, 1989, pp. 208–209), where L̂0 and L̂ are the maximized likelihood functions
of the null (intercept only) and fitted (unrestricted) models, respectively. The ratio of the
likelihoods or log-likelihoods may be regarded as a measure of the improvement, over the
model with θi parameters achieved by the model under investigation.
Our proposal, however, is to compare the different models using the pseudo-R2 given

by the square of the sample correlation coefficient between the response and the fitted
values. Notice that by doing so we can consider both fully parametric models and models
that include nonparametric components. We can also compare the explanatory power of a
GAMLSS model to those of GLM and CNLRMmodels. This is the pseudo-R2 we use, which
was introduced by Ferrari and Cribari-Neto (2004) in the context of beta regressions and
it is a straightforward generalization of the R2 measure used in linear regression analysis.

3. Data Description

The data contain 2,109 observations on empty urban land lots located in the city of Aracaju,
capital of the state of Sergipe (SE), Brazil, and comes from two sources: (i) data collected
by the authors from real estate agencies, advertisements on newspapers and research on
location (land lots for sale or already sold); (ii) data obtained from the “Departamento de
Cadastro Imobiliário da Prefeitura de Aracaju”. Observations cover the years 2005, 2006
and 2007. Each land lot price was recorded only once during that period. It is also note-
worthy that the land lots in the sample are geographically referenced relative to the South
American Datum1 and have their geographical positions (latitude, longitude) projected
onto the Universal Transverse Mercator (UTM) coordinate system2.
The sample used to estimate the hedonic prices equation (i.e., the equation of hedonic

prices of urban land lots in Aracaju-SE) contains, besides the year of reference, information
on the physical (area, front, topography, pavement and block position), location (neighbor-
hood, geographical coordinates, utilization coefficient and type of street in which the land
lot is located) and economic (nature of the information that generated the observation,
average income of the head of household of the censitary system, where the land is located
and the land lot price) characteristics of the land lots. In particular, we use the variables

• YEAR (YR): qualitative ordinal variable that identifies the year in which the information
was obtained. It assumes the values 2005, 2006 (YR06) and 2007 (YR07). It enters the
model through dummy variables;

• AREA (AR): continuous quantitative variable, measured in m2 (square meters), relative to
the projection on a horizontal plane of the land surface;

• FRONT (FR): continuous quantitative variable, measured in m (meters), concerning the
projection of the land lot front over a line which is perpendicular to one of the lot
boundaries, when both are oblique in the same sense, or to the “chord”, in the case of
curved fronts;

• TOPOGRAPHY (TO): nominal qualitative variable that relates to the topographical confor-
mations of the land lot. It is classified as “plain” when the land acclivity is smaller than
10% or its declivity is smaller than 5%, and as “rough” otherwise. It is a dummy variable
that equals 1 for “plain” and 0 “rough”;

1The South American Datum (SAD) is the regional geodesic system for South America and refers to the mathematical
representation of the Earth surface at sea level.
2Cilindrical cartographic projection of the terrestrial spheroid in 60 secant cylinders at Earth level alongside the
meridians in multiple zones of 6 degrees longitude and stretching out 80 degrees South latitude to 84 degrees North
latitude.
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• PAVEMENT (PA): nominal qualitative variable that indicates the presence or absence of
pavement (concrete, asphalt, among others) on the street in which the main land lot
front is located. It enters the model as a dummy variable that equals 1 when the land
lot is located on a paved street and 0 otherwise;

• SITUATION (SI): nominal qualitative variable used to differentiate the disposition of the
land lot on the block. It is classified as “corner lot” or “middle lot”. It is a dummy variable
that assumes value 1 for corner lots and 0 for all other land lots;

