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Abstract

Statistical process control is extensively applied for monitoring the production process.
One of the important tools of statistical process control for detecting the unusual changes
in the manufacturing process is the control chart. In the use of a control chart, samples
or subgroups are selected in a manner that if unusual changes are present, the chance
for differences between subgroups will be maximized, while the chance for differences
within a subgroup will be minimized. However, there are different practical engineering
processes where this assumption would not be applicable. In this paper, we considered a
Wind Energy process where differences within a subgroup are significant and proposed
a new control chart namely Ladder Ascending Control Chart under this situation. The
Ladder Ascending Control Chart is based on order statistics by using order statistic
distribution as the underlying distribution. Shewhart type control limits formulae for
the order statistic mean have been built. It is applied to wind energy for monitoring the
wind speed using the Weibull distribution as the underlying distribution of wind speed.
The average run length is provided as a performance measure for the Ladder Ascending
Control Chart. A real-life example is provided for its application and interpretation.
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1. Introduction

The control chart as a statistical quality control technique is extensively used in many
manufacturing processes to monitor the quality of the product. The keen interest of a quality
engineer is to monitor the process variation in a manner that if the process operates with
a special cause of variation then it gives an out-of-control signal. This objective is achieved
with a control chart. Two major kinds of control charts are, memoryless and memory type.
The memoryless chart (which uses the current information but ignores the past information)
is the Shewhart provided by Shewhart (1931). It is widely used due to its simple structure
and to detect the large shift in the process parameters. To detect the small and moderate
shifts the memory-type control charts are effective.
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Cumulative sum (CUSUM) (Page, 1951) and exponentially weighted moving average
(EWMA) (Roberts, 1959) charts are the examples of memory-type control charts. Their
control structure is made in a manner that they utilize the past information along with
the current to give a better performance for small and moderate shifts. To improve their
sensitivity in detecting the small and moderate shifts various modified versions are pro-
posed by many authors. For example, mixed CUSUM-EWMA due to Zaman et al. (2016),
EWMA-CUSUM due to Abbas et al. (2011). Shewhart-CUSUM due to Lucas (1982) and
Shewhart-EWMA due to Lucas and Saccucci (1990).

The aforementioned charts are designed on the assumptions that (i) a process being mon-
itored will produce measurements that can be modeled with an independent and identically
distributed normal distribution when only the inherent sources of variability are present in
the system. (ii) the collection of sample data according to the rational subgroup concept
i.e., the subgroups or samples should be selected so that if assignable causes are present, the
chance for differences between subgroups will be maximized, while the chance for differences
within a subgroup will be minimized (Montgomery, 2009). However, in certain applications,
the process may produce measurements that can be represented with heavy-tailed distri-
butions. In this case, the standard control charts based on normality assumption will not
rapidly detect out-of-control situations, since the control limits will be stretched particularly
when the nature of the products is such that one cannot take large samples to be able to
use the central limit theorem. Schilling and Nelson (1976); Borror et al. (1999); Calzada and
Scariano (2001); Noorossana et al. (2016); Ahmed et al. (2020); Sales et al. (2021); comment
that when the monitored data do not follow a normal distribution, the usual control chart
shows low performance in the monitoring.

A lot of literature is available in the context of dealing with the non-normality of process
characteristics but no work is found regarding the violation of the second assumption. So
in this study, we are addressing the situations in which both these assumptions are not
true and proposing a monitoring technique to deal with them. In the context of the second
assumption, there are situations in which differences within a subgroup are significant so
forming subgroups in this situation will misguide the monitoring of the production process.
Suppose a process of monitoring wind speed consists of various heights that pool their
observations into a file. If we sample the wind speeds from the file by ignoring their heights
then it may consist of the high and low wind speeds, moreover, it becomes very difficult to
detect whether the wind speed is in-control or out-of-control. Therefore, forming subgroups
in this manner fails to apply the existing monitoring technique. A logical approach to rational
subgrouping here is to apply the control chart technique to the wind speed for each height.
To achieve this objective, in this paper a control chart is proposed, that monitors the wind
speed at all different heights simultaneously. In this situation, the rational subgroups will
have ordered observations. So the control chart depicts the shape of the ladder in ascending
position, therefore called the ladder ascending control chart (LACC).

