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Abstract

The log-Lindley distribution was introduced as an alternative to the famed beta distribu-
tion to model data in the unit interval. The present article introduces inflated versions of
the log-Lindley distribution. Distributional properties are investigated. Special cases of
the proposed distributions are shown to be members of the exponential family. Moment
and maximum likelihood estimation of the parameters are discussed with derivation of
the exact expression for the information matrix. Then, the proposed distributions are
compared with the inflated unit Lindley and inflated beta distributions for modeling
four sets of data regarding school wise pass proportions of high school leaving exami-
nations having zero and/or one inflation. Findings clearly suggest the superiority of the
proposed distribution based on the Akaike information criteria and observed and fitted
distribution function plots for all the cases considered.

Keywords: Beta distribution · Inflated distributions · Log-Lindley distribution
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1. Introduction

Many researchers in the field of applied statistics often come across data on standardized
rates, proportions or fractions, which assume values in the unit range (0,1). For instance,
data on proportion of successful (or unsuccessful candidates in an examination), fraction of
an hour required to accomplish a task by a group of workers, among others. However, it
is not rare that data on proportions or fractions contain a number of zeroes and/or ones,
that is, the data arising in the range [0,1), (0,1] or [0,1]. In such cases, the commonly known
distributions on (0,1) such as the beta distribution (Johnson et al., 1995), Kumaraswamy
distribution (Kumaraswamy, 1980), unit Lindley distribution (Mazucheli et al., 2019), and
another form of the one parameter unit Lindley distribution (Mazucheli et al., 2020), fail
to model the data in question as all of them allow modeling of values lying strictly between
zero and one.
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The above-mentioned aspects call upon the requirement to develop models which is able
to capture the probability mass concentrated at the points 0, 1 or both, as the case may be.
One of the most popular approaches is to mix a continuous distribution in the range (0,1)
with a degenerate distribution whose probability mass is concentrated at either 0 or 1 (in
case of data observed in the range [0,1) or (0,1]) and that with the Bernoulli distribution
which assigns non-negative probability to both 0 and 1. These models are members of the
inflated family of distributions. Zero-inflation or one-inflation occurs when in the data set,
one or more observations that equal zero or one, respectively, are included. Zero inflated
data occur frequently in nature and can be modeled suitably using a number of continuous
distributions (Burch and Egbert, 2020; Hashimoto et al., 2019; Liu et al., 2019; Tomazella
et al., 2019).The data where a high number of both zeroes and ones arise are referred to as
zero-one inflated data.

The first work on development of above-mentioned models was reported in Ospina and
Ferrari (2010), where the authors developed the zero-and/or inflated versions of the beta
distribution and showed its utility through a real-life data set on percentage of qualified
nurses in 645 Brazilian municipal districts. Cribari-Neto and Santos (2019) introduced the
inflated Kumaraswamy distribution and showed its advantage over the inflated beta distri-
bution through modeling of a data set on proportion of inhabitants in each of the 5,566
Brazilian municipalities that lived in homes with at least one bathroom and piped water
in 2010. The inflated unit Lindley distribution was recently developed by Chakraborty and
Bhattacharjee (2021), who studied their various statistical properties and it proved bet-
ter in modeling data on proportion of successful students in high school leaving certificate
examination of Manipur state of India as compared to the inflated beta distribution.

The log-Lindley distribution (Goméz-Deniz et al., 2014) was proposed as an alternative
to the classical beta probability model having support in the unit interval. One of the
main advantages of this distribution is that the cumulative distribution function (CDF)
is obtainable in a closed form, unlike the beta distribution and also, the expression for
the probability density function (PDF) and CDF does not involve any special function. It
also presented as an alternative to the beta regression model which models response variable
distributed in the range (0,1) so allowing more flexibility of the covariates. A reparametrized
version of this model was discussed in a note by Jodrá and Jiménez-Gamero (2016). So far, no
work has been attempted on developing the inflated version of the log-Lindley distribution,
which may prove to be a viable alternative of the inflated beta distribution. Also, only a
handful of zero-or/and-one inflated distributions are available in the literature.

Hence, this article attempts to develop the zero-or/and-one inflated log-Lindley distri-
bution. In this article, the aim is to analyze the same data sets used in Chakraborty and
Bhattacharjee (2021) by proposing a new inflated version of the log- Lindley distribution
(Goméz-Deniz et al., 2014) and compare it with two models namely the inflated beta dis-
tribution and inflated unit Lindley distribution.

Section 2 introduces the zero-or-one inflated and zero-and-one inflated log-Lindley
(ZOILL) distribution and explores some of the distributional properties of both the distri-
butions. Section 3 deals with the parameter estimation of both the zero-or-one and ZOILL
distribution. Findings of the simulation study to assess the performance of the maximum
likelihood (ML) estimators are presented in Section 4. Data fitting applications in compar-
ison with the inflated beta and inflated unit Lindley distribution is reported in the Section
5. Finally, concluding remarks, future scope and limitations of this study are listed in the
Section 6.
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2. Inflated log-Lindley distribution

In this section, the zero-or-one inflated log-Lindley distribution and the ZOILL distribution
are introduced.

