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Abstract

This article introduces a generalized method for estimating parameters of an alpha-
stable distribution based on the characteristic function. We propose a novel approach
that extends existing techniques. As an application, we compare our proposed method
with the maximum likelihood method. Our results demonstrate the efficacy of the pro-
posed method in accurately estimating the parameters of alpha-stable distributions.
Additionally, we highlight the advantages of the proposed method ver maximum like-
lihood method in capturing the tails and skewness of the distribution. This research
contributes to the advancement of statistical methods for modeling heavy-tailed and
skewed distributed data, with applications in finance, risk management, and other fields.
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1. Introduction

Numerous modern finance techniques heavily rely on the assumption that the random vari-
ables being investigated follow a Gaussian or normal distribution. However, in finance and
other applications, time series often deviate from the Gaussian model because their marginal
distributions have heavy tails and are possibly asymmetric. Therefore, it is highly question-
able whether the commonly adopted normal assumption is appropriate in such situations.

Financial asset returns are often argued to be the cumulative outcome of a vast number of
pieces of information and individual decisions arriving almost continuously in time. Hence,
in the presence of heavy tails, it is natural to assume that these returns are approximately
governed by a stable non-Gaussian distribution. Other leptokurtic distributions, such as
Student-t, Weibull, and hyperbolic, lack the attractive central limit property.

Thus, as the normal distribution fails to describe the empirical evidence in financial mar-
kets, an alternative is to introduce stable distributions as proposed by Lévy (1924) and
Mandelbrot (1963). Stable distributions have been successfully fitted to stock returns, ex-
cess bond returns, foreign exchange rates, commodity price returns, and real estate returns
McCulloch (1996), Mittnik et al. (2000). However, several studies have provided strong
evidence for the stable model versus the Gaussian model (Weron, 1995; Nolan, 2020, 2021).
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The stable distributions can account for heavy tails and asymmetrical behavior, and de-
pending on four parameters, these distributions are more flexible than the normal distribu-
tion for fitting empirical data. Another good property is that these distributions have an
attraction domain, meaning they are limits of sums of random variables. Several methods for
simulating stable distributed random variables and estimating their parameters are avail-
able. Lévy-Véhel and Walter (2002) highlighted the advantages of stable distributions for
financial modeling and provided methods for simulating stable distributed random variables
and estimating their parameters. Studies of estimation methods for α-stable distributions
are available, but to our knowledge, these studies focus on certain classes of estimators.
Mittnik et al. (1999) compared the Fourier transform and direct calculation methods of the
probability density function (PDF) of stable distributions and Kogon and Williams (1998)
focussed on characteristic function methods (Weron, 1995).

Estimating parameters of the stable distribution is severely affected by the lack of an ex-
plicit form for the PDF, then resorting to numerical methods that can be complex and slow
to execute. A large number of algorithms, more or less efficient and more or less fast, are
proposed based on different approaches. We can mention the empirical quantile approach
McCulloch (1986)), the empirical characteristic function approach (Koutrouvelis, 1981; Ko-
gon and Williams, 1998), and the maximum likelihood (ML) approach (DuMouchel, 1973;
Nolan, 2001). In general, the performance of all these methods is good, but Ojeda (2001)
observed, in a comparative study, that ML methods provide the most accurate estimates
albeit with longer execution times. This is confirmed by simulation studies conducted by
Weron and Weron (1995). There are four main families of estimators that give rise to several
methods based on ML, quantiles, characteristic function, and least squares.

Estimating the α-stable parameters using the characteristic function allows us to model
extreme phenomena in scientific domains, including finance, meteorology, physics, and en-
gineering (Uchaikin and Zolotarev, 1999; Nolan, 2003, 2014, 2020). Characteristic function-
based methods are fast, efficient, and robust, and continue to be developed to improve their
accuracy and applicability in practical contexts.

The first one who explored the idea of estimating the parameters of the α-stable law
based on the characteristic function was Press (1972), but then, several modifications have
been proposed by Koutrouvelis (1980), Koutrouvelis (1981), Kogon and Williams (1998) and
Krutto (2016). Consequently, Koutrouvelis (1980), Kogon and Williams (1998) and Krutto
(2016) used much more than k = 2 points in their estimation implementation algorithm
(although their estimator are expressed based on 2 points). And all these versions deal in
this case or even are very restricted and we have extended these versions with ∀k ≥ 2 that
we will give more details in the continuation of work. Another advantage of these methods
is that they can be extended to cases which are not independent and identically distributed,
in particular dynamic heteroscedastic models: we can consider multivariate or conditional
multivariate or conditional characteristic functions. The asymptotic properties (convergence
and normality) are preserved (Feuerverger and McDonnouch, 1981; Knight and Yu, 2002).