After the introduction, Section 2 exposes the proposed control chart and shows its proce-
dure in the wind energy industry using simulated data. Section 3 provides a real-life example
of LACC for monitoring the wind speed and Section 4 gives a conclusion.

2. Proposed control chart with its operational procedure

The operational procedure for LACC is as follows.

Step-1: Consider the situations when quality characteristics under investigation X are
measured for subgroup size n. The measuring characteristics will be in ascending order of
magnitude and then written as x1:n ≤ x2:n ≤ x3:n ≤ · · · ≤ xn:n, and the r-th observation in
the ordered sample is denoted as Xr:n.
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Assume the pivotal quantity (yr:n = xr:n/λ. ) is the monitoring statistics. The probabil-
ity density function (PDF) and cumulative distribution function (CDF) of the r-th order
statistics yr:n are given as

fr:n(y) = n!
(r − 1)!(n− r)! [F (y)](r−1)[1 − F (y)](n−r).

Fr:n(y) = n!
(r − 1)!(n− r)!

N∑
j=r

F (y)j [1 − F (y)](n−j).

(2.1)

Step-2: Process declares to be out-of-control for the r-th ordered observation if yr:n < LCLr

or yr:n > UCLr. On the other hand, the process declares in-control for the r-th ordered
observation if LCLr ≤ yr:n ≤ UCLr. Where LCLr and UCLr are the lower and upper
control limits for r-th monitoring statistics. The control limits can be computed for each
observation in the subgroup as

UCLr = µr:n − Lσr:n,

CLr = µr:n,

UCLr = µr:n + Lσr:n,

(2.2)

where r = 1, . . . , n, Lr is the r-th control constant which will be determined by considering
the in-control average run length; µr:n and σr:n are the mean and standard deviation of
ordered observations, which can be obtained using the m-th order moment as

µm
r:n = E[Y m

r:n] = n!
(r − 1)!(n− r)!

∫ +∞

−∞
fr:n(y)dy, (2.3)

for m = 2 the σr:n =
√
E[Y 2

r:n] − (E[Yr:n])2.
The probability of declaring the process as out of control when the process is actually in

control is denoted by p0
r and written as p0

r = P [yr:n < UCLr] + P [yr:n > UCLr]. After some
evaluation, we have

p0
r = 1+ n!

(r − 1)!(n− r)!

[
n∑

j=r

[F (UCLr)]j [1−F (UCLr)]n−j
n∑

j=r

[F (UCLr)]j [1−F (UCLr))]n−j

]

where F (·) is the CDF of the underlying distribution of the process. The efficiency of the
charting plan is determined by the average run length (ARL), which indicates the average
number of sample points until the process provides first out of control signal. The ARL
when the process is in control is denoted by ARL0. The ARL0 is given as follows

ARL0r = 1
p0

r

. (2.4)

Due to shift in process, the monitoring statistic fall outside the control limits and process
declared out of control. The probability of declaring the process out of control for the shifted
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process is given as

p1
r =1 + n!

(r − 1)!(n− r)!

[
n∑

j=r

(F (UCLr − δσr:n))j(1 − F (UCLr − δσr:n))n−j

−
n∑

j=r

(F (UCLr − δσr:n))j(1 − F (UCLr − δσr:n))n−j

] (2.5)

where δ denote the amount of shift. The out-of-control ARL1r for the shifted process is given
as follows

ARL1r = 1
p1

r

. (2.6)

The procedure of LACC will be presented in the next section.
Next, we explain the procedure of LACC in the wind energy industry based on simu-

lated engineering process. R programming have used for simulation study and application.
For the simulated data generation, we require the underlying probability distribution of the
monitoring characteristic of the Wind energy industry. Wind speed is a fundamental factor
for the wind energy industry, monitoring the wind turbines, modeling the air pollution,
estimating the winds loads on buildings, wind power analysis, blade lifting, and modeling
the wind speed variation with height for agriculture source pollution central. Therefore, the
probability density function of wind speed is important for numerous wind energy applica-
tions.

