
Chilean Journal of Statistics
Volume 14, Number 1 June 2023, Pages 1–25
DOI: 10.32372/chjs.14-01-01

UNCORRECTED PROOFS
Distributions Theory

Research Paper

An extended Rayleigh model: Properties,
regression and COVID-19 application

Gauss M. Cordeiro1, Gabriela M. Rodrigues2, Edwin M. M. Ortega2,
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4Department of Statistics, University of Braśılia, Braśılia, Brazil
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Abstract

We define a four-parameter extended Rayleigh distribution which is a quite flexible
model to analyze positive data, and includes as special models the odd log-logistic
generalized Rayleigh, exponentiated generalized Rayleigh and generalized Rayleigh dis-
tributions. We obtain a linear representation and some of its mathematical properties.
We construct a regression from the new distribution with two systematic components
for censored data. The estimation is done by maximum likelihood. The utility of the
new models is proved in two real applications.

Keywords: Censored data · Linear representation · Simulation · Voltage data · Odd
log-logistic.

Mathematics Subject Classification: Primary 62F40 · Secondary 62P30.

1. Introduction

The generalized Rayleigh (GR) distribution is a very important model that has been widely
used in recent decades to analyze data in survival analysis, reliability, industrial engineering
to represent manufacturing and delivery times, extreme value theory, forecasting wind speed,
wireless communications, and insurance to predict the size of reinsurance claims.

Some surveys based on the GR distribution are discussed by several authors: Cordeiro
et al. (2011) introduced the beta GR distribution which has some known distributions as
sub-models, Gomes et al. (2014) presented the Kumaraswamy GR distribution for analysing
lifetime data, Naqash et al. (2016) studied a Bayesian estimation of the shape parameter
of the two-parameter GR distribution using single and double priors, and more recently,
Barranco-Chamorro et al. (2021) presented a GR family based on the modified Slash distri-
bution, and Shen et al. (2022) introduced an extended form of the GR distribution to model
the Reddit advertising and breast cancer data sets. Note that all these cited papers fail to
model bimodal data.
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The need for extended forms of the GR distribution arises in many applied areas, for
example, to try to model bimodal and asymmetric data without using mixing of distribu-
tions. Cordeiro et al. (2017) introduced the generalized odd log-logistic-G (GOLL-G) family
which presents different ways to model bimodal, asymmetric and unimodal data. Based on
this paper, the first objective is to propose a new generalized odd log-logistic generalized
Rayleigh (GOLLGR) distribution that has as special cases the little known odd log-logistic
generalized Rayleigh (OLLGR) and exponentiated generalized Rayleigh (EGR) distribu-
tions. Thus, we will have several distributions to model data, and are able to discriminate
between these distributions. Further, we present several mathematical properties of the new
distribution which can be used by statistics users in future research.

We also know that in many practical applications, the lifetimes are affected by explanatory
variables, and thus parametric regression models are widely used to estimate univariate
survival functions for censored data.

Thus, the second objective of this article is to propose a regression model based on the
GOLLGR distribution under two systematic components and the presence of censored data.
Several simulations for different scenarios are presented to study the behavior of the para-
meter estimators.

We consider two data sets for applications. The first set concerns failure times and opera-
ting times for a sample of devices from a field tracking study system. The second application
considers patients infected with the COVID-19 virus confirmed by the RT-PCR test method
in the city of Campinas in the state of São Paulo (Brazil).

The paper is structured as follows. Section 2 defines the GOLLGR distribution, addresses
some asymptotes and quantile function (QF), gives a linear representation for the family
density, reports the moments and generating function, and addresses maximum likelihood
estimation. A new regression is constructed in Section 3 as well as the residual analysis.
Some simulations are carried out in Section 4. Two lifetime data sets in Section 5 show the
utility of the new models. Some conclusions are reported in Section 6.

2. The GOLLGR model, properties and estimation

2.1 Context

The GR distribution has been employed in many areas (Johnson et al., 1994). Several of its
extensions have been published so far.