• NEIGHBORHOOD (NB): nominal qualitative variable referring to the name of the neigh-
borhood where the land lot is located. It was categorized as valuable (highly priced)
neighborhoods and other neighborhoods, with the variable shown as VN and regarded
as a dummy (1 for valuable neighborhoods). The neighborhoods were also grouped as
belonging or not belonging to the city South Zone, dummy denoted by SZ (1 for South
Zone);

• LATITUDE (LAT) and LONGITUDE (LON): continuous quantitative variables corresponding to
the geographical position of the land lot at the point z = (LAT, LON), where LAT and LON

are the coordinates measured in UTM;
• UTILIZATION COEFFICIENT (UC): discrete variable given by a number that, when multiplied

by the area of the land lot, yields the maximal area (in square meters) available for
construction. UC is defined in an official urban development document. It assumes the
values 3.0, 3.5, . . . , 5.5, 6.0;

• STREET (STR): ordinal qualitative variable used to differentiate the land lot location rel-
ative to streets and avenues. It is classified as “minor arterial” (STR1), “collector street”
(STR2) and “local street” according to the importance of the street where the land lot
is located. It enters the model as dummy variables;

• NATURE OF THE INFORMATION (NI): nominal qualitative variable that indicates whether
the observation is derived from “offer”, “transaction” or from the Aracaju register office
(real state sale taxes). It enters the model through dummy variables;

• SECTOR (ST): discrete quantitative proxy variable of macrolocation used to socioeconom-
ically distinguish the various neighborhoods, represented by the average income of the
head of household, in minimum wages, according to the IBGE census (2000). The neigh-
borhood average income functions as a proxy to other characteristics, such as urban
amenities. It assumes the values: 1, . . . , 18;

• FRONT IN HIGHLY VALUED NEIGHBORHOODS (FRVN): continuous quantitative variable that
assumes strictly positive values and corresponds to the interaction between FR and VN

variables. It is included in the model to capture the influence of land lots front dimensions
in “valuable” neighborhoods;

• UNIT PRICE (UP): continuous quantitative variable that assumes strictly positive values
and corresponds to the land lot price divided by its area, measured in R$/m2 (reais per
square meter).

In real estate appraisals (and specifically in land lots valuations), the interest typically lies
in modeling the unit price as a function of the underlying structural, location and economic
characteristics of the real estate. We then use UP as the dependent variable (response). The
independent variables relate to the location (NB, VN, SZ, LAT, LON, ST, UC and STR), physical
(AR, FR, TO, SI and FRVN) and economic (NI) land lot characteristics; we also account for
the year of data collection.
Figure 1 presents box-plots of UP, AR and FR and Table 1 displays summary statistics

on those variables. The box-plot of UP shows that its distribution is skewed and that there
are several extreme observations. Notice from Table 1 that the sample values of UP range
from R$ 2.36/m2 to R$ 800.00/m2 and that 75% of the land lots have unit prices smaller
than R$ 82.82/m2.
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We note that 263 extreme observations have been identified from the box-plot of AR (see
Figure 1). These observations are not in error, they appear as outlying data points in the
plot because the variable assumes a quite wide range of values: from 41 m2 to 91, 780 m2,
that is, the largest land lot is nearly two thousand times larger than the smallest one.
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Figure 1. Box-plots of UP, AR and FR.

Table 1. Descriptive statistics.
Variable Mean Median Standard error Minimum Maximum Range

UP 72.82 55.56 70.28 2.36 800.00 797.64
LAT 710100.00 710300.00 2722.34 701500.00 714600.00 13100.00
LON 8787000.00 8786000.00 6638.77 8769000.00 8798000.00 29000.00
AR 1355.00 300.00 6063.53 48.00 91780.00 91732.00
FR 18.13 10.00 30.54 2.60 516.00 513.40

