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Abstract

The asymptotic distributions of likelihood ratio tests for normality are unknown; only a
few critical values have been tabulated using Monte Carlo simulations. This study aims
to develop the critical value functions for these likelihood ratio tests using response
surface regressions. In these regressions, the simulated critical values depend on sample
size; however, practitioners can easily compute the finite-sample critical values for a
number of sample sizes using a hand calculator. An extensive Monte Carlo simulation
shows that the proposed critical value functions perform very well for both small and
large samples.
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1. Introduction

For many years, the issue of testing the normality of a sample has gained significant at-
tention. It may not be surprising because the assumption of normality is a source of great
convenience for researchers in both theoretical and applied settings. The normality assump-
tion is considered a simplifying assumption in a wide variety of statistical procedures used
in estimation, inference, and forecasting. A large number of tests have been proposed in the
literature to assess or test the normality of a univariate sample.

Among them, traditional Jarque-Bera (Jarque and Bera, 1987), Shapiro-Wilk (Shapiro
and Wilk, 1965), Kolmogorov-Smirnov (Massey Jr, 1951), Anderson-Darling (Anderson and
Darling, 1952, 1954), D’Agostino (D’Agostino, 1971), Watson (Watson, 1961), and Kuiper
(Kuiper, 1960) are some prominent tests that is being used in empirical works, either due to
their well known asymptotic distributions or easy access of critical values; Royston (1992)
and Stephens (1974) are the classic references.

∗Corresponding author. Email: shahzadmunirm@outlook.com

https://doi.org/10.32372/chjs.14-01-04


Chilean Journal of Statistics 49

Whereas likelihood ratio tests (Zhang and Wu, 2005) for normality have received less
attention in empirical applications than traditional normality tests. Extensive Monte Carlo
simulations (Zhang and Wu, 2005; Torabi et al., 2016) show that the likelihood ratio
tests generally perform better than the Jarque-Bera, Shapiro-Wilk, Anderson-Darling,
D’Augustino, Kolmogorov-Smirnov, Kuiper, and Watson tests. The main problem with these
likelihood ratio tests is that they have unknown asymptotic distributions under the null of
normality, for which only a few critical values have been tabulated. However, practition-
ers require to generate the critical values through Monte Carlo simulations for the sample
sizes that are not tabulated. For this reason, these likelihood tests have not attained much
attention in practice even though they are much more powerful than their competitors.

Monte Carlo simulations and response surface regressions are commonly used to calculate
the finite-sample quantiles or critical values for test statistics that do not have well-known
asymptotic distributions or differ considerably from their asymptotic null distributions. For
example, Lawford (2005), Wuertz and Katzgraber (2005), and Urzua (1996) conducted ex-
tensive Monte Carlo studies to compute the precise quantiles of Jarque-Bera type tests
to correct their finite-sample properties. Suárez-Espinosa et al. (2018) and Castro-Kuriss
(2011) studied the null distribution of their proposed goodness-of-fit tests for the Pareto
distribution and the location-scale distribution, respectively, through Monte Carlo simu-
lations. MacKinnon (2010) tabulated the critical values for Dickey-Fuller unit root tests
(Dickey and Fuller, 1979; Fuller, 2009) and Engle-Granger cointegration tests (Engle and
Granger, 1987) using response surface regressions and Monte Carlo simulations, as these tests
do not follow any standard tabulated distribution, either in finite samples or asymptotically.
Moreover, Kiefer and Vogelsang (2005) developed a heteroskedasticity and autocorrelation
robust Wald statistic for statistical inference in time series settings. In fixed-b theory, their
resulting Wald statistic asymptotically follows a nonstandard distribution; however, they
developed critical value functions using response surface regressions and simulated critical
values for practical convenience.

This study will fill the research gap in the existing line of literature (Lawford, 2005;
Wuertz and Katzgraber, 2005; MacKinnon, 2010) by providing the critical value functions
for the statistically powerful likelihood ratio tests (Zhang and Wu, 2005) using Monte Carlo
experiments. These experiments are summarized by response surface regressions, in which
simulated critical values are regressed on various functions of sample size. The coefficients of
these response surface regressions are obtained using the feasible generalized least squares
(GLS) method and tabulated in such a way that asymptotic critical values can be read
off directly. However, practitioners can easily compute the finite-sample critical values for
a number of sample sizes with a hand calculator in empirical applications. To the best of
our knowledge, these response surface regressions have not been used to develop the critical
value functions for these likelihood ratio tests (Zhang and Wu, 2005) for normality. An
extensive Monte Carlo simulation shows that our proposed critical value functions give a
very accurate size of the test for both small and large samples. Additionally, we provide
an empirical exercise for illustration purposes using average yields (kilograms per acre)
of wheat, rice, sugarcane, and canola crops from 37, 33, 32, and 26 districts of Punjab
(Pakistan), respectively.

