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Abstract

This article presents a new method that combines item response theory techniques with
small-area estimation approaches to handle missing data. We propose an unbiased esti-
mator for the average skill parameter of three-parameter logistic models using plausible
values as the imputation method for missing data. We conduct a thorough simulation
study to compare our estimator with the Horvitz-Thompson estimator in complex sam-
pling. Synthetic data experiments demonstrate that our proposal has lower standard
errors than its competitor. Additionally, we apply our method to the results in math-
ematics of the 2015 Program for International Student Assessment and compare our
findings with previous studies. These findings indicate that our method is a competitive
alternative for generating accurate official statistics.
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1. Introduction

Educational assessment can be understood as the process of using collected information
about attitudes, beliefs, knowledge, and skills to improve learning in academic programs
(Allen, 2004). These data are typically obtained from standardized tests applied to students
for assessing planned learning goals (Kuh et al., 2014; ICFES, 2015; OECD, 2016; UNESCO,
2019). However, standardized tests for educational assessment are currently facing a serious
issue: A decreasing number of participants per application due to lack of access and financial
restrictions (Sevilla et al., 2021).

Then, the problem of missing data is common in response strings both for traditional
surveys (San Mart́ın and Alarcón-Bustamante, 2022) and also for standardized tests for
educational assessment (Finch, 2008; Rose et al., 2014). Internal expert discussions reveal
that if a student answered all the questions designed to measure a particular competency,
it would take more than fifteen hours to complete all the questions on the entire exam.
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Exposing each student to a fifteen-hour test is not only a counterproductive strategy
for the final scores but also promotes cognitive conflicts from a pedagogical point of view
(Álvarez et al., 2007), not to mention anxiety, health, and stress issues. This is also the case
with well-known tests such as the Program for International Student Assessment (PISA)
(OECD, 2014), Trends in the International Study of Mathematics and Sciences (TIMS;
Mullis et al., 2015), and Saber 3, 5, and 9 tests (ICFES, 2015), among many others around
the globe. Based on the above, balanced incomplete blocks are implemented to administer a
standardized test without forcing students to excessive time constraints. These blocks involve
distributing all questions assessing a specific competency to different groups of students
within the same school. This approach ensures that all questions are evaluated without
requiring students to answer each individually. However, the school does assess all questions
related to the competencies (van der Linden and Veldkamp, 2004).

Estimating and analyzing standardized tests mostly employ item response theory (IRT)
methods. IRT models intend to explain the relationship between latent traits, that is, unob-
servable characteristics or attributes and their manifestations, observed outcomes, responses,
or performance (Lord, 1980; Mart́ınez, 1995; Muñiz, 1997; van der Linden and Hambleton,
1997; Reckase, 2009; Fox, 2010; Embretson and Reise, 2013; Hambleton and Swaminathan,
2013; Ariza-Hernández and Gutiérrez-Peña, 2021). In particular, three-parameter logistic
(3PL) models (Paek and Cole, 2019) are very popular for such an end. According to Sulis
and Porcu (2017), these models characterize the probability of responses to any particular
question (item) as a function of a location parameter (basal position along the latent trait),
a discrimination parameter (item capability to discriminate individuals with different latent
trait values), and then, an ability parameter (intensity of the latent trait).

This article aims to estimate the average ability parameter in a three-parameter logistic
model in the presence of missing data. To the best of our knowledge, there is a substantial
lack of research about non-response methods in the context of standardized tests (Adams
and Darwin, 1982; Baker and Kim, 2004; Sulis and Porcu, 2017). The problem of missing
data in IRT models was initially addressed by Mislevy (1991), Mislevy et al. (1992), and
Khorramdel et al. (2020) using plausible values, and this methodology is currently employed
for obtaining aggregated statistics in various international assessments such as TIMSS (Foy
et al., 2008) and PISA (OECD, 2016). Since the technique used by standardized tests to
generate aggregated results consists of generating K plausible values, based on Rubin (1987)
and relying on the 3PL model, this falls short when generating results in unobserved do-
mains. Therefore, our foundational aim relies on extending IRT methodologies accounting
for missing data while achieving similar quality indicators at lower costs. To explain the
problem addressed in this article, suppose a standardized test has been administered to a
probabilistic sample of students (subjects), where each selected student belongs to a par-
ticular school or educational institution (domains) and only answers a subset of all items.
Suppose further that the goal is to report the student’s ability for all domains, yet not all
domains are observed. The usual way to estimate an average of such an ability (latent vari-
able) is using IRT models, particularly the 3PL model. However, because students respond
to only a subset of items, measuring their abilities is subject to considerable measurement
error. In this article, we propose to use small area estimation (SAE) techniques (Avila et
al., 2021; Rodŕıguez et al., 2021), particularly the Fay-Herriot model, to address this issue.

A small area refers to any domain or subpopulation for which direct estimators do not
have satisfactory accuracy due to insufficient (or null) sample size. According to Pfeffermann
(2002), Rao and Molina (2015) and Morales et al. (2022), to obtain precise and reliable
estimates in SAE, it is necessary to use alternative estimators that not only rely on the
sampling design but also incorporate indirect estimators or predictors borrowing information
from other domains, periods or auxiliary information.
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SAE methods gained popularity through the works of Fay and Herriot (1979), Battese
et al. (1988), and Ghosh and Rao (1994). Other works in this field have also significantly
contributed to the development of SAE, such as Chambers and Tzavidis (2006); Falorsi
and Righi (2008); Chambers et al. (2009); Pfeffermann and Correa (2012). Additionally,
Pfeffermann (2013) conducted a comprehensive literature review on SAE, including the
works of Pfeffermann (2002), Rao (2005),Jiang and Lahiri (2006a), Jiang and Lahiri (2006b),
Rao (2008), Datta (2009), and Lehtonen and Veijanen (2009); among others.

Missing data may be encountered in these areas, complicating the use of SAE. One of
the earliest approaches to this problem was addressed by Longford (2004), who employed
the work by Rubin and Schenker (1991) for multiple imputation using plausible values,
obtaining estimates in the small areas of interest. One of the most relevant conclusions of
this work is that the inferences have good properties concerning sampling mechanisms and
non-response. Another recent article on SAE with missing values is Burgard et al. (2019).
Thus, the proposal in this article is to combine the traditional estimation in item response
theory methods when data is subject to missing data with SAE techniques. This article
was motivated given the importance of this methodology in the educational sector and in
generating inputs for educational public policy

In contrast with standard methods, our proposal incorporates estimates of the ability
parameter using the approach presented in Fay and Herriot (1979) within the framework of
IRT modeling, where multiple imputation tasks are needed. Such a methodology has in itself
two significant contributions. It has profound practical implications to deal appropriately
with problematic data structures involving missing data, and on the other, it resolves to
challenge theoretical issues associated with producing reliable official statistics. We highlight
that this is a complex task demanding auxiliary variables correlated with the ability of the
students, such as parental socio-economic level, parental education, and school infrastruc-
ture, among others, according to Treviño et al. (2010), as well as sophisticated statistical
tools for computing the resulting estimator together with its mean square error (MSE).

This rest of this article is structured as follows. Section 2 presents the theoretical de-
velopment of our estimator along with its MSE under some restrictions. In Section 3, we
conduct an exhaustive simulation study in which the proposed estimator is compared with
estimators existing in the literature. Also, in this section, we illustrate our proposal with an
application with real data to estimate the average ability parameter in the 2015 PISA test.
In Section 4, our findings and some relevant aspects for future research are discussed.

2. Theoretical development of the estimator and background

2.1. Notations

A boldfaced version of a variable denotes a vector with entries consisting of the subscripted
variables. For example, x = (x1, . . . , xn) denotes an n × 1 column vector with entries
x1, . . . , xn. We use 0 and 1 to denote the column vector with all entries equal to 0 and
1, respectively, and I to denote the identity matrix. A subindex in this context refers to the
corresponding dimension; for instance, In denotes the n× n identity matrix. The transpose
of a vector x is denoted by x>; analogously for matrices. Moreover, if X is a square matrix,
we use tr(X) to denote its trace and X−1 to denote its inverse. The norm of x, given by√
x>x, is denoted by ‖x‖.