In order to investigate how UP relates to some explanatory variables, we produced dis-
persion plots. Figure 2 contains the pairwise plots: (i) UP × LAT; (ii) UP × LON; (iii) log(UP)
× log(AR); (iv) log(UP) × log(FR); (v) UP × ST and (vi) UP × UC. It shows that there is
a direct relationship between UP and the corresponding regressor in (i), (ii), (v) and (vi),
whereas in (iii) and (iv) the relationship is inverse. Thus, there is a tendency for the land
lot unit price to increase with latitude, longitude, sector and also with the utilization co-
efficient, and to decrease as the area and the front size increase. We note that the inverse
relationship between unit price and front size was not expected. It motivated the inclusion
of the covariate FRVN in our analysis.
It is not clear from Figure 2 whether the usual assumptions of normality and homoskedas-

ticity are reasonable. As noted by Rigby and Stasinopoulos (2007), transformations of the
response variable and/or of the explanatory variables are usually made in order to mini-
mize deviations from the underlying assumptions. However, this practice may not deliver
the expected results. Additionally, the resulting model parameters are not typically easily
interpretable in terms of the untransformed variables. A more general modeling strategy is
thus called for.

4. Empirical Modeling

In what follows, we estimate the hedonic price function of land lots located in Aracaju
using the highly flexible class of GAMLSS models. At the outset, however, we estimate
standard linear regression and generalized linear models. We use these fits as benchmarks
for our estimated GAMLSS hedonic price function.
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Figure 2. Dispersion plots.

4.1 Data modeling based on the CNLRM

Table 2 lists the classical normal linear regressions that were estimated. The transformation
parameter of the Box-Cox model was estimated by maximizing the profile log-likelihood
function: λ̂ = 0.1010. All four models are heteroskedastic and there is strong evidence of
nonnormality for the first two models. The coefficients of determination range from 0.54
to 0.66. Since the error variances are not constant, we present in Table 3 the estimated
parameters of Model E, which yields the best fit, along with heteroskedasticity-robust
HC3 standard errors; see Davidson and MacKinnon (1993). Notice that all covariates are
statistically significant at the 5% nominal level, except for LAT (p-value = 0.1263), which
suggests that pricing differentiation mostly takes place as we move in the North-South
direction.

4.2 Hedonic GLM function

Table 4 displays the maximum likelihood fit of the generalized linear model that we call
Model A given by

g(UP ∗) = β0 + β2LON + β3log(AR) + β4UC + β5log(ST) + β6STR1 + β7STR2

+β8SI + β9PA + β10TO + β11NIO + β12NIT + β13YR06 + β14YR07

+β15SZ + β16log(FRVN), (2)

where UP ∗ = IE[UP ] = µ, UP ∼ Gamma(µ, σ) and η = log(µ). We try a number of
different models, and this one (gamma response and log link) yielded the best fit. We also
note that all regressors are statistically significant at the 1% nominal level, except for LAT

(p-value = 0.5295), which is why we dropped this covariate from the model.
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Table 2. Fitted models via CNLRM.
Model Equation Considerations

B UP = β0 + β1LAT + β2LON + β3AR + β4UC +
β5ST+β6STR1+β7STR2+β8SI+β9PA+β10TO+
β11NIO+β12NIT+β13YR06+β14YR07+β15SZ+
β16FRVN + ε

The null hypotheses that the errors are ho-
moskedastic and normal are rejected at the 1%
nominal level by the Breusch-Pagan and Jarque-
Bera tests, respectively. The explanatory variables
proved to be statistically significant at the 1%
nominal level (z-tests). Also, R2

= 0.539, AIC =
22304 and BIC = 22406.

C log(UP) = β0 +β1LAT+β2LON+β3AR+β4UC+
β5ST+β6STR1+β7STR2+β8SI+β9PA+β10TO+
β11NIO+β12NIT+β13YR06+β14YR07+β15SZ+
β16FRVN + ε

The null hypotheses that the errors are ho-
moskedastic and normal are rejected at the 1%
nominal level by the Breusch-Pagan and Jarque-
Bera tests, respectively. All explanatory variables
proved to be statistically significant at 1% the
nominal level (z-tests). Also, R2

= 0.599, AIC =
2912 and BIC = 3014.