The organization of the rest of the study is as follows. Section 2 summarizes the setup
of the likelihood ratio tests for normality, Section 3 presents Monte Carlo experiments for
estimating the critical value functions and evaluating their finite-sample properties, Section 4
includes an empirical exercise for illustration purposes and Section 5 contains the concluding
remarks, limitations of this study, and future work. The R codes are provided in Appendix
A, while the average yields (kilograms per acre) of sugarcane, rice, wheat, and canola crops
are given in Appendix B.
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2. Setup

Let X be an independent and identically distributed (IID) random variable with continuous
cumulative distribution function (CDF) G(x), and X1, . . . , Xt be a random sample of size T
from X with order statistics X(1), X(2), . . . , X(t). Zhang and Wu (2005) developed the likeli-
hood ratio tests based on empirical distribution function (EDF) to test the null hypothesis
that H0 : G(x) = G0(x) against the alternative hypothesis that H1 : G(x) 6= G0(x), where
G0(x) = Φ{(x− µ)/σ} is a hypothetical distribution function of a normal population with
mean µ and variance σ2. It is important to note that the mean µ and variance σ2 are un-
known parameters and to be estimated by their sample counterparts i.e. X = (1/T )

∑T
t=1 Xt

and s2 = (1/[T−1])
∑T
t=1(Xt−X)2, respectively. Their statistics ZK , ZA, and ZC are defined
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We will reject the null of normality for large values of the three test statistics. Unfortu-
nately, the ZK , ZA, and ZC test statistics do not follow any standard tabulated distribution
under the null of normality, either in finite samples or asymptotically. Only a few simulated
critical values have been tabulated by Zhang and Wu (2005) to evaluate the finite sample
properties of ZK , ZA, and ZC in relation to other traditional normality tests.

These three likelihood ratio tests can be used to test H0 in situations where G0(x) is fully
specified (meaning µ and σ2 are known). For these scenarios, simulated critical values have
been tabulated by Zhang (2001) and Zhang (2002). In this study, we will only estimate
the critical value functions for cases where G0(x) is completely unspecified (that is, µ and
σ2 are unknown), as practitioners typically encounter this situation in empirical work or
applications. Furthermore, to enhance the power of the tests, it is recommended by Zhang
and Wu (2005) to estimate the mean µ and variance σ2 from the data using their sample
counterparts, even when they are known.

3. Monte Carlo Experiments

It is well-documented that the finite-sample null distributions of the Jarque-Bera test and
its modified version (MJarque-Bera) introduced by Urzua (1996) differ considerably from
their asymptotic distributions. Using their asymptotic critical values, even for sufficiently
large samples, will distort the true size of the test and may lead to erroneous judgments
in empirical applications. Therefore, to correct the finite-sample size distortions, critical
value functions for the Jarque-Bera and MJarque-Bera tests were estimated by Lawford
(2005), Wuertz and Katzgraber (2005), and many others using response surface regressions.
Additionally, response surface regressions have been employed by MacKinnon (2010) to
approximate the asymptotic distributions of Dickey-Fuller unit root tests (Dickey and Fuller,
1979; Fuller, 2009) and Engle-Granger cointegration tests (Engle and Granger, 1987), as they
possess nonstandard asymptotic distributions.
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Like Dickey-Fuller unit root tests and Engle-Granger cointegration tests, the likelihood
ratio tests ZK , ZA, and ZC do not follow any standard tabulated distribution under the
null of normality. However, in the same spirit as MacKinnon (2010), we estimate the critical
value functions for ZK , ZA, and ZC for the percentage points 99.5%, 99%, 98%, 95%, 90%,
and 80%. Using simulation codes and the MonteCarlo package (Leschinski, 2019) in the R
software, we generate 20,000 realizations of ZK , ZA, and ZC under the null of normality with
µ = 0 and σ2 = 1 for each sample size T ∈ [5, 2500]. We calculate the 0.5%, 1%, 2%, 5%, 10%,
and 20% critical values as the q(20, 000)th, where q ∈ {99.5%, 99%, 98%, 95%, 90%, 80%},
largest values of ZK , ZA, and ZC . Then, we regress these simulated critical values on various
functions of a sample size to calculate the critical value functions. It is important to note
that choosing the correct functional form for response surface regressions plays a critical role
in obtaining good estimates (MacKinnon, 2010). We choose the following form of response
surface regression to fit the critical value functions after considerable experimentation, and
motivated by the quantile approximations developed by MacKinnon (2010) in the context
of the Dickey-Fuller unit root tests and Engle-Granger cointegration tests:

cvq(T )l = a0 +a1T
− 1

2 +a2T
−1 +a3T

− 3
2 +a4T

−2 +a5T
− 5

2 +a6T
−3 +et, for l = {ZK , ZA, ZC},

(3.1)
where a0 represents the asymptotic critical value of a test as T−1/2, T−1, T−3/2, T−2, T−5/2,
and T−3 tend to zero when T approaches infinity. The coefficients of T−1/2, T−1, T−3/2,
T−2, T−5/2, and T−3 determine the shape of the response surface for finite samples, while et
represents the error term. The dependent variable cvq(T )l stands for the simulated critical
value of the lth test statistic for the qth percentage point with sample size T . The residuals
et in regression given in Equation (3.1) exhibit heteroskedasticity. However, the feasible
generalized least squares (GLS) technique is employed to estimate the unknown parameters
a0, a1, a2, a3, a4, a5, and a6 of the response surface regression given in Equation (3.1) as
follows.