2.1 The zero-or-one inflated log-Lindley distribution

The log-Lindley distribution (Goméz-Deniz et al., 2014) with parameters σ and λ has a
PDF stated as

f(y;σ, λ) = σ2

1 + λσ
(λ− log(y)) yσ−1, 0 < y < 1. (2.1)

For data arising from some real life phenomena, a number of zeroes and/or ones may be
present, which is not then suitable to be modeled by any distribution having support on (0,1).
Hence, it becomes necessary to incorporate a discrete component into the continuous data
generating process so that the zeroes and/or ones are observed with a positive probability.
Consequently, we need to look for a probability law which merges both the continuous and
discrete data generating processes. One way of achieving this is by mixing two distributions:
the continuous log-Lindley distribution on (0,1) and the degenerate distribution with the
entire probability mass concentrated at the point c, where either c = 0 or c = 1. We then
say that the data is inflated at one of the two end points of the interval (0,1). We name this
mixture distribution as the inflated log-Lindley (ILL) distribution, whose CDF is given by

fILL(y;α, σ, λ) = αI[c,1](y) + (1− α)F (y;σ, λ). (2.2)

where IA(y) is the indicator function which assumes the value 0 if y ∈ A and 1 if y /∈ A,
0 < α < 1 is the mixture parameter and F is the CDF of the log-Lindley distribution
with parameters σ and λ. The random variable Y follows the log-Lindley distribution of
parameters σ and λ with probability (1 − α) and follows the degenerate distribution at c
with probability α. Let Y be a random variable with CDF given by Equation (2.2). Then,
the PDF of Y is given by

FILL(y;α, θ), =
{
α, if y = c;
(1− α)f(y;σ, λ), if y ∈ (0, 1);

(2.3)

where f is the log-Lindley PDF given in Equation (2.1) and α ∈ (0, 1) is the probability
mass at c, which shows the probability of observing 0 (when c = 0) or 1 (when c = 1). We
denote this as Y ∼ ILLc(α, σ, λ).

Let Y ∼ ILLc(α, σ, λ).
(i) If c = 0, the distribution in Equation (2.3) is called the zero-inflated log-Lindley (ZILL)

distribution and we specifically write Y ∼ ZILL(α, σ, λ), where α = P(Y = 0).
(ii) If c = 1, the distribution in Equation (2.3) is called the one-inflated log-Lindley (OILL)

distribution and we write Y ∼ OILL(α, σ, λ), where α = P(Y = 1).
Figure 1 displays the ZILL and OILL PDFs inflated at the points c = 0 and c = 1 for

different combinations of the values of σ and λ, with the value of the mixing parameter α
kept fixed at 0.5. It is evident from the figure that the PDF of both the ZILL and OILL
distribution behave differently for different values of σ, λ and c. σ and λ seem to control the
shape of the probability curve, whose skewness decreases with an increase in the value of σ.
Further, the peakedness of the curve also seem to decrease with an increase in the value of
λ. In Figure 1(a)-(f), the vertical bar with a circle above represents α = 0.5 (P(Y = 0) or
P(Y = 1)). The functional shape of the both the zero inflated and one inflated distribution
seem to vary with the combination of σ and λ values.
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Figure 1.: PDF plots for the ZILL and OILL distributions for different values of σ and λ;
α = 0.5.

2.2 The ZOILL distribution

The zero-or-one inflated log-Lindley distribution proposed in the previous section is not
suitable for modeling data that may not only contain values in the range [0,1) or (0,1], but
also in [0,1]. We refer to this case as double inflation. For modeling double inflated data, a
mixture of the log-Lindley distribution and Bernoulli distribution, which assigns non-zero
probabilities to both the end points 0 and 1, is to be considered. The CDF of this mixture
distribution, referred to as ZOILL, is given by

FZOILL(y;α, p, σ, λ) = αFBer(y; p) + (1− α)F (y;σ, λ), (2.4)

where y ∈ [0, 1], FBer denotes the Bernoulli CDF with parameter p ∈ (0, 1) and F is the
CDF of the log-Lindley distribution with parameters σ and λ. Further, α is the mixing
parameter which lies between 0 and 1. It follows that the PDF corresponding to the CDF
in Equation (2.4) is stated as

fZOILL(y;α, p, σ, λ) =


αp, if y = 1;
α(1− p), if y = 0;
(1− α)f(y;σ, λ), if y ∈ (0, 1).

(2.5)

We say that the random variable Y with PDF given in Equation (2.5) follows the ZOILL
distribution and we denote it by Y ∼ ZOILL(α, p, σ, λ). Here, αp = P(Y = 1) and α(1−p) =
P(Y = 0). Further, 0 < αp + α(1 − p) < 1. Figure 2 shows the ZOILL PDF for different
values of σ and λ, fixing α = 0.6 and p = 0.5. It is clear that the skewness of the curve
decreases with an increase in the value of both λ and σ. In Figure 2, the vertical bar with a
circle above represents αp = 0.3 and α(1− p) = 0.3 (P(Y = 0) and P(Y = 1), respectively).
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Figure 2.: Plots of ZOILL PDFs for different values of σ and λ; α = 0.6, p = 0.5.

2.3 Properties

The rth raw moment of the zero-or-one inflated log-Lindley distribution defined in Equa-
tion (2.3) is given by E (Y r) = αc + (1 − α)µ′r, r = 1, 2, . . . , where µ′r = σ2(1 + λ(σ +
r))/(1 + λσ)(σ + r)2 is the rth raw moment of the log-Lindley distribution. In particular,
the mean and variance of Y are established as

E (Y ) = αc+ (1− α) σ2

1 + λσ

1 + λ(σ + 1)
(σ + 1)2 ;

Var (Y ) = αc(1− αc) + σ2

1 + λσ
(1− α)

(1 + λ(σ + 2)
(σ + 2)2 − 1 + λ(σ + 1)

(σ + 1)2

×
(

1 + (1− α) σ2

1 + λσ

1 + λ(σ + 1)
(σ + 1)2

))
.

The rth raw moment of Y ∼ ZOILL is given by E (Y r) = αp+ (1−α)µ′r, for r = 1, 2, . . .
Then, the mean and variance of Y are formulated as

E (Y ) = αp+ (1− α) σ2

1 + λσ

1 + λ(σ + 1)
(σ + 1)2 ;

Var (Y ) = αp(1− αp) + σ2

1 + λσ
(1− α)

(1 + λ(σ + 2)
(σ + 2)2 − 1 + λ(σ + 1)

(σ + 1)2

×
(

1 + (1− α) σ2

1 + λσ

1 + λ(σ + 1)
(σ + 1)2

))
.
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Theorem 2.1 A special case of ZOILL distribution defined in Equation (2.3) (specifically,
for fixed value of λ) belongs to the two-parameter exponential family.

