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Abstract

In this article, a new exponentiated-Weibull-G family with two extra shape parameters
is defined, which incorporates certain special classes of distributions. Some of its math-
ematical properties are presented. Maximum likelihood estimation and simulations are
addressed. Two applications to COVID-19 data show the flexibility of the new family.
A simulation experiment is developed to show the validity of the asymptotic properties
of the maximum likelihood estimators. A regression model, called the log-exponentiated
Weibull-Weibull, is constructed and applied to COVID-19 data, which has better per-
formance when compared to two other regression models.
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1. Introduction

The process of developing new distributions has been improved over the last few years. We
can mention two recent classes of distributions: the arctan (Gómez-Déniz et al, 2022) and
the erf-G (Fernández and de Andrade, 2020) families. One of the most recent techniques to
generate new families of distributions has revolutionized the area, bringing a way to generate
more flexible models. This technique, called the transformed-transformer (T-X) family of
distributions, was developed by Alzaatreh et al (2013). However, despite the great effort to
find distributions or families that adequately model a large number of types of data sets,
many models proposed in the literature are still not very competitive when compared to
the beta-G (B) and Kumaraswamy-G (Kw-G) classes proposed by Eugene et al (2002) and
Cordeiro and de Castro (2011), respectively.
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There is a structural difference between the two aforementioned classes. Despite the fact
that the B-G distribution provides in general an excellent performance in the adjustment to
real data sets, the structure of its probability density and cumulative distribution functions
(PDF and CDF, respectively) include complicated mathematical functions, which makes
the parameter estimation process more difficult. In addition, the Kw-G class does not have
any complicated functions in its PDF.

The main idea of the present work is to present, based on the T-X family of distributions,
a competitive class to the B-G and Kw-G families. The sections of the article are organized
as follows. The new family is introduced in Section 2 and this same section provides four
special models of the EW-G family. Section 3 gives the skewness and kurtosis of X based
on quantiles, a linear representation for the EW-G PDF given in Equation (2.5), and some
of its properties, say moments and generating function. The maximum likelihood (ML)
method applied to the PDF given in Equation (2.5) is addressed in Section 4 together with
a regression model and a simulation study. In Section 5, two applications to real data sets
prove the potentiality of the EW-G family. Finally, Section 6 presents the main conclusions
of this work and future research motivated by this work.

2. The new family and related-models

2.1 The new family

Let G(x) be the CDF of a random variable X with parameter vector θ and r(t) be the PDF
of a random variable T with parameter vector η defined on [a, b], for −∞ ≤ a < b ≤ ∞.
Henceforth, the parameters are omitted in all functions.

The CDF of the T-X family was defined by Alzaatreh et al (2013) as

F (x) =
∫ W (G(x))

a
r(t) dt, (2.1)

where W is a differentiable and monotonically non-decreasing function such that

lim
x→−∞

W (G(x)) = a, lim
x→∞

W (G(x)) = b.

If a random variable T is defined on [0,∞) and W (G(x)) = − ln(1 − G(x)), the CDF of
the T-X family given in Equation (2.1) reduces to

F (x) =
∫ − ln(1−G(x))

0
r(t) dt. (2.2)

By considering the three-parameter exponentiated-Weibull (EW) PDF (Mudholkar and
Srivastava, 1993) for T , namely

r(t) = α p

λ

(
t

λ

)p−1
exp

(
−
(
t

λ

)p) (
1− exp

(
−
(
t

λ

)p))α−1
,

in Equation (2.2), we obtain

F (x) =
(
1− exp

(
−λ−p (− ln ( 1−G(x) ))p

) )α
. (2.3)

Equation (2.3) defines the exponentiated-Weibull-G (EW-G) family (generated by G)
with scale parameter λ > 0, shape parameters α > 0 and p > 0. Henceforth, let X ∼
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EW-G(α, λ, p,θ) be a random variable with CDF given in Equation (2.3).
By inverting Equation (2.3), the quantile function (QF) of X has the form

Q(u) = G−1
(
1− exp

(
−
√

(p)−λp ln
(

1−
√

(α)u
)))

, (2.4)

where G−1(u) is the baseline QF.
As long as we have a closed form for G−1(u) or a good approximation for it, the QF of X

is easily obtained from the parent QF. Thus, if U has a uniform U(0, 1) distribution, then
X = Q(U).

By differentiating Equation (2.3), the PDF of X follows as

f(x) = α p g(x)
λp(1−G(x)) (− ln (1−G(x)))p−1 exp

(
−λ−p (− ln (1−G(x)))p

)
×
(
1− exp

(
−λ−p (− ln (1−G(x)))p

))α−1
, (2.5)

where g(x) = dG(x)/dx. Two examples presented in Section 5 with λ = 1 (that is, EW-
G(α, 1, p,θ)) prove that the EW-G family can be a competitive alternative for both B-G
and Kw-G classes mentioned before. The hazard rate function (HRT) of X can be expressed
as h(x) = f(x)/(1− F (x)).

2.2 Special models

Equation (2.5) is most tractable whenever G(x) and g(x) have simple analytic expressions.
The baseline G(x) is clearly a special case of Equation (2.3) when α = λ = p = 1. Setting
λ = p = 1 leads to the exponentiated type of distributions (Gupta et al, 1998). If p = 1 and
β = λ−1, we have that

F (x) =
(
1− (1−G(x))β

)α
is identical to the exponentiated generalized class (Cordeiro et al, 2013). Moreover, the
exponentiated-exponential logistic defined by Ghosh and Alzaatreh (2018) is another special
model when the baseline is the logistic and p = 1. In the following, some special models are
discussed.

2.3 Exponentiated-Weibull gamma (EW-Ga) model

The gamma CDF (for x > 0) with shape parameter a > 0 and scale parameter b > 0 is
G(x) = γ(a, bx)/Γ(a), where Γ(a) =

∫∞
0 wa−1e−w dw and γ(a, x) =

∫ x
0 w

a−1e−w dw are the
gamma and incomplete gamma functions, respectively.