D log(UP) = β0 + β1LAT + β2LON + β3log(AR) +
β4UC + β5log(ST) + β6STR1 + β7STR2 + β8SI +
β9PA + β10TO + β11NIO + β12NIT + β13YR06 +
β14YR07 + β15SZ + β16log(FRVN) + ε

The Jarque-Bera test does not reject the null hy-
pothesis of normality at the usual nominal lev-
els, but the Breusch-Pagan test rejects the null
hypothesis of homoskedasticity at the 1% nomi-
nal level. All explanatory variables are statistically
significant at the 1% nominal level, except for the
LAT variable (p-value = 0.0190). Also, R2

= 0.651,
AIC = 2619 and BIC = 2721.

E UPλ−1
λ

= β0 + β1LAT + β2LON + β3log(AR) +
β4UC + β5log(ST) + β6STR1 + β7STR2 + β8PA +
β9TO+β10NIO+β11NIT+β12YR06+β13YR07+
β14log(FRVN) + ε

Normality is not rejected by the Jarque-Bera test,
but the Breusch-Pagan test rejects the null hy-
pothesis of homoskedasticity at the 1% nominal
level. All covariates proved to be statistically sig-
nificant at the 1% nominal level, except for the
LAT variable (p-value = 0.0881). Also, R2

= 0.657,
AIC = 4290 and BIC = 4392.

Table 3. Hedonic price function estimated via CNLRM – Model E.
Estimate Standard error z-statistic p-value

(Intercept) −162.6307 34.1920 −4.756 0.0000
LAT 1.85e-05 1.21e-05 1.529 0.1263
LON 1.74e-05 4.60e-06 3.798 0.0001

log(AR) −0.3507 0.0192 −18.236 0.0000
log(ST) 0.4423 0.0332 13.297 0.0000

UC 0.2651 0.0412 6.429 0.0000
STR1 0.4874 0.0717 6.789 0.0000
STR2 0.1678 0.0675 2.485 0.0130

SI 0.1119 0.0405 2.757 0.0058
PA 0.3853 0.0302 12.767 0.0000
TO 0.4905 0.0798 6.145 0.0000
NIO 0.5994 0.0592 10.131 0.0000
NIT 0.5111 0.0131 3.886 0.0000

YR06 0.2560 0.0351 7.289 0.0000
YR07 0.6450 0.0345 18.645 0.0000

SZ 0.7221 0.0474 15.239 0.0000
log(FRVN) 1.2041 0.0137 8.797 0.0000

4.3 GAMLSS hedonic fit

4.3.1 Location parameter modeling (µ)

Since UP (the response) only assumes positive values, we consider the distributions log-
normal (LOGNO), inverse Gaussian (IG), Weibull (WEI) and gamma (GA). As noted
earlier, we use pseudo-R2 given by

pseudo-R2 = [correlation (observed values of UP, predicted values of UP)]2, (3)

to measure the overall goodness-of-fit.
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Table 4. Hedonic price function estimated via GLM – Model A given in Equation (2).
Estimate Standard error z-statistic p-value

(Intercept) −151.8019 15.7792 −9.620 0.0000
LON 1.77e-05 1.80e-06 9.851 0.0000

log(AR) −0.2276 0.0108 −21.120 0.0000
UC 0.1272 0.0231 5.515 0.0000

log(ST) 0.2880 0.0193 14.954 0.0000
STR1 0.3562 0.0395 9.021 0.0000
STR2 0.1419 0.0408 3.482 0.0005

SI 0.0945 0.0255 3.707 0.0002
PA 0.2324 0.0220 10.556 0.0000
TO 0.3139 0.0503 6.236 0.0000
NIO 0.4208 0.0348 12.087 0.0000
NIT 0.3779 0.0642 5.884 0.0000