2.2. Three-parameter logistics model

The 3PL model incorporates parameters of difficulty, discrimination, and guessing to model
the probability of responding correctly to the item. This model assumes that the character-
istic function is given by
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Pi (ξij = 1 | θj , ai, bi, ci) = ci + (1− ci)
1 + exp (−ai (θj − bi))

,

where bi is the item difficulty, ai is the discrimination, and ci is the pseudo-chance parameter,
for i = 1, . . . , l. ξij is a dichotomous variable that is one if the response is correct and zero
if it is not. Note that θj is the ability or latent trait of individual j and Pi(ξij = 1|·) is the
probability that individual j responds correctly to item i given an ability θj . Observe that
θj and bi are on the same scale and take values in the interval (−∞, ∞). Note that, in bi,
the point of inflection in the item characteristic curve, defined as a mathematical function
relating the probability of correctly answering an item to the measured level of the latent
trait (Paek and Cole, 2019) is present. In addition, ai is proportional to the slope of the item
characteristic curve at the point bi, ci indicates the probability that an individual responds
correctly to item i when their attribute value tends to be minus infinity. It is worth noting
that the two-parameter model is obtained when the pseudo-chance parameter ci = 0 in the
3PL model, and the one-parameter model is obtained when the discrimination parameter
ai is a constant in addition to the guessing parameter.

2.3. Ability estimation using plausible values and 3PL models

We have a finite universe U =
⋃D
d=1 Ud of size N =

∑D
d=1 Nd distributed in d domains,

where Ud is the population in domain d of size Nd. Also, let s =
⋃D
d=1 sd be the sample of

size n =
∑D
d=1 nd under consideration, where sd is the sample in domain d of size nd drawn

under a particular sampling design p. For some domain d, sd may be empty, or nd is not
large enough to enable reliable estimations. Moreover, indicator variables ξdij registering
whether individual j, in the domain d answers item i correctly, ξdij = 1, or not, ξdij = 0,
are observed, for j = 1, . . . , nd, d = 1, . . . , D, and i = 1, . . . , I, where I represents the total
number of items assessed.

To explain the problem addressed in this article, suppose a standardized test has been
administered to a probabilistic sample of students, where each selected student belongs
to a domain d (schools or educational institutions), for d = 1, . . . , D, and such student
only answers a subset of all items. Suppose further that the goal is to report the statistic
γd = E(θ), where θ is the student’s ability for all domains, yet not all domains are observed.
The usual way to estimate a student ability, given it is a latent variable, relies in using IRT
models, particularly the 3PL model.

IRT modeling assumes that individuals are endowed with the ability to answer items
correctly. Let θ be a vector containing the ability parameters of all the individuals under
consideration. The length of this vector corresponds to the number of individuals or students
in the sample, that is, the sample is of size n. The vector θ varies for each student since it
represents the latent capacity or aptitude that each student possesses to perform a specific
task, solve a problem, or understand a particular concept. To find the distribution of θ, there
must be available known individual-level auxiliary information, typically stored in a vector
of variables xI

j (the superscript I emphasizes the notion of auxiliary information at the level
of individuals or subjects), for each j = 1, . . . , nd. Thus, the probability distribution of θ in
the population is not only conditional on the observed indicator variables ξobs, but also on
the auxiliary information XI, that is,

P (θ | ξobs, XI) ∝ P (ξobs | θ,XI) P (θ |XI) , (2.1)

where XI is a matrix storing all the individual-level auxiliary information.
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Assuming conditional independence between ξobs and XI in Equation (2.1), which is
reasonable in practice as in Rubin and Schenker (1991, Section 6.1), we get

P(θ | ξobs,XI) ∝ P (ξobs | θ) P (θ |XI) .

Under this setting, the main goal relies on finding the conditional distribution of θ given
ξobs and XI, which in turn depends on two conditional distributions. Firstly, P(ξobs | θ), the
response chain distribution of students, given their ability, is considered here as a standard
3PL model (Bock and Aitkin, 1981). Secondly, P(θ |XI), the ability distribution of students
given the auxiliary information, regarded here as a multivariate normal distribution with
mean XIΓ and covariance matrix Σ, where both Γ and Σ need to be estimated. On this
point, we are implicitly stating that the parameter space of each component of θ is the real
line, even though most of the ability mass lies between −3 and 3 (Andrade et al., 2000).

It is straightforward to see that the conditional distribution P(θ | ξobs,XI) is completely
determined by handling the unknown parameters in p(ξobs | θ) as well as those in p(θ |
XI). Existing IRT methods typically deal with this setting by first using the expectation
maximization (EM) algorithm (Bock and Aitkin, 1981) to estimate the unknown parameters
in P(θ |XI), and then, using the Metropolis-Hastings (MH) algorithm (Fox, 2010) to draw
L plausible values (abilities estimates) for each individual j in domain d. In this spirit, let
θpv
dj` be the `-th MH plausible value (hence the upper-index pv) of individual j in domain d,

for ` = 1, . . . , L, with j = 1, . . . , J and d = 1, . . . , D. Also, let γd the average of the plausible
values θpv

dj` in the d-th domain. Thus, an estimate of γd and its corresponding variance can
be found by noticing that

P(γd | ξobs) =
∫

P (γd | ξ) P (ξunobs | ξobs) dξunobs, (2.2)

where ξunobs is composed of all those unobserved indicators variables not given in ξobs,
and the integral is carried out over the space parameter of ξunobs. As a consequence of
Equation (2.2), for the average of the individuals abilities γd, that means the mean of the
θpv
dj`, it follows that

E (γd | ξobs) = E [E (γd | ξunobs, ξobs) | ξobs] '
1
L

L∑
`=1

θ̂pv
d` = γ̂d

Var (γd | ξobs) = E [Var (γd | ξunobs, ξobs) | ξobs] + Var [E (γd | ξunobs, ξobs) | ξobs]

' 1
L

L∑
`=1

Var(θ̂pv
d` ) +

(
1 + 1

L

) 1
L− 1

L∑
`=1

(θ̂pv
d` − γ̂d)

2, (2.3)

where θ̂pv
d` is the `-th plausible value in domain d, and Var(θ̂pv

d` ) depends on the specific
formulation of the sampling design and corresponds to the average of the estimated variances
for each plausible value.

2.4. Proposed predictor

Here, we take a step further and go beyond the existing IRT literature as presented above
to carry out our main task: combining IRT methods with SAE strategies to account for
missing data. Thus, inspired by SAE methods, we propose estimating γ = (γ1, . . . , γD), by
using a predictor based on an area-level linear mixed model fitted to γ̂ stated as

γ̂ = XAβ + Zu+ e, (2.4)
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where XA is a fixed-effects matrix storing all the area-level auxiliary information (the sub-
index A emphasizes the notion of auxiliary information at the level of areas or domains), β
is a vector of unknown constants, Z is a random-effects design matrix, and then, u and e are
independent random vectors such that u ∼ N (0, Vu) and e ∼ N (0, Ve), with known Vu and
Ve. Thus, under the previous specification it follows directly that Var (γ̂) = ZVuZ

>+Ve =
V , and also, following standard results about linear mixed-effects models (Morales et al.,
2022), it can be shown that the optimal unbiased linear predictor of τ = Lβ +Mu is τ̂ =
Lβ̂+Mû, with associated estimators of β̂ and û given by β̂ =

(
X>AV

−1XA
)−1

X>AV
−1γ̂

and û = (ZVu)> V −1
(
γ̂ −XAβ̂

)
.

The mathematical construction of the best linear unbiased predictor of τ is stated next.
Building on ideas given in Harville (1977) and Morales et al. (2022), we consider an unbiased
linear predictor of the form τ̂ = Q0 +Q1γ̂, where Q0 and Q1 are two conformable matrices.
Since τ̂ is unbiased, we have that E (τ̂ − τ ) = 0, but E (τ̂ ) = Q0E (γ̂)+Q1 = Q0XAβ+Q1
and E (τ ) = Lβ. Then, it follows that

0 = E (τ̂ − τ ) = Q0E (γ̂) +Q1 −Lβ = (Q1XA −L)β +Q0,

which requires that both Q0 = 0 and Q1XA = L hold. Thus, the best predictor τ̂ can be
found by minimizing Var (τ̂ − τ ) subject to Q1XA = L. Thus,

Var (τ̂ − τ ) = Var (Q1γ̂ −Lβ −Mu)
= Var (Q1γ̂) + Var (Mu)− 2Cov (Q1γ̂,Mu) (2.5)
= Q1V Q

>
1 +MVuM

> − 2Q1CM
>,

with C = Cov (γ̂, u) in Equation (2.5). Since MVuM
> does not depend on Q1, the

minimization problem given above can be restated as minimizeQ1V Q
>
1 −2Q1CM

> subject
to Q1XA = L, whose corresponding Lagrangian function is presented as

` (Q1, Λ) = Q1V Q
>
1 − 2Q1CM

> + 2 (Q1XA −L) Λ.