The EW-Ga PDF can be expressed as

f(x) = αp ba xa−1exp(−bx)
λp (Γ(a)− γ(a, bx))

(
− ln

(
1− γ(a, bx)

Γ(a)

))p−1
exp

(
−λ−p

(
− ln

(
1− γ(a, bx)

Γ(a)

))p)

×
(

1− exp
(
−λ−p

(
− ln

(
1− γ(a, bx)

Γ(a)

))p))α−1

.
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2.4 Exponentiated-Weibull Weibull (EW-W) model

The Weibull CDF (for x > 0) with shape parameter k > 0 and scale parameter b > 0 is
G(x) = 1− exp(−(x/b)k). The EW-W PDF has the form given by

f(x) = α p k

bλp

(x
b

)kp−1
exp

(
− λ−p

(x
b

)kp) (
1− exp

(
− λ−p

((x
b

)k)p))α−1
. (2.6)

For k = 1, it gives the exponentiated-Weibull exponential distribution.

2.5 Exponentiated-Weibull log-logistic (EW-LL) model

The CDF of the log-logistic (LL) distribution is (for x, a, b > 0) G(x) = 1− (1 + (x/a)b)−1.
The EW-LL PDF can be expressed as

f(x) = αp b

λpab

(
1 +

(x
a

)b)−3
(
− ln

(
1 +

(x
a

)b)−1
)p−1

exp
(
−λ−p

(
− ln

(
1 +
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a

)b)−1
)p)

×

(
1− exp

(
−λ−p

(
− ln

(
1 +

(x
a

)b)−1
)p))α−1

.

2.6 Exponentiated-Weibull Birnbaum-Saunders (EW-BS) model

The CDF of the Birnbaum-Saunders (BS) distribution is (for x, a, b > 0) G(x) =
Φ(1/a(

√
x/b−

√
b/x)). The EW-BS PDF has the form stated as

f(x) =
α px−3/2(x+ b)ea−2 exp

(
− 1

2a2

(
x

b
+ b

x

))
2aλp
√

2πb
(

1− Φ
(

1
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1
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.

Figures 1 and 2 report some shapes of four generated PDFs and HRTs, respectively. We
note the flexibility of the new family for selected baselines.

3. Other functions and properties

3.1 Quantile function

The skewness and kurtosis of X can be based on quantile measures easily calculated from
Equation (2.4). In fact, the Bowley skewness S (Kenney and Keeping, 1961) and the Moors
kurtosis K (Moors, 1988) are given by

S = Q(3/4) +Q(1/4)− 2Q(1/2)
Q(3/4)−Q(1/4)



Chilean Journal of Statistics 103

0.0 0.5 1.0 1.5

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

x

f(
x
)

α = 2, λ = 1.5, p = 3, a = 0.5, b = 2
α = 2.5, λ = 1, p = 1, a = 2, b = 5
α = 0.5, λ = 1.5, p = 0.3, a = 0.5, b = 2
α = 0.2, λ = 5, p = 3, a = 1, b = 2

(a) EW-Ga(α, λ, p, a, b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.5

1
.0

1
.5

x

f(
x
)

α = 2, λ = 0.5, p = 3, k = 1.5, b = 2.5
α = 2, λ = 1, p = 5, k = 1, b = 2
α = 2, λ = 1, p = 3.5, k = 2.5, b = 3
α = 2, λ = 0.4, p = 0.2, k = 0.5, b = 2

(b) EW-W(α, λ, p, k, b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.5

1
.0

1
.5

2
.0

x

f(
x
)

α = 2, λ = 0.5, p = 2, a = 1.5, b = 2.5
α = 2, λ = 1.2, p = 3.5, a = 1, b = 2
α = 2, λ = 1, p = 3.5, a = 2.5, b = 4
α = 2, λ = 0.4, p = 0.2, a = 0.5, b = 2

(c) EW-LL(α, λ, p, a, b)

0.0 0.1 0.2 0.3 0.4 0.5

0
5

1
0

1
5

2
0

 

x

f(
x
)

α = 0.2, λ = 0.8, p = 0.6, a = 8, b = 5
α = 0.7, λ = 0.1, p = 6, a = 5, b = 6
α = 1, λ = 0.09, p = 6, a = 4, b = 8
α = 0.8, λ = 0.05, p = 0.5, a = 0.09, b = 0.4

(d) EW-BS(α, λ, p, a, b)

Figure 1. EW-G PDFs for indicated models.

and

K = Q(7/8)−Q(5/8) +Q(3/8)−Q(1/8)
Q(6/8)−Q(2/8) ,

respectively.
Figures 3(a), 3(b), 4(a) and 4(b) display the measures S and K for the EW-W(α, λ, p, k, b)

distribution for some values of k as functions of both α and p, respectively.
If α increases in Figure 3(a) when k = 3, a very sudden drop occurs, initially to 0.2

and then the asymmetry remains practically constant. The other configurations maintain
practically the same behavior, but when k increases, the asymmetry decreases.
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Figure 2. EW-G HRTs for indicated models.

Figure 3(b) shows that when p increases, there is a decrease in the asymmetry, but it does
not occur abruptly (for all scenarios). If p is fixed, the values for the asymmetry are smaller
when k increases.

The behavior in Figures 4(a) and 4(b) are similar. In Figure 4(a) for k = 1, the kurtosis
decreases, and for k = 2, k = 3 and k = 4, there is an inversion in the behavior of the
kurtosis, that is, fixing α, the kurtosis increases when k increases. In Figure 4(b), for values
of p between 0 and approximately 0.3, there is no kurtosis. For some value of p, except when
k = 3, there is an inversion of the behavior of the kurtosis for the cases k = 4, k = 5 and
k = 6, that is, fixing p, the kurtosis values increase when k increases.
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Figure 3. Bowley skewness of the EW-W distribution. (a) for some values of k (p = b = 2 and λ = 1) and (b) for
some values of k (α = b = 2 and λ = 1).