As a first step, the dependent variable cvq(T )l is regressed on T−1/2, T−1, T−3/2, T−2,
T−5/2, and T−3, where T ∈ [5, 2500], to calculate the ordinary least squares (OLS) residuals
êt. These residuals êt are used to compute the weights for feasible GLS using the following
regression:

log(ê2
t ) = β0 + β1 log(T ) + η, (3.2)

where η is the error term. We run the regression given in Equation (3.2) and use the re-
ciprocals of the square roots of exponentials of its fitted values as weights for feasible GLS
estimation of regression given in Equation (3.1). Therefore, the final estimated critical value
functions for the three test statistics are as follows:

ĉvq(T )ZK
= â0 + â1T

− 1
2 + â2T

−1 + â3T
− 3

2 + â4T
−2 + â5T

− 5
2 + â6T

−3, (3.3)
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− 1
2 + â2T
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− 5
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−3, (3.4)

ĉvq(T )ZC
= â0 + â1T

− 1
2 + â2T

−1 + â3T
− 3

2 + â4T
−2 + â5T

− 5
2 + â6T

−3, (3.5)

where â0, â1, â2, â3, â4, â5, and â6 are the feasible GLS estimates of a0, a1, a2, a3, a4,
a5, and a6, respectively. These feasible GLS estimates are presented in Tables 1, 2, and 3
for ZK , ZA, and ZC , respectively. These are the final findings of this paper. All regression
coefficients were found significant at the 1% level. Each test statistic table required
approximately 378 minutes to complete. The procedure for calculating the estimated
critical values for any sample size T is described in the following examples.
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Example 3.1: When T = 20, the estimated critical values for ZK at significance level
0.05 is ĉv0.95(20)ZK

= 4.787− 58.38(20)−1/2 + 591.7(20)−1 − 3763(20)−3/2 + 13330(20)−2 −
23900(20)−5/2 + 16820(20)−3 = 1.3132.

Example 3.2: When T = 20, the estimated critical value for ZA at significance level 0.05
is ĉv0.95(20)ZA

= 3.289 + 0.1309(20)−1/2 + 8.559(20)−1 − 49.07(20)−3/2 + 152.9(20)−2 −
272.4(20)−5/2 + 194.7(20)−3 = 3.4519.

Example 3.3: When T = 20, the estimated critical value for ZC at significance level 0.05
is ĉv0.95(20)ZC

= 33.58 − 456.6(20)−1/2 + 5237(20)−1 − 36210(20)−3/2 + 135200(20)−2 −
251000(20)−5/2 + 181100(20)−3 = 8.8153.

There are two important points to consider. First, each realization was performed by
generating independent samples from a standard normal distribution. Consequently, the
simulated critical values were independent of each other. Since these critical values served
as the unit of observation for the response surface regression; therefore, the correlation across
observations is not an issue.

Second, it is common practice to use OLS or GLS (MacKinnon, 2010; Lawford, 2005;
Wuertz and Katzgraber, 2005; Kiefer and Vogelsang, 2005) for estimating the response
surface regressions in order to develop the critical value functions. However, we can also
utilize robust estimation methods such as, median regression (Koenker and Bassett, 1978;
Koenker and d’Orey, 1987), least median squares estimates (Rousseeuw, 1984; Siegel, 1982),
M-estimates (Huber, 1981), MM-estimates (Yohai, 1987), robust and efficient weighted least
squares estimates (Gervini and Yohai, 2002), R-estimates Jaeckel (1972) to obtain more
robust regression coefficient estimates for critical value functions. In our specific case, we
found that feasible GLS estimates are much more precise than the median regression, M-
estimates, and MM-estimates estimates. Based on our analysis, we can conclude that the
feasible GLS approach is more appropriate than robust regression methods for estimating
Equation (3.1).

Table 1. Asymptotic critical value response function coefficients for ZK

Quantiles â0 â1 â2 â3 â4 â5 â6

99.50% 6.961 -74.27 648.6 -3809 13090 -23220 16260
99% 6.317 -70.11 640 -3837 13230 -23420 16350
98% 5.663 -65.38 623.9 -3832 13340 -23690 16560
95% 4.787 -58.38 591.7 -3763 13330 -23900 16820
90% 4.107 -52.11 550.9 -3598 12940 -23420 16590
80% 3.406 -44.86 492.3 -3297 12050 -22040 15740
Note: Given the percentage point and the value of T , the critical value of ZK is
ĉv

q(T )ZK
= â0 + â1T−1/2 + â2T−1 + â3T−3/2 + â4T−2 + â5T−5/2 + â6T−3.

To evaluate the finite sample performance of our estimated critical value functions, we
compute the empirical size of each test statistic ZK , ZA, and ZC . It is the probability of
rejecting H0 when it is actually true. For this purpose, we generate 20,000 random sam-
ples from a standard normal distribution of size T=20, 25, 50, 75, 100, 150, 200, 350,
450, 500, 600, 700, 800, 900, and 1000. Then we compute the values of the three test
statistics and calculate their chances of rejecting H0 by comparing them with their cor-
responding estimated critical ĉvq(T )l values, where l ∈ {ZK , ZA, ZC}, at significance level
α = 0.005, 0.01, 0.02, 0.05, 0.10, and 0.20. These chances are referred to the empirical size or
the level of significance.
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Table 2. Asymptotic critical value response function coefficients for ZA

Quantiles â0 â1 â2 â3 â4 â5 â6

99.50% 3.288 0.2067 14.1 -83.01 299.9 -599.9 453.3
99% 3.289 0.1771 12.54 -73.45 255.9 -496.9 370.3
98% 3.289 0.152 10.95 -64.37 219 -418.4 312
95% 3.289 0.1309 8.559 -49.07 152.9 -272.4 194.7
90% 3.289 0.108 7.037 -41.57 127.7 -223.3 158.8
80% 3.289 0.09393 5.313 -32.29 95.23 -158.6 108.5
Note: Given the percentage point and the value of T , the critical value of ZA is
ĉv

q(T )ZA
= â0 + â1T−1/2 + â2T−1 + â3T−3/2 + â4T−2 + â5T−5/2 + â6T−3.