The objective of this article is to propose a generalized version of parameter estimation
methods for an α-stable distribution based on the characteristic function. In Section 2, we
present the main characteristics of α-stable distributions and their use in modeling complex
phenomena such as price fluctuations in financial assets. Section 3 describes the methodology
we use to estimate the α-stable parameters. In Sections 4, a simulation study is provided
to evaluate the statistical performance of the proposed estimation method. In Sections 5
and 6, we apply our results to stock markets to model price and interest rate fluctuations.
We compare the results obtained with other models used in the literature. In Section 7,
we conclude by emphasizing the use of α-stable distributions in financial modeling and
proposing future research, including the application of these distributions to other types of
financial data and the exploration of new estimation methods to improve model accuracy.
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2. Preliminaries and notations

In this section, we delve into the fundamental basics of α-stable distributions, examining
their definitions, fundamental properties, as well as some existing results. α-stable distri-
butions represent a class of probability distributions characterized by their stability un-
der convolution and their ability to model complex and asymmetric phenomena Paulo H.
et al. (2019). Their relevance extends to a variety of fields, from finance to geophysics,
and telecommunication. Let X be a random variable with α-stable distribution. Then, if
∀(a, b) ∈ R∗+ × R∗+, ∃c > 0 and k ∈ R, such that aX1 + bX2

d= cX + k, where X1 and
X2 are independent copies of X and d= denotes convergence in distribution. Note that, if
k = 0, the distribution is strictly stable. Equivalently, a random variable X is said to have
a α-stable distribution if and only if, for any integer n ≥ 1 and for any family X1, . . . , Xn

of independent and identically distributed random variables of the same law as X, there
exist two real numbers an > 0 and bn such that [(X1 + · · · + Xn) − bn]/an

d= X. Variables
with a Levy-stable distribution have the disadvantage of not having (except in three cases)
explicit forms for the PDF and CDF. A random variable X with a stable distribution is typ-
ically described by its characteristic function ∆X (inverse Fourier transform of the PDF f)
defined on R by ∆X(t) = E

(
exp(itX)

)
=
∫ +∞
−∞ exp(itx)f(x)dx, and having representations

according to the different parameterizations of the α-stable distributions, where i =
√
−1 is

the imaginary number. The most famous of these representations is given in Samorodnitsky
(1994) by

∆X(t) = E [exp(itx)] = exp (iµt− gα,β,σ(t)) , (2.1)

where

gα,β,σ(t) =
{
σα|t|α

[
1− iβsign(t) tan

(
πα
2
)]
, if α 6= 1

σα|t|α
[
1 + 2

π iβsign(t)(log|t|)
]
, if α = 1 , sign(t) =


1 , if t > 0
0 , if t = 0
−1 , if t < 0.

The α-stable distribution is thus characterized by four real parameters α, β, µ and σ.
The parameter α, called characteristic exponent or stability index, is an indicator of the
degree of thickness of the tails of the distribution: the smaller it is, the thicker the tails
are which corresponds to very large fluctuations. It is the most important parameter, it
is between 0 and 2 (0 < α ≤ 2). Its maximum value α = 2, corresponds to a particular
α-stable distribution: the Gaussian distribution or normal distribution. β is the parameter
of dissymmetry, it varies between -1 and 1 (−1 ≤ β ≤ 1) and when it is null, the distribution
is symmetrical with respect to µ.

When α approaches to two, β loses its effect leading to a trend towards the normal
distribution. The parameters µ ∈ R and σ > 0 represent the usual characteristics of position
and scale respectively with the remark that for the Gaussian distribution, the standard
deviation is σ

√
2. A random variable X of α-stable distribution will be noted, according to

Samorodnitsky (1994), by X ∼ Sα(β, µ, σ). The three exceptions mentioned above are the
very famous Gaussian distribution S2(0, µ, σ), the less known Cauchy distribution S1(0, µ, σ)
and the Lévy distribution S1/2(1, µ, σ). The α-stable distribution has an additivity property
according to which the sum of two independent stable random variables of the same stability
index α is still stable with the same characteristic exponent α. This very interesting property
is used in finance to study portfolios where two assets with the same value for α can be
considered together. Figure 1 illustrates the influence of each parameter of the α-stable
distribution on its PDF.
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Figure 1.: Plots of influence of the parameters of the α-stable distribution on its PDF.

One of the particularities of the stable distribution is that it has infinite variance if α is
strictly less than two. In fact, the moments of order p of X ∼ Sα(β, µ, σ) are such that for
α = 2, E(|X|p) < +∞, ∀p ∈ N, defined as

E(|X|p) =
{
<∞; if 0 < p < α;
=∞; if p ≥ α.

When the characteristic exponent of a random variable X is strictly less than two, the
variance is infinite and the tails variance is infinite, with the tails being asymptotically
equivalent to that of a Pareto distribution. More precisely, it is shown that (Samorodnitsky,
1994)

lim
t→∞

tαP (X > t) = Cα
1+β

2 σα; (2.2)

lim
t→∞

tαP (X < −t) = Cα
1−β

2 σα; (2.3)
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where

Cα =
(∫ ∞

0
x−α sin(x)dx

)−1


1−α
Γ(2−α) cos( πα

2 ) ; if α 6= 1,

2/π; if α = 1;

with Γ(θ) being the Euler gamma function defined for θ > 0, by Γ(θ) =∫ +∞
0 xθ−1 exp(−x)dx. Equations (2.2) and (2.3) lead to the fact that, when n → ∞, and
P(X > t) ∼= Cασ

αt−α.
Hence, we see that the α-stable distribution takes into consideration the distribution tails

which often carry essential information, whereas the Gaussian distribution neglects these
tails, thus leading to an error which can be fatal for the investor. The disadvantage of
the characteristic function defined in Equation (2.1) is that it is not continuous if α = 1,
which makes it not adapted to numerical calculations. For these reasons, Zolotarev (1998)
proposed another parameterization called S0

α, which is usable for numerical calculations. To
simulate α-stable distributions, there is an algorithm developed by Chambers et al. (1976),
which allows us to generate random numbers from the Sα(β, 0, 1) distribution. To obtain
an Sα(β, µ, σ) distribution, with α ∈]0, 2] and β ∈ [−1, 1], the parameters α and σ must
be estimated. These parameters can be correctly estimated by the method of McCulloch
(1986) for small values of β, which is often the case for stock exchange chronicles.