The cumulative distribution function (CDF) of the GR distribution (Vodă, 1976) is

GGR(x; δ, θ) = γ1(δ + 1, θx2), x > 0, (2.1)

where δ > −1 and θ > 0, Γ(p) =
∫∞

0 wp−1 e−wdw and γ1(p, x) =
∫ x

0 w
p−1 e−wdw/Γ(p) are

the gamma function and lower incomplete gamma function ratio, respectively.
We can write

∂

∂θ
γ1(δ + 1, θx2) = θδx2(δ+1)e−θx

2

Γ(δ + 1) (2.2)

and

∂

∂δ
γ1(δ + 1, θx2) = H1(δ + 1, θx2)− γ1(δ + 1, θx2)ψ(δ + 1) , (2.3)
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where

H1(δ + 1, θx2) = 1
Γ(δ + 1)

∫ θx2

0
tδ e−t log(t) dt

and

ψ(α) = 1
Γ(α)

∫ ∞
0

tα−1e−t log(t) dt

is the digamma function.
The GR distribution includes well-known sub-models. The classical Rayleigh distribution

follows when δ = 0 and θ = 1/λ2. If δ = 1/2 and θ = 1/(2λ2), it gives the Maxwell
distribution. The chi-square refers to θ = 1/(2τ 2), τ > 0, and δ = (n/2)− 1, n ∈ N, and the
half-normal to δ = −1/2 and θ = 2/σ2.

The probability density function (PDF) corresponding to Equation (2.1) is

gGR(x; δ, θ) = 2θδ+1

Γ(δ + 1) x
2δ+1 e−θx

2
. (2.4)

Let Z ∼ GR(δ, θ) be a random variable with density given in Equation (2.4). The mo-
ments of Z are easily obtained from the integral given in Section 3.478 of Gradshteyn and
Ryzhik (2000):

∫∞
0 xν−1e−µx

p
dx = Γ(ν/p)(pµν/p), where p, ν, µ > 0. Indeed, the sth ordinary

moment of Z (for a positive real number s) is

µ′s(δ, θ) =
Γ( s2 + δ + 1)
θs/2 Γ(δ + 1) . (2.5)

Further, generalized distributions can be used for model discrimination. Eugene et al.
(2002) pioneered the generator function based on the beta distribution, Cordeiro et al.
(2011) presented the generating function from the Kumaraswamy distribution, Alexander
et al. (2012) defined the generating function based on the McDonald distribution, Nadarajah
et al. (2015a) proposed the Zografos-Balakrishnan-G family of distributions, Nadarajah et
al. (2015b) studied the exponentiated G geometric family of distributions, Pescim et al.
(2012) proposed the generating function based on the Kummer beta distribution, Cordeiro
et al. (2017) proposed the generalized odd log-logistic family of distributions, Cordeiro et
al. (2018) defined the odd Lomax generator of distributions, and recently Cordeiro et al.
(2020) defined the extended beta family of distributions to generalize the beta generator
pioneered by Eugene et al. (2002).

The CDF of the generalized odd log-logistic-G (GOLL-G) family follows from Cordeiro
et al. (2017)

F (x;α, β, ξ) = G(x; ξ)αβ
G(x; ξ)αβ + [1−G(x; ξ)β]α , (2.6)

where α > 0 and β > 0 are two extra parameters.
The generalized log-logistic (Gleaton and Lynch, 2006) and proportional reversed hazard

rate (Gupta and Gupta, 2007) are special models of Equation (2.6). Further, for α = β = 1,
we obtain the GR distribution. Prataviera et al. (2018) discussed the generalized odd log-
logistic flexible Weibull distribution.
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If g(x; ξ) is the parent density, the PDF corresponding to Equation (2.6) can be written
as

f(x;α, β, ξ) = αβg(x; ξ)G(x; ξ)αβ−1[1−G(x; ξ)β]α−1{
G(x; ξ)αβ + [1−G(x; ξ)β]α

}2 . (2.7)