Taking partial derivatives with respect to both Q1 and Λ and equalizing to zero, we get
the Equations stated as

∂` (Q1, Λ)
∂Q1

= 2V Q>1 − 2CM> + 2XAΛ = 0, V Q>1 +XAΛ = CM>,

∂` (Q1,Λ)
∂Λ

= 2 (Q1XA −L) = 0, X>AQ
>
1 = L>,

that, in turn, can be rewritten in matrix form as

(
V XA
X>A 0

)(
Q>1
Λ

)
=
(
CM>

L>

)
⇒
(
Q>1
Λ

)
=
(
V XA
X>A 0

)−1 (
CM>

L>

)
.

Thus, using results from matrix algebra and letting G =
(
X>AV XA

)−1, we obtain

(
Q>1
Λ

)
=
(
V −1 − V −1XAGX

>
AV

−1 V −1XAG
GXa

A>V −G

)(
CM>

L>

)
,
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obtaining an expression for Q1 as

Q1 =
[
V −1XAGL

> + V −1
(
I −XAGX

>
AV

−1
)
CM>

]>
= LGX>AV

−1 +MC>V −1
(
I −XAGX

>
AV

−1
)
,

where I is the identity matrix.
Recall from our earlier discussion that the linear predictor takes the form τ̂ = Q1γ̂

because it is assumed to be unbiased from the beginning. Thus, substituting Q1, we get
that the best linear unbiased predictor of τ is given by the Equations stated as

τ̂ =
[
LGX>AV

−1 +MC>V −1
(
I −XAGX

>
AV

−1
)]
γ̂

= LGX>AV
−1γ̂ +MC>V −1γ̂ −MC>V −1XAGX

>
AV

−1γ̂

= LGX>AV
−1γ̂ +MC>V −1

(
γ̂ −XAβ̂

)
= Lβ̂ +Mû,

where β̂ = GX>AV
−1γ̂ and û = C>V −1

(
γ̂ −XAβ̂

)
. Now, our goal is to see through the

previous expression to adapt the Fay-Herriot model stated as

γ̂d = x>A d β + ud + ed, d = 1, . . . , D, (2.6)

where x>A d β =
∑p
k=1 xA dk βk is a linear predictor of fixed effects, ud is a domain-specific

random effect, and p is the number of parameters in the model. All the random effects
are assumed to be independent and identically distributed with zero mean and variance σ2

u.
Furthermore, ed is the sampling error associated with the sampling design p, which is also as-
sumed to be independent of ud, and also, such that Ep[ed | γ̂d] = 0 and Varp[ed | γ̂d] = σ2

d. As
a final remark, each σ2

d can be calculated in a straightforward fashion using Equation (2.3).
Using the results provided in this section and rewriting the model in Equation (2.6) in the
matrix form of Equation (2.4), it follows that γ̂ = XAβ + Zu + e is equivalent to the
expression given by

 γ̂1
...
γ̂D

 =

 xA 11 · · · xA 1p
... . . . ...

xAD1 · · · xADp


β1

...
βp

+

 u1
...
uD

+

 e1
...
ed

 ,
which means that Z = ID and V = diag

(
σ2
u + σ2

1, . . . , σ
2
u + σ2

D

)
. As a consequence, we have

that the best linear unbiased estimator of β = (β1, . . . , βp) and u = (u1, . . . , uD) are shown
respectively in the formulations presented as

β̃ =
(
X>AV

−1XA
)−1

X>AV γ̂, ũ = C>V −1
(
γ̂ −XAβ̃

)
, (2.7)

with V −1 = diag
(
1/
(
σ2
u + σ2

1
)
, . . . , 1/

(
σ2
u + σ2

D

))
and γ̂ = (γ̂1, . . . , γ̂D).

Therefore, the best linear unbiased predictor proposed in this article is stated as

γ̂B
d = σ2

u

σ2
u + σ2

d

γ̂d + σ2
d

σ2
u + σ2

d

x>A d β̃. (2.8)
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Also, the empirical best linear unbiased predictor of the mean of the small area γd under the
model in Equation (2.6) can be obtained just by replacing σ2

u by its corresponding estimate
σ̂2
u in Equation (2.8) as

γ̂P
d = σ̂2

u

σ̂2
u + σ2

d

γ̂d + σ2
d

σ̂2
u + σ2

d

x>A d β̃ = (1−Bd) γ̂d +Bd x
>
A d β̃, (2.9)

with Bd = σ2
d/(σ̂2

u + σ2
d). The proposed predictor γ̂P

d in Equation (2.9) is unbiased for γd,
for d = 1, . . . , D. Indeed, consider the difference stated in

γ̂P
d − γd = (1−Bd) γ̂d +Bd x

>
A d β̃ − [Bd γd + (1−Bd) γd] .

Now, by letting αd = 1−Bd, γd = x>A d β + ud, and γ̂d = γd + ed, we have

γ̂P
d − γd = αd (γd + ed) + (1− αd)x>A d β̃ − αdγd − (1− αd) γd

= αded + (1− αd)x>A d β̃ − (αd)
[
x>A d β + ud

]
= αded + (1− αd)

[
x>A d (β̃ − β)

]
− (1− αd)ud.

Then, taking expected values presented as

E
(
γ̂P
d − γd

)
= E

(
αded + (1− αd)

[
x>A d (β̃ − β)

]
− (1− αd)ud

)
= 0. (2.10)

The results in Equation (2.10) follow because E (ed) = E (ud) = 0, and also, E(β̃ − β) = 0
since β̃ is an unbiased estimator for β.

2.5. Mean square error of the proposed predictor

Next, the estimation of the MSE for the proposed predictor is presented. We follow very
Kackar and Harville (1984), Prasad and Rao (1990), and Ghosh and Rao (1994) to obtain an
expression for the MSE of the proposed predictor γ̂P

d . Specifically, we consider the variance
component estimation method, which requires us to find three quantities explicitly, namely,
g1d(σ2

u), g2d(σ2
u), and g3d(σ2

u), for d = 1, . . . , D. We refer the reader to the previous references
for details about such a method. However, we outline some fundamental details below.

First, to calculate g1d
(
σ2
u

)
, we need to take into account that Vu = σ2

uID and Ve =
σ2
dW

−1
N V −1

s = diag
(
V −1
s1 , . . . ,V −1

sD

)
, where WN is an N × N diagonal matrix of weights

induced by the sampling design p, with N the population size, s = ∪Dd=1sd is the full sample
under consideration, with sd the sample in domain d, and

V −1
sd

= 1
σ2
d

(
Wsd

− Bd
wd
wnd

w>nd

)
, (2.11)

where wd is the weight of domain d, for d = 1, . . . , D in Equation (2.11).
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Thus, it follows that

VuZ
>
s V

−1
e s ZsVu = σ4

u

σ2
d

diag
(
1>n1 , . . . ,1

>
nD

)
diag

(
Wn1 −

B1

n1
wn11>1 , . . . ,WnD

− BD
nD
wnD

1>D
)

×diag (1n1 , . . . ,1nD
)

= σ2
u diag

(
B1

w1
w>n1 , . . . ,

BD
wD
w>nD

)
diag (1n1 , . . . , 1nD

)

= σ2
u diag (B1, . . . , BD) ,

and therefore we have that

Ts = Vu(ID −Z>s V −1
e s ZsVu) = σ2

u diag (1−B1, . . . , 1−BD) , (2.12)

with Zs = diag (1n1 , . . . ,1nD
) in Equation (2.12) and

Ve s = diag
(
Wn1 −

B1

n1
wn11>w1 , . . . ,WnD

− BD
nD
wnD

1>D
)
.