YR06 0.1947 0.0242 8.035 0.0000
YR07 0.4551 0.0242 18.780 0.0000

SZ 0.4716 0.0310 15.220 0.0000
log(FRVN) 0.7467 0.0622 11.997 0.0000

Table 5. Fitted models via GAMLSS.
Model D G Equation Considerations

E LOGNO logarithmic UP = β0 + cs(LAT) + cs(LON) +
cs(log(AR)) + cs(UC) + cs(ST) +
β1STR1 + β2STR2 + β3SI + β4PA +
β5TO + β6NIO + β7NIT + β8YR06 +
β9YR07 + β10SZ + cs(log(FRVN))

All regressors are significant at the
level 1% significance level (z-tests).
Also, AIC = 19155, BIC = 19359
and GD = 19083. Pseudo-R2=
0.739.

F IG logarithmic UP = β0 + cs(LAT) + cs(LON) +
cs(log(AR)) + cs(UC) + cs(ST) +
β1STR1 + β2STR2 + β3SI + β4PA +
β5TO + β6NIO + β7NIT + β8YR06 +
β9YR07 + β10SZ + cs(log(FRVN))

All regressors are significant at the
1% significance level (z-test). Also,
AIC = 19845, BIC = 20048 and
GD = 19773. Pseudo-R2= 0.678.

G WEI logarithmic UP = β0 + cs(LAT) + cs(LON) +
cs(log(AR)) + cs(UC) + cs(ST) +
β1STR1 + β2STR2 + β3SI + β4PA +
β5TO + β6NIO + β7NIT + β8YR06 +
β9YR07 + β10SZ + cs(log(FRVN))

All regressors proved to be signifi-
cant at the 1% significance level (z-
tests). Also, AIC = 19260, BIC =
19463 and GD = 19188. Pseudo-R2=
0.748.

H GA logarithmic UP = β0 + cs(LAT) + cs(LON) +
cs(log(AR)) + cs(UC) + cs(ST) +
β1STR1 + β2STR2 + β3SI + β4PA +
β5TO + β6NIO + β7NIT + β8YR06 +
β9YR07 + β10SZ + cs(log(FRVN))

All regressors are significant at the
1% significance level (z-tests). Also,
AIC = 19062, BIC = 19337 and
GD = 19134. Pseudo-R2= 0.746.

Table 6. Hedonic price function estimated via GAMLSS – Model I.
Estimative Standard error z-statistic p-value

(Intercept) −165.4000 16.1300 −10.251 0.0000
cs(LAT) 5.17e-05 6.22e-06 8.307 0.0000
cs(LON) 1.51e-05 2.13e-06 7.071 0.0000

cs(log(AR)) −0.2317 0.0096 −24.074 0.0000
cs(ST) 0.0465 0.0037 12.416 0.0000
cs(UC) 0.1223 0.0206 5.947 0.0000
STR1 0.3133 0.0349 8.963 0.0000
STR2 0.0926 0.0364 2.545 0.0100

SI 0.0920 0.0227 4.054 0.0000
PA 0.1891 0.0195 9.670 0.0000
TO 0.2662 0.0474 5.951 0.0000
NIO 0.4135 0.0395 13.362 0.0000
NIT 0.3485 0.0571 6.102 0.0000