Table 3. Asymptotic critical value response function coefficients for ZC

Quantiles â0 â1 â2 â3 â4 â5 â6

99.50% 50.1 -516.1 5346 -36600 135800 -249300 177700
99% 44.75 -518 5559 -37710 138700 -253600 180400
98% 39.79 -500.5 5527 -37590 138600 -254300 181600
95% 33.58 -456.6 5237 -36210 135200 -251000 181100
90% 28.94 -410.1 4810 -33580 126200 -235200 170200
80% 24.21 -355.8 4250 -29860 112500 -210100 152200
Note: Given the percentage point and the value of T , the critical value for ZC is
ĉv

q(T )ZC
= â0 + â1T−1/2 + â2T−1 + â3T−3/2 + â4T−2 + â5T−5/2 + â6T−3.

The empirical rejection rates of ZK , ZA, and ZC , are given in Tables 4, 5, and 6 re-
spectively. Each test statistic table required approximately 20 minutes to complete using
simulation codes and the MonteCarlo package (Leschinski, 2019) in the R software. The
Monte Carlo results show that the estimated critical value functions give a very accurate
size of the tests for each percentage point and sample size. However, we can conclude that
our proposed critical value functions work very well for both small and large samples.

All simulations and computations were performed on a laptop with an AMD Ryzen 7
2700U 2.20 GHz processor and 8GB of RAM, running R version 3.6.2 (R Core Team , 2023)
under Microsoft Windows 10 Home version 22H2. Additionally, we used an R package called
writexl (Ooms, 2021) to export data frames from R to Microsoft Excel 2010, while the
package readxl (Wickham and Bryan, 2019) was used to import Excel files in the .xls
format into R. The simulation codes are provided in Appendix A.

4. Empirical Illustration

For illustration purposes, we consider the average yields (kilograms per acre) of sugarcane,
rice, wheat, and canola crops for the year 2021-22 of 37, 33, 32, and 26 districts of Punjab
(Pakistan), respectively. These average yields are obtained from Crop Reporting Service,
Agriculture Department, Punjab (Pakistan); and provided in Table 8 (see, Appendix B).
We utilize ZK , ZA, and ZC to test the normality of the data at a significance level α = 0.05.
For this purpose, we calculate these three test statistics using the DistributionTest (Ning
Cui, 2020) package in the R software. The critical values are computed from Equations
(3.3), (3.4), and (3.5) for T = 37, 33, 32, and 26 at α = 0.05.
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Table 4. Empirical size of the ZK test statistic using ĉv
q(T )ZK

α
T 0.005 0.01 0.02 0.05 0.1 0.2
20 0.00523 0.01144 0.02247 0.05523 0.11167 0.21249
25 0.00520 0.01104 0.02164 0.05460 0.10884 0.21260
50 0.00483 0.00991 0.01936 0.04883 0.09864 0.19643
75 0.00464 0.00974 0.01940 0.04859 0.09718 0.19351
100 0.00470 0.00996 0.01982 0.04904 0.09834 0.19525
150 0.00547 0.01012 0.02035 0.04961 0.09973 0.19976
200 0.00505 0.01029 0.02042 0.05064 0.10097 0.20174
350 0.00517 0.01014 0.02023 0.05095 0.10117 0.20187
450 0.00515 0.01002 0.01983 0.05089 0.10119 0.20106
500 0.00482 0.01028 0.01958 0.05042 0.10120 0.20013
600 0.00522 0.01000 0.02008 0.05080 0.10007 0.20000
700 0.00470 0.01013 0.01954 0.05061 0.10054 0.19964
800 0.00500 0.00966 0.01970 0.05074 0.09925 0.19992
900 0.00477 0.01030 0.01963 0.04974 0.09854 0.19943
1000 0.00481 0.01001 0.01986 0.04951 0.10004 0.19816
Note: α is the significance level and T is the sample size.

Table 5. Empirical size of the ZA test statistic using ĉv
q(T )ZA

α
T 0.005 0.01 0.02 0.05 0.1 0.2
20 0.00514 0.00970 0.01975 0.04999 0.10092 0.20161
25 0.00490 0.01043 0.02024 0.05003 0.09931 0.20203
50 0.00535 0.01000 0.01975 0.05006 0.09977 0.20194
75 0.00514 0.00969 0.01962 0.04944 0.10016 0.20228
100 0.00490 0.00930 0.01980 0.04968 0.10021 0.20216
150 0.00523 0.00940 0.01950 0.04987 0.10098 0.20420
200 0.00497 0.00953 0.01917 0.05016 0.10094 0.20467
350 0.00578 0.00917 0.01945 0.05031 0.10309 0.20706
450 0.00537 0.00970 0.02000 0.04914 0.10299 0.20910
500 0.00523 0.00980 0.01918 0.04974 0.10313 0.21406
600 0.00535 0.00919 0.01960 0.04964 0.10510 0.21363
700 0.00541 0.00898 0.01902 0.05021 0.10415 0.21535
800 0.00564 0.00856 0.01944 0.04848 0.10535 0.21592
900 0.00541 0.00904 0.01861 0.04875 0.10622 0.21863
1000 0.00556 0.00883 0.01850 0.04880 0.10678 0.21984
Note: α is the significance level and T is the sample size.

The results of applying these statistics are given in Table 7. The first three columns contain
the values of the test statistics ZK , ZA, and ZC , respectively, while the last three columns
report the values of ĉv0.95(T )ZK

, ĉv0.95(T )ZA
, and ĉv0.95(T )ZC

respectively. We reject the
null hypothesis of normality if the calculated statistic exceeds its critical value. The results
indicate that the ZK test, ZA test, and ZC test reject the null of normality for the average
yield of the wheat crop. In contrast, these tests do not provide sufficient evidence to reject
the null of normality for the average yields of rice, sugarcane, and canola crops.