The previous result is useful because we want to estimate the average of the plausible
values for all the individuals within the domain d, η = a>γU, with

a> = 1
Nd

(
0>N1

, . . . ,0>Nd−1
,1>Nd

,0>Nd+1
, . . . ,0>ND

)
,

and γU is the population parameter, leading us to consider all those individuals included in
the sample and those that did not, denoted by s and r, respectively. As a consequence, we
get for g1d

(
σ2
u

)
that

g1d
(
σ2
u

)
= a>r ZrTsZ

>
r ar

=
(
0>, . . . ,0>,1>Nd−nd

,0>, . . . ,0>
)

diag (1N1−n1 , . . . ,1Nd−nd
)

× σ
2
u

N2
d

diag (1−B1, . . . , 1−BD) (2.13)

×diag
(
1>N1−n1 , . . . ,1

>
ND−nD

) (
0>, . . . ,0>,1>Nd−nd

,0>, . . . ,0>
)

= σ2
u

N2
d

(1−Bd) (Nd − nd)2

' σ2
u (1−Bd) ,

for nd << Nd.
Now, to compute g2d

(
σ2
u

)
, we need to get

ZrTsZ
>
s = diag (1N1−n1 , . . . ,1ND−nD

)σ2
u diag (1−B1, . . . , 1−BD) diag

(
1>n1 , . . . ,1

>
nD

)
= σ2

u diag
(
(1−B1) 1N1−n11>n1 , . . . , (1−BD) 1ND−nD

1>nD

)
,
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which means that

a>r ZrTsZ
>
s V

−1
e s XA s = 1

Nd

σ2
u

σ2
d

(
0>, . . . ,0>,1>Nd−nd

,0>, . . . ,0>
)

×diag
(
(1−B1) 1N1−n11>n1 , . . . , (1−BD) 1ND−nD

1>nD

)
WsXA s

= 1
Nd

σ2
u

σ2
d

(1−Bd) (Nd − nd)
(
0>, . . . ,0>,w>nd

,0>, . . . ,0>
)
XA s

= (1− fd)Bd ˆ̄xd , (2.14)

with fd = nd/Nd is the sampling fraction and ˆ̄xd = 1/
∑
wd
∑
k∈sd

xdkwdk in Equation (2.14).
Moreover, we have that

a>r XA r = 1
Nd

(
0>, . . . ,0>,1>Nd−nd

,0>, . . . ,0>
)
XA r = (1− fd) x̄d, (2.15)

with x̄d = (1/Nd)
∑
k∈d xdk. Using together Equation (2.15), along with nd << Nd, we get

the expression given by

g2d
(
σ2
u

)
=
(
x̄d −Bd ˆ̄xd

) (
X>A sV

−1
s XA s

)−1 (
x̄d −Bd ˆ̄xd

)>
. (2.16)

This, in order to g3d
(
σ2
u

)
, we need to get

b> = 1
Nd

σ2
u

σ2
d

(
0>, . . . ,0>,1>Nd−nd

,0>, . . . ,0>
)

diag (1N1−n1 , . . . ,1ND−nD
) diag

(
1>n1 , . . . ,1

>
nD

)
×diag

(
Wn1 −

B1

w1
wn1w

>
n1 , . . . ,WnD

− BD
wD

wnD
w>nD

)
= 1
Nd

(
0>, . . . ,0>,1>Nd−nd

,0>, . . . ,0>
)

diag
(
B1

w1
1N1−n1w

>
n1 , . . . ,

BD
wD

1ND−nD
w>nD

)
=
(

0>, . . . ,0>,
Bd
wd

Nd − nd
Nd

w>nd
,0>, . . . ,0>

)
.

Then, we obtain

∇b> =
(

0>, . . . ,0>, (1− fd) ∂Bd

∂σ2
d

1
wd
w>nd

,0>, . . . ,0>

0>, . . . ,0>, (1− fd) ∂Bd

∂σ2
u

1
wd
w>nd

,0>, . . . ,0>

)

and therefore we get the expression for g3d
(
σ2
u

)
given by

g3d
(
σ2
u

)
= (1− fd)2

(
σ2
u + σ2

d

wd

)
tr



(
∂Bd

∂σ2
d

)2
∂Bd

∂σ2
d

∂Bd

∂σ2
u

∂Bd

∂σ2
d

∂Bd

∂σ2
u

(
∂Bd

∂σ2
u

)2

( Var
(
σ̂2
d

)
Cov

(
σ̂2
d, σ̂

2
u

)
Cov

(
σ̂2
d, σ̂

2
u

)
Var

(
σ̂2
u

) )
=
(
σ2
u + σ2

d

wd

)−3 1
w2
d

Var
(
σ2
uσ̂

2
d − σ2

dσ̂
2
u

)
(2.17)

for nd << Nd.
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The estimation of the MSE for the proposed predictor γ̂P
d can now be obtained by con-

sidering our findings given in Equations (2.13), (2.16) and (2.17). Specifically, considering
σ2
u instead of σ̂2

u, it follows that

g1d
(
σ̂2
u

)
= σ̂2

uσ
2
d

σ̂2
u + σ2

d

= σ2
d (1−Bd) , g2d

(
σ̂2
u

)
=
(

σ2
d

σ̂2
u + σ2

d

)2

a = B2
d a,

where Bd = σ2
d/(σ̂2

u + σ2
d) and a = xdAF

−1x>dA, with F = (σ̂2
u + σ2

d)−1 ∑D
d=1 xdA x

>
dA. The

component g3d
(
σ̂2
u

)
depends on the estimation method of the variance components. Either

way, g3d
(
σ̂2
u

)
takes the form stated as

g3d
(
σ̂2
u

)
= σ4

d

(σ̂2
u + σ2

d)
3 Var

(
σ̂2
u

)
,

where

Var
(
σ̂2
u

)
= 2
D

[
σ̂4
u + 2σ̂2

u

D

D∑
d=1

σ2
d + 1

D

D∑
d=1

σ4
d

]
= 2

[
D∑
d=1

(
σ̂2
u + σ2

d

)−2
]−1

,

using the moment estimator proposed by Prasad and Rao (1990) or the expression in the
right, either the maximum likelihood (ML) or the restricted maximum likelihood (REML).
Thus, g3d

(
σ̂2
u

)
simplifies to

g3d
(
σ̂2
u

)
=
(

1
σ̂2
u + σ2

d

)
2B2

d∑D
d=1 (σ̂2

u + σ2
d)

2 .

Therefore, on the one hand, if either the Prasad-Rao or REML estimator are used, then the
estimator for the MSE is given by

M̂SE( γ̂P
d ) = g1 d

(
σ̂2
u

)
+ g2 d

(
σ̂2
u

)
+ 2g3 d

(
σ̂2
u

)
, (2.18)

but on the other hand, if the ML estimator is used, then we get for the estimator of the
MSE that

M̂SE( γ̂P
d ) = g1 d

(
σ̂2
u

)
+ g2 d

(
σ̂2
u

)
+ 2g3 d

(
σ̂2
u

)
− b∇g1,

with

b = − 1[∑D
d=1 (σ̂2

u + σ2
d)
−2
]tr


(

D∑
d=1

(
σ̂2
u + σ2

d

)−1
xdA x

>
dA

)−1( D∑
d=1

(
σ̂2
u + σ2

d

)−2
xdA x

>
dA

)
and ∇g1 = σ4

d

(
σ̂2
u + σ2

d

)−2.
Taking into account the above results presented and the developments made by Ghosh

and Rao (1994) and Prasad and Rao (1990), the estimation of the MSE for γ̂Pd can be written
depending on the method of estimation of the variance components.
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The expressions for g1 d
(
σ̂2
u

)
and g2 d

(
σ̂2
u

)
are presented as

g1 d
(
σ̂2
u

)
= σ̂2

uσ
2
d

σ̂2
u + σ2

d

= σ2
d (1−Bd)

g2 d
(
σ̂2
u

)
=
[

σ2
d

(σ̂2
u + σ2

d)

]2

xAd

[∑D
d=1 x

A
d

(
xAd
)>

σ̂2
u + σ2

d

]−1 (
xAd

)>

= B2
d x

A
d

[∑D
d=1 x

A
d

(
xAd
)>

σ̂2
u + σ2

d

]−1 (
xAd

)>
.

It is worth noting that the component g3 d
(
σ̂2
u

)
will depend on the method of estimation

of the variance components used and their possible expressions appear in

g3 d
(
σ̂2
u

)
= σ4

d

(σ̂2
u + σ2

d)
3

2
D

[
σ̂4
u + 2σ̂2

u

D

D∑
d=1

σ2
d + 1

D

D∑
d=1

σ4
d

]
,

and rewritten as

g3 d
(
σ̂2
u

)
=
(

1
σ̂2
u + σ2

d

)
2B2

d∑D
d=1 (σ̂2

u + σ2
d)

2 .