Refer to the Appendix for proof of Theorem 2.1.

Theorem 2.2 A special case of ZOILL distribution defined in Equation (2.5) (specifically,
for fixed value of λ) belongs to the three-parameter exponential family.

Refer to the Appendix for proof of Theorem 2.2.

3. Estimation

In this section, the estimation of parameters through the ML method and moment estimation
method of both the zero-or-one and ZOILL distribution are considered and the construction
of the Fisher information matrix for ML estimators are discussed.

3.1 Context

We observe that since the parameter space of both the parameters σ and λ are unbounded,
the ML estimates of these parameters do not come out to be accurate, as observed and
reported in Jodrá and Jiménez-Gamero (2016). To overcome this drawback in estimation, the
same authors proposed a reparametrization of the log-Lindley distribution, by introducing a
parameter π in place of λ, which is bounded in the unit interval. The PDF of the log-Lindley
distribution with the (σ, π) reparametrization is given by (Jodrá and Jiménez-Gamero, 2016)

f(y;σ, π) = σ (π + σ(π − 1) log(y)) yσ−1; 0 < y < 1, σ > 0, 0 ≤ π < 1. (3.6)

The CDF of the reparametrized log-Lindley distribution becomes F (y;σ, π) =
(1 + σ(π − 1) log(y)) yσ, for 0 < y < 1, σ > 0, and 0 ≤ π < 1. For the rest of the work, the
distribution given in Equation (3.6) is referred to as the log-Lindley distribution. It may
be noted that all the results derived in the preceding sections can be worked out for this
reparametrized version quite easily.

3.2 ML estimation: Reparametrized ILL distribution

The PDF of the reparametrized ILL distribution becomes

fILL(y;α, σ, π) =
{
α, if y = c

(1− α)f(y;σ, π), if y ∈ (0, 1)
(3.7)

where f(;σ, π) is the reparametrized log-Lindley PDF given in Equation (3.6). The ML
estimates of the parameters α, σ and π of the zero-or-one inflated log-Lindley distribu-
tion are obtained by solving the ML equations corresponding to the log-likelihood function
constructed from the PDF in Equation (3.7) and given by

l(ν) = log(L(ν,y)) = l1(α; y) + l2(σ, π; y),

where ν = (α, σ, π) and

l1(α; y) = log(L1(α, y)) = log(α)
n∑
i=1

I[c](yi) + log(1− α)
(
n−

n∑
i=1

I[c](yi)
)

;

l2(σ, π; y) = log(L2(σ, π, y))

=
(
n−

n∑
i=1

I[c](yi)
)

log(σ) +
n∑
i=1

yi∈(0,1)

log(π + σ(π − 1) log(yi)) + (σ − 1)
n∑
i=1

yi∈(0,1)

log(yi).
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The score function is then obtained by differentiating the log-likelihood function and is
denoted by U(ν) = (Uα(α), Uσ(σ), Uπ(π)), where

Uα(α) = ∂l1(α; y)
∂α

= 1
α

n∑
i=1

I[c](yi)−
1

1− α

(
n−

n∑
i=1

I[c](yi)
)

;

Uσ(σ) = ∂l2(σ, π; y)
∂σ

=
(n−

∑n
i=1 I[c](yi))
σ

+
n∑
i=1

yi∈(0,1)

(π − 1) log(yi)
π + σ(π − 1) log(yi)

+
n∑
i=1

yi∈(0,1)

log(yi);

Uπ(π) = ∂l2(σ, π; y)
∂λ

=
n∑
i=1

yi∈(0,1)

1 + σ log(yi)
π + σ(π − 1) log(yi)

.

The ML estimators of the parameters are obtained by solving the equations stated as

Uα(α) = 0 =⇒ α̂ = 1
n

n∑
i=1

I[c](yi); Uπ(π) = 0 =⇒
n∑
i=1

yi∈(0,1)

1 + σ log(yi)
π + σ(π − 1)(log yi)

= 0;

Uσ(σ) = 0 =⇒
(n−

∑n
i=1 I[c](yi))
σ

+
n∑
i=1

yi∈(0,1)

(π − 1)(log yi)
π + σ(π − 1) log(yi)

= −
n∑
i=1

yi∈(0,1)

log(yi).

Since the second and third ML equations are non-linear in σ and π, so, numerical tech-
niques are to be employed to get a solution to these equations. The Fisher information
matrix for the zero-or-one inflated reparametrized log-Lindley distribution is

K(ν) =

kαα kαπ kασkπα kππ kπσ
kσα kσπ kσσ

 ,
where kαπ = kπα, kασ = kσα,

kαα = −E
(
∂Uα(α)
∂α

]
= n

α(1− α) ; kαπ = −E
(
∂Uπ(π)
∂α

)
= 0; kασ = −E

(
∂Uσ(α)
∂σ

)
= 0;

kππ = −E
(
∂Uπ(π)
∂π

)
= nE1

(
π

1− π

)(2π exp(− π
π−1)

(π − 1)3 −
exp(− π

π−1)
(π − 1) −

π2 exp(− π
π−1)

(π − 1)3

)

−
2nπ exp(− 2π

π−1)
(π − 1)2 + 2n

(π − 1) −
n exp(− π

π−1)
(π − 1) Γ

(
2, π

1− π

)
;

kπσ = −E
(
∂Uσ(σ)
∂π

)
= kσπ = −n

σ
+
n exp(− π

π−1)
σ(π − 1)

(
πE1

(
π

1− π

)
− (1− π) exp

(
− π

π − 1
))