The GOLLGR density is defined (for x > 0) by inserting Equations (2.1) and (2.4) in
Equation (2.7)

f(x;α, β, δ, θ) =
2αβθδ+1 x2δ+1 e−θx

2
γ1
(
δ + 1, θx2)αβ−1 [1− γ1

(
δ + 1, θx2)β ]α−1

Γ(δ + 1)
{
γ1 (δ + 1, θx2)αβ +

[
1− γ1 (δ + 1, θx2)β

]α}2 , (2.8)

and its hazard rate function (HRF) is

h(x) = 2αβθδ+1 x2δ+1 e−θx
2
γ1
(
δ + 1, θx2)αβ−1

Γ(δ + 1)
[
1− γ1 (δ + 1, θx2)β

]{
γ1 (δ + 1, θx2)αβ +

[
1− γ1 (δ + 1, θx2)β

]α} ·
We have limx→∞ f(x) = 0, and

lim
x→0+

f(x) =



2
√
θ√
π
, αβ − 1 = 0, 2δ + 1 = 0,

0, αβ − 1 > 0, 2δ + 1 > 0,

∞, αβ − 1 > 0, 2δ + 1 < 0, 0 < δ + 1 < 2δ+1
2(1−αβ) ,

2αβ
√
θ

Γ(δ+1)

[
2(1−αβ)

Γ(δ+1)(2δ+1)

]αβ−1
, αβ − 1 > 0, 2δ + 1 < 0, δ + 1 = 2δ+1

2(1−αβ) ,

0, αβ − 1 > 0, 2δ + 1 < 0, δ + 1 > 2δ+1
2(1−αβ) ,

∞, αβ − 1 < 0, 2δ + 1 > 0, δ + 1 > 2δ+1
2(1−αβ) ,

2αβ
√
θ

Γ(δ+1)

[
2(1−αβ)

Γ(δ+1)(2δ+1)

]αβ−1
, αβ − 1 < 0, 2δ + 1 > 0, δ + 1 = 2δ+1

2(1−αβ) ,

0, αβ − 1 < 0, 2δ + 1 > 0, 0 < δ + 1 < 2δ+1
2(1−αβ) ,

∞, αβ − 1 ≤ 0, 2δ + 1 ≤ 0, αβ − 1 6= 0 or 2δ + 1 6= 0.

(2.9)

Further, limx→∞ h(x) =∞ and limx→0+ h(x) = limx→0+ f(x).
Hereafter, we omit the arguments of the functions, and let X ∼ GOLLGR(α, β, δ, θ) be a

random variable with PDF given in Equation (2.8). The odd log-logistic GR follows when
β = 1, and the proportional reversed hazard rate GR when α = 1. Plots of the PDF and
HRF of X are displayed in Figures 1 and 2, respectively. They reveal the bimodality and
asymmetry of the PDF, and different shapes of the HRF.

In recent years, bimodal distributions have played an important role in the applied statis-
tical literature; see, for example, Alizadeh et al. (2017); Vila et al. (2020, 2021a,b); Ribeiro-
Reis et al. (2020).
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Figure 1. The GOLLGR PDF. (a) δ = 1.5 and θ = 15. (b) α = 0.3, β = 2 and θ = 15. (c) α = 0.3, β = 1.5 and
δ = 1.5.
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Figure 2. The GOLLGR HRF. (a) α = 0.1 and δ = 1.5. (b) α = 0.3 and β = 2.5. (c) α = 0.1.

2.2 Asymptotes and quantile function

The asymptotes below follow from Equations (2.6) and (2.7)

F (x) ∼ G(x)αβ, f(x) , h(x) ∼ αβg(x)G(x)αβ−1 as x→ 0+,

and

f(x) ∼ αβ g(x)
[
1−G(x)β

]α−1
, h(x) ∼ αβg(x)

[1−G(x)β] as x→∞.

For the GOLLGR distribution, we obtain

F (x) ∼ γ1(δ + 1, θx2)αβ ,

f(x), h(x) ∼ 2αβθδ+1

Γ(δ + 1) x
2δ+1 e−θx

2
γ1(δ + 1, θx2)αβ−1 as x→ 0+,
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and

f(x) ∼
2αβθδ+1 x2δ+1 e−θx

2[1− γ1
(
δ + 1, θx2)β ]α−1

Γ(δ + 1) ,

h(x) ∼ 2αβθδ+1 x2δ+1 e−θx
2

Γ(δ + 1)
[
1− γ1 (δ + 1, θx2)β

] as x→∞.