YR06 0.1645 0.0215 7.632 0.0000
YR07 0.4358 0.0215 20.235 0.0000

cs(log(FRVN)) 0.6513 0.0569 11.443 0.0000
SZ 0.3875 0.0299 12.935 0.0000

The models listed in Table 5 include smoothing cubic splines (cs) with 3 effective df
for the covariates LAT, LON, log(AR), UC, ST and log(FRVN). Other smoothers (such as loess
and penalized splines), as well as different combinations of D (see Rigby and Stasinopoulos,
2007), such as BCPE, BCCG, LNO, BCT, exGAUSS, among others, and G, such as identity,
inverse, reciprocal, among others, were considered. However, they did not yield superior
fits. We also note that Model I yields the smallest values of the three model selection
criteria. Table 6 contains the a summary of the model fit.
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The use of three effective df in the smoothing functions delivered a good model fit.
However, in order to determine whether a different number of effective df delivers superior
fit, we used two criteria, namely: the AIC (objective) and visual inspection of the smoothed
curves (subjective); visual inspection aimed at avoiding overfitting. We then arrived at
Model J. It also uses cubic spline smoothing (cs), but with a different number of effective
df in the smoothing functions; see Table 7. Notice that there was a considerable reduction –
relative to Model I– in the AIC, BIC and GD values (18822, 19212 and 18684, respectively)
and that there is a better agreement between observed and predicted response values.

Table 7. Hedonic price function estimated via GAMLSS – Model J.
Estimative Standard error z-statistic p-value

(Intercept) −130.1000 14.8100 −8.787 0.0000
cs(LAT, df = 10) 5.92e-05 5.71e-06 10.354 0.0000
cs(LON, df = 10) 1.05e-05 1.96e-06 5.352 0.0000

cs(log(AR), df = 10) −0.2559 8.83e-03 −28.963 0.0000
cs(ST, df = 8) 0.0373 3.44e-03 10.831 0.0000
cs(UC, df = 3) 0.1769 0.0188 9.370 0.0000

STR1 0.2571 0.0320 8.012 0.0000
STR2 0.0728 0.0334 2.180 0.0293

SI 0.1029 0.0208 4.940 0.0000
PA 0.1436 0.0179 7.999 0.0000
TO 0.1822 0.0410 4.436 0.0000
NIO 0.4173 0.0284 14.690 0.0000
NIT 0.3388 0.0524 6.462 0.0000

YR06 0.1373 0.0198 6.941 0.0000
YR07 0.4190 0.0197 21.190 0.0000

cs(log(FRVN), df = 10) 0.6599 0.0522 12.630 0.0000
SZ 0.5119 0.0275 18.613 0.0000

Figure 3 contains plots of the smoothed curves from Model J. The dashed lines are con-
fidence bands based on pointwise standard errors. Panels (I), (II), (III), (IV), (V) and
(VI) reveal that the effects/impacts of LAT, LON, log(AR), ST, UC and log(FRVN) are typ-
ically increasing, increasing/decreasing, decreasing, increasing, increasing and increasing,
respectively, with increases in latitude, longitude, log area, socioeconomic indicator, utiliza-
tion coefficient and log land front in highly priced neighborhoods. (Panel (II) alternately
shows local increasing and decreasing trends.) Some of these effects were also suggested by
the estimated coefficients of the CNLRM and GLM models. Here, however, one obtains a
somewhat more flexible global picture, as we see.
In Panel (I), one notices that as the latitude increases the “contribution” of the LAT

covariate between the 702000 and 709000 latitudes (approximately) –neighborhoods that
belong to the expansion zone of the city– is negative, whereas starting from position 709000
(approximately) –South Zone and downtown area– the price effect is positive. Additionally,
we note that, in certain ranges, increases in latitude lead to drastic changes in the slope of
the smoothed curve, e.g., between the 708000 and 710000 positions, whereas in other areas,
for instance between the 706000 and 708000 latitudes –the Mosqueiro neighborhood–, an
increase in latitude leads to an uniform negative effect.
Panel (II) shows that as longitude increases to position 8780000 the “contribution” of

the LON covariate is positive and nearly uniform, which almost exclusively covers observa-
tions relative to the Mosqueiro neighborhood. Starting at the 8785000 position there is a
remarkable change in the slope of the fitted curve, which is triggered by the location of the
most upper class neighborhoods: from 8785000 to 8794000. After the 8794000 position, the
effect remains positive, but is decreasing and, eventually, it becomes negative.
We see in Panel (III) that as the area (in logs) increases the “contribution” of the log(AR)

covariate, for land lots with log areas between 4 and 5 (respectively), is clearly positive.
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Figure 3. Smoothed additive terms – Model J.