−n
σ

exp
(
− π

π − 1
)
Γ
(

2, π

1− π

)
−
nπ2 exp(− π

1−π )
σ(π − 1)2 E1

(
π

1− π

)
+ 2nπ(1− π)

σ(π − 1)2 ;

kσσ = −E
(
∂Uσ(σ)
∂σ

)
= n(1− α)

σ2 − n(π − 1)
σ2 exp

(
− π

π − 1
)
Γ
(

2, π

1− π

)

−
nπ2 exp(− π

1−π )
σ2(π − 1) E1

(
π

1− π

)
+ 2nπ

σ2 .
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Suppose ν̂ = (α̂, σ̂, π̂) denote the ML estimators of ν. In large samples,
√
n (ν̂ − ν) is

asymptotically normally distributed, that is,
√
n(ν̂−ν) D−→ N3(0, k(ν)−1), where k(ν) is the

Fisher information matrix. This result can be used to approximate the confidence intervals
for the parameters α, σ and π. Let δ ∈ (0, 0.5). Then (1− δ)× 100% asymptotic confidence
intervals for α, σ and π are given, respectively, by α̂± Z1−δ/2SE(α̂), σ̂ ± Z1−δ/2SE(σ̂), and
π̂ ± Z1−δ/2SE(π̂), where SE denotes the corresponding standard error and Z1−δ/2 is the
quantile of the standard normal distribution at δ level of significance.

3.3 ML estimation: Reparametrized ZOILL distribution

The PDF of the zero-and-one inflated reparametrized log-Lindley distribution becomes

fZOILL(y;α, p, σ, π) =


αp, if y = 1;
α(1− p), if y = 0;
(1− α)f(y;σ, π), if y ∈ (0, 1);

(3.8)

where f(;σ, π) is the reparametrized log-Lindley PDF given in Equation (3.6). The ML
estimates of the parameters α, σ and π of the ZOILL distribution are obtained by solving
the ML equations corresponding to the log-likelihood function constructed from the PDF
in Equation (3.8) stated as l(ν) = log(L(ν,y)) = l1(α; y) + l2(p; y) + l3(σ, π; y), where

l1(α; y) = log(α)
n∑
i=1

I{0,1}(yi) + log(1− α)
(
n−

n∑
i=1

I{0,1}(yi)
)

;

l2(p; y) = log(p)
n∑
i=1

yiI{0,1}(yi) + log(1− p)
( n∑
i=1

I{0,1}(yi)−
n∑
i=1

yiI{0,1}(yi)
)

;

l3(σ, π; y) =
(
n−

n∑
i=1

I{0,1}(yi)
)

log(σ) +
n∑
i=1

yi∈(0,1)

log(π + σ(π − 1) log(yi))

+(σ − 1)
n∑
i=1

yi∈(0,1)

log(yi).

Then, the corresponding score function is given by U(ν) = (Uα(α), Up(p), Uσ(σ), Uπ(π)),
where

Uα(α) = 1
α

n∑
i=1

I{0,1}(yi)−
1

1− α

(
n−

n∑
i=1

I{0,1}(yi)
)

;

Up(p) = 1
p

n∑
i=1

yiI{0,1}(yi)−
1

1− p

( n∑
i=1

I{0,1}(yi)−
n∑
i=1

I[1](yi)
)

;

Uσ(σ) =

(
n−

∑n
i=1 I{0,1}(yi)

)
σ

+
n∑
i=1

yi∈(0,1)

(π − 1) log(yi)
π + σ(π − 1) log(yi)

+
n∑
i=1

yi∈(0,1)

log(yi);

Uπ(π) =
n∑
i=1

yi∈(0,1)

1 + σ log(yi)
π + σ(π − 1) log(yi)

.
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The ML estimates of the parameters are obtained by solving the equations established as

Uα(α) = 0 =⇒ α̂ = 1
n

n∑
i=1
I{0,1}(yi);Up(p) = 0 =⇒ p̂ =

∑n
i=1 I[1](yi)∑n
i=1I{0,1}(yi)

Uσ(σ) = 0 =⇒
n−

∑n
i=1 I{0,1}(yi)
σ

+
n∑
i=1

yi∈(0,1)

(π − 1) log(yi)
π + σ(π − 1) log(yi)

= −
n∑
i=1

yi∈(0,1)

log(yi);

Uπ(π) = 0 =⇒
n∑
i=1

yi∈(0,1)

1 + σ log(yi)
π + σ(π − 1) log(yi)

= 0.

Since the last two ML equations are non-linear in σ and π, they are solved using numerical
computational techniques. The corresponding Fisher information matrix for the ZOILL
distribution is given by

K(ν) =


kαα kαp kαπ κασ
kpα kpp kpπ kpσ
kπα kπp kππ kπσ
kσα kσp kσπ kσσ

 ,

where

kαα = n

α(1− α) ;

kαp = kαπ = kασ = kpα = kpπ = kpσ = kπα = kπp = kσα = kσp = 0;

kpp = nα

p(1− p) ;

kππ = nE1

(
π

1− π

)(2π exp(− π
π−1)

(π − 1)3 −
exp(− π

π−1)
(π − 1) −

π2 exp(− π
π−1)

(π − 1)3

)

−
2nπ exp(− 2π

π−1)
(π − 1)2 + 2n

(π − 1) −
n exp(− π

π−1)
(π − 1) Γ

(
2, π

1− π

)
;

kπσ = kσπ = −n
σ

+
n exp(− π

π−1)
σ(π − 1)

(
πE1

(
π

1− π

)
− (1− π) exp

(
− π

π − 1
))

−n
σ

exp
(
− −π
π − 1

)
Γ
(

2, π

1− π

)
−
nπ2 exp

(
− π

1−π

)
σ (π − 1)2 E1

(
π

1− π

)
+ 2nπ(1− π)

σ(π − 1)2 ;

kσσ = n(1− α)
σ2 − n(π − 1)

σ2 exp
(
− π

π − 1
)
Γ
(

2, π

1− π

)

−
nπ2 exp

(
− π

1−π
)

σ2(π − 1) E1

(
π

1− π

)
+ 2nπ

σ2 .