Several distributions have been fitted but the Weibull distribution has received the most
recent attention, see for example (Akdaq and Dinler, 2009; Morgan et al., 2011; Chang,
2011; Pishgar-Komleh et al., 2015). The Weibull distribution is by far the most applied
distribution for the wind data representation, and according to the International standard of
the International Electro technical Commission (IEC:614-00-12), the two-parameter Weibull
is a popular approach to analyzing the wind characteristics (Gul et al., 2020).

Assume that the wind speed X has two parameters Weibull distribution with scale pa-
rameter λ and shape parameter b > 0 . The PDF and CDF of X are given, respectively
as

f(x) = b

λ

(
x

λ

)b−1
exp

[
−
(
x

λ

)b
]
, x > 0

F (x) = 1 − exp
[
−
(
x

λ

)b
]
, x > 0.

(2.7)

Assume that the wind speed is measured from n different heights (lowest to highest) and
let the wind speed as x1:n ≤ x2:n ≤ x3:n ≤ · · · ≤ xn:n be the order statistics corresponding
to sample heights. Assume the pivotal quantity yr:n = xr:n/λ. Then the mean and variance
of Weibull ordered random variable can be obtained by substituting the Equation (2.7) in
Equations (2.1) and (2.3), we have

E(Xr:n) = λµr:n; and

E(Y m
r:n) = µm

r:n = n!
(r − 1)!(n− r)!Γ

(
1 + m

b

) r−1∑
j=0

(−1)j

(
r − 1
j

)
(n+ j − r + 1)−(1+ m

b
).

(2.8)
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Using the Equation (2.8), one may get the control limits defined in Equation (2.2). Moreover,
substituting the Equation (2.7) in Equation (2.3), one can get the probability of declaring
the process as out of control when the process is actually in control as

p0
r =1 + n!

(r − 1)!(n− r)!

[
n∑

j=0
[1 − exp(−[LCLr]b)j ] exp(−[LCLr]b)n−j

]

−
[

n∑
j=0

[1 − exp(−[UCLr]b)j ] exp(−[UCLr]b)n−j

]
.

(2.9)

Similary, one can get the probability of declaring the out of control for the shifted process
by substituting the Equation (2.7) in (2.5) as

p1
r =1 + n!

(r − 1)!(n− r)!

[
n∑

j=0
[1 − exp(−[LCLr − δσr:n]b)j ] exp(−[LCLr − δσr:n]b)n−j

]

−
[

n∑
j=0

[1 − exp(−[UCLr − δσr:n]b)j ] exp(−[UCLr − δσr:n]b)n−j

]
.

Using the Equations (2.7) and (2.8), the ARL0r given in Equation (2.4) and the ARL1r

given in Equation (2.6) can be determined. The control constant Lr will be determined for
specified ARL0r. The ARL1r is calculated corresponding to various values of process shift
δ.

Alogrithm

• Let x1:n ≤ x2:n ≤ x3:n ≤ · · · ≤ xn:n, be the order statistics of the wind speed correspond-
ing to sample heights for subgroup sizes n = 2, 3, 4, 5, 7 and 10. Assuming b = 1, 2 and
λ = 1 because the wind speed provides extremely skewed, moderate skewed and shapes,
respectively at these setting.

• Calculate the pivotal quantity yr:n = xr:n/λ and compute the mean and variance using
Equation (2.8).

• Set up the control limits defined in Equation (2.2) by using Equation (2.8).
• Repeat the step first three step 10, 000 times to determine the control constant Lr to get

ARL0r = 370.
• Compute the ARL1r values at δ = 0.5, 1.5, 2.5, 3.5, 5 and 15.

Using the above algorithm, we present the control constant Lr in Table 1. The ARLs are
calculated and presented in Figure 1 for the selected values of parameters for clear under-
standing.
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Table 1. The control constant for n = 2, 3, 4, 5, 7 and 10 using b = 1, 2 and λ = 1.

b = 1 b = 2
n r Lr Lr

2 1 4.9136 3.3370
2 4.5670 3.2931

3 1 4.9136 3.3371
2 4.4307 3.2120
3 4.4382 3.3100

4 1 4.9136 3.3365
2 4.3841 3.1842
3 4.2327 3.1880
4 4.3712 3.3340

5 1 4.9136 3.3380
2 4.3636 3.1720
3 4.1569 3.1420
4 4.1240 3.1835
5 4.3301 3.3520