3. Methodology and main results

In this section, we present the theoretical results obtained in this article, which focuses on
methods for estimating the parameters of an α-stable distribution. These theoretical results
stem from a thorough analysis and meticulous exploration of the fundamental properties
of the α-stable distribution, as well as the techniques and methods used to estimate its
parameters. Let Φ̃X the empirical characteristic function of ΦX which is defined by

Φ̃X(t) = 1
n

n∑
j=1

exp(itxj).

It is assumed that X1, . . . , Xn are independent and identically distributed random vari-
ables with the same α-stable distribution. The characteristic function Φ̃X is an unbiased
estimator of ΦX because

E
[
Φ̃X(t)

]
= E

[ 1
n

n∑
j=1

exp(itxj)
]

= 1
n

n∑
j=1

E [exp(iixj)] = E [exp(itx)] = ΦX(t).

Since |Φ̃X(t)| ≤ 1, then all moments of Φ̃X(t) are finite. From the law of large num-
bers, Φ̃X(t) is an unbiased estimator of ΦX(t), the theoretical characteristic function. The
estimation methods in this work are methods based on this expression.

Each of the methods tries to obtain the characteristic function of a stable random variable
closer to the empirical characteristic function in some sense. These methods are justified
by the one-to-one correspondence that exists between the distribution functions and their
Fourier-Stieltjes transforms. According to Euler formula for complex numbers we have

exp(ix) = cos(x) + i sin(x). (3.4)

Thus, using the formula given in Equation (3.4), the empirical characteristic function is
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written as

Φ̃X(t) =
n∑
j=1

exp(itxj)
n

=
n∑
j=1

(cos(txj) + sin(txj))
n

= 1
n

n∑
j=1

cos(txj)︸ ︷︷ ︸
a

+i
1
n

n∑
j=1

sin(txj)︸ ︷︷ ︸
b

= a+ib.

Denote θ and r as the argument and modulus of Φ̃X(t), respectively. Then, we have that

Φ̃X(t) = r exp(iθ)→ log
(
Φ̃X(t)

)
= log(r) + iθ.

Denote by <
(

log(Φ̃X(t))
)

and =
(

log(Φ̃X(t))
)

the real and imaginary parts of log
(
Φ̃X(t)

)
,

respectively. Therefore, we get

<
(

log(Φ̃X(t))
)

= log(r) = log
(√

a2 + b2
)

= 1
2 log

[( 1
n

n∑
j=1

cos(txj)
)2

+
( 1
n

n∑
j=1

sin(txj)
)2]

, (3.5)

=(log(Φ̃X(t))) = θ = atan2(b, a) = atan2
( 1
n

n∑
j=1

sin(txj),
1
n

n∑
j=1

cos(txj)
)
, (3.6)

where the function atan2 is defined by

atan2(y, x) =



arctan
( y
x

)
, if x > 0;

arctan
( y
x

)
+ π, if x < 0, y ≥ 0;

arctan
( y
x

)
− π, if x < 0, y < 0;

+π
2 , if x = 0, y > 0;
−π
2 , if x = 0, y < 0;

undefined, if x = 0, y = 0.

Theorem 1. LetX be an α-stable distributed random variable, denoted byX ∼ Sα(β, σ, µ),
and t1, . . . , tn ∈ R∗+ with n ≥ 2. Then, for α 6= 1, the parameters of the distribution of X
can be estimated by

log(σ̂) =
B log

(
−<

(
log(Φ̃X(tk))

))
− A log(tk)

A− n log
(
−<

(
log(Φ̃X(tk))

)) , α̂ = A

B + n log(σ̂) ,

µ̂ =
C3=

(
log(Φ̃X(tk))

)
− C1t

α̂
k

C3tk − C2tα̂k
, β̂ = C1 − µ̂C2

C3σ̂α̂ tan
(
πα̂
2
) , (3.7)

where

A =
n∑
j=1

log
(
−<(log Φ̃X(tj))

)
; B =

n∑
j=1

log(tj);

C1 =
n∑
j=1
=
(

log Φ̃X(tj)
)
; C2 =

n∑
j=1

tj ; C3 =
n∑
j=1

tα̂j ; tk ∈ {t1, . . . , tn}, (3.8)

where =
(

log(Φ̃X(t))
)

and <
(

log(Φ̃X(t))
)

are defined in Equations (3.6) and (3.5) respec-
tively. See proof of this theorem in Appendix A.
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Theorem 2. Let X be an α-stable distributed random variable and t1, . . . , tn ∈ R∗+, for all
n ≥ 2. For α = 1, the three other parameters of the distribution of X can be estimated by
the relations stated as

σ̂ =
−
∑n
j=1<

(
log Φ̃X(tj)

)
C2

; β̂ = π

2
C2=

(
log Φ̃X(tk)

)
− A1tk

σ̂tk [A2 − C2 log tk]
; µ̂ =

A1 + 2
π σ̂β̂A2

C2
, (3.9)

with

A1 =
n∑
j=1
=(log Φ̃X(tj)), A2 =

n∑
j=1

tj log tj , C2 =
n∑
j=1

tj , tk ∈ {t1, . . . , tn}, (3.10)

where =
(

log(Φ̃X(t))
)

and <
(

log(Φ̃X(t))
)

are defined in Equations (3.6) and (3.5) respec-
tively. See proof of this theorem in Appendix B.