0.0 0.1 0.2 0.3 0.4 0.5

1
.
0

1
.
5

2
.
0

2
.
5

3
.
0

α

K
u

r
t
o

s
is

(
α

)

k = 1
k = 2
k = 3

k = 4

(a)

0.2 0.4 0.6 0.8 1.0 1.2

1
.2

2
1

.2
4

1
.2

6
1

.2
8

1
.3

0
1

.3
2

p

K
u

r
to

s
is

(
p
)

k = 3
k = 4
k = 5
k = 6

(b)

Figure 4. Moors’ kurtosis of the EW-W distribution. (a) for some values of k (p = b = 2 and λ = 1) and (b) for
some values of k (α = b = 2 and λ = 1)

3.2 Linear representation

Here, we present a linear representation for the EW-G PDF given in Equation (2.5).
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First, the CDF and PDF of the exponentiated-G (Exp-G) distribution for an arbitrary
parent CDF G(x) with power parameter c > 0, are Πc(x) = G(x)c and PDF πc(x) =
c g(x)G(x)c−1, respectively. Some Exp-G properties have been studied by many authors in
recent years; see, for instance, Mudholkar and Srivastava (1993) for exponentiated Weibull,
Nadarajah and Kotz (2003) for exponentiated Fréchet, Nadarajah (2005) for exponentiated
Gumbel, and Nadarajah and Gupta (2007) for exponentiated gamma distributions.

In Appendix A, it is shown that a linear representation of the EW-G is given by

f(x) =
∞∑
r=0

cr+1 πr+1(x), (3.7)

where πr+1(x) = (r + 1) g(x)G(x)r is the PDF of the Exp-G random variable Vr+1 with
power parameter r+ 1. Thus, some structural properties of the EW-G family can be deter-
mined from those of the Exp-G class.

3.3 Properties

First, the nth ordinary moment of X, say µ′n = E(Xn), follows from Equation (3.7) and it
is given by

µ′n =
∞∑
r=0

cr+1 E(V n
r+1) =

∞∑
r=0

(r + 1) cr+1 δn,r,

where δn,r =
∫ 1

0 (QG(u))n ur du is easily calculated numerically from the parent QF.
Some moments of the EW-E distribution are obtained in this way using the R software.

Let α = 1.7, λ = 1.5, p = 3.5 and β = 1.5 be the reference setup, and we study the behavior
of the variance, skewness and kurtosis of X increasing α, λ and p. Table 1 reports some
numerical findings for these quantities.

For all setups, the asymmetry and kurtosis are positive. Further, we note that when α
increases, keeping the other parameters fixed, there is an increase in the first four moments
and in the variance, but the skewness and kurtosis values decrease.

Table 1. Some moments of the EW-E model.

Parameter µ′1 µ′2 µ′3 µ′4 Variance Skewness Kurtosis

Reference 0.06463 0.08201 0.11836 0.19267 0.07783 4.74316 27.08344
α=2.7 0.07614 0.10780 0.16755 0.28627 0.10200 4.41467 22.96156
α=3.7 0.08830 0.13207 0.21366 0.37540 0.12427 4.10998 19.80985
α=4.7 0.10028 0.15524 0.25777 0.46159 0.14518 3.85219 17.42437
λ=2.5 0.03047 0.05452 0.11010 0.24845 0.05359 8.47762 81.94044
λ=3.5 0.00758 0.01527 0.03462 0.08721 0.01521 18.26429 372.27010
λ=4.5 0.00215 0.00460 0.01110 0.02976 0.00460 35.51967 1404.38641
p=4.5 0.13653 0.20569 0.34827 0.66034 0.18705 3.32676 14.06580
p=5.5 0.35587 0.62986 1.24980 2.76824 0.50321 1.86989 5.60635
p=6.5 1.09053 2.26383 5.25519 13.55143 1.07458 0.39743 2.19823
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The first four moments and the variance decrease when λ increases (with the other param-
eters fixed). The skewness and kurtosis decrease slowly when α increases. And if λ increases,
there is an increase in the skewness and kurtosis values, being much faster for the kurtosis.
Thus, α exerts an influence on the skewness and kurtosis in the sense of decreasing (slow),
and λ exerts influence on increasing the skewness and kurtosis, which occurs more quickly.

By analyzing results varying p, we note that the effect of increasing p is similar to the
effect caused when α increases, that is, when p increases, fixing the other parameters, the
first four moments and the variance (higher for p=6.5) increase and the skewness and kur-
tosis decrease. The observed behavior may be related to the fact that α and p are shape
parameters, and λ is a scale parameter. The scale parameter λ exerts profound effect over
the skewness and kurtosis.

Second, the nth incomplete moment of X, say mn(t), can be expressed from Equation (3.7)
as

mn(t) =
∫ t

−∞
xn f(x) dx =

∞∑
r=0

cr+1

∫ t

−∞
xn πr+1(x) dx.

The last integral is just the nth incomplete moment of Vr+1.
Third, the moment generating function MX(s) = E(exp(sX)) of X follows from Equa-

tion (3.7)

MX(s) =
∞∑
r=0

cr+1 Mr+1(s) =
∞∑
r=0

(r + 1) cr+1 τs,r,

where Mr+1(s) is the moment generating function of Vr+1 (for r ≥ 0), and τs,r =∫ 1
0 exp (sQG(u)) ur du can be evaluated numerically from the baseline QF.

4. Estimation, regression, and simulations

4.1 Estimation

The ML method is used to estimate the unknown parameters of the EW-G family. We adopt
the adequacy measures to compare fitted models: Akaike information criterion (AIC), cor-
rected Akaike information criterion (CAIC), Bayesian information criterion (BIC), and the
Kolmogorov-Smirnov (K-S), Anderson-Darling (A∗) and Cramér-von Mises (W ∗) statistics
(Chen and Balakrishnan, 1995).