7 1 4.9136 3.3400
2 4.3467 3.1650
3 4.1025 3.1080
4 3.9829 3.0980
5 3.9446 3.1230
6 4.0076 3.1954
7 4.2824 3.3830

10 1 4.9136 3.3370
2 4.3388 3.1570
3 4.0780 3.0930
4 3.9300 3.0680
5 3.8400 3.0630
6 3.7900 3.0710
7 3.7760 3.0899
8 3.8100 3.1300
9 3.9260 3.2150
10 4.2470 3.4235

The wind speed performance for a specific height shows the available wind potential.
The ARLs values decreases with an increase in the wind tower height see Figure 1 (a) and
(b). To determine the wind speed process accurately the same amount of shifts in wind
speed on three different heights is applied. The shift quickly detected at highest height. For
example, b = 1, the ARL1 at δ = 1.5 for r = 1, 2 and 3 respectively are 224, 124 and 48.
Which is obvious that the same amount of shift in wind speed is not equally danger at all
heights. This behavior remain same for b = 2, see Figure 1 (b). Therefore, the wind speed
characteristics varies with heights indicate the heterogeneity within rational subgroups. The
proposed scheme is captured the scenario at one glance by monitoring the wind speed at
various heights simultaneously. This further illustrate by applying proposed scheme to real
life data set that presented in the next section.
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(a) b = 1 (b) b = 2

Figure 1. The ARL values for LACC in the wind energy for n = 3 at various shifts using b = 1 and 2.

3. Real-Life Application

This study aims to propose a decision tool to define quality control criteria in manufacturing
processes that have heterogeneity within rational subgroups. The considered work aims at
improving the monitoring of wind speed under a given height in the wind energy industry.
Making a pre-series of 6 tests at 7 different heights will allow us to note the wind speed, the
datasets are available in (Chen et al., 1998) and reproduce in Table 2.

Table 2. The Wind speed at different Heights

Heights (m)
0.1 1 2 2.5 3.5 4.5 10

Test Wind speed (m/s)
1 2.37 3.07 3.86 4.65 5.64 5.69 7.73
2 1.57 3.61 4.50 4.77 5.23 5.94 8.29
3 1.58 2.41 4.82 5.40 5.62 5.73 8.91
4 1.68 2.05 4.67 5.54 6.05 6.63 10.25
5 2.59 3.15 3.61 5.54 5.75 6.19 8.28
6 1.10 2.74 4.47 5.89 5.99 6.59 9.78

The permissible wind speed measurements are obtained by the industrial engineer
specification. To achieve this goal, different stages have been carried out:
• Identify the acceptance sampling plan for this data set.
• Determine the underlying distribution of the wind speed data.
• Estimation of the parameters (method of moments).
• Expression of order statistics distributions.
• Setting up the specifications at each height.
• Computing the probability of in-control and out-of-control situations at each height.

To visualize the heterogeneity within the rational subgroups, we draw the boxplot of the
wind speed data at each height. The boxplot given in Figure 2(a) shows the differences
within rational subgroups are significant.
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(a) (b)

Figure 2. Boxplot of the wind speed at various heights (a); and Q-Q plot of the wind speed.

To examine the underlying distribution of the wind speed the Q-Q plot of the data is con-
structed and presented in Figure 2(b). The Q-Q plot indicates the wind speed approximately
following the distribution in the Weibull family with shape parameter b = 2.394 and scale
parameter λ = 5.636. Furthermore, we have tested that the sample belonging from a Weibull
PDF for b = 2.394 and λ = 5.636 using the Kolmogorov-Smirnov test with test statistic =
0.1035 and p-value=0.7592. Therefore, it is reasonable to conclude that distribution of the
study variable is the Weibull distribution with b = 2.394 and λ = 5.636.

Moreover, the method of the moment can also be used as an alternate, the value of b and λ
can be determined by the method of moments as b ≈ (0.9874/CV)1.0983 and λ = ȳ/Γ(1+1/b),
where CV is the coefficient of variation and ȳ is the sample mean.