Chilean Journal of Statistics 55

Table 6. Empirical size of the ZC test statistic using ĉv
q(T )ZC

α
T 0.005 0.01 0.02 0.05 0.1 0.2
20 0.00512 0.01122 0.02198 0.05925 0.10811 0.22302
25 0.00526 0.01131 0.02247 0.05794 0.11045 0.22134
50 0.00480 0.00956 0.01913 0.04749 0.09579 0.19305
75 0.00470 0.00960 0.01892 0.04723 0.09513 0.19143
100 0.00488 0.00933 0.01950 0.04881 0.09510 0.19437
150 0.00515 0.01058 0.01942 0.04930 0.09862 0.19815
200 0.00522 0.01010 0.01996 0.05039 0.10146 0.20054
350 0.00476 0.00954 0.01988 0.05095 0.10040 0.20241
450 0.00492 0.01015 0.02072 0.04944 0.09963 0.20169
500 0.00505 0.00987 0.02012 0.05046 0.10073 0.20286
600 0.00499 0.00999 0.01982 0.05102 0.10010 0.19930
700 0.00507 0.00973 0.01982 0.05083 0.09955 0.19897
800 0.00499 0.00994 0.01971 0.04958 0.09999 0.20010
900 0.00490 0.00993 0.01959 0.05002 0.09957 0.19851
1000 0.00478 0.01001 0.02033 0.04976 0.09986 0.19981
Note: α is the significance level and T is the sample size.

Table 7. Application of ZK , ZC , and ZC to average yield of wheat, rice, and sugarcane crops

Variables ZK ZA ZC ĉv0.95(T )ZK
ĉv0.95(T )ZA

ĉv0.95(T )ZC

Wheat 2.5631 3.5310 18.0533 1.6605 3.4066 11.3588
Rice 1.0931 3.3474 4.6087 1.5927 3.4146 10.8498
Sugarcane 0.7225 3.3414 4.9444 1.5745 3.4168 10.7131
Canola 0.6615 3.3067 4.6229 1.4536 3.4004 9.8126
Note: The critical values for ZK , ZA and ZC are calculated using the critical value function ĉvq(T )l =
â0 + â1T−1/2 + â2T−1 + â3T−3/2 + â4T−2 + â5T−5/2 + â6T−3 for l = {ZK , ZA, ZC}, where T takes
values 37, 33, 32, and 26 for wheat, rice, sugarcane, and canola respectively, at the 5% significance level.

5. Conclusions, Limitations, and Future Research

For practical convenience, we have developed the critical value functions for likelihood ratio
tests (Zhang and Wu, 2005) for normality using response surface regressions and Monte
Carlo experiments. These functions tabulate the simulated critical values as a function of
sample size, allowing practitioners to easily calculate the finite-sample critical values for
any sample size in their empirical applications. Our extensive Monte Carlo simulations have
demonstrated that the proposed critical value functions yield reasonably accurate test sizes
for both small and large samples. Therefore, the proposed critical value functions offer prac-
titioners the opportunity to enhance the accuracy of their statistical analyses and make
meaningful conclusions from data by utilizing statistically powerful tests ZK , ZA, and ZC .
However, it is important to note that our proposed critical value functions are specifically
designed for the test statistics ZK , ZA, and ZC under the null of normality. When dealing
with other tests or hypotheses, it becomes necessary to develop new critical value functions
under their specific settings. One can effectively utilize response surface regressions to es-
timate critical value functions for cases where test statistics have nonstandard asymptotic
distributions (MacKinnon, 2010).
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As part of our future work, we intend to explore the estimation of critical value func-
tions for the tests of normality proposed by Torabi et al. (2016) and other researchers.
Additionally, we will investigate the application of robust regressions to approximate the
finite-sample distributions of test statistics in cases where the asymptotic distributions are
unknown.

Appendix A

This appendix provides the R codes used in the paper. All simulations and computations
were performed on a laptop with an AMD Ryzen 7 2700U 2.20 GHz processor and 8GB of
RAM, running R version 3.6.2 (R Core Team , 2023) under Microsoft Windows 10 Home
version 22H2.

Codes for Generating Simulated Critical Values

Code for the ZA test statistics.
rm(list=ls ())
library ( MonteCarlo )
library ( writexl )
# ##########################################################
shahzad <- function (n,loc ,scale ){

x=rnorm(n,loc ,scale)
n1= length (x)
Data=sort(x)
MU=mean(Data)
SDV=sd(Data)
F=pnorm(Data ,MU ,SDV)
i=1:n1
part1=( log(F))/(n1-i+0.5)
part2=( log(1-F))/(i-0.5)
Comb=part1+part2
Z_A_Stat=-sum(Comb)
return (list("Z_A_Stat"=Z_A_Stat ))

}
ns=seq(5,2500,1)
loc_grid=0
scale_grid=1
param_list=list("n"=ns ,"loc"=loc_grid , "scale"=scale_grid)
s= MonteCarlo (func=shahzad ,nrep=20000,param_list=param_list ,ncpus=1,

time_n_test = TRUE)
f<- MakeFrame (s)
qaunt= function (x){ quantile (x,probs=c(0.80,0.90,0.95,0.98,0.99,0.995))}
qaunt.1= function (x){ quantile (x,probs=c(0.2,0.1,0.05,0.02,0.01,0.005))}
uperlimit = aggregate (abs(f$Z_A_Stat),list(f$n),qaunt)
lowerlimit = aggregate (abs(f$Z_A_Stat),list(f$n),qaunt.1)
uper=data.frame(n= uperlimit $ Group.1,uperlimit $x)
lower=data.frame(n= lowerlimit $ Group.1,lowerlimit $x)