When the ML estimator or REML estimator are used for the variance component esti-
mates, the term g3

(
σ̂2
u

)
is given by

g3 d
(
σ̂2
u

)
= σ4

d

(σ̂2
u + σ2

d)
3 Var

(
σ̂2
u

)
,

with

Var
(
σ̂2
u

)
= 2

[
D∑
d=1

(
σ̂2
u + σ2

d

)−2
]−1

.

The MSE of the proposed predictor has two alternative expressions depending on the
estimation method. If we use the Prasad and Rao or the REML estimation method, the
MSE estimator follows that

M̂SE
(
γ̂Epd

)
= g1 d

(
σ̂2
u

)
+ g2 d

(
σ̂2
u

)
+ 2g3 d

(
σ̂2
u

)
.

Meanwhile, if the ML estimation method is used, the MSE estimator is given by

M̂SE
(
γ̂Ep
d

)
= g1 d

(
σ̂2
u

)
+ g2 d

(
σ̂2
u

)
+ 2g3 d

(
σ̂2
u

)
− b∇g1,

where the last terms are stated as

∇g1 = σ4
d

(
σ̂2
u + σ2

d

)−2
,

b = −tr


(

D∑
d=1

(
σ̂2
u + σ2

d

)−1 (
xAd

)>
xAd

)−1( D∑
d=1

(
σ̂2
u + σ2

d

)−2 (
xAd

)>
xAd

)
[
D∑
d=1

(
σ̂2
u + σ2

d

)−2
]−1

.
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3. Numerical Applications

3.1. Simulation Study

Next, we conduct a simulation study to assess the statistical properties of the proposed
predictor. This simulation aims to analyze the relative bias (RB), RBd = (γd − γ̂d)/γ̂d, the
squared root mean square error RMSE (γ̂d) =

√
MSE (γ̂d) and the relative standard error

RSEd = (RMSE(γ̂d)/γd)×100%, associated with the proposed predictor versus the Horvitz-
Thompson (Narain, 1951; Horvitz and Thompson, 1952), the calibration and the composite
estimator. Our simulation study follows the next steps:

(1) Simulate a population of N = 100, 000 students with 150 items per student and
D = 500 domains, along with two auxiliary variables associated with the ability θ
for each student.

a) The first step is to define the number of students that will be in each of the 500
domains. For this, each student is assigned to one of the 500 domains with a
probability generated using a beta distribution. Then, the number of students
assigned to each domain is counted. This ensures that the domains do not have
the same number of students while respecting the fact that the sum of the
domain sizes is N = 100, 000.

b) Expected abilities are generated for each domain using a sequence of numbers
between -3 and 3 as most abilities fall within this range (Andrade et al., 2000).

c) To generate the students abilities in each domain, a normal distribution is used
with a mean equal to the sequence mentioned in step 3 and a random variance
(between 0.3 and 0.7 per student).

d) To generate the items that replicate the ability created in the previous step for
each student, a 3PL model and the simdata function from the mirt library in
R are used.

e) To define the auxiliary variables associated with the expected abilities defined
in step (c), the variance

(
σ2
i

)
of the random component in a linear regression

model of the form Xd,j = βdjθdj + edj is increased, where θdj is the ability
of the j-th student in domain d, βdj is a constant obtained from a uniform
distribution, and edj ∼ N

(
0, σ2

i

)
, until achieving approximate high (> 80%),

medium (60%, 80%), and low (< 60%) correlations.
(2) Set 10%, 20%, and 30% of missing responses per student completely at random in

the population. Each student is induced with 10%, 20%, or 30% of missing data ran-
domly, depending on the scenario, using the sample function to select the responses
that will be removed randomly.

(3) Define two auxiliary variables at the domain level correlated with θd on three lev-
els (high (> 80%), medium (60%, 80%) and low (< 60%)) using the methodology
described in the step (1), item (e).

(4) Estimate five plausible values for each student.
a) The parameters of the 3PL model are estimated using the EM algorithm. This

is done using the tam.mml.3p function from the TAM library.
b) Five values are generated using the tam.pv function from the TAM library.

(5) Consider a different number of domains in the sample using different sampling frac-
tions as fd = 30%, 50% and 70% on the total number of domains in the population.

(6) For the domains selected in Step 5., select a random sample from the population
using simple random sampling with sampling fraction fn=5%, 10% and 20%, consid-
ering the Horvitz-Thompson estimator, γ̂Dir

d , the calibration estimate, γ̂Cal
d , and the

composite estimator, γ̂Comp
d , the proposed predictor, γ̂P

d using the REML method
for each selected domain, along with its standard deviation.
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(7) Calculate RBd and the relative standard errors, RSEd, by domain, for each of the
estimators γ̂Dir

d , γ̂Cal
d , γ̂Comp

d , and γ̂P
d , and compute:

a) MRB = (
∑D
d=1 SBd)/D × 100% (mean RB).

b) MRSE = (
∑D
d=1 EERPd)/D × 100% (mean relative standard error)

(8) Repeat steps 5 to 7 for 100,000 random samples and compute:

a) MRB =
[(100000∑

r=1
MRBr

)
× 100%

]
/100000

(mean of the average RB).

b) MRSE =
[(100000∑

r=1
MRSEr

)
× 100%

]
/100000

(mean of the average relative standard error).
The statistical software R (Version 4.3.2) was used to conduct this simulation. Some pack-

ages used to carry out the simulation include sae, emdi, survey, TeachingSampling, mirt,
and TAM. This simulation took approximately four days of computational time due to the
number of scenarios in which the estimator was tested and the complexity of the calcula-
tions. These calculations were performed on computers with core i7 processors and 32GB
of RAM. All script details are in Téllez-Piñérez (2020, Appendix).

Table 1 considers the simulation scenario when the percentage of missing values is 10%,
and there is a high correlation between the auxiliary variables and the mean ability. Our
findings show that the proposed predictor is unbiased as it was theoretically shown. In all the
scenarios, the proposed predictor has a lower MRSE and a lower MSE than the alternative
estimators. One of the scenarios where the MRSE is higher for all the considered estimators
is when the percentage of domains is 70% (350 domains) and the sample fraction is 5%
(5,000 individuals).

Such a configuration is not very convenient in practical terms since, on average, each
selected domain will have fifteen observations. Also, in this particular scenario, the Horvitz-
Thompson estimator becomes less efficient than the calibration and the composite estima-
tors. However, the proposed predictor has the property of high efficiency with a low MRSE
for all the simulation scenarios. Another result in Table 1 is that if the sample percentage
increases (fn ↑), keeping the number of domains fixed, then the MRSE in all the estimators
decreases. Since the sampling fraction inside each domain increases, the estimates variance
tends to decrease. In addition, if the number of domains increases (fd ↑) keeping the sample
percentage fixed, the MRSE for all estimators increases. This is because, as the number of
domains increases, the sample size per domain decreases, which makes the estimates less
efficient.

Table 1. 10% missing and high correlation.

fd (%) fn(%) MRSEγ̂Dir
d (%) MRSEγ̂Cal

d (%) MRSEγ̂Comp
d (%) MRSEγ̂P

d (%) MRBγ̂P
d (%)

30% 5% 1.53 1.20 1.03 0.85 0.08
30% 10% 1.23 1.07 1.00 0.85 0.02
30% 20% 1.03 1.00 0.98 0.85 -0.01
50% 5% 1.87 1.38 1.09 0.88 0.14
50% 10% 1.45 1.16 1.02 0.86 0.05
50% 20% 1.17 1.04 0.99 0.87 0.01
70% 5% 2.16 1.56 1.15 0.96 0.22
70% 10% 1.63 1.24 1.05 0.87 0.09
70% 20% 1.29 1.09 1.01 0.89 0.03
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The results obtained for the remaining scenarios are consistent with the ones in Table 1,
which can be found in Tables 2 and 3.