The effect is negative for land lots with log areas in excess of 5.
In Panel (IV), it is possible to notice that as we move up in the socioeconomic scale the

“contribution” of the ST covariate, in the range from 1 to 4 minimum wages, is negative,
even though the there is an increasing trend. For land lots located in neighborhoods that
correspond to more than 4 minimum wages, the effect is always positive; from 10 to 15
minimum wages the effect is uniform.
We note from Panel (V) that, contrary to what one would expect, the “contribution” of

the UC covariate is not positive. In the range from 3.0 to 5.0, the fitted curve displays small
oscillations, alternating in the positive and negative regions. The positive effect only holds
for utilization coefficients greater than 5.0.
Notice from Panel (VI) that as the front land lot (in logs) increases in highly priced neigh-

borhoods the “contribution” of the log(FRVN) covariate is mostly increasing and positive.
However, in the 1.5 to 2.0 interval the positive effect is approximately uniform.
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4.4 Comparing models

In order to compare the best estimated models via CNLRM (Model E), GLM (Model A
given in Equation (2)) and GAMLSS (Model J) we use the AIC and BIC. Note the criteria
only is used to compare models that use the response (UP) in the same measurement scale,
i.e., Models A and J. We also compare the different models using the pseudo-R2 given in
Equation (3).
We present in Table 8 a comparative summary of the three models. We note that Model

J is superior to the two competing models. Not only it has the smallest AIC and BIC
values (in comparison to Model A, but it also has a much larger pseudo-R2. The GAMLSS
pseudo-R2 exceeds 0.80, which is notable.

Table 8. Comparative summary of the CNLRM, GLM and GAMLSS estimated models.
Model Class AIC BIC Pseudo-R2

E (CNLRM) 4290 4392 0.667
A (GLM) 19486 19581 0.672
J (GAMLSS) 18822 19212 0.811

4.5 Dispersion parameter modeling (σ)

After a suitable model for the prediction of µ was selected, we carried out a likelihood ratio
test to determine whether the GAMLSS scale parameter σ is constant for all observations.
The null hypothesis that σ is constant was rejected at the usual nominal levels. We then
built a regression model for such a parameter. To that end, we used stepwise covariate
selection, considered different link functions (such as identity, inverse, reciprocal, etc.) and
included smoothing functions (such as cubic splines, loess and penalized splines) in the
linear predictor, just as we had done for the location parameter. We used the AIC for
selecting the smoothers and for choosing the number of df of the smoothing functions
together with visual inspection of the smoothed curves.
We present in Table 9 the GAMLSS hedonic price function parameter estimates obtained

by jointly modeling the location (µ) and dispersion (σ) effects; Model K. The model uses
the gamma distribution for the response and the log link function for both µ and σ. We
note that Model K contains parametric and nonparametric terms, and for that reason it is
said to be a linear additive semiparametric GAMLSS.
We note from Table 9 that the parameter estimates of the location submodel in Model K

are similar to the corresponding estimates from Model J, in which σ was taken to be con-
stant; see Table 7. It is noteworthy, nonetheless, that there was a sizeable reduction in the
AIC, BIC and GD values (18607, 19065 and 18445, respectively) and also an improvement
in the residuals as evidenced by the worm plot; see Figures 4 and 5.
Only two covariates were selected for the σ regression submodel in Model K, namely: ST

and log(AR). The former (ST) entered the model in the usual parametric fashion whereas
the latter (log(AR)) entered the model nonparametrically through a cubic spline smoothing
function with ten effective df. We note that the positive sign of the log(AR) coefficient indi-
cates that the UP dispersion is larger for land lots with larger areas whereas the negative sign
of the ST coefficient indicates that the dispersion is inversely related to the socioeconomic
neighborhood indicator.
It is noteworthy that the pseudo-R2 of Model K is quite high (0.817) and that all of