The following steps allow us to generate α-stable distributed random numbers based on
Theorems 1 and 2:

1: Collect the data y1, . . . , ym.
2: Choose t1, . . . , tn as strictly positive real numbers.
3: Calculate the real and imaginary parts of log

(
∆̃Y

)
from Equations (3.5) and (3.6):

<
(

log(∆̃Y (ti))
)
←− 1

2 log
[( 1
m

m∑
j=1

cos(tiyj)
)2

+
( 1
n

m∑
j=1

sin(tiyj)
)2]

.

=
(

log(∆̃Y (ti))
)
←− atan2

( 1
m

m∑
j=1

sin(tiyj),
1
m

m∑
j=1

cos(tiyj)
)
.

4: Obtain coefficients A, B, C1, C2, C3, A1, and A2 from Equations (3.8) and (3.10) as

A←−
n∑
j=1

log
(
−<

(
log Φ̃X(tj)

))
; B ←−

n∑
j=1

log(tj);

C1 ←−
n∑
j=1
=
(

log Φ̃X(tj)
)
; C2 ←−

n∑
j=1

tj ; C3 ←−
n∑
j=1

tαj ;

A1 ←−
n∑
j=1
=
(

log Φ̃X(tj)
)
; A2 ←−

n∑
j=1

tj log tj .

We take tk = min{t1, . . . , tn} or tk = (t1 + · · ·+ tn)/n.
5: If α̂ takes a value equal to one, then use Theorem 2 (from Equation (3.9)) and consider

σ̂ ←−
−
∑n
j=1<

(
log Φ̃X(tj)

)
C2

; β̂ ←− π

2
C2=

(
log Φ̃X(tk)

)
− A1tk

σ̂tk [A2 − C2 log tk]
; µ̂←−

A1 + 2
π σ̂β̂A2

C2
.
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6: Else go to the Theorem 1 (from Equation (3.7)) and utilize

log(σ̂)←−
B log

(
−<(log(Φ̃X(tk)))

)
− A log(tk)

A− n log(−<
(

log(Φ̃X(tk))
)
)

; α̂←− A

B + n log(σ̂) ;

µ̂←−
C3=

(
log(Φ̃X(tk))

)
− C1t

α̂
k

C3tk − C2tα̂k
; β̂ ←− C1 − µ̂C2

C3σ̂α̂ tan(πα̂2 )
.

4. Simulation study

When evaluating the effectiveness of a parameter estimator, particularly in cases where sim-
ulation from a given distribution is straightforward, one common approach is to analyze its
performance across a range of simulated datasets. This entails selecting parameter values
that cover a wide spectrum and varying sample sizes to explore both finite sample prop-
erties and the method asymptotic behavior. By generating diverse sets of simulated data,
one can observe how well the estimator performs under different conditions. Statistical in-
dicators can then be computed and summarized in tables for comparison. This comparative
analysis allows for a thorough examination of various estimation techniques or a focused
assessment of a single method across the entire parameter space. For an illustrative example
of such simulation studies concerning the estimation of parameters for stable distributions,
interested readers can refer to the work by Weron (1995).

In this section, we conduct numerical simulations to assess the performance of our novel ap-
proach and compare it with other analytical methods proposed in the literature. Specifically,
we examine the classical ML method (see Nolan, 2001) for estimating the four parameters
of the α-stable PDF, as well as for estimating these parameters from samples.

To quantitatively evaluate the performance of the parameter estimators, we employ sev-
eral criteria, including the mean squared error (MSE), standard error (SE), and standard
deviation. Throughout our simulations, we denote by M the number of times an experiment
is repeated, and we fix M at 200 for all simulations. This choice ensures robustness and
reliability in our assessment of the various estimation methods. The data is produced using
the approach introduced by Chambers et al. (1976). The ML method described earlier is im-
plemented in the STABLE package, developed by Nolan for R RobustAnalysisInc. (2010) and
RobustAnalysisInc. (2013). All associated simulations are conducted utilizing this package.

To initially assess the performance of our proposed estimator, we employ the MSE crite-
rion, standard deviation (Sn), SE, which are defined as

MSE(θ̂) = 1
M

M∑
i=1
|θ − θ̂i|2; Sn(θ̂) =

(
n

M

M∑
i=1

(
θ̂i − θ̄

)2
) 1

2

; SE(θ̂) = Sn(θ̂)√
n
,

where θ̂i, i = 1, . . . ,M is the estimated parameter in every simulation runs, n is the sam-
ple size, M is the number of simulations and θ̄ is the sample mean of the estimators θ̂i, for
i = 1, . . . ,M . In each simulation run, we obtain estimates α̂i, β̂i, µ̂i and σ̂i for the parameters
of interest. The MSE is a used criterion for evaluating the performance of estimators, pro-
viding a straightforward measure of their accuracy. We conduct numerical simulations using
synthetic observations generated from an α-stable distribution, covering a broad spectrum
of parameter combinations. Specifically, we consider two scenarios: n = 103 and n = 104

independent and identically distributed (IID) samples from the α-stable distribution, where
α takes values of α = 0.2, 0.5, 0.75, 1, 1.25, 1.5, 1.75 and β = −0.5, 0.25, 0.4,−0.75, 0.5, 0.6, 1;
M = 200 replications; t1 = 0.03, t2 = 0.04 and t3 = 0.09.
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Table 1.: Performance of the proposed estimator.