By combining the inverse functions of Equations (2.1) and (2.6), the QF of X can be
expressed as

x = Q(u) = QGR

[ ( u
1−u)1/α

1 + ( u
1−u)1/α

]1/β  , (2.10)

where the GR QF QGR(z) = G−1
GR(z; δ, θ) comes as

QGR(z) =
[
θ−1 γ−1

1 (δ + 1; z)
]1/2

. (2.11)

Here, γ−1 (δ + 1; z) is the gamma QF with shape δ + 1 and unity scale. So, the GOLLGR
variates follow easily from Equation (2.11).

2.3 Stochastic representation

The PDF of the log-logistic random variable Y ∼ LL(ν, α) is

fY (y; ν, α) = (α/ν)(y/ν)α−1[
1 + (y/ν)α

]2 ,
where ν > 0 and α > 0 are scale and shape, respectively.

If X ∼ GOLLGR(α, β, δ, θ) and Y ∼ LL(1, α), we can write from Equations (2.6) and
(2.11)

F (x;α, β, δ, θ) = P

(
Y ≤ GGR(x; δ, θ)β

1−GGR(x; δ, θ)β
)

= P

([
θ−1 γ−1

1

(
δ + 1;

(
Y

1 + Y

)1/β )]1/2

≤ x

)
, (2.12)

where GGR(x; δ, θ) = γ1(δ + 1, θx2), x > 0. So, we prove the following:

Proposition 2.1 The GOLLGR random variable X admits the stochastic representation:

X =
[
θ−1 γ−1

1

(
δ + 1;

(
Y

1 + Y

)1/β )]1/2

for Y ∼ LL(1, α).
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2.4 Critical points and modality

For brevity, we define

T (x) = T (x; β, δ, θ) = GGR(x; δ, θ)β
1−GGR(x; δ, θ)β . (2.13)

Since T (x/k; β, δ, θ) = T (x; β, δ, θ/k2), k > 0, the next result follows from Equation (2.12):

Proposition 2.2 If X ∼ GOLLGR(α, β, δ, θ), then k X ∼ GOLLGR(α, β, δ, θ/k2).

Proposition 2.3 A critical point of the PDF of X satisfies

y′′

(y′)2 + (β + 1)yβ[yαβ + (1− yβ)α]− (αβ + 1)yαβ − 2(1− yβ)α
y(1− yβ)[yαβ + (1− yβ)α] = 0, (2.14)

where y = y(x) = GGR(x; δ, θ) = γ1(δ + 1, θx2).

In the remainder of this section, we use Equation (2.14) and the limit in Equation (2.9)
to analyze the modality of the PDF of X when α = 1.

For α = 1, Equation (2.14) reduces to gGR(x; δ, θ)/GGR(x; δ, θ) = [δ + θx2 − (1/2)]/x.
Equivalently,

GGR(x; δ, θ) = g(x), (2.15)

where g(x) = xgGR(x; δ, θ).
A careful analysis shows that, on (0,∞): (i) g(x) is decreasing/decreasing-increasing-

decreasing when δ < 1/2, (ii) g(x) is unimodal when δ ≥ 1/2 and (iii) limx→0+ g(x) =
limx→∞ g(x) = 0. Moreover, notice that: (a) g(x) has a vertical asymptotic at xva =√

[(1/2)− δ]/θ when δ < 1/2, (b) g(x) < 0 for all x < xva and (c) g(x) > 0 for all
x > xva. Since GGR(x; δ, θ) is increasing on (0,∞), because this one is a CDF, it is plausi-
ble to expect that, by varying the parameters, Equation (2.15) has at most three roots on
(0,∞). So, the PDF of X has at most three critical points on (0,∞). In the following, we
analyze some possible scenarios:

• If the GOLLGR PDF has a single critical point, say x0, and β > 1 and δ ≥ 1/2, we have
by the second limit in Equation (2.9) limx→0+ f(x;α, β, δ, θ) = limx→∞ f(x;α, β, δ, θ) = 0.
Then, x0 is really a maximum point, and the PDF of X is unimodal.