Consider a sample x1, . . . , xn from Equation (2.5), where θ is a parameter vector in G(x).
The log-likelihood function l = logL(α, λ, p,θ) for the parameters is

l = n ln
(
αp

λp

)
+

n∑
i=1

ln g(xi)−
n∑
i=1

ln(1−G(xi))

+(p− 1)
n∑
i=1

ln (− ln(1−G(xi)))−
1
λp

n∑
i=1

(− ln(1−G(xi)))p

+(α− 1)
n∑
i=1

ln
(

1− exp
(
−λ−p (− ln ( 1−G(xi) ))p

) )
. (4.8)

A good way to obtain the ML estimates and their standard errors (SE) is the
AdequacyModel library of the R software (Marinho et al, 2019). In addition, this library
also provides some statistics to evaluate the adequacy of a fitted distribution.
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The AdequacyModel package can also maximize Equation (4.8) using the particle swarm
optimization (PSO) approach from the quasi-Newton BFGS, Nelder-Mead, and simulated-
annealing methods and it does not require initial values. In fact, depending on the com-
plexity of the log-likelihood function, problems can be faced, depending on the initial val-
ues when using Newton or quasi-Newton methods to optimize the function. These are
situations where the numerical derivative may not give us good faster ascent directions.
For these problems, algorithms such as BFGS, Nelder-Mead, among others, can be used.
However, in the present article, and based on Marinho et al (2019), to which one of
the authors of this article is a member, good initial guesses were taken, through meta-
heuristic algorithms that do not use derivatives and that are numerically quite consistent
to obtain a global optimum, as is the Simulated Annealing (SANN) and PSO algorithms.
They are not influenced by approximately flat regions (derivatives close to zero). The link
https://www.youtube.com/watch?v=qfRbX54RHf4 provides a video on YouTube of the
PSO algorithm from the AdequacyModel package of an extreme situation, in which the
initial guess was given in a region whose derivative is zero and where the object is to mini-
mize the objective function. Further, In a convex function, as is the case of this likelihood
function, taking as initial guesses the responses of the SANN and/or PSO algorithms in
a quasi-Newton method such as the BSFS is a great strategy for obtaining a consistent
iterative ML estimate. Other details are available at https://rdrr.io/cran/AdequacyModel/.

The optim function of R software is a good alternative for maximizing l, since it pro-
vides numerical checks of the behavior of the Hessian matrix, and then we can select an
optimization method, for example, Nelder-Mead, BFGS, CG, L-BFGS-B, SANN and Brent.
The elements of the score vector U(α, λ, p,θ) are given in Appendix B.

The ML estimates are obtained by solving U(α, λ, p,θ) = (0, 0, 0, 0)>. Note that from Uα,
it is possible to obtain a semi closed-form ML estimate for α, namely

α̂ = − n∑n
i=1 ln

(
1− exp

(
−λ̂−p̂ (− ln ( 1−G(xi) ))p̂

) ) .
Thus, the ML estimate of α can be written as a function of the ML estimates of λ, p and

θ. Then, we move from a (q + 3) × (q + 3) system to a (q + 2) × (q + 2) system of
nonlinear equations.

4.2 Log-exponentiated Weibull-Weibull (LEW-W) regression

If X is a random variable having the EW-W PDF given in Equation (2.6), then Y = log(X)
follows the LEW-W PDF, which reparameterized in terms of k = σ−1 and b = exp(µ), has
the form (for y ∈ R)

fY (y) =
α p exp

(
−y − µ

σ
− exp

(
−y − µ

σ

))
σ λp

(
1− exp

(
− exp

(
−y − µ

σ

))) (
− ln

(
1− exp

(
− exp

(
−y − µ

σ

))))p−1

× exp
(
−λ−p

(
− ln

(
1− exp

(
− exp

(
−y − µ

σ

))))p)

×
(

1− exp
(
−λ−p

(
− ln

(
1− exp

(
− exp

(
−y − µ

σ

))))p))α−1
, (4.9)

where µ ∈ R, σ > 0, α > 0, λ > 0 and p > 0.

https://www.youtube.com/watch?v=qfRbX54RHf4
https://rdrr.io/cran/AdequacyModel/
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The survival function corresponding to Equation (4.9) is stated as

S(y) = 1−
(

1− exp
(
−λ−p

(
− ln

(
1− exp

(
− exp

(
−y − µ

σ

))))p))α
.

The standardized random variable Z = (Y − µ)/σ has PDF (for z ∈ R) defined as

π(z) = α p exp (−z − exp (−z))
λp (1− exp (− exp (−z))) (− ln (1− exp (− exp (−z))))p−1

× exp
(
−λ−p (− ln (1− exp (− exp (−z))))p

)
×
(
1− exp

(
−λ−p (− ln (1− exp (− exp (−z))))p

))α−1
. (4.10)

Many studies involve the presence of explanatory variables that can influence the lifetimes
xi. Therefore, consider the location and scale model defined by

yi = v>i γ + σ zi, i = 1, . . . , n, (4.11)

where vi = (vi1, . . . , vip)> is the explanatory variable vector modeling the location parameter
µi = v>i γ for the ith response variable yi (for i = 1, . . . , n), γ = (γ1, . . . , γp)> is the vector
of regression coefficients, the random error zi has the PDF given in Equation (4.10), and
σ > 0 is a scale parameter.

Let F be the group of individuals who failed and C the group of censored individuals. The
log-likelihood function for θ = (α, λ, p, σ,γ>)> can be determined from Equations (4.10)
and (4.11) as

l(θ) = q ln
(
αp

λp

)
+
∑
i∈F

((
− yi − v>i γ

σ

)
− exp

(
− yi − v>i γ

σ

))

−
∑
i∈F

ln
(
1− exp

(
− exp

(
− yi − v>i γ

σ

)))

+(p− 1)
∑
i∈F

ln
(
− ln

(
1− exp

(
− exp

(
− yi − v>i γ

σ

))))

− 1
λp

∑
i∈F

(
− ln

(
1− exp

(
− exp

(
− yi − v>i γ

σ

))))p

+(α− 1)
∑
i∈F

ln
(
1− exp

(
− λ−p

(
− ln

(
1− exp

(
− exp

(
− yi − v>i γ

σ
v)
)))p))

(4.12)

+(n− q)
∑
i∈C

ln
(
1−

(
1− exp

(
− λ−p

(
− ln

(
1− exp

(
− exp

(
− yi − v>i γ

σ

))))p))α)
,

where q is the number of failures. The ML estimate θ̂ of θ can be found by maximizing
Equation (4.12). From the fitted regression given in Equation (4.11), the survival function
of yi can be estimated by