Code for the ZC test statistics.
rm(list=ls ())
library ( MonteCarlo )
library ( writexl )
# #######################################################################
shahzad <- function (n,loc ,scale ){

x=rnorm(n,loc ,scale)
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n1= length (x)
Data=sort(x)
MU=mean(Data)
SDV=sd(Data)
F=pnorm(Data ,MU ,SDV)
i=1:n1
F_Inv=1/F
Uper=F_Inv -1
Lower =((n1-0.5)/(i-0.75))-1
lg=( log(Uper/Lower ))ˆ2
Z_C_Stat=sum(lg)
return (list("Z_C_Stat"=Z_C_Stat ))

}
ns=seq(5,2500,1)
loc_grid=0
scale_grid=1
param_list=list("n"=ns ,"loc"=loc_grid , "scale"=scale_grid)
s= MonteCarlo (func=shahzad ,nrep=20000,param_list=param_list ,ncpus=1,

time_n_test = TRUE)
f<- MakeFrame (s)
qaunt= function (x){ quantile (x,probs=c(0.80,0.90,0.95,0.98,0.99,0.995))}
qaunt.1= function (x){ quantile (x,probs=c(0.2,0.1,0.05,0.02,0.01,0.005))}
uperlimit = aggregate (abs(f$Z_C_Stat),list(f$n),qaunt)
lowerlimit = aggregate (abs(f$Z_C_Stat),list(f$n),qaunt.1)
uper=data.frame(n= uperlimit $ Group.1,uperlimit $x)
lower=data.frame(n= lowerlimit $Group.1,lowerlimit $x)

Code for the ZK test statistics.

rm(list=ls ())
library ( MonteCarlo )
library ( writexl )
# #####################################################################
shahzad <- function (n,loc ,scale ){

x=rnorm(n,loc ,scale)
n1= length (x)
Data=sort(x)
MU=mean(Data)
SDV=sd(Data)
F=pnorm(Data ,MU ,SDV)
i=1:n1
part =(i-0.5)* log ((i-0.5)/(n1*(F)))+(n1-i+0.5)* log ((n1-i+0.5)/(n1*(1-F)))
Z_K_Stat=max(part)
return (list("Z_K_Stat"=Z_K_Stat ))

}
ns=seq(5,2500,1)
loc_grid=0
scale_grid=1
param_list=list("n"=ns ,"loc"=loc_grid , "scale"=scale_grid)
s= MonteCarlo (func=shahzad ,nrep=20000,param_list=param_list ,ncpus=1,

time_n_test = TRUE)
f<- MakeFrame (s)
qaunt= function (x){ quantile (x,probs=c(0.80,0.90,0.95,0.98,0.99,0.995))}
qaunt.1= function (x){ quantile (x,probs=c(0.2,0.1,0.05,0.02,0.01,0.005))}
uperlimit = aggregate (abs(f$Z_K_Stat),list(f$n),qaunt)
lowerlimit = aggregate (abs(f$Z_K_Stat),list(f$n),qaunt.1)
uper=data.frame(n= uperlimit $ Group.1,uperlimit $x)
lower=data.frame(n= lowerlimit $ Group.1,lowerlimit $x)
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Codes for Size of the Test

Code for the ZA test statistics.
rm(list=ls ())
library ( MonteCarlo )
library ( writexl )
# ###################################################################
ZA_Crit= function (n1,alpha ){

if (alpha ==0.005){3.288+0.2067*(1/sqrt(n1))+14.1*(1/n1)-83.01
*(1/n1ˆ1.5)+299.9*(1/n1ˆ2)-599.9*(1/n1ˆ2.5)
+453.3*(1/n1ˆ3)}

else if (alpha ==0.01){3.289+0.1771*(1/sqrt(n1))+12.54*(1/n1)-73.45
*(1/n1ˆ1.5)+255.9*(1/n1ˆ2)-496.9*(1/n1ˆ2.5)+

370.3*(1/n1ˆ3)}
else if (alpha ==0.02){3.289+0.1520*(1/sqrt(n1))+10.95*(1/n1)-64.37

*(1/n1ˆ1.5)+219*(1/n1ˆ2)-418.4*(1/n1ˆ2.5)+
312*(1/n1ˆ3)}

else if (alpha ==0.05){3.289+0.1309*(1/sqrt(n1))+8.559*(1/n1)-49.07
*(1/n1ˆ1.5)+152.9*(1/n1ˆ2)-272.4*(1/n1ˆ2.5)+

194.70*(1/n1ˆ3)}
else if (alpha ==0.1){3.289+0.1080*(1/sqrt(n1))+7.037*(1/n1)-41.57

*(1/n1ˆ1.5)+127.7*(1/n1ˆ2)-223.3*(1/n1ˆ2.5)+
158.8*(1/n1ˆ3)}

else if (alpha ==0.2){3.289+0.09393*(1/sqrt(n1))+5.313*(1/n1)-32.29
*(1/n1ˆ1.5)+95.23*(1/n1ˆ2)-158.6*(1/n1ˆ2.5)+

108.5*(1/n1ˆ3)}
}
# ####################################################################
shahzad <- function (n,alpha ,loc ,scale ){

x=( rnorm(n,loc ,scale ))
n1= length (x)
Data=sort(x)
MU=mean(Data)
SDV=sd(Data)
F=pnorm(Data ,MU ,SDV)
i=1:n1
part1=( log(F))/(n1-i+0.5)
part2=( log(1-F))/(i-0.5)
Comb=part1+part2
Z_A_Stat=-sum(Comb)
Z_A_Stat=Z_A_Stat >ZA_Crit(n1,alpha)
return (list("Z_A_Stat"=Z_A_Stat ))