Suppose ν̂ = (α̂, p̂, σ̂, π̂). In large samples,
√
n(ν̂−ν) is asymptotically normally distributed,

that is,
√
n(ν̂ − ν) D−→ N4(0, k(ν)−1) where k(ν) is the Fisher information matrix. Let

δ ∈ (0, 0.5). Then (1−δ)×100% asymptotic confidence intervals for α, p, σ and π are given,
respectively, by α̂± Z1−δ/2SE(α̂), p̂± Z1−δ/2SE(p̂),σ̂ ± Z1−δ/2SE(θ̂); and π̂ ± Z1−δ/2SE(π̂).
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3.4 Method of moments

The moment method consists in estimating the parameters by equating the expressions for
E(Y r) to the corresponding sample moments and then proceeding to solve the resulting
equations for those parameters. Let us denote the first two sample moments by m′1 and
m′2, respectively. After reparametrizing the log-Lindley PDF and then the ZOILL distribu-
tion, the rth moment of the ILL distribution becomes, for c = 0 or c = 1, the expression
formulated as

E(Y r) = αc+ (1− α)µ′∗r , r = 1, 2, . . . ,

where µ′∗r = σ(σ + rπ)/(σ + r)2 is the rth raw moment of the reparametrized log-Lindley
distribution and the rth moment of the ZOILL distribution is given by

E(Y r) = αp+ (1− α)σ(σ + rπ)
(σ + r)2 , r = 1, 2, . . .

To obtain the moment estimates of the parameters of the reparametrized ILL distribution,
we must solve the equations presented as

αc+ (1− α)σ(σ + π)
(σ + 1)2 = m′1, αc+ (1− α)σ(σ + 2π)

(σ + 2)2 = m′2.

Substituting α by 1/n
∑n
i=1 I[c](yi), we get the moment estimates of π and σ as

π̂ = σ2(ȳ1 − 1) + 2σȳ1 + ȳ1

σ
, σ̂ = 2ȳ1 − ȳ2 ±

√
3ȳ2(2ȳ1 − ȳ2) + 2(ȳ1 − 2ȳ2)
ȳ2 − 2ȳ1 + 1 ,

where

ȳ1 = m′1 − αc
1− α , ȳ2 = m′2 − αc

1− α .

To estimate the parameters of the reparametrized ZOILL distribution using the moment
method, we must solve the equations stated as

αp+ (1− α)σ(σ + π)
(σ + 1)2 = m′1, αp+ (1− α)σ(σ + 2π)

(σ + 2)2 = m′2.

Substituting α by 1/n
∑n
i=1 I[c](yi) and p by

∑n
i=1 I[1](yi)/

∑n
i=1 I{0,1}(yi) and after some

simplifications, the moment estimates of σ and λ can be obtained similarly as in the previous
section arriving at

π̂ = σ2(ȳ1 − 1) + 2σȳ1 + ȳ1

σ
, σ̂ = 2ȳ1 − ȳ2 ±

√
3ȳ2(2ȳ1 − ȳ2) + 2(ȳ1 − 2ȳ2)
ȳ2 − 2ȳ1 + 1

ȳ1 = m′1 − αp
1− α , ȳ2 = m′2 − αp

1− α

As observed and reported in Jodrá and Jiménez-Gamero (2016), the moment method for
the log-Lindley distribution has serious limitations and is not advisable. As expected, we
have observed the same for the proposed inflated version. Hence, we have not considered
the moment method in our simulation study in the next section.
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4. Simulation Study

In this section, two separate Monte-Carlo simulation studies, one for the ZILL distribution
and the other one for the ZOILL are conducted to generate random variables from the
respective distributions. Thereafter, ML estimates based on the generated samples are cal-
culated and their performance is assessed with the help of average bias (AB) and root mean
square error (RMSE). To simulate n observations from zero-inflated log-Lindley distribution,
we use Algorithm 1.

Algorithm 1 Algorithm to generate random numbers from ZILL(α, σ, π) distribution.
1: n random numbers were generated from the uniform distribution in (0, 1), say Ui, for
i = 1, . . . , n.

2: If Ui < α, then yi = 0.
3: If Ui ≥ α, then

yi = exp
( 1
σ(1− π)

)
exp

( 1
σ

)
W−1

exp
(

1
π−1

)
π − 1

Ui.
4: Repeat steps 1 to 3 until the required data are generated.

Observations are simulated from the ZOILL(α, p, σ, π) distribution using Algorithm 2.

Algorithm 2 Algorithm to generate random numbers from ZILL(α, σ, π) distribution.
1: n random numbers from the uniform distribution in (0, 1) were generated first, say Ui,

for i = 1, . . . n.
2: If Ui ≤ αp, then yi = 0.
3: If Ui ≤ α, then we assign yi = 1; otherwise we assign

yi = exp
( 1
σ(1− π)

)
exp

( 1
σ

)
W−1

exp
(

1
π−1

)
π − 1

Ui,
where W−1 denotes the negative branch of the Lambert W function.

4: Repeat steps 1 to 3 until the required data are generated.