Ŝ(yi) =
(

1−
(

1− exp
(
− λ̂−p̂

(
− ln

(
1− exp

(
− exp

(
− yi − v>i γ̂

σ̂

))))p̂))α̂)
.
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4.3 Simulation study

A Monte Carlo simulation study is carried out by taking the exponential (E) for baseline
(with mean 1/β) to investigate the accuracy of the ML estimators of the parameters. The
simulation procedure consists of generating observations from the EW-E(α, λ, p, β) distri-
bution using the inversion method for different parameter combinations. The number of
replications is 10,000, the sample size is n ∈ [50, 100, 150], and we adopt the BFGS algo-
rithm in the R software to maximize Equation (4.8). The simulation process follows the
steps:
1. Generate U ∼ U(n, 0, 1)
2. Return X = F−1(U), where X ∼ EW-E(α, λ, p, β)
3. Simulate EW-E observations for fixed n ∈ [50, 100, 150] by means of the previous scheme.
4. Consider three scenarios: α = 1.5, λ = 1, p = 2 and β = 1.5 (Setup 1); α = 2, λ = 1,
p = 1.5 and β = 2.5 (Setup 2); and α = 1.7, λ = 1, p = 1.5 and β = 2 (Setup 3).

5. Calculate the ML estimates from each generated data set, and then obtain the averages,
biases and mean square errors (MSEs).

Table 2 reports the findings on step 5. The averages of the estimates approach to the true
parameters and the biases decrease (for all scenarios) when n increases.

5. Numerical applications

5.1 Context

Here, the importance of the EW-G family is illustrated in two applications to real data
sets. The gamma, Birnbaum-Saunders, Weibull and log-logistic distributions are taken as
baselines in the proposed family to prove their flexibility. The data sets are obtained from
database of the Severe Acute Respiratory Syndrome, available from the platform of the
Ministry of Health linked to the Brazilian Open Data Portal1, which comprise events from
2020-2021 and passed for filter process to obtain the COVID-19 patients.

The MASS package in the R language is used with a heuristic method to obtain the
initial parameter values to maximize the log-likelihood. Further, the GenSA, MASS and
AdequacyModel libraries and goodness.fit() function with the SANN method of the R
software are used in the others computations. The data sets and application codes can be
accessed at https://github.com/elisangelacbiazatti/EW-G.

The competing distributions for comparison are listed below:

• Beta-Birnbaum-Saunders (B-BS) (Cordeiro and Lemonte, 2011);
• Kumaraswamy-Birnbaum-Saunders (Kw-BS) (Saulo et al, 2012);
• Beta-gamma (B-Ga) (Kong et al, 2007);
• Kumaraswamy-gamma (Kw-Ga) (Cordeiro and de Castro, 2011);
• Kumaraswamy-Weibull (Kw-W) (Cordeiro et al, 2010);
• Kumaraswamy-log-logistic (Kw-LL) (Santana et al, 2012);
• Beta Weibull distribution (B-W) (Lee et al, 2007);
• Beta log-logistic (B-LL) (Lemonte, 2014).

Some descriptive statistics for the data sets are provided, the ML estimators and their
SEs of the fitted distributions, and the adequacy statistics to compare them. The data sets
used, and fitted models are described below.

1BD-SRAG. Available in: https://opendatasus.saude.gov.br/dataset/srag-2020. Accessed on: August 23, 2021.

https://github.com/elisangelacbiazatti/EW-G
https://opendatasus.saude.gov.br/dataset/srag-2020
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Table 2. Simulation Results

Setup Sample size Parameter Average Bias MSE

Setup 1

n=50

α 1.53766 0.03766 0.05809
λ 1.00843 0.00843 0.00079
p 2.03546 0.03546 0.05231
β 1.50792 0.00792 0.02785

n = 100

α 1.51719 0.01719 0.03487
λ 1.00673 0.00673 0.00007
p 2.01971 0.01971 0.02636
β 1.50566 0.00566 0.02762

n = 150

α 1.51414 0.01414 0.02996
λ 1.00667 0.00667 0.00004
p 2.01489 0.01489 0.01596
β 1.50267 0.00267 0.02759

Setup 2

n=50

α 2.04752 0.04752 0.09619
λ 1.01065 0.01065 0.00211
p 1.51895 0.01895 0.03352
β 2.51535 0.01535 0.04084

n = 100

α 2.02632 0.02632 0.05089
λ 1.00699 0.00699 0.00016
p 1.50812 0.00812 0.02816
β 2.50888 0.00888 0.02976

n = 150

α 2.01862 0.01862 0.03554
λ 1.00670 0.00669 0.00006
p 1.50454 0.00453 0.02768
β 2.50459 0.00459 0.02796

Setup 3

n = 50

α 1.74158 0.04158 0.07357
λ 1.01172 0.01172 0.00300
p 1.51982 0.01982 0.03445
β 2.01958 0.01958 0.03028

n = 100

α 1.72463 0.02463 0.03744
λ 1.00733 0.00733 0.00032
p 1.50988 0.00988 0.02839
β 2.01207 0.01207 0.01339

n = 150

α 1.71643 0.01643 0.02589
λ 1.00677 0.00677 0.00007
p 1.50527 0.00527 0.02771
β 2.01064 0.01064 0.00648

5.2 COVID-19 data in Goiânia, Brazil

The first application refers to the times (in days) of 1105 COVID-19 patients from the
date of entry in the Intensive Care Unit (ICU) until death in Goiânia, considering the
municipal code 520870, in the Goiás state. By COVID-19 patient, we mean someone who
has a positive RT-PCR test. The descriptive statistics for the time until death for COVID-19
data in Goiânia include: mean = 13.18, standard deviation (SD) = 12.31, skewness = 2.58,
kurtosis = 14.50, and minimum and maximum values 1 and 126, respectively.
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To investigate which distribution fits better to these data, formal goodness-of-fit tests
are used. The values of the W ∗ and A∗ statistics (from AdequacyModel package) are re-
ported in Table 3. The EW-G (for λ = 1) is better than the Kw-G and B-G classes for
both Birnbaum-Saunders and gamma baselines. By verifying the measures of these formal
goodness-of-fit tests in Table 3, we conclude that the EW-BS model outperforms all other
fitted distributions. Thus, the two special models in the new generator provide better fits
than the distributions belonging to the B-G and Kw-G classes and then can be an efficient
alternative to these distributions for modeling data sets.
Table 3. Estimation results for COVID-19 data in Goiânia.