α β n mean(α̂) min(α̂) max(α̂) Sn(α̂) MSE(α̂) SE(α̂) failure time

0.20 -0.50 103 0.203 0.133 0.269 0.755 0.001 0.002 0 2.28
104 0.201 0.175 0.217 0.768 0.000 0.001 0 14.73

0.50 0.25 103 0.491 0.422 0.584 0.972 0.001 0.002 0 1.69
104 0.500 0.467 0.525 1.063 0.000 0.001 0 13.32

0.75 0.40 103 0.744 0.639 0.829 1.026 0.001 0.002 0 3.23
104 0.751 0.718 0.778 1.121 0.000 0.001 0 26.81

1.00 -0.75 103 0.062 0.000 0.490 2.782 0.888 0.006 1 2.77
104 0.986 0.941 1.027 1.429 0.000 0.001 0 29.48

1.25 0.50 103 1.247 1.111 1.362 1.406 0.002 0.003 0 0.06
104 1.250 1.205 1.288 1.486 0.000 0.001 0 0.12

1.50 0.60 103 1.495 1.365 1.616 1.528 0.002 0.003 0 0.45
104 1.500 1.448 1.534 1.573 0.000 0.001 0 3.36

1.75 1.00 103 1.747 1.594 1.888 1.510 0.002 0.003 0 0.62
104 1.750 1.708 1.799 1.604 0.000 0.001 0 6.57

Table 2.: Performance of ML estimation.

α β n mean(α̂) min(α̂) max(α̂) Sn(α̂) MSE(α̂) SE(α̂) failure time

0.20 -0.50 103 0.203 0.144 0.266 0.691 0.000 0.002 0 0.83
104 0.201 0.180 0.220 0.656 0.000 0.000 0 4.21

0.50 0.25 103 0.501 0.438 0.569 0.823 0.001 0.002 0 0.53
104 0.500 0.477 0.525 0.910 0.000 0.001 0 2.92

0.75 0.40 103 0.748 0.663 0.823 0.949 0.001 0.002 0 0.52
104 0.750 0.720 0.772 1.013 0.000 0.001 0 2.75

1.00 -0.75 103 0.881 0.766 1.020 1.491 0.016 0.003 0 0.55
104 0.876 0.836 0.922 1.424 0.015 0.001 0 2.64

1.25 0.50 103 1.243 1.091 1.343 1.345 0.002 0.003 0 0.62
104 1.250 1.205 1.281 1.415 0.000 0.001 0 2.75

1.50 0.60 103 1.497 1.367 1.659 1.607 0.003 0.004 0 0.52
104 1.500 1.459 1.531 1.461 0.000 0.001 0 3.06

1.75 1.00 103 1.734 1.632 1.884 1.401 0.002 0.003 0 0.61
104 1.746 1.705 1.791 1.416 0.000 0.001 0 3.10
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We explore all possible combinations of α and β. Additionally, we set σ = 1 and µ = 0.25
for the dispersion and location parameters, respectively. The resulting means and MSEs
obtained by the estimators across 200 simulations are summarized in Table 1 and 2. This
comprehensive analysis allows us to assess the performance of our proposed estimator rel-
ative to the classical ML method and provides insights into its effectiveness under various
conditions.

To compare the two methods presented in Table 1 and 2, we can examine several aspects
such as the estimated mean, MSE, standard deviation, execution time (time), and failure
count (failure). Firstly, we observe that the estimated means (mean) for both methods are
generally close to each other, indicating similarity in the performance of the estimators.
Regarding the MSE, we find that, in most cases, the proposed method has lower MSE
values than the ML method. This suggests that the proposed method tends to provide more
precise parameter estimates. Concerning the standard deviation (Sn), the results are similar
to those of the MSE. The proposed method appears to provide more precise estimates with
lower standard deviations. As for the execution time (time), we observe that the proposed
method seems to require more computation time than the ML method in most cases. This
may be due to the increased complexity of the algorithm used in the proposed method.
Regarding the failure count (failure), we observe that it is generally zero for both methods,
indicating overall satisfactory performance in most cases. The proposed method appears to
offer similar or better performance than the ML method in terms of estimation accuracy,
but it may require more computation time.

5. Application to stock indices

The objective of this section is to adjust the evolution of some of the world most well-
known stock indices using proposed methods and then to compare the adjustment with the
ML method. Before starting this adjustment, we introduce the following definition: A stock
index is a statistical measure used to represent the performance of the stock prices of a
given financial market. Stock indices are generally calculated based on the weighted value
of the stock prices of the main companies listed on a stock exchange in a given country or
region. The evolution of the stock index is often used as an indicator of the overall state of
the stock market. Investors can use stock indices to evaluate market performance and make
investment decisions based on the evolution of these indices. Well-known examples of stock
indices include the Dow Jones Industrial Average (DJIA) in the United States, the FTSE
100 in the UK, and the Nikkei 225 in Japan. The data used in this section is available on the
Yahoo Finance (https://finance.yahoo.com, accessed on 13 April 2024), and we conducted
our simulation based on the period from 22 February 2022 and 22 February 2023.

Before exploring how to apply our estimator method with their different approaches to
this portfolio, we conduct a technical analysis of the four stocks in our portfolio. Technical
analysis is widely used by financial analysts to comprehend financial markets and predict
their future movements. It is based on the assumption that the past performance of a finan-
cial asset provides the best information about its future performance. One could say that
technical analysis relies on three principles: the market itself provides enough information
to deduce its trends; prices move according to determined trends, movements, or rules; and
past events will repeat in the future.