Table 2. 10% and 20% missing and several degrees of correlation.

fd (%) fn(%) MRSEγ̂Dir
d (%) MRSEγ̂Cal

d (%) MRSEγ̂Comp
d (%) MRSEγ̂Pd (%) MRBγ̂Pd (%)

10% missing and average correlation
30% 5% 1.48 1.47 1.01 0.92 0.06
30% 10% 1.17 1.15 0.94 0.88 0.05
30% 20% 0.96 0.96 0.90 0.87 0.01
50% 5% 1.84 1.84 1.11 0.96 0.09
50% 10% 1.38 1.37 0.99 0.88 0.07
50% 20% 1.09 1.09 0.92 0.86 0.04
70% 5% 2.11 2.17 1.22 1.11 0.11
70% 10% 1.58 1.57 1.04 0.92 0.08
70% 20% 1.22 1.21 0.95 0.87 0.05

10% missing and low correlation
30% 5% 1.49 2.84 1.33 1.22 -0.06
30% 10% 1.19 1.93 1.10 1.08 -0.03
30% 20% 1.00 1.24 0.97 1.01 0.01
50% 5% 1.84 3.85 1.61 1.45 -0.14
50% 10% 1.40 2.60 1.26 1.15 -0.04
50% 20% 1.13 1.72 1.06 1.01 0.01
70% 5% 2.12 4.71 1.95 1.86 -0.19
70% 10% 1.58 3.12 1.40 1.23 -0.11
70% 20% 1.24 2.11 1.14 1.03 -0.02

20% missing and high correlation
30% 5% 1.57 1.25 1.09 0.92 0.07
30% 10% 1.27 1.12 1.05 0.91 0.02
30% 20% 1.10 1.06 1.04 0.91 -0.01
50% 5% 1.90 1.42 1.14 0.94 0.03
50% 10% 1.48 1.20 1.08 0.93 0.06
50% 20% 1.22 1.10 1.05 0.92 0.01
70% 5% 2.18 1.59 1.20 1.02 0.24
70% 10% 1.67 1.29 1.10 0.94 0.1
70% 20% 1.33 1.14 1.06 0.95 0.03

20% missing and average correlation
30% 5% 1.53 1.52 1.09 0.98 0.07
30% 10% 1.22 1.22 1.02 0.95 0.04
30% 20% 1.04 1.04 0.98 0.94 0.00
50% 5% 1.85 1.89 1.18 1.04 0.09
50% 10% 1.44 1.43 1.08 0.97 0.07
50% 20% 1.17 1.16 1.01 0.94 0.03
70% 5% 2.13 2.24 1.29 1.19 0.09
70% 10% 1.62 1.61 1.11 0.98 0.09
70% 20% 1.28 1.27 1.03 0.95 0.05

20% missing and low correlation
30% 5% 1.52 2.83 1.34 1.16 -0.07
30% 10% 1.20 1.93 1.12 1.02 0.01
30% 20% 1.02 1.26 1.00 0.96 0.02
50% 5% 1.83 3.83 1.61 1.41 -0.07
50% 10% 1.41 2.57 1.27 1.08 -0.04
50% 20% 1.15 1.73 1.08 0.96 0.01
70% 5% 2.12 4.70 1.92 1.86 -0.16
70% 10% 1.60 3.11 1.41 1.19 -0.08
70% 20% 1.26 2.11 1.16 0.99 -0.01
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Table 3. 30% missing and several degrees of correlation.

fd (%) fn(%) MRSEγ̂Dir
d (%) MRSEγ̂Cal

d (%) MRSEγ̂Comp
d (%) MRSEγ̂Pd (%) MRBγ̂Pd (%)

30% missing and high correlation
30% 5% 1.57 1.26 1.11 0.90 0.1
30% 10% 1.29 1.13 1.07 0.89 0.04
30% 20% 1.11 1.07 1.05 0.90 0.01
50% 5% 1.89 1.41 1.16 0.92 0.17
50% 10% 1.48 1.21 1.10 0.90 0.07
50% 20% 1.23 1.11 1.07 0.92 0.03
70% 5% 2.16 1.58 1.21 1.01 0.25
70% 10% 1.67 1.29 1.12 0.92 0.11
70% 20% 1.34 1.15 1.08 0.93 0.05

30% missing and average correlation
30% 5% 1.64 1.65 1.24 1.04 0.09
30% 10% 1.36 1.36 1.18 1.04 0.04
30% 20% 1.20 1.20 1.15 1.03 0.02
50% 5% 1.94 2.00 1.33 1.11 0.12
50% 10% 1.54 1.57 1.22 1.04 0.07
50% 20% 1.31 1.31 1.17 1.03 0.04
70% 5% 2.22 2.34 1.42 1.25 0.13
70% 10% 1.72 1.74 1.26 1.07 0.09
70% 20% 1.41 1.42 1.19 1.05 0.06

30% missing and low correlation
30% 5% 1.60 2.95 1.45 1.24 -0.07
30% 10% 1.32 2.03 1.24 1.08 -0.01
30% 20% 1.16 1.39 1.14 1.03 0.02
50% 5% 1.91 3.93 1.70 1.46 -0.14
50% 10% 1.51 2.67 1.38 1.14 -0.05
50% 20% 1.26 1.84 1.21 1.04 0.00
70% 5% 2.18 4.83 2.00 1.94 -0.14
70% 10% 1.68 3.20 1.51 1.26 -0.08
70% 20% 1.37 2.20 1.28 1.07 -0.01

Figures 1(a)-(d) illustrate ability estimations using the methodology proposed in this ar-
ticle compared to the simulated true ability of students in randomly selected domains and
specific simulation scenarios. Across the different graphs, the behavior of the ability estima-
tions, in comparison to the true ability, is similar, and no outlier behaviors are observed in
the different tested scenarios.

3.2. Application with real data

The dataset for this section can be found on the OECD website (https://www.oecd.org/
pisa/data/, accessed on 20 May 2024). Plausible PISA 2015 Mathematics Test values are
available for 55 countries in this dataset and will be used to estimate their average results.
In addition, the auxiliary information that we consider to carry out this application is
composed of variables related to the learning context that, according to Treviño et al. (2016),
have a direct relationship with academic achievement. In particular, the auxiliary variables
considered for each country, in this case, are: (i) gross domestic product —GDP—; (ii)
expenditure per student at the secondary level —% of GDP per capita—; (iii) unemployment
total —% of total participation in the labour force as a national estimate—; (iv) number of
articles in scientific and technical publications; (v) expenditure on research and development
—% of GDP—; (vi) public expenditure on education total —% of GDP—, (vii) Gini index;
(viii) percentage of schools with access to drinking water service; and (ix) percentage of
schools with access to electric service.

https://www.oecd.org/pisa/data/
https://www.oecd.org/pisa/data/
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(a) 10% missing data (b) 20% missing data

(c) 20% missing data (d) 30% missing data

Figure 1. Observed ability versus estimated ability by domain with high (a), (b) and (d), and median (c) correlation.

First, the sampling design employed in PISA for each country is probabilistic, stratified,
and multi-stage. In the first stage, schools are selected, and in the second stage, 15-year-
old students are selected. The item response theory model that PISA uses to generate the
estimated abilities of students is presented as

Pi (ξik = 1 | θk, ai, bi, ) = exp(1.7a (θk − bi))
1 + exp(1.7a (θk − bi))

. (3.19)

Once the students abilities have been estimated using the IRT model stated in Equa-
tion (3.19), the Fay-Herriot model is then adjusted with the covariates mentioned in the
introduction of this section. The structure of the model is formulated as

γ̂d = β0 + β1X1 + · · ·+ β9X9 + µd + εd.

Once the model was adjusted (the emdi library in the R software and the fh function were
used), a stepwise method was performed to obtain the covariates that will be ultimately
used in the model (the emdi library in the R software and the step function were used).
Table 4 presents the variables and estimates of the selected parameters.
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Table 4. Coefficients estimates, β, and their p-values.

Covariate β̂

Intercept −5669.07

Public spending on education, total (% of GDP) 14.52

% of schools with access to electricity service 54.60

% of schools with access to drinking water service 6.26

Research and development expenditure (% of GDP) 10.41

Unemployment, total (% of total labor force participation) −1.50

We conducted a normality test on the errors and random effects. To compute the estimated
ability mean using the proposed predictor, we use Equation (2.9) directly. In doing so, first,
we estimate the variance of the random effect by means of Equation (2.7), obtaining that
σ̂u = 986.58. The variances σ2

d and the direct estimates γ̂d are those reported by PISA 2015.
Thus, to calculate the MSE of γ̂P

d , we must compute g1d
(
σ̂2
u

)
, g2d

(
σ̂2
u

)
, and g3d

(
σ̂2
u

)
as shown

in Section 2.5.
Table 5 shows all the estimates for γ̂P

d by country and the components for its calculation in
Equation (2.8). In these results and for the countries with available PISA 2015 Mathematics
Tests, the abilities in Mathematics are quite similar among countries. However, Eastern
Asian countries such as Singapore, Hong Kong, Macao, Japan, and South Korea, followed
by some European countries like Estonia, Switzerland, Denmark, Finland, Netherlands, and
Slovakia (also Canada), have the highest abilities in Mathematics. Countries with lower
abilities in Mathematics among the considered countries were Tunisia, Jordan, Brazil, and
Colombia in that order.