Distribution ML estimates and SEs W ∗ A∗

EW-Ga
α p a b

0.20301 1.937951.18685 0.73965 1.99341 0.18321
(0.26250) (0.04488) (0.42817) (0.02364)

EW-BS
α p a b

0.23278 2.197734.92674 0.84445 1.72221 1.40769
(0.77151) (0.10890) (0.19646) (0.28523)

Kw-Ga
α β a b

0.39119 2.9669515.98273 0.49066 0.12328 0.14244
(0.00013) (0.01993) (0.00284) (0.00338)

Kw-BS
α β a b

0.44681 3.666813.60128 0.93352 1.74557 2.06262
(0.47410) (0.52569) (0.25979) (0.77221)

B-Ga
α β a b

0.31399 2.5156925.19377 41.16548 0.16931 0.00022
(3.235e-07) (3.944e-07) (1.712e-06) (6.040e-06)

B-BS
α β a b

0.33102 2.8683641.01784 32.73182 7.75890 3.37354
(1.06967) (1.18535) (0.38043) (0.90847)

The Vuong test (Vuong, 1989) in Table 4 reveals that the EW-BS distribution is better
than the EW-Ga, B-Ga, B-BS, Kw-BS and Kw-Ga distributions for a level of significance
of 5%.
Table 4. The Vuong test for some fitted models to COVID-19 data in Goiânia.

Distribution Vuong statistic Decision
EW-Ga × EW-BS -110.7868 EW-BS is chosen
EW-BS × B-Ga 26.03541 EW-BS is chosen
EW-BS × B-BS 17.24543 EW-BS is chosen

EW-BS × Kw-BS 7.22972 EW-BS is chosen
EW-BS × Kw-Ga 93.83827 EW-BS is chosen

Figure 5 displays the histogram of the data, where x represents the time to death and the
fitted EW-BS PDF, some other PDFs, and empirical and estimated CDFs. We note that the
EW-BS distribution provides a better fit to the time until death for COVID-19 in Goiânia
than those of the other models.

5.3 COVID-19 data in Natal, Brazil

The second application refers to COVID-19 data from the city of Natal, considering the
municipal code 240810, in Rio Grande do Norte state. The 35 survival times (in days) of
COVID-19 patients from the date of hospitalization until death are: 4, 23, 12, 3, 2, 22, 1,
15, 4, 10, 9, 1, 34, 1, 16, 10, 11, 14, 5, 6, 13, 9, 9, 1, 5, 3, 27, 17, 10, 6, 8, 1, 10, 8, 3. By
COVID-19 patient, we mean someone who has a positive RT-PCR test.
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Figure 5. Estimated EW-BS, EW-Ga, B-BS and B-Ga PDFs (a); and empirical and estimated CDFs (b).

The descriptive statistics for these data include: mean = 9.51, SD = 7.84, skewness =
1.27, kurtosis = 4.44, and minimum and maximum values 1 and 34, respectively.

Table 5 reports the ML estimates of the parameters (SEs in parentheses) and the values
of the statistics W ∗ and A∗ (from AdequacyModel package). In this application, we show
that the EW-G (for λ = 1) is better than the Kw-G and B-G classes for both the log-logistic
and Weibull baselines.
Table 5. Findings from the fitted models to COVID-19 data in Natal.

Distribution ML estimates and SEs W ∗ A∗

EW-LL

α p a b

0.04283 0.336610.59274 5.09809 4.63721 0.49906
(0.34082) (3.45002) (8.796e-06) (0.16256)

EW-W

α p k b

0.04393 0.341331.06493 2.23626 0.53249 9.73429
(0.20430) (0.31642) (0.00001) (5.656e-07)

Kw-LL

α β a b

0.07575 0.534214.94667 50.04956 14.92093 0.43042
(7.834e-06) (0.00004) (2.50239) (0.00002)

Kw-W

α β k b

0.05570 0.410014.85694 19.98867 0.36364 20.03681
(0.01187) (0.00005) (0.03636) (0.00004)

B-LL

α β a b

0.11272 0.775090.61195 3.61587 26.47914 1.86317
(0.30367) (0.17226) (5.178e-06) (0.69671)

B-W

α β k b

0.06493 0.467251.09556 2.71432 1.16828 22.03596
(0.23859) (0.66934) (0.00514) (0.00002)

The Vuong test (Vuong, 1989) in Table 6 reveals that the EW-LL distribution is better
than the EW-W, Kw-W, and B-W distributions at a level of significance of 5%.

Figure 6 reports the histogram of the data, where x represents the time to death and the
fitted EW-LL PDF and some other PDFs, and empirical and estimated CDFs. We note that
the EW-LL distribution gives a better fit to the time until death for COVID-19 in Natal
than those other models.
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Table 6. The Vuong test for some fitted models to COVID-19 data in Natal.

Distribution Vuong statistic Decision

EW-LL × EW-W 55.68025 EW-LL is chosen
EW-LL × Kw-W 7.261374 EW-LL is chosen
EW-LL × B-W 45.67538 EW-LL is chosen
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Figure 6. Estimated EW-LL, EW-W, Kw-W and B-W PDFs (a); and empirical and estimated CDFs (b).

5.4 Regression applied to COVID-19 data in Porto Alegre, Brazil

We present an application of the LEW-W regression to COVID-19 data. The study com-
prises the time (in days) elapsed from the date of hospitalization until death by the coron-
avirus of 599 patients in Porto Alegre-RS, considering the municipal code 431490, with all
observations failing, that is, censored times are not considered in the study.