Analyzing the price movements of a financial asset is crucial for understanding market
fluctuations. It offers a general overview of transaction and price developments, enabling
the anticipation of future trends. Therefore, we conduct a detailed graphical analysis of the
of stock indices include the DJIA in the United States, the FTSE 100 in the UK, and the
Nikkei 225 in Japan.

https://finance.yahoo.com
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Figure 2 and Table 3 provide an overview of descriptive statistics for the financial data of
each stock during the study period. In the histograms at the top of Figure 2 , we can observe
that the data from these portfolios are not stationary. According to this Figure 2, we can
say that, despite apparent fluctuations both upward and downward, the value of each of
the portfolios experienced three phases. Taking the case of CAC 40, we have the following
observations: a phase of strong growth; a phase of significant decline, it is noticeable that
the value exhibited a downward trend during this period; and phase of instability marked
by fluctuations.
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Figure 2.: Evolution of Stock indices the period from 22 February 2022 to 22 February 2023.

If we have a series (xi), for i = 1, . . . , n, then we define the series of returns by Ri =
log(xi+1) − log(xi), for i = 1, . . . , n − 1. We can see that: Ri ≈ (xi+1 − xi)/xi, that is, it
represents an approximation of the change compared to the previous moment. The series
of returns appears to be stationary, as can be seen in Figure 3. That is, it represents an
approximation of the change compared to the previous moment. By using returns, it is
possible to address issues related to trends, heteroscedasticity, and non-stationarity. Due
to the differentiation of successive levels, the trend component is eliminated, making the
returns series generally more stationary. The returns series appears to be stationary, as seen
in Figure 3, and this stationarity facilitates the analysis and modeling of financial data.
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Table 3.: Descriptive statistics of stock indices the period from 22 February 2022 to 22
February 2023.

Data set Minimum 1st quartile Median Mean 3rd quartile Maximum SD

CAC40 5693 6146 6464 6434 6639 7361 370.9261
AXA SA 20.62 23.31 24.77 24.93 26.74 28.82 2.144032
DAX 11952 13142 13928 13815 14395 15612 852.4276
DVN 50.48 59.57 63.02 64.00 68.95 78.69 6.517895
HANG 14831 19048 20278 19963 21306 23618 1844.771
McDonald 220.2 246.1 254.0 254.8 265.9 281.5 13.05672
NASDAQ 10132 11010 11556 11828 12517 14559 1047.247
Nikkei 24876 26555 27257 27174 27756 29096 811.0432
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Figure 3.: Return of Stock indices the period from 22 February 2022 to 22 February 2023.



72 Coulibaly et al.

Table 4 illustrates the parameter values of the α-stable distribution for different stock
indices using our proposed method and the ML method (see Nolan, 2001). Specifically, the
estimated values of the stability index α using the proposed method clearly show that the
value of α̂ for each stock index is α̂ = 1.95, except for the CAC 40 (α̂ = 1.871) and HANG
(α̂ = 1.768). In contrast, the estimated values of α using the ML method are mostly equal
to 2. This explains that our proposed method takes into account the asymmetric nature of
the data compared to the ML method. This is further confirmed by the estimated values of
β; for the proposed method, the values of the skewness parameter β are all different from
zero, while those of ML method are mostly equal to zero.

Regarding the scale parameter σ̂ and σML, we observe changes: σ̂ > σML for some stock
indices, and σ̂ < σML for others. Similarly, for the location parameter µ̂ and µML.

In Tables 3 and 4, by observing the values of: σ̂ and σML from Table 4 with the standard
deviation (SD) from Table 3; µ̂ and µML from Table 4 with the mean from Table 3; we
can see that they are somewhat close. Specifically, if we consider the CAC40 stock index:
σ̂ = 261.7775, σML = 258.2216 and SD = 370.9261; µ̂ = 6445.904, µML = 6434.2911
and Mean = 6434. The four parameters α, β, σ, and µ, uniquely characterize α-stable
distributions, indicating that these laws are parametric. It is crucial to understand the
statistical significance of each parameter and its impact on the shape of the PDF or CDF.

The parameter α, also known as the characteristic exponent or stability index, character-
izes the shape of the distribution or the thickness degree of the distribution tail. The smaller
α is, the thicker the distribution tails are, implying a higher probability of observing extreme
values. When α is close to two, the probability of observing values far from the centrality
is low. A value close to zero of the α index indicates a significant mass in the distribution
tail. For example, a Gaussian distribution has the maximum value of α, namely α = 2.
Smaller α values result in sharper PDF curves, with thicker distribution tails (see Figure 1).
The parameter β represents the asymmetry of the distribution, also known as the skewness
parameter. When β is equal to -1 (respectively +1), the distribution is entirely skewed to
the left (respectively to the right). A positive (respectively negative) β indicates that the
mode is to the left (respectively to the right) of the mean. Moreover, a positive β value
implies a thicker distribution tail to the right, while a negative β value indicates a thicker
distribution tail to the left. β equal to zero corresponds to a symmetric distribution (see
Figure 1). The parameter σ is designated as the scale factor. A higher value of σ indicates
greater data volatility. By adjusting the σ parameter, one can modulate the width of the
distribution body (see Figure 1). The location parameter µ represents, when α is greater
than 1, the mean of the distribution law. If β = 0, then µ is equivalent to the median. In
other cases, the µ parameter does not have a direct interpretation (see Figure 1).

Table 4.: Estimated parameters using the proposed method and the ML method with t1 =
0.03, t2 = 0.04, t3 = 0.09.