explanatory variables are statistically significant at the 1% nominal level which is not all
that common in large sample cross sectional analyses, especially in real estate appraisals.
Overall, the variable dispersion GAMLSS model is clearly superior to the alternative mod-
els. The good fit of Model K can be seen in Figure 6 where we plot the observed response
values against the predicted values from the estimated model. Note that the 45o line in
this plot indicates perfect agreement between predicted and observed values.
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Table 9. Hedonic price function estimated via GAMLSS – Model K.
Estimative Standard error z-statistic p-value

µ Coefficients
(Intercept) −95.1300 14.2700 −6.665 0.0000

cs(LAT, df = 10) 5.94e-05 5.37e-06 11.053 0.0000
cs(LON, df = 10) 6.45e-06 1.86e-06 3.460 0.0000

cs(log(AR), df = 10) −0.2087 0.0104 −20.138 0.0000
cs(ST, df = 8) 0.0321 0.0030 10.666 0.0000
cs(UC, df = 3) 0.2095 0.0161 13.006 0.0000

STR1 0.2039 0.0298 6.838 0.0000
STR2 0.0729 0.0276 2.635 0.0084

SI 0.7136 0.0192 3.705 0.0000
PA 0.1653 0.0157 10.465 0.0000
TO 0.1778 0.0370 4.799 0.0000
NIO 0.3722 0.0251 14.799 0.0000
NIT 0.2790 0.0468 5.957 0.0000

YR06 0.1255 0.0175 7.144 0.0000
YR07 0.4195 0.0177 23.622 0.00

cs(log(FRVN), df = 10) 0.6809 0.0403 16.88 0.0000
SZ 0.4824 0.0241 20.001 0.0000

σ coefficients
(Intercept) −1.6838 0.0839 −20.072 0.0000

cs(log(AR), df = 10) 0.1370 0.0143 9.593 0.0000
ST −0.0391 0.0040 −9.632 0.0000
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Figure 4. Worm plot – Model J.

Model K is given by

log(µ) = β0 + cs(LAT, df = 10) + cs(LON, df = 10) + cs(log(AR), df = 10) +

cs(UC, df = 3) + cs(ST, df = 8) + β1STR1 + β2STR2 + β3SI +

β4PA + β5TO + β6NIO + β7NIT + β8YR06 + β9YR07 + β10SZ +

cs(log(FRVN), df = 10),

log(σ) = γ0 + γ1ST + cs(log(AR), df = 10),

in which the response (UP) follows a GA distribution with location and scale parameters
µ and σ, respectively. This model proved to be the best model for hedonic prices equation
estimation of urban land lots in Aracaju.
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Figure 5. Worm plot – Model K.
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Figure 6. Observed values × predicted values of UP – Model K).

5. Concluding Remarks

Real state appraisal is usually performed using the standard linear regression model or the
class of generalized linear models. In this paper, we introduced real state appraisal based
on the class of generalized additive models for location, scale and shape, GAMLSS. Such
a class of regression models provides a flexible framework for the estimation of hedonic
price functions. It even allows for some conditioning variables to enter the model in a
nonparametric fashion. The model also accommodates variable dispersion and can be based
on a wide range of response distributions. Our empirical analysis was carried out using a
large sample of land lots located in the city of Aracaju (Brazil). The selected GAMLSS
model displayed a very high pseudo-R2 (approximately 0.82) and yielded an excellent
fit. Moreover, the inclusion of nonparametric additive terms in the model allowed for the
estimation of the hedonic price function in a very flexible way. We showed that the GAMLSS
fit was clearly superior to those based on the standard linear regression and on a generalized
linear model. We strongly recommend the use of GAMLSS models for real state appraisal.
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