The calculation of the ML estimate have been done using the R software with its package
maxLik. To choose the initial values for implementation of the maxBFGS command under the
maxLik package, the same procedure as mentioned in Jodrá and Jiménez-Gamero (2016)
has been adopted. Accordingly, the initial guess value of σ is taken as σ = (σ̂0 + σ̂1)/2 and
that of π is taken as 0.5. Here, σ̂0 = m′1/(1−m′1) and σ̂1 = (m′1 +

√
m′1)/(1−m′1), m′1 being

the first order sample moment.
From Table 1 and Table 2, it is seen that for both ZILL and ZOILL distributions, the

inflation parameters are consistently estimated with rapid decrease in the RMSE with in-
crease in the sample size, where as the other parameters, the decrease in RMSE is slower. For
higher inflation, it is observed that the other parameters are estimated with lesser precision.

The R programming language and the packages GoFKernel, maxLik and lamW have been
used for simulating from the proposed distribution and computing the AB and RMSE of the
ML estimates of the parameters. For finding the ML estimates of the parameters from the
zero inflated log-Lindley distribution, the starting values of σ and π are taken to be 0.8 and
0.5, respectively. For simulating from the ZOILL distribution, the starting value of both p
and π has been taken to be 0.5. As for the starting value of σ, the formula for calculation
of the same is presented in Section 3.3.
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Table 1.: Simulation results for ZILL distribution for different set of values of α, σ and π.

α = 0.1, σ = 0.5, π = 0.2
α σ π

n ML estimate AB RMSE ML estimate AB RMSE ML estimate AB RMSE
50 0.1006 0.0006 0.0047 0.6550 0.1550 0.0219 0.1123 -0.0876 0.0179
100 0.1016 0.0016 0.0023 0.6526 0.1526 0.0152 0.1062 -0.0937 0.0109
250 0.0995 -0.0009 0.0009 0.6508 0.1508 0.0095 0.1066 -0.0933 0.0061
500 0.1006 0.0006 0.0004 0.6500 0.1500 0.0067 0.1052 -0.0947 0.0042

α = 0.2, σ = 1.5, π = 0.7
α σ π

n ML estimate AB RMSE ML estimate AB RMSE ML estimate AB RMSE
50 0.2012 0.0012 0.0063 3.1915 1.6915 0.2392 0.3076 -0.3423 0.0561
100 0.2002 0.0002 0.0031 3.1870 1.6870 0.1687 0.3000 -0.3999 0.0399
250 0.1992 -0.0007 0.0012 3.1646 1.6646 0.1052 0.3021 -0.3978 0.0251
500 0.2009 0.0009 0.0006 3.1687 1.6687 0.0746 0.3046 -0.3953 0.0176

Table 2.: Simulation results for ZOILL distribution for different set of values of α, σ, p and
π.

α = 0.1, σ = 0.5, p = 0.3, π = 0.2
α σ

n ML estimate AB RMSE ML estimate AB RMSE
50 0.2017 0.0017 0.0063 0.7759 0.2759 0.0390
100 0.2003 0.0003 0.0032 0.7740 0.2740 0.0274
250 0.2003 0.0003 0.0012 0.7730 0.2730 0.0172
500 0.1997 -0.0002 0.0006 0.7743 0.2743 0.0122

π p
n ML estimate AB RMSE ML estimate AB RMSE
50 0.0838 -0.1161 0.0191 0.2896 -0.0103 0.0169
100 0.0798 -0.1201 0.0127 0.2974 -0.0025 0.0082
250 0.0786 -0.1213 0.0077 0.2973 -0.0026 0.0034
500 0.0770 -0.1229 0.0055 0.2999 -1.9175 0.0016

α = 0.6, σ = 1.5, p = 0.8, π = 0.7
α σ

n ML estimate AB RMSE ML estimate AB RMSE
50 0.2998 -0.0001 0.0071 4.4580 2.9580 0.4183
100 0.3017 0.0017 0.0035 4.4005 2.9005 0.2905
250 0.3003 0.0003 0.0014 4.3881 2.8881 0.1826
500 0.2998 -0.0001 0.0007 4.3626 2.8626 0.1280

π p
n ML estimate AB RMSE ML estimate AB RMSE
50 0.2645 -0.5354 0.0758 0.6985 -0.0014 0.0144
100 0.2678 -0.5321 0.0532 0.7027 0.0027 0.0068
250 0.2712 -0.5287 0.0334 0.7000 0.0003 0.0026
500 0.2726 -0.5273 0.0235 0.6991 -0.0008 0.0013

5. Data analysis: Applications

In this section, we illustrate our proposed model through some real-life data sets with four
real-life data sets on High School Leaving Examination results of the State of Manipur,
India, for the year 2020 presented in BSA (2020a), BSA (2020b), and BSA (2020c).
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5.1 Exploratory data analysis

The variable is the proportion of who have passed the examination in 2020. Data set-I is
from in 67 aided schools, data set-II is for 305 government schools, data set-III is from
523 private schools and the data set-IV is the universe of all schools data. The proposed
model is compared with inflated beta (Ospina and Ferrari, 2010) and inflated unit Lindley
distribution (Chakraborty and Bhattacharjee, 2021).

Table 3 shows the descriptive statistics of the data sets on proportion of students studying
in government schools, private schools, aided schools and that of the combined data set of all
schools of Manipur, India who have passed the High School Leaving Certificate (H.S.L.C.)
Examination, 2020:

Table 3.: Descriptive statistics.

Data set Minimum Maximum Mean 1st quartile Median 3rd quartile
I (aided schools) 0 1 0.4219 0.0238 0.3250 0.7456
II (government schools) 0 1 0.3632 0.0476 0.3143 0.6154
III (private schools) 0 1 0.6705 0.4706 0.7520 0.9189
IV (all schools combined) 0 1 0.5471 0.2500 0.6000 0.8621

5.2 Parameter estimation

The ZILL, zero inflated unit Lindley (ZIUL) and zero inflated beta (ZIB) distributions have
been fitted to these above mentioned data sets as well as the combined data set of all
schools together, where the parameters have been estimated using the ML method. For the
purpose of optimization of the log-likelihood function to obtain the ML estimates of the
parameters, the moment estimates of the parameters can be considered as the initial values.
For example, for the ‘Aided schools’ data set, the moment estimates of σ and π have come
out to be 0.4622 and 0.0147, respectively. These values of the parameters have been used as
initial guess values for the optimization routine. It can be similarly done for all the remaining
data sets. The log-likelihood and Akaike information criterion (AIC) measures have been
employed as the goodness of fit criteria to compare the fit of each of the distribution to
the data sets. Table 4 displays the ML estimates and standard errors of the parameters,
log-likelihood and AIC measures of the zero inflated log-Lindley, ZIUL and zero inflated
beta which have been fitted to the four data sets.