• If the GOLLGR PDF has three single critical points, say x1 < x2 < x3, and β > 1 and
δ ≥ 1/2, again, by the second limit in Equation (2.9), we have limx→0+ f(x;α, β, δ, θ) =
limx→∞ f(x;α, β, δ, θ) = 0. Hence, x1 and x3 are maximum points, and x2 is a minimum
point, and the GOLLGR PDF is bimodal.

In general, as done previously, we can use the limit in Equation (2.9) and the number of
critical points of the PDF of X to obtain the result:

Theorem 2.4 The GOLLGR PDF is (i) decreasing, (ii) decreasing-increasing-decreasing
or (iii) uni- or bimodal.

2.5 Tail behavior

Here, we prove that, under certain constraints in the parameter space, the distribution of X
has thinner tails than an exponential distribution. More precisely, we prove the two results.
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Proposition 2.5 For any α ≥ 1 and any t > 0,

lim
x→∞

e−tx

1− F (x;α, β, δ, θ) =∞. (2.16)

Proposition 2.6 For any 0 < β ≤ 1 and δ > 0, the limit (for t > 0) (2.16) holds.

2.6 Linear Representation

First, the exponentiated-G (“Exp-G”) random variable W ∼ ExpcG for a continuous CDF
G(x) and c > 0, has CDF Hc(x) = G(x)c and PDF hc(x) = cg(x)G(x)c−1. Many Exp-G
properties were published in the last three decades.

We obtain after some algebra the power series

G(x)αβ +
[
1−G(x)β

]α =
∞∑
k=0

ckG(x)k , (2.17)

where ck = ck(α, β) = ak +
∑∞
i=0
∑∞
j=k(−1)i+j+k

(α
i

)(iβ
j

)(j
k

)
, and ak =

∑∞
j=k(−1)j+k

(αβ
j

)(j
k

)
.

The expansion given in Equation (2.17) converges for all x such that 0 < G(x) < 1 due to
the generalized binomial theorem.

Equation (2.6) can be rewritten from the ratio of two convergent power series as the
convergent expansion

F (x) =
∞∑
k=0

dkG(x)k, (2.18)

where dk = dk(α, β)’s are found recursively (for k > 0, d0 = a0/c0) dk = c−1
0 (ak +∑k

r=1 cr dk−r).
By differentiating Equation (2.18) and using the “term-wise differentiation of power series

theorem”, and changing indices f(x) =
∑∞
l=0(l + 1) dl+1 g(x)G(x)l. For the GR model, we

obtain

f(x) =
∞∑
l=0

(l + 1) dl+1(α, β) 2θδ+1

Γ(δ + 1) x
2δ+1 e−θx

2
γ1(δ + 1, θx2)l . (2.19)

The convergent power series for the incomplete gamma function ratio holds

γ1(δ + 1, θx2) = (θx2)δ+1

Γ(δ + 1)

∞∑
m=0

(−1)m (θx2)m
m! (α + 1 +m) ·

Equation 0.314 in Gradshteyn and Ryzhik (2000) gives (for a natural number l ≥ 1)

( ∞∑
m=0

qm x
m

)l
=
∞∑
m=0

e(l)
m xm ,

where e(l)
0 = ql0, and e

(l)
m (for l ≥ 1) can be found from

e(l)
m = 1

mq0

m∑
i=1

[(l + 1) i−m] qi e(l)
m−i. (2.20)
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The next expansion converges because it is a natural power of a convergent power series

γ1(δ + 1, θx2)l = (θx2)l(δ+1)

Γ(δ + 1)l
∞∑
m=0

e(l)
m x2m , (2.21)

where the quantities e
(l)
m follow from Equation (2.20) with the constants qm =

(−1)m θm/[(δ + 1 +m)m!], for m = 0, 1, . . ..
Further, we set the conditions e(0)

0 = 1 and e(0)
m = 0 for m ≥ 1. Hence, inserting Equation

(2.21) in Equation (2.19) (under these conditions) leads to

f(x) =
∞∑

l,m=0

2 (l + 1) dl+1(α, β) e(l)
m

Γ(δ + 1)l+1θm
θ[l(δ+1)+m+δ]+1x2[l(δ+1)+m+δ]+1e−θx

2

and then

f(x) =
∞∑

l,m=0
wl,m gGR(x; θ, δ∗l,m) , (2.22)

where δ∗l,m = l(δ + 1) + m + δ, and the coefficients are wl,m = wl,m(θ, δ, α, β) =
(l + 1) Γ(δ∗l,m + 1) dl+1(α, β) e(l)

m /[θm Γ(δ + 1)l+1] ·
Equation (2.22) is useful to obtain some properties of the new distribution from those of

the GR model.