}
ns=c(20,25,50,75,100,150,200,350,450,500,600,700,800,900,1000)
loc_grid=0
scale_grid=1
alpha= c(0.005,0.01,0.02,0.05,0.1,0.2)
param_list=list("n"=ns ,"alpha"=alpha , "loc"=loc_grid , "scale"=scale_grid)
s= MonteCarlo (func=shahzad ,nrep=20000,param_list=param_list ,ncpus=1,

time_n_test = TRUE)
f<- MakeFrame (s)
Size_ZA= aggregate (f$Z_A_Stat ,list(f$n,f$alpha),mean)
Size_ZA

Code for the ZC test statistics.
rm(list=ls ())
library ( writexl )
library ( MonteCarlo )
# ##############################################################
ZC_Crit= function (n1,alpha ){
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if (alpha ==0.005){50.1-516.1*(1/sqrt(n1))+5346*(1/n1)-
36600*(1/n1ˆ1.5)+135800*(1/n1ˆ2)-249300*
(1/n1ˆ2.5)+177700*(1/n1ˆ3)}

else if (alpha ==0.01) {44.75-518*(1/sqrt(n1))+5559*(1/n1)-
37710*(1/n1ˆ1.5)+138700*(1/n1ˆ2)-253600*
(1/n1ˆ2.5)+180400*(1/n1ˆ3)}

else if (alpha ==0.02) {39.79-500.5*(1/sqrt(n1))+5527*(1/n1)-
37590*(1/n1ˆ1.5)+138600*(1/n1ˆ2)-254300*
(1/n1ˆ2.5)+181600*(1/n1ˆ3)}

else if (alpha ==0.05) {33.58-456.6*(1/sqrt(n1))+5237*(1/n1)-
36210*(1/n1ˆ1.5)+135200*(1/n1ˆ2)-251000*
(1/n1ˆ2.5)+181100*(1/n1ˆ3)}

else if (alpha ==0.1) {28.94-410.1*(1/sqrt(n1))+4810*(1/n1)-
33580*(1/n1ˆ1.5)+126200*(1/n1ˆ2)-235200*
(1/n1ˆ2.5)+170200*(1/n1ˆ3)}

else if (alpha ==0.2) {24.21-355.8*(1/sqrt(n1))+4250*(1/n1)
-29860*(1/n1ˆ1.5)+112500*(1/n1ˆ2)-210100*
(1/n1ˆ2.5)+152200*(1/n1ˆ3)}

}
# ###############################################################
shahzad <- function (n,alpha ,loc ,scale ){

x=( rnorm(n,loc ,scale ))
n1= length (x)
Data=sort(x)
MU=mean(Data)
SDV=sd(Data)
F=pnorm(Data ,MU ,SDV)
i=1:n1
F_Inv=1/F
Uper=F_Inv -1
Lower =((n1-0.5)/(i-0.75))-1
lg=( log(Uper/Lower ))ˆ2
Z_C_Stat=sum(lg)
Z_C_Stat=Z_C_Stat >ZC_Crit(n1,alpha)
return (list("Z_C_Stat"=Z_C_Stat ))

}
ns=c(20,25,50,75,100,150,200,350,450,500,600,700,800,900,1000)
loc_grid=0
scale_grid=1
alpha= c(0.005,0.01,0.02,0.05,0.1,0.2)
param_list=list("n"=ns ,"alpha"=alpha , "loc"=loc_grid , "scale"=scale_grid)
s= MonteCarlo (func=shahzad ,nrep=20000,param_list=param_list ,ncpus=1,

time_n_test = TRUE)
f<- MakeFrame (s)
Size_ZC= aggregate (f$Z_C_Stat ,list(f$n,f$alpha),mean)
Size_ZC

Code for the ZC test statistics.
library ( writexl )
library ( MonteCarlo )
# ##############################################################
ZK_Crit= function (n1,alpha ){

if (alpha ==0.005){6.961-74.27*(1/sqrt(n1))+648.6*(1/n1)
-3809*(1/n1ˆ1.5)+13090*(1/n1ˆ2)-23220*
(1/n1ˆ2.5)+16260*(1/n1ˆ3)}

else if (alpha ==0.01) {6.317-70.11*(1/sqrt(n1))+640*(1/n1)
-3837*(1/n1ˆ1.5)+13230*(1/n1ˆ2)-23240*
(1/n1ˆ2.5)+16350*(1/n1ˆ3)}

else if (alpha ==0.02) {5.663-65.38*(1/sqrt(n1))+623.9*(1/n1)
-3832*(1/n1ˆ1.5)+13340*(1/n1ˆ2)-23690*
(1/n1ˆ2.5)+16560*(1/n1ˆ3)}



60 Munir et al.

else if (alpha ==0.05) {4.787-58.38*(1/sqrt(n1))+591.7*(1/n1)
-3763*(1/n1ˆ1.5)+13330*(1/n1ˆ2)-23900*
(1/n1ˆ2.5)+16820*(1/n1ˆ3)}

else if (alpha ==0.1) {4.107-52.11*(1/sqrt(n1))+550.9*(1/n1)
-3598*(1/n1ˆ1.5)+12940*(1/n1ˆ2)-23420*
(1/n1ˆ2.5)+16590*(1/n1ˆ3)}

else if (alpha ==0.2) {3.406-44.86*(1/sqrt(n1))+492.3*(1/n1)
-3297*(1/n1ˆ1.5)+12050*(1/n1ˆ2)-22040*
(1/n1ˆ2.5)+15740*(1/n1ˆ3)}