Table 4.: ML estimates, standard errors, log-likelihood and AIC values for fitting zero inflated
models.

Data set Distribution ML estimate (SE) of the parameters LL AIC
I ZILL α = 0.2785(0.0574), π = 0.0338(0.1230), σ = 3.3403(0.3224) -6.1218 18.2436

ZIB α = 0.2785(0.0574), µ = 0.5142(0.0389), φ = 2.5074(0.4595) -35.3275 76.6551
ZIUL α = 0.2785(0.0574), θ = 0.5273(0.0459) -15.1632 34.3264

II ZILL α = 0.2438(0.0255), π = 0.00002(0.0347), σ = 2.5048(0.1029) -25.3057 56.6114
ZIB α = 0.2438(0.0255), µ = 0.5142(0.0389), φ = 2.5034(0.2096) -146.3012 298.6023

ZIUL α = 0.2438(0.0255), θ = 0.7617(0.0328) -96.2335 195.467
III ZILL α = 0.0440(0.0093), π = 0.2082(0.0437), σ = 5.3119(0.1658) -1.2036 8.4072

ZIB α = 0.0440(0.0093), µ = 0.6599(0.0112), φ = 2.6921(0.1591) -7.9643 21.9287
ZIUL α = 0.0440(0.0094), θ = 0.2288(0.0065) -4.7269 13.4538

IV ZILL α = 0.1303(0.0117), π = 0.2057(0.0333), σ = 3.7290(0.0921) -20.2751 46.5502
ZIB α = 0.1303(0.0117), µ = 0.5771(0.0099), φ = 2.1898(0.0988) -289.3462 584.6923

ZIUL α = 0.1303(0.0117), θ = 0.3011(0.0067) -187.3517 378.7034
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Figure 3 (a)-(d) exhibit the plot of the empirical CDF of the four datasets and the dis-
tribution functions of the fitted ZILL, ZIUL and ZIB distributions. It is clear from visual
scrutiny of the plots in Figure 3 (a)-(d) that the proposed zero inflated log-Lindley distri-
bution is a quite better fit to all the four datasets in comparison to the well established zero
inflated beta and ZIUL distribution. It is clear from Table 4 that the AIC value for all the
four data sets is the least corresponding to the zero inflated log-Lindley distribution. Thus,
it can be concluded that the zero inflated log-Lindley distribution is able to model each of
the data set better than the other zero inflated distribution considered.

(a) data set I (b) data set II

(c) data set III (d) data set IV

Figure 3.: Observed PDF and CDF plot of the fitted ZILL, ZIUL and ZIB distributions for
proportion of students passing the H.S.L.C. exam 2020, Manipur for indicated data set.

In a similar manner, the fitting of ZOILL distribution is compared with the zero-and-one
inflated versions of the beta (ZOIB) and unit Lindley (ZOIUL) distributions, where the
parameter estimation is carried out using the ML method and the AIC value is applied
to compare the goodness-of-fit of the distributions. Table 5 exhibits the ML estimates and
standard errors of the parameters, log-likelihood and AIC measures of the ZOILL, ZOIB
and ZOIUL models in the four data sets.
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Table 5 also indicates that the ZOILL distribution is a better fit to each of the four
data sets as compared to the zero-and-one inflated version of the beta and unit Lindley
distribution as the AIC value corresponding to the zero-and-one log-Lindley distributions
is the least. Hence, it can be concluded that the zero-and-one log-Lindley distribution has
a better modeling potential as compared to the other competing distributions.

Table 5.: ML estimates, standard errors, log-likelihood and AIC values for fitting zero and
one inflated models.

Data set Distribution ML estimate (SE) of the parameters LL AIC

I ZOILL α = 0.3432(0.0580), π = 0.0338(0.1230), σ = 3.3403(0.3224), p = 0.2608(0.0915) -14.0787 36.1574
ZOIB α = 0.3432(0.0580), µ = 0.5142(0.0389), φ = 2.5074(0.4595), p = 0.2608(0.0915) -55.5281 119.0562

ZOIUL α = 0.3432(0.0580), θ = 0.9615(0.0943), p = 0.2608(0.0915) -30.2491 66.4982

II ZOILL α = 0.2983(0.0262), π = 0.00002(0.0347), σ = 2.5048(0.1029), p = 0.2417(0.0448) -76.7908 169.5816
ZOIB α = 0.2983(0.0262), µ = 0.5142(0.0389), φ = 2.5034(0.2096), p = 0.2417(0.0448) -225.3318 458.6637

ZOIUL α = 0.2983(0.0262), θ = 0.7617(0.0387), p = 0.2416(0.0490) -100.6649 207.3298

III ZOILL α = 0.1281(0.0146), π = 0.2082(0.0437), σ = 5.3119(0.1658), p = 0.6855(0.0566) -44.8977 97.7954
ZOIB α = 0.1281(0.0146), µ = 0.6599(0.0112), φ = 2.6921(0.1591), p = 0.6855(0.0566) -163.7026 335.4052

ZOIUL α = 0.1281(0.0146), θ = 0.2288(0.0076), p = 0.6855(0.0566) -75.5236 157.0472

IV ZOILL α = 0.2022(0.0134), π = 0.2057(0.0333), σ = 3.7290(0.0921), p = 0.4088(0.0365) -115.5306 239.0612
ZOIB α = 0.2022(0.0134), µ = 0.5771(0.0099), φ = 2.1898(0.0988), p = 0.4088(0.0365) -544.6631 1097.326

ZOIUL α = 0.2022(0.0134), θ = 0.3011(0.0080), p = 0.4088(0.0365) -316.8217 639.6434

Figure 4 (a)-(d) exhibit the plot of the empirical CDF of the four datasets and the distri-
bution functions of the fitted ZOILL, ZOIUL and ZOIB distributions. The plots in Figure 4
(a)-(d) clearly show that the proposed ZOILL distribution is a much better fit to all the four
datasets as compared to the more popular ZOIB distribution and the recently developed
ZOIUL distribution.