Data set α̂ αML β̂ βML σ̂ σML µ̂ µML

CAC40 1.871 2.00 0.846 0.000 258.2216 261.7775 6445.90 6434.29
AXA SA 1.950 2.00 −0.044 0.000 1.8018 1.51313 24.78 24.93
DAX 1.950 2.00 −0.998 0.000 659.6527 601.5927 13928.12 13814.74
DVN 1.950 2.00 0.964 0.000 4.948108 4.599657 63.02 64.00
HANG 1.768 1.50 −1.000 −0.999 1155.779 1029.66 20440.46 20568.455
McDonald 1.95 1.96 −0.994 0.022 10.395 10.38 254.020 254.01
NASDAQ 1.950 1.41 0.868 1.000 791.95 567.2140 11555.97 11413.58
Nikkei 1.950 2.00 0.022 0.000 630.7446 572.3226 27257.35 27174.29
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To assess the reliability of these estimators, we plotted the histogram of each stock index
along with the PDF using the values estimated by both the proposed method and the ML
method, as illustrated in Figure 4. In both cases, the PDF curve manages to model the
shape of the data histogram effectively. However, the ML method struggles to adapt to the
asymmetric characteristics of the data, whereas the proposed method captures the data well
in their nature.
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Figure 4.: Proposed method fitting (color blue) versus ML method fitting (color red) of the
different stock market indices from 22 February 2022 to 22 February 2023.
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Figure 5.: QQ plot of the proposed method and the ML method fitting from 22 February
2022 to 22 February 2023.
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Figure 6.: QQ plot of the proposed method and the ML method fitting from 22 February
2022 to 22 February 2023.

And so to assess the quality of these fits, we plotted the QQ plots for each method. Figures
5 and 6 illustrate these QQ plots, revealing a similarity between the proposed method and
the ML method. This similarity can be attributed to the fact that the estimated values of
the stability index parameter α by both methods are close. The value at risk (VaR) is a
financial risk measure that estimates the potential loss of a portfolio of financial assets at
different confidence levels, such as 1%, 5%, and up to 10% in practical cases. It is commonly
used in banking regulation to assess necessary reserves. One of the objectives of this study
is to compare the VaR estimation obtained from models based on the proposed method and
ML method. Theoretical results on this topic are found in reference Mi and Xu (2023). Table
5 provide the VaR obtained from models based on the proposed method and ML method
for each stock index and at different confidence levels. With a confidence level of 1%, we
observe that the VaR from the proposed method is higher than the VaR from ML method
for several stock indices, mostly. At a confidence level of 5%, sometimes the VaR from ML
method is higher than the VaR from the proposed method, and sometimes the opposite is
true. However, at a confidence level of 10%, the VaR from ML method exceeds that of the
proposed method for many stock indices.

Table 5.: VaR of stock market indices.

Confidence level
1% 5% 10%

CAC40 Proposed VaR −0.07977592 −0.02460576 −0.01460486
ML VaR −0.03166673 −0.02228414 −0.01728232

AXA SA Proposed VaR −0.07243842 −0.02657139 −0.01682177
ML VaR −0.04238662 −0.02987407 −0.02320368

DAX Proposed VaR −0.06614101 −0.02449072 −0.0158769
ML VaR −0.03388966 −0.02388707 −0.01855473

DVN Proposed VaR −0.131893 −0.06455246 −0.04559477
ML VaR −0.08128066 −0.05756113 −0.04491633

HANG Proposed VaR −0.04448436 −0.0303388 −0.02419092
ML VaR −0.04811972 −0.03419181 −0.02676689

McDonald Proposed VaR −0.04301373 −0.02273395 −0.01641218
ML VaR −0.04096133 −0.02887483 −0.02243155

NASDAQ Proposed VaR −0.05321447 −0.03334233 −0.02542094
ML VaR −0.0463377 −0.03293035 −0.02578293

Nikkei Proposed VaR −0.02441894 −0.0171592 −0.01342032
ML VaR −0.02444921 −0.01724275 −0.01340102
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6. Application to Moroccan bank credit outstanding balances

To assess the performance of this adjustment with a sample of slightly larger size compared
to the samples used in the previous section, we will thus work with a dataset of credit
outstanding of size n = 1000, which is available on the website of Bank Al Maghrib. This
dataset corresponds to the credit outstanding (in millions of dirhams (MA)) of the period
between 22 June and 20 March 2023 of Bank Al Maghrib in Morocco (https://www.bkam.
ma, accessed on 13 April 2024). We have varied the sample size to observe the impact on
each parameter in the model. The credit outstanding balance refers to the total amount of
debt that a person or a company owes at a given time. This includes balances on credit
cards, personal loans, mortgages, car loans, credit lines, and other forms of credit. In other
words, the outstanding balance represents the sum of borrowed amounts that have not yet
been repaid, plus interest, fees, and other loan-related charges. Lenders closely monitor
their borrowers’ outstanding balances to ensure that they can manage their debts and repay
them on time. Figure 7 shows the evolution and daily yields of Bank Al Magrib outstanding
amounts. The values of the descriptive statistics and the estimated parameter values are
listed in Tables 6 and 7, respectively. Figure 8 illustrates the fits with the proposed method
and the ML method as well as the qqplot of each method.
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Figure 7.: Evolution and return of amounts from 22 June 2020 to 20 March 2023.

Table 6.: Summary statistical of outstanding amounts from 22 June 2020 to 20 March 2023.

Minimum 1st quartile Median Mean 3rd quartile Max SD
3465 7276 8321 8499 9447 18364 1916.489

Table 7.: Estimate of parameters using the proposed method and the ML method with
t1 = 0.03, t2 = 0.04, t3 = 0.09.