}
# #############################################################
shahzad <- function (n,alpha ,loc ,scale ){

x=( rnorm(n,loc ,scale ))
n1= length (x)
Data=sort(x)
MU=mean(Data)
SDV=sd(Data)
F=pnorm(Data ,MU ,SDV)
i=1:n1
part =(i-0.5)* log ((i-0.5)/(n1*(F)))+(n1-i+0.5)* log ((n1-i+0.5)/(n1*(1-F)))
Z_K_Stat=max(part)
Z_K_Stat=Z_K_Stat >ZK_Crit(n1,alpha)
return (list("Z_K_Stat"=Z_K_Stat ))

}
ns=c(20,25,50,75,100,150,200,350,450,500,600,700,800,900,1000)
loc_grid=0
scale_grid=1
alpha= c(0.005,0.01,0.02,0.05,0.1,0.2)
param_list=list("n"=ns ,"alpha"=alpha , "loc"=loc_grid , "scale"=scale_grid)
s= MonteCarlo (func=shahzad ,nrep=20000,param_list=param_list ,ncpus=1,

time_n_test = TRUE)
f<- MakeFrame (s)
Size_Z_K= aggregate (f$Z_K_Stat ,list(f$n,f$alpha),mean)
Size_Z_K

Code for Numerical Illustration

rm(list=ls ())
library ( readxl )
library ( DistributionTest ) #Jin Zhang(2005) Likelihood -ratio
# ########################## Data ###################################
Crops_Data_For_ Normality <- read_excel("C:/ Users/hp/ Desktop /
CropsDataForNormality .xlsx")
wheat=c(Crops_Data_For_ Normality $‘Wheat In Kg ‘)
sugarcan =c(na.omit(Crops_Data_For_ Normality $‘ Sugarcane In Kg ‘))
rice=c(na.omit(Crops_Data_For_ Normality $‘Rice In Kg ‘))
Canola =c(na.omit(Crops_Data_For_ Normality $‘ Canola in Kg ‘))
# ######################### Test Statistics ##########################
Z_K_test_W = zk.test(wheat ,"norm",N=0)
Z_K_test_R = zk.test(rice ,"norm",N=0)
Z_K_test_S = zk.test(sugarcan ,"norm",N=0)
Z_K_test_C = zk.test(Canola ,"norm",N=0)

Z_A_test_W = za.test(wheat ,"norm",N=0)
Z_A_test_R = za.test(rice ,"norm",N=0)
Z_A_test_S = za.test(sugarcan ,"norm",N=0)
Z_A_test_C = za.test(Canola ,"norm",N=0)
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Z_C_test_W = zc.test(wheat ,"norm",N=0)
Z_C_test_R = zc.test(rice ,"norm",N=0)
Z_C_test_S = zc.test(sugarcan ,"norm",N=0)
Z_C_test_C = zc.test(Canola ,"norm",N=0)

Z_K_test_W$ statistic
Z_K_test_R$ statistic
Z_K_test_S$ statistic
Z_K_test_C$ statistic

Z_A_test_W$ statistic
Z_A_test_R$ statistic
Z_A_test_S$ statistic
Z_A_test_C$ statistic

Z_C_test_W$ statistic
Z_C_test_R$ statistic
Z_C_test_S$ statistic
Z_C_test_C$ statistic
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Appendix B

This Appendix provides the data on average yields (kilograms per acre) of sugarcane, rice,
wheat, and canola crops used in Section 4. These average yields are obtained from Crop
Reporting Service, Agriculture Department, Punjab (Pakistan). We can download these
average yields from their website https://crs.agripunjab.gov.pk/reports.

Table 8. Average yield (kilograms per acre) of sugarcane, rice, wheat, and canola

Sr. No. Sugarcane Rice Wheat Canola
1 29760 970 686.8 784
2 23680 822.4 787.6 571.2
3 27160 807.2 736.8 644.4
4 29360 1010.8 797.2 594.4
5 27640 835.2 677.2 674.8
6 27400 873.6 1132 924.4
7 30760 1004.8 837.2 932.4
8 30000 968.8 1090.8 710
9 16960 1029.6 1068.4 494.4
10 22080 742 1325.6 635.2
11 21560 884 1351.2 500
12 14720 606.8 1282.8 790.4
13 23440 649.2 1388.8 688.4
14 24280 877.6 829.6 728
15 24480 970.8 1132.8 722.8
16 25400 803.6 1009.6 589.2
17 24680 973.2 917.2 804.8
18 22720 852.8 1202 951.2
19 31200 912.8 1332.8 799.6
20 23800 1192 1225.6 848.4
21 22320 973.2 1378 996.8
22 27000 987.2 1390 794
23 30400 866.8 1265.6 673.2
24 28000 791.2 1527.6 940.4
25 27960 958.8 1379.6 793.2
26 29320 1007.2 1394.4 819.2
27 25800 833.6 1469.2
28 30800 901.6 1522.8
29 32280 1259.6 1493.2
30 25960 1154 1410.4
31 35440 862.4 1228.8
32 26920 800 1211.6
33 974.8 1284.8
34 1403.6
35 1439.2
36 1500.8
37 1441.6

Source: https://crs.agripunjab.gov.pk/reports

https://crs.agripunjab.gov.pk/reports
https://crs.agripunjab.gov.pk/reports
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