Also, Table 6 shows the corresponding MSE values of the proposed predictor γ̂P
d with their

corresponding three variance components in Equation (2.18). In these results, Vietnam has
the highest MSE, followed by Turkey in second place and Bulgaria in third.

Table 7 shows the estimates γ̂d of the mean ability by country obtained in the Mathematics
test, along with their estimated coefficient of variation (CVE) taking as inputs the results
from Tables 5 and 6. To understand the variability of these countries in relation to their
results, the standard errors of the estimates are in Table 7.

Table 7 also displays the corresponding estimates according to the proposed predictor γ̂Pd
together with the values of

RSEd =
√

MSE
γ̂Pd

× 100%,

Difrel =

(
σ2
d −MSE

(
γ̂Pd

))
σ2
d

× 100%.

The latter expression is the relative difference between the measures of variability of γ̂d and
γ̂Pd , to compare the reduction in the variability of the estimation of the mean ability in
the Mathematics test using the proposed predictor. From Table 7, we see that the RSEd,
in all those countries that participated in the test are lower than the CVE published by
PISA. However, it is not surprising that using the proposed predictor, the estimation error
decreased, as shown in the Difrel (100%) column, even though they were already very small.
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Table 5. Estimate of γP
d by country.

Countries σ2
d Bd 1−Bd x>dAβ̂ γ̂d γ̂P

d

Albania 11.90 0.01 0.99 430.00 413.00 413.00
Arab Emirates 5.81 0.01 0.99 461.00 427.00 427.00
Australia 2.59 0.00 1.00 476.00 494.00 494.00
Austria 8.18 0.01 0.99 519.00 497.00 497.00
Belgium 5.52 0.01 0.99 496.00 507.00 507.00
Brazil 8.18 0.01 0.99 417.00 377.00 377.00
Bulgaria 15.60 0.02 0.98 458.00 441.00 441.00
Canada 5.34 0.01 0.99 502.00 516.00 516.00
Chile 6.45 0.01 0.99 464.00 423.00 423.00
Colombia 5.24 0.01 0.99 359.00 390.00 390.00
Costa Rica 6.10 0.01 0.99 416.00 400.00 400.00
Croatia 7.67 0.01 0.99 465.00 464.00 464.00
Czech Republic 5.76 0.01 0.99 513.00 492.00 492.00
Denmark 4.71 0.00 1.00 513.00 511.00 511.00
Estonia 4.16 0.00 1.00 497.00 520.00 520.00
Finland 5.34 0.01 0.99 507.00 511.00 511.00
France 4.41 0.00 1.00 470.00 493.00 493.00
Germany 8.35 0.01 0.99 510.00 506.00 506.00
Greece 14.06 0.01 0.99 447.00 454.00 454.00
Hong Kong 8.88 0.01 0.99 505.00 548.00 548.00
Hungary 6.40 0.01 0.99 487.00 477.00 477.00
Iceland 3.96 0.00 1.00 542.00 488.00 488.00
Indonesia 9.49 0.01 0.99 420.00 386.00 386.00
Ireland 4.20 0.00 1.00 453.00 504.00 504.00
Israel 13.18 0.01 0.99 512.00 470.00 471.00
Italy 8.12 0.01 0.99 469.00 490.00 490.00
Japan 9.00 0.01 0.99 519.00 532.00 532.00
Jordan 7.02 0.01 0.99 420.00 380.00 380.00
Latvia 3.50 0.00 1.00 461.00 482.00 482.00
Lithuania 5.43 0.01 0.99 454.00 478.00 478.00
Luxembourg 1.61 0.00 1.00 477.00 486.00 486.00
Macao 1.23 0.00 1.00 491.00 544.00 544.00
Mexico 5.02 0.01 0.99 398.00 408.00 408.00
Montenegro 2.13 0.00 1.00 437.00 418.00 418.00
New Zealand 5.15 0.01 0.99 470.00 495.00 495.00
Netherlands 4.88 0.00 1.00 504.00 512.00 512.00
Norway 4.97 0.01 0.99 482.00 502.00 502.00
Peru 7.34 0.01 0.99 424.00 387.00 387.00
Poland 5.71 0.01 0.99 480.00 504.00 504.00
Portugal 6.20 0.01 0.99 482.00 492.00 492.00
Qatar 1.61 0.00 1.00 472.00 402.00 402.00
Romania 14.36 0.01 0.99 457.00 444.00 444.00
Russian Federation 9.67 0.01 0.99 456.00 494.00 494.00
Singapore 2.16 0.00 1.00 511.00 564.00 564.00
Slovakia 7.08 0.01 0.99 478.00 475.00 475.00
Slovenia 1.59 0.00 1.00 495.00 510.00 510.00
South Korea 13.76 0.01 0.99 529.00 524.00 524.00
Spain 4.62 0.00 1.00 458.00 486.00 486.00
Sweden 10.05 0.01 0.99 491.00 494.00 494.00
Switzerland 8.53 0.01 0.99 519.00 521.00 521.00
Thailand 9.18 0.01 0.99 456.00 415.00 415.00
Tunisia 8.70 0.01 0.99 355.00 367.00 367.00
Turkey 17.06 0.02 0.98 473.00 420.00 421.00
United States 10.05 0.01 0.99 505.00 470.00 470.00
Vietnam 19.89 0.02 0.98 439.00 495.00 494.00
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Table 6. MSE of γ̂P
d by country.

Countries g1d
(
σ̂2
u

)
g2d
(
σ̂2
u

)
g3d
(
σ̂2
u

)
MSE

(
γ̂P
d

)
Albania 11.7606 0.0149 0.0051 11.7810
Arab Emirates 5.7741 0.0016 0.0012 5.7770
Australia 2.5853 0.0006 0.0002 2.5860
Austria 8.1123 0.0048 0.0024 8.1200
Belgium 5.4918 0.0011 0.0011 5.4940
Brazil 8.1123 0.0096 0.0024 8.1240
Bulgaria 15.3596 0.0167 0.0087 15.3850
Canada 5.3074 0.0013 0.0010 5.3100
Chile 6.4097 0.0031 0.0015 6.4140
Colombia 5.2164 0.0145 0.0010 5.2320
Costa Rica 6.0634 0.0045 0.0014 6.0690
Croatia 7.6137 0.0050 0.0022 7.6210
Czech Republic 5.7266 0.0023 0.0012 5.7300
Denmark 4.6865 0.0013 0.0008 4.6890
Estonia 4.1441 0.0007 0.0006 4.1450
Finland 5.3074 0.0018 0.0010 5.3100
France 4.3904 0.0021 0.0007 4.3930
Germany 8.2820 0.0038 0.0025 8.2880
Greece 13.8649 0.0496 0.0071 13.9220
Hong Kong 8.8012 0.0101 0.0029 8.8140
Hungary 6.3596 0.0013 0.0015 6.3620
Iceland 3.9443 0.0045 0.0006 3.9490
Indonesia 9.3961 0.0079 0.0033 9.4070
Ireland 4.1847 0.0010 0.0007 4.1860
Israel 13.0032 0.0311 0.0062 13.0410
Italy 8.0562 0.0024 0.0024 8.0610
Japan 8.9186 0.0063 0.0029 8.9280
Jordan 6.9729 0.0048 0.0018 6.9790
Latvia 3.4845 0.0005 0.0005 3.4850
Lithuania 5.3992 0.0023 0.0011 5.4030
Luxembourg 1.6103 0.0001 0.0001 1.6100
Macao 1.2306 0.0002 0.0001 1.2310
Mexico 4.9922 0.0048 0.0009 4.9980
Montenegro 2.1270 0.0005 0.0002 2.1280
New Zealand 5.1261 0.0025 0.0010 5.1300
Netherlands 4.8600 0.0010 0.0009 4.8620
Norway 4.9480 0.0020 0.0009 4.9510
Peru 7.2898 0.0083 0.0020 7.3000
Poland 5.6792 0.0011 0.0012 5.6820
Portugal 6.1614 0.0021 0.0014 6.1650
Qatar 1.6103 0.0004 0.0001 1.6110
Romania 14.1580 0.0259 0.0074 14.1910
Russian Federation 9.5782 0.0077 0.0034 9.5890
Singapore 2.1562 0.0002 0.0002 2.1570
Slovakia 7.0252 0.0020 0.0018 7.0290
Slovenia 1.5850 0.0001 0.0001 1.5850
South Korea 13.5747 0.0281 0.0068 13.6100
Spain 4.6009 0.0040 0.0008 4.6060
Sweden 9.9476 0.0123 0.0037 9.9640
Switzerland 8.4533 0.0058 0.0026 8.4620
Thailand 9.0963 0.0093 0.0031 9.1090
Tunisia 8.6264 0.0234 0.0028 8.6530
Turkey 16.7670 0.0109 0.0103 16.7880
United States 9.9476 0.0050 0.0037 9.9560
Vietnam 19.4985 0.1504 0.0139 19.6630
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Table 7. γ̂d and γ̂P
d along with their quality measures by country.