The explanatory variables are (for i = 1, . . . , 599):

• vi1: age (in years);
• vi2: icu (1=Admitted to the ICU, 2=Not admitted to the ICU).

The survival library, with optim() function and the SANN method of the R language
are used to develop the computational part.

We compare the fits of the Log Exponentiated Weibull-Weibull (LEW-W) given in Equa-
tion (4.9) (for λ = 1) with the log-beta Weibull (LBW) (Ortega et al, 2013) and the
log-Kumaraswamy-Weibull (or Kumaraswamy Gumbel) (Kw-Gu) (Cordeiro et al, 2012).

It is important to use a methodology to identify the most appropriate model for the time to
death. In this context, the total time on test plot (not shown here) for the data under study
shows an increasing appearance for the most part risk function. The descriptive statistics
for the time until death for the current data include mean = 22.20, SD = 18.61, skewness
= 2.01, kurtosis = 8.85, and minimum and maximum values 1 and 135, respectively. The
results from the fitted regression are presented as

yi = γ0 + γ1 vi1 + γ2 vi2 + σ zi,

where the errors z1, . . . , z599 are independent random variables with PDF given in Equa-
tion (4.10).
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Table 7 gives the ML estimates of the parameters for the LEW-W, LBW and Kw-Gu
regressions fitted to these data and an asymptotic 95% confidence interval for θ. These
results indicate that the LEW-W regression has the lowest AIC, CAIC and BIC values
among those of the fitted models, which indicates that LEW-W model provides the best fit
to the data. This is also confirmed by the generalized likelihood ratio (GLR) test (Vuong,
1989), for a significance level of 5%. Further, we note from the fitted LEW-W regression
that all covariates (vi1: age and vi2: icu) are significant at 1%, and that there is a significant
difference between the categories of the explanatory variables.

Table 7. Estimates from the listed regression to COVID-19 data in Porto Alegre, and adequacy measures.

Parameter Estimate SE p-value 95% Lower 95% Upper AIC CAIC BIC
LEW-W

γ0 2.66507 0.34182 <0.00001 1.99509 3.33504 1554.873 1555.015 1581.244
γ1 -0.00817 0.00256 0.00142 -0.01319 -0.00315
γ2 -0.44590 0.08424 <0.00001 -0.61102 -0.28079
σ 1.97677 0.24216 1.50213 2.45142
α 0.95458 0.16907 0.62321 1.28596
p 2.95376 0.27963 2.40568 3.50184

LBW
γ0 4.73123 0.39204 <0.00001 3.96283 5.49964 1634.352 1634.494 1660.724
γ1 -0.00586 0.00261 0.02478 -0.01097 -0.00074
γ2 -0.37765 0.08939 0.00002 -0.55286 -0.20243
σ 1.65511 0.10378 1.45171 1.85851
a 0.86137 0.19776 0.47376 1.24898
b 4.22907 0.85459 2.55406 5.90408

Kw-Gu
γ0 3.37041 0.39806 <0.00001 2.59021 4.15061 1659.315 1659.457 1685.687
γ1 -0.00891 0.00259 0.00059 -0.01399 -0.00383
γ2 -0.54654 0.09185 <0.00001 -0.72657 -0.36651
σ 1.53454 0.07806 1.38154 1.68753
a 2.40749 0.55253 1.32454 3.49046
b 3.12223 0.41468 2.30945 3.93501

GLR = 32.639 (LEW-W × LBW)
GLR = 26.599 (LEW-W × Kw-Gu)

The plots of the empirical survival function (estimated by Kaplan-Meier) and the esti-
mated survival function by fitting the LEW-W model (reparameterized) are displayed in
Figure 7 which reveal that this regression provides a good fit for the current data. Verify if
there are observations influencing the model adjustment is an important aspect. The Cook
distance is presented to investigate this aspect.
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Figure 7. Empirical and estimated survival functions of the LEW-W model.
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Next, we conduct a sensitivity analysis and influential observations. The observations
#133 and #396 are the ones that stand out the most, as shown in Figure 8, under the
generalized Cook distance (Cook, 1977), so indicating that these can be taken as possible
influential observations.
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Figure 8. Cook distance for COVID-19 data in Porto Alegre.

The observation #133 refers to an individual aged 57 years, who was admitted to the
ICU and had a length of stay until death of 10 days. And the observation #396 refers to
the individual aged 67 years, who was admitted to the ICU and whose length of stay until
death was 28 days. We can note that the two individuals were admitted to the ICU and are
not very elderly patients.

To better investigate whether these individuals are influencing the model estimated, the
parameters are estimated from a sub-sample of the original sample, which was selected
withdrawing individually when a group the observations is considered influential. Relative
change (RC), parameter estimates, and their significance are adopted to verify the impact
of withdrawing possible observations from the analysis. Table 8 reports these findings.

By analyzing Table 8, it is noted that the parameter estimates do not suffer major changes
and that the significance of the coefficients is maintained at 5%, which indicates that the
LEW-W regression model is robust in this application, that is, there are no influential
observations in this study.
Table 8. RC, parameter estimates and corresponding (p-value) for COVID-19 data in Porto Alegre.

Sub-sample α p σ γ0 γ1 γ2

I - [Full model]
[-]

0.95458
(-)

[-]
2.95376

(-)

[-]
1.97677

(-)

[-]
2.66507

( <0.00001)

[-]
-0.00817
(0.00142)

[-]
-0.44590

(<0.00001)

I - [133]
[0.43177]
0.54242

(-)

[-0.6876]
3.15686

(-)

[0.14160]
1.69685

(-)

[-0.28043]
3.41243

(<0.00001)

[-0.01102]
-0.00826
(0.00119)

[-0.27964]
-0.57059

(<0.00001 )

I - [396]
[0.11234]
0.84734

(-)

[ 0.01120]
2.92068

(-)

[ 0.07591 ]
1.82672

(-)

[ -0.01228 ]
2.69779

(<0.00001)

[ 0.25214 ]
-0.00611

( 0.01415)

[ 0.10357 ]
-0.39972

(<0.00001)

I - [133, 396]
[0.49280]
0.48416

(-)

[0.04378]
2.82443

(-)