The observations of each test are obtained in ordered observations, therefore, the PDF
and corresponding the CDF of the r-th order statistics for the sample of size n = 7 for 6
tests are given as

fr:n(xk) = 7!
(r − 1)!(7 − r)!

[
1 − exp

(
−
[
xk

5.636

]2.396)]r−1[
− exp

(
−
[
xk

5.636

]2.396)]7−r

× 2
5

((
xk

5

)2−1)
exp

[
−
(
xk

5

)2]
,

Fr:n(xk) = 7!
r!(7 − r)!

7∑
j=r

[
1 − exp

(
−
[
xk

5.636

]2.396)]j[
exp

(
−
[
xk

5.636

]2.396)]7−j

(3.10)

where k = 1(1)6 and r = 1(1)7.
We assume that the wind speed is unacceptable if y(r:n)k < LCLr or y(r:n)k > UCLr, where

y(r:n)k = x(r:n)k/5.636. This can occur at any given height. If it happens then it may lead
to a loss for many areas, for example, agriculture crops, air pollution, estimation of wind
load on buildings and wind power analysis. However, then the mean and variance of Weibull
ordered random variable can be obtained by substituting the Equation (3.10) in Equation
(2.1), (2.3) and (2.8).
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The resulting values are used in Equation (2.2) for evaluating the control limits. Using
these control limits, the probability that wind speed at a given height meets the specification
is calculated using Equation (2.9) and presented in Table 3. All considered height shows that
p0

r large enough i.e., 0.9973 that indicates the wind speed at considered height meets the
specification. The value of the control constant is determined to achieve the probability
0.9973 for each height, and is given in Table 3. These intervals now clearly described the
specification of the wind speed for each height and the expected quality of wind speed could
be imposed.

Table 3. Result of a real-life example.

at r-th Height LCLr UCLr Lr p0
r

1 -0.0412 0.9321 2.834 0.9973
2 0.1188 1.1238 3.063 0.9973
3 0.2318 1.2808 3.245 0.9973
4 0.3262 1.4337 3.391 0.9973
5 0.4001 1.6134 3.574 0.9973
6 0.4392 1.8685 3.869 0.9973
7 0.4392 2.3662 4.393 0.9973

A control chart is constructed and presented in Figure 3. In Figure 3 the control limits
and level of the height appear in the same color. So that we can examine the monitoring of
wind speed at a specific height. The chart shows that the wind speed at each height meets
the specification. It is also observed that if we ignore the height level and consider that wind
speed is taken at the same height then we construct control limits for the Shewhart chart
as LCL = 2.4757 and UCL = 7.5161. The Shewhart chart is presented in Figure 4. From
Figure 4 points fall outside control limits which indicates the process is out of control. So
it provides misleading information if we ignore the heterogeneity within the subgroups. In
this situation, LACC provides appropriate information by simultaneous monitoring of wind
speed at all heights in a single chart.

Figure 3. The LACC simultaneously monitors the wind speed at various heights.
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Figure 4. The Shewhart control chart ignores the heterogeneity within rational subgroups.

4. Conclusion, limitation and future research

We developed a control chart based on order statistic by using order statistic distribution as
underline distribution. This type of control charts can be used to monitor the process, while
the variation within a sample become meaningful and traditional chart fails to monitor.
Shewhart type Control limits formulae for the order statistic mean have been built. Using
Weibull distribution as underline distribution, the control limits have been obtained given
different shape parameter values and scale parameter = 1, nominal ARL = 370, sample
size = 2, 3, 4, 5, 7, 10. Simulation study shows the built control charts provide simulated
ARL very close the nominal ARL = 370 under the process in-control and the simulated
ARL decreases when the out-of-control for shifted process. As an illustration, we consider
the example of wind speed in the Wind Energy Industry in which within-sample variation
of the measurement of wind speed is significant. In this situation, the LACC monitors the
wind speed process more appropriately as compared to the existing Shewhart chart. The
beauty of the LACC is that it monitors every observation in a random sample of size n
rather than its average value. The ARLs are provided for the LACC. The limitation of the
proposed chart is to use order values which become tedious to handle and may increase the
cost on arranging the values for large data set. Designing the LACC with other lifetime
distribution may be a fruitful area in future research.
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