Countries γ̂d CVE (100%) γ̂P
d RSEd (100%) Difrel (100%)

Albania 413.0000 0.8354 413.0000 0.8308 0.9810
Arab Emirates 427.0000 0.5644 427.0000 0.5627 0.5146
Australia 494.0000 0.3259 494.0000 0.3256 0.2202
Austria 497.0000 0.5755 497.0000 0.5732 0.7043
Belgium 507.0000 0.4635 507.0000 0.4624 0.4953
Brazil 377.0000 0.7586 377.0000 0.7555 0.6457
Bulgaria 441.0000 0.8957 441.0000 0.8891 1.3383
Canada 516.0000 0.4477 516.0000 0.4467 0.4747
Chile 423.0000 0.6005 423.0000 0.5984 0.5547
Colombia 390.0000 0.5872 390.0000 0.5868 0.2132
Costa Rica 400.0000 0.6175 400.0000 0.6158 0.4957
Croatia 464.0000 0.5970 464.0000 0.5950 0.6502
Czech Republic 492.0000 0.4878 492.0000 0.4865 0.4978
Denmark 511.0000 0.4247 511.0000 0.4238 0.4118
Estonia 520.0000 0.3923 520.0000 0.3916 0.3724
Finland 511.0000 0.4521 511.0000 0.4510 0.4652
France 493.0000 0.4260 493.0000 0.4253 0.3645
Germany 506.0000 0.5711 506.0000 0.5690 0.7332
Greece 454.0000 0.8260 454.0000 0.8222 0.9518
Hong Kong 548.0000 0.5438 548.0000 0.5422 0.7138
Hungary 477.0000 0.5304 477.0000 0.5288 0.5770
Iceland 488.0000 0.4078 488.0000 0.4071 0.2573
Indonesia 386.0000 0.7979 386.0000 0.7941 0.7996
Ireland 504.0000 0.4067 504.0000 0.4062 0.3698
Israel 470.0000 0.7723 471.0000 0.7676 0.9874
Italy 490.0000 0.5816 490.0000 0.5797 0.7283
Japan 532.0000 0.5639 532.0000 0.5619 0.7682
Jordan 380.0000 0.6974 380.0000 0.6948 0.5869
Latvia 482.0000 0.3880 482.0000 0.3874 0.3140
Lithuania 478.0000 0.4874 478.0000 0.4864 0.4650
Luxembourg 486.0000 0.2613 486.0000 0.2611 0.1439
Macao 544.0000 0.2040 544.0000 0.2040 0.0966
Mexico 408.0000 0.5490 408.0000 0.5481 0.3736
Montenegro 418.0000 0.3493 418.0000 0.3489 0.1740
Netherlands 512.0000 0.4316 512.0000 0.4307 0.4370
New Zealand 495.0000 0.4586 495.0000 0.4577 0.4341
Norway 502.0000 0.4442 502.0000 0.4434 0.4253
Peru 387.0000 0.7003 387.0000 0.6978 0.5727
Poland 504.0000 0.4742 504.0000 0.4731 0.5140
Portugal 492.0000 0.5061 492.0000 0.5048 0.5459
Qatar 402.0000 0.3159 402.0000 0.3156 0.1256
Romania 444.0000 0.8536 444.0000 0.8483 1.1518
Russian Federation 494.0000 0.6296 494.0000 0.6274 0.8207
Singapore 564.0000 0.2606 564.0000 0.2604 0.1922
Slovakia 475.0000 0.5600 475.0000 0.5582 0.6316
Slovenia 510.0000 0.2471 510.0000 0.2469 0.1436
South Korea 524.0000 0.7080 524.0000 0.7041 1.0728
Spain 486.0000 0.4424 486.0000 0.4417 0.3465
Sweden 494.0000 0.6417 494.0000 0.6391 0.8131
Switzerland 521.0000 0.5605 521.0000 0.5584 0.7269
Thailand 415.0000 0.7301 415.0000 0.7267 0.7536
Tunisia 367.0000 0.8038 367.0000 0.8019 0.5419
Turkey 420.0000 0.9833 421.0000 0.9738 1.5146
United States 470.0000 0.6745 470.0000 0.6710 0.8854
Vietnam 495.0000 0.9010 494.0000 0.8981 1.0803
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4. Concluding remarks

This article reflects the practical and methodological utility of integrating small area es-
timation, item response theory, and multiple imputation. Specifically, the article proposes
an estimator for the average ability parameter of three-parameter logistic models. It was
demonstrated through simulation and theory that the proposed predictor for the average of
skills is unbiased. Additionally, in all scenarios where the proposed predictor was tested, it
exhibited a lower average relative standard error compared to other estimators studied, con-
sidering a probabilistic sample. More specifically, by varying the sample fractions (fn) and
domain fractions (fd), and having high correlations in auxiliary variables, it was observed
that the proposed predictor had a lower average relative standard error compared to other
estimators used in the simulation. This behavior persisted for medium and low correlations.

When varying the percentage of missing data, it was observed that although the relative
standard errors increased as the percentage of missing data increased, the proposed predictor
always obtained the lowest relative standard errors compared to the other estimators studied
in the simulation. Furthermore, in the scenario where 30% of missing data and a low sampling
fraction were induced, the relative standard errors did not exceed, on average, 5%, which
implies that these predictions, according to Särndal (1992), are low.

The new statistical methodology was also applied to the Mathematics results of the 2015
PISA. It is worth noting that the proposed methodology must be handled with caution, and
a discussion on the appropriateness of replacing the test administration with estimation gen-
erated by statistical models is necessary. Institutions in charge of educational assessments
in different countries should always ensure that the resources and the operative work are
feasible to avoid missing values. We have shown the advantages from a statistical and theo-
retical perspective. However, predicted values are neither a way to replace observed values
nor to avoid the necessary resources for education assessments and adequate data collection.
Therefore, the results generated by this methodology can be used to construct a monitoring
system for the performance of educational establishments, which provides a forecast for the
establishments reflecting, among other things, the score they would have obtained if they
were selected in the sample.

A subsequent comparison between the generated forecast and the results reported by the
score will allow the detection of establishments that obtain scores much lower or higher than
expected, following the SAE methodology.

It is worth noting that the use of this methodology can be extended to other standardized
tests, for example, Program for International Student Assessment for Schools (https://www.
oecd.org/pisa/data/, accessed on 20 May 2024) and TIMMS and PRILS (https://www.iea.
nl/data-tools/repository, accessed on 20 May 2024). A possible extension of this work is to
extend it to the multivariate case, for example, estimating a vector of proportions using the
Dirichlet distribution and investigating whether including correlations significantly alters
the results already shown in this work.
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en Ciencias-Estad́ıstica, Bogotá, Colombia. Available at https://repositorio.unal.edu.co/
handle/unal/78956 (accessed on 20 May 2024).

Treviño, E., Fraser, P., Meyer, A., Morawietz, L., Hinostrosa, P. and Naranjo, E., 2016.
Informe de Resultados del Tercer Estudio Regional Comparativo y Explicativo - TERCE.
Factores Asociados 2015. Laboratorio Latinoamericano de Evaluación de la Calidad de la
Educación. OREALC/UNESCO. Santiago, Chile.

Treviño, E., Valdés, H., Castro, M., Costilla, R., Pardo, C. and Donoso-Rivas, F., 2010.
Factores Asociados al Logro Cognitivo de los Estudiantes de América Latina y el Caribe,
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