6. Conclusions, limitations and future research

The idea behind this article emerged from a work on inflated version of the beta distribution,
which is able to model data having observations equal to 0 or 1, apart from those lying in
the interval (0, 1). A very few alternatives to this distribution are available in the literature.
This motivated us to pursue this work, whose chief contributions are (i) introducing a in-
flated version of the log-Lindley distribution to deal with bounded data in unit interval with
possible mass at 0 and/or 1, (ii) assessing the performance of the different parameter esti-
mation procedures through simulation studies and (iii) analysis of real life pass proportion
data sets using programming code in the R software. The proposed distribution (both the
zero-or-one and zero-and-one versions) are found to be members of the exponential family.
This article further has established the proposed model as a viable alternative to well known
inflated beta distribution and the recently proposed inflated unit Lindley distribution. One
of the limitations of the present study is that simulation has been performed for only two
sets of combination of the parameters for both the zero inflated and zero-and-one inflated
case. Future works will include among other the study of regression modeling by considering
available covariates and related inferences.
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(a) data set I (b) data set II

(c) data set III (d) data set IV

Figure 4.: Observed PDF and CDF plot of the fitted ZOILL, ZOIUL and ZOIB distributions
for proportion of students passing the H.S.L.C. exam 2020, Manipur for indicated data set.

Appendix

This section contains the proofs of the Theorems 2.1 and 2.2 presented in Section 2.3 of the
article.

Proof of Theorem 2.1 The PDF in Equation (2.3) can be re-written as

f (y;α, σ, λ) = αIc(y) (1− α)1−Ic(y)
(

σ2

1 + λσ
(λ− log(y)) yσ−1

)1−Ic(y)
, (1)

where

Ic(y) =
{

1, if y = c, with c = 0 or c = 1;
0, if y ∈ (0, 1) .
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By denoting T1(y) = Ic(y), T2(y) = log(y)(1− Ic(y)), η1 = log(α(1 + λσ))/(σ2(1− α)) and
η2 = σ, the PDF in Equation (1) can be arranged as

f (y; η1, η2) = exp
(
Ic(y)

(
log
( α

1− α
)
− log

( σ2

1 + λσ

))
+ (1− Ic(y))σ log(y)

+
(

log (1− α) + log
( σ2

1 + λσ

)))(λ− log(y)
y

)1−Ic(y)
.

Now, by defining T (y) = (T1(y), T2(y)), η = (η1, η2), B(η) = log(σ2(1− α)/(1 + λσ)),
and h(y) = ((λ− log(y))/y)1−Ic(y), the PDF can be expressed as

f (y; η1, η2) = exp
(
η>T (y) +B (η)

)
h (y) ,

where the function B(η) is a real valued function of η1, η2, and h(y) is a positive real valued
function. The transformation from (α, σ) to (η1, η2) is obviously one-one from (0, 1)×R+ to
R×R+. Hence, the PDF presented in Equation (2.3) belongs to a two parameter exponential
family distribution when λ is fixed.

Proof of Theorem 2.2 The PDF stated in Equation (2.5) can be re-written as

f (y; p, α, σ, λ) = αI{0,1}(y) (1− α)1−I{0,1}(y) pyI{0,1}(y) (1− p)I{0,1}(y)−yI{0,1}(y)

×
(

(1− α) σ2

1 + λσ
(λ− log(y)) yσ−1

)1−I{0,1}(y)
.

where

I{0,1}(y) =
{

1, if y = 0 or 1;
0, if y ∈ (0, 1) .

By denoting T1(y) = I{0,1}(y), T2(y) = 1 − I{0,1}(y), T3(y) = yI{0,1}(y), η1 =
log
(
(α (1− p) (1 + σλ))/(σ2 (1− α)2)

)
, η2 = σ, and η3 = log (p/(1− p)), the PDF in Equa-

tion (2) can be written as

f (y; η1, η2, η3) = exp
(
I{0,1}(y)

(
log
(
α(1−p)(1+λσ)

(1−α)2σ2

))
+
(
1− I{0,1}(y)

)
σ log(y)

+yI{0,1}(y) log
(

p
1−p

)
+ log

(
(1−α)2σ2

(1+λσ)

)) (
λ−log(y)

y

)1−I{0,1}(y)
.

Now, by defining B∗ (η) = log
(
σ2 (1− α)2/(1 + λσ

)
), T (y) = (T1(y), T2(y), T3(y)), η =

(η1, η2, η3), and h(y) = ((λ− log(y))/y)1−I{0,1}(y), the PDF can be expressed as

f (y; η1, η2, η3) = exp
(
η>T (y) +B∗ (η)

)
h (y) ,

where the functions B∗(η) is a real valued function of (η1, η2, η3), h(y) is a positive real
valued function. Further, the transformation from (α, p, σ) to (η1, η2, η3) is one-one from
(0, 1) × (0, 1) × R+ to R × R+ × R. Hence, the PDF given in Equation (2.5) belongs to a
three parameter exponential family distribution when λ is fixed.
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