Parameters estimate
α̂ αML β̂ βML σ̂ σML µ̂ µML

1.6322 1.810 0.56 1.00 1106.321 1214.046 8191.958 8199.753

https://www.bkam.ma
https://www.bkam.ma
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Figure 8.: Proposed method fitting versus ML method fitting of Outstanding amounts June
22, 2020 to March 20, 2023.

7. Conclusions, limitations and future research

Our study has shown that estimating the parameters of an alpha-stable distribution using
the characteristic function can be used to model the distribution of returns for various stock
indices such as the CAC 40, Nikkei, as well as Bank Al Maghrib outstanding credit. The
results have proven that the proposed method using the characteristic function provides
a better approximation of the tail distribution of returns than fitting with the maximum
likelihood method, which can be helpful for portfolio management, risk management, and
asset valuation. The characteristic function has allowed for an efficient estimation of the
alpha-stable parameters, which can be applied to financial assets to improve modeling of
their distributions. This method can also be used to better capture the extreme events in
financial markets that are not typically captured by the maximum likelihood method.

One drawback of our method based on the logarithm of the characteristic function, also
known as the cumulant function, is its different behavior, with a much slower convergence
rate, not fast, and robustness to small samples, but the advantage lies in its precision
in parameter estimation. As for future perspectives, we plan to explore these methods in
modeling time series of ARIMA, GARCH, or multiple linear regression type, assuming that
the error terms (white noise) follow alpha-stable distributions, and then to observe their
predictive behavior. Future work may include applying this method to other financial assets
and comparing its results with other methods for estimating tail distributions. Additionally,
it would be interesting to investigate the impact of different factors such as volatility and
liquidity on the fitting of the alpha-stable distribution. Overall, the findings of this study
provide a useful tool for financial analysts and practitioners for modeling the distribution
of financial asset returns and managing risk.

In the context of our study, we used the statistical software R version 4.4.0 to con-
duct our analyses. Additionally, we utilized the additional packages caret and ggplot2 for
cross-validation and visualization of results, respectively. Regarding the specifications of the
computer used, our analyses were performed on a computer equipped with an Intel Core i5
processor and 8 GB of RAM, 500GB SSD hard disk. Execution times varied depending on
the size of the dataset and the complexity of the models. The real dataset used in this work
is available online and free of charge. The R codes for the simulation study are available
from the author on reasonable request.
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Appendix A: Proof of Theorem 1

Proof . For α 6= 1, the characteristic function of the random variable X is given by

log ΦX(t) = iµt− σα|t|α
(

1− iβsign(t) tan
(
πα

2

))
= −σα|t|α + i

[
σα|t|αβsign(t) tan(πα2 ) + µt

]
.

For t ∈ R∗+, we have

log(ΦX(t)) = −σαtα + i

[
σαtαβ tan

(
πα

2

)
+ µt

]
.

We set

<(log(Φ̃X(tj))) = −σαtαj , j = 1, 2, (7.11)

and

=(log(Φ̃X(tj))) = σαtαj β tan
(
πα

2

)
+ µtj , j = 1, 2. (7.12)

We check the results in the case where n = 2. From Equation (7.11), we find that

2∑
j=1

log
(
−<(log(Φ̃X(tj)))

)
= α

2∑
j=1

(log(σ) + log(tj)).

Therefore, we have that

α =
∑2
j=1 log(−<(log(Φ̃X(tj))))∑2

j=1(log(σ) + log(tj))
= A

2 log(σ) +B
.

Now, we replace α by its expression in Equation (7.11) for j = 1 or 2. Thus, for j = 1 in
Equation (7.11), we find that

log(σ) =
B log

(
−<(log(Φ̃X(t1)))

)
− A log(t1)

A− n log
(
−<

(
log
(
Φ̃X(t1)

))) .

From Equation (7.12), we find the relationship stated as

2∑
j=1
=
(

log(Φ̃X(tj))
)

= βσα tan
(
πα

2

) 2∑
j=1

tαj + µ
2∑
j=1

tj . (7.13)

We deduce β through Equation (7.13). Thus, we find µ by replacing β by its expression
given in Equation (7.12) for j = 1 or 2. The cases where j = 3, 4, 5 . . . are done in the same
way. �
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Appendix B: Proof of Theorem 2

Proof For α = 1, the characteristic function of the standard Zolotarev (1998) parametriza-
tion is given by

log(ΦX(t)) = iµt− σ|t|
(
1 + iβsign(t) 2

π
log(|t|)

)
= −σ|t|+ i[µt− σ|t|βsign(t) 2

π
log(|t|)]

= −σt+ i[µt− σtβ 2
π

log(t)], ∀t ∈ R∗+.

We set

<
(

log(Φ̃X(tj))
)

= −σtj , ∀tj ∈ R∗+, j = 1, 2, (7.14)

and

=
(

log(Φ̃X(tj))
)

= µtj − σtjβ
2
π

log(tj), ∀tj ∈ R∗+, j = 1, 2. (7.15)

From Equation (7.14), for j = 1, 2, we find that

2∑
j=1
<
(

log(Φ̃X(tj))
)

= −σ
2∑
j=1

tj . (7.16)

Therefore, we obtain σ through Equation (7.16). By using Equation (7.15), for j = 1, 2, we
obtain the relation presented as

2∑
j=1
=
(
log(Φ̃X(tj))

)
= µ

2∑
j=1

tj − σβ
2
π

2∑
j=1

tj log(tj). (7.17)

Through Equation (7.17), we reach an expression for µ. Then, it is enough to replace µ in
Equation (7.15), with j = 1, 2, to get the asymmetry parameter β. It is easy to check that
the result remains true for j = 3, 4, 5, . . . �
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