[0.22078]
1.54033

(-)

[-0.30761]
3.48486

(<0.00001)

[-0.36475]
-0.01115
(0.00003)

[0.35885]
-0.28589
(0.00091)
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6. Conclusions and future research

We proposed the new exponentiated-Weibull-G family which can generalize all classical
continuous distributions. The maximum likelihood method was used to estimate the pa-
rameters, and the consistency of the estimators was accessed from a simulation study. The
flexibility of the new family was illustrated by means of two real COVID-19 data sets. We
showed that the new log-exponentiated Weibull-Weibull (for λ = 1) regression outperformed
regressions based on well-known Kumaraswamy-G and beta-G generators. After verifying
the good fit of the new regression, a sensitivity analysis was done to show that the proposed
Log Exponentiated Weibull-Weibull regression model is robust in this application. In future
works, for example, we can investigate other methods of sensitivity analysis, such as the
local influence, and carry out a residual analysis for the new regression model.

Appendix A - Linear representation

Expansion (3.7) derived in the Appendix converges, since it was obtained by taking the
term by term derivative of the power series expansion for the CDF F (x) in Equation (5)
which converges when G(x) < 1. In turn, the CDF is convergent because it is obtained
by applying the following power series that guarantees convergence when G(x) < 1: the
generalized Binomial Theorem, Proposition 2 of Castellares and Lemonte and Theorem 4.1
of Munir (2013) given below.

From the Proposition 2 of Castellares and Lemonte (2015), we can write

(− ln(1− z))δ = zδ
∞∑
m=0

ρm(δ) zm, (1)

where δ ∈ R, |z| < 1, ρ0(δ) = 1, ρm(δ) = δ ψm−1(m+ δ − 1) (for m ≥ 1), and ψ0(m) = 1/2,
ψ1(m) = (2 + 3m)/24, ψ2(m) = (m+m2)/48 and so on, are the Stirling polynomials.

Theorem 4.1 (Munir, 2013) If g is an analytic function on the open ballB(0, R) with power
series representation about the origin given as g(z) =

∑∞
n=0 bnz

n, then for all z ∈ B(0, R),
we have exp(g(z)) =

∑∞
n=0 an z

n, where

an =
{

exp(b0), n = 0
n−1∑n

k=1 k bk an−k, n ≥ 1.

If c is a real number,and
(c
i

)
is the generalized binomial coefficient, the power series holds

(1− z)c =
∞∑
i=0

(−1)i
(
c

i

)
zi, |z| < 1. (2)

Then, we can write from Equations (2.3) and (2) that

F (x) = 1 +
∞∑
i=1

(−1)i
(
α

i

)
exp

(
−i λ−p (− ln(1−G(x)))p

)
. (3)
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Further, after simple algebra from Equations (1) and (2), we have (− ln(1 − G(x)))p =∑∞
k,m=0 Ak,m(p)G(x)k+m, where (for k,m = 0, 1, . . .)

Ak,m(p) =
∞∑
j=k

(−1)j+k
(
p

j

)(
j

k

)
ρm(p).

This double power series can be converted into a simple power series

(− ln(1−G(x)))p =
∞∑
n=0

bn(p)G(x)n,

where (for n ≥ 0) bn(p) =
∑n
l=0 Al,n−l(p). Hence, from Theorem 4.1, we can write (for i ≥ 1)

exp
(
− iλ−p(− ln(1− z))p

)
= exp

( ∞∑
n=0

i bn(p)
λp

zn
)

=
∞∑
n=0

an,i(p, λ) zn , (4)

where

a0,i = exp
(
ib0(p)
λp

)
= exp

(
i

λp

∞∑
j=0

(−1)j
(
p

j

))
,

an,i = i

nλp

n∑
k=1

k bk(p) an−k,i, n ≥ 1.

Theferore, Equations (3) and (4) imply that

F (x) = 1 +
∞∑
n=1

cn G(x)n, (5)

where

cn = cn(p, λ, α) =
∞∑
i=0

(−1)i
(
α

i

)
an,i.

By differentiating Equation (5) and changing indices, we obtain

f(x) =
∞∑
r=0

cr+1 πr+1(x),

where πr+1(x) = (r + 1) g(x)G(x)r.
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Appendix B - Elements of the score vector U(α, λ, p,θ)

The components of the score vector U(α, λ, p,θ) are given by

dl

dα
= n

α
+

n∑
i=1

ln
(

1− exp
(
−λ−p (− ln ( 1−G(xi) ))p

) )
dl

dλ
= −np

λ
+

n∑
i=1

ln (− ln(1−G(xi))) + p

λp+1

n∑
i=1

(− ln(1−G(xi)))p

−(α− 1) p

λp+1

n∑
i=1

exp (−λ−p (− ln ( 1−G(xi) ))p ) (− ln(1−G(xi)))p

1− exp (−λ−p (− ln ( 1−G(xi) ))p )
dl

dp

= n

p
+ n ln λ+

n∑
i=1

ln (− ln(1−G(xi)))−
n∑
i=1

(− ln(1−G(xi))
λ

)p
ln
(− ln(1−G(xi))

λ

)

+(α− 1)
n∑
i=1

exp (−λ−p (− ln ( 1−G(xi) ))p )
1− exp (−λ−p (− ln ( 1−G(xi) ))p )

×
(− ln(1−G(xi))

λ

)p
ln
(− ln(1−G(xi))

λ

)
dl

dθj
=

n∑
i=1

1
g(xi)

∂θj
g(xi)−

n∑
i=1

1
1−G(xi)

∂θj
G(xi) + (p− 1)

n∑
i=1

1
ln(1−G(xi))

1
1−G(xi)

∂θj
G(xi)

− p

λp

n∑
i=1

(− ln(1−G(xi)))p−1 1
1−G(xi)

∂θj
G(xi)

+p (α− 1)
λp

n∑
i=1

exp (−λ−p (− ln ( 1−G(xi) ))p)
1− exp (−λ−p (− ln ( 1−G(xi) ))p)

× (− ln(1−G(xi)))p−1 1
1−G(xi)

∂θj
G(xi).
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