2.7 Other Properties

The sth ordinary moment of X comes from Equations (2.5) and (2.22) as

E(Xs) =
∞∑

l,m=0
wl,m(θ, δ, α, β)

Γ( s2 + δ∗l,m + 1)
θs/2 Γ(δ∗l,m + 1) .

The sth incomplete moment ofX follows from Equation (2.22) as

ms(x) =
∞∑

l,m=0

wl,m(θ, δ, α, β)
Γ(δ∗l,m + 1)

∫ x

0
2θδ∗

l,m+1 ts t2δ
∗
l,m+1 e−θt

2
dt

=
∞∑

l,m=0
wl,m(θ, δ, α, β)

Γ(δ∗l,m + s
2 + 1)

Γ(δ∗l,m + 1)θ s2

∫ x

0

2θδ∗
l,m+ s

2 +1

Γ(δ∗l,m + s
2 + 1) t

2(δ∗
l,m+ s

2 )+1e−θt
2
dt

=
∞∑

l,m=0
wl,m(θ, δ, α, β)

Γ( s2 + δ∗l,m + 1)
θ
s
2 Γ(δ∗l,m + 1)

γ1(δ∗l,m + s

2 + 1, θx2).

The mean deviations and Bonferroni and Lorenz curves of X are obtained from m1(x).
The generating function (GR) of X can be expressed as

M(t) =
∫ ∞

0
etx

∞∑
l,m=0

wl,m(θ, δ, α, β) gGR(x; θ, δ∗l,m) dx,
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that is,

M(t) =
∞∑

l,m=0

2wl,m(θ, δ, α, β) θδ∗
l,m+1

Γ(δ∗l,m + 1)

∫ ∞
0

x2δ∗
l,m+1 e−θx

2+tx dx.

From Equation 2.3.15.3 in Prudnikov et al. (1986), we can write

∫ ∞
0

xα−1e−px
2−qxdx = Γ(α)

(2p)α2
exp

(
q2

8p

)
D−α

(
q√
2p

)
,

where Re(α), Re(p) > 0, and

Dp(y) = exp(−y2/4)
Γ(−p)

∫ ∞
0

exp{−(wy + w2/2)}w−(p+1) dw.

Thus,

M(t) =
∞∑

l,m=0

2wl,m θδ
∗
l,m+1

Γ(δ∗l,m + 1)
Γ(δ̃l,m)

(2θ)
δ̃l,m

2

exp
(
t2

8θ

)
D−δ̃l,m

(
− t√

2θ

)
,

where δ̃l,m = 2 (δ∗l,m + 1).

2.8 Estimation

We obtain the maximum likelihood estimate (MLE) of η = (α, β, δ, θ)> given the data
x1, x2, . . . , xn from the GOLLGR distribution.

The total log-likelihood function for η is

ln(η) =n [log(αβ) + (δ + 1) log θ] + (2δ + 1)
n∑
i=1

log xi − θ
n∑
i=1

x2
i

+ (αβ − 1)
n∑
i=1

log γ1(δ + 1, θx2
i ) + (α− 1)

n∑
i=1

log[1− γ1(δ + 1, θx2
i )β]

− 2
n∑
i=1

log
{
γ1(δ + 1, θx2

i )αβ + [1− γ1(δ + 1, θx2
i )β]α

}
. (2.23)

The maximization of Equation (2.23) can be done using the R software (R Core Team.,
2022) or SAS (PROC NLMIXED), among others. The components of the score function
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Un(η) =
(
∂ln(η)
∂α , ∂ln(η)

∂β , ∂ln(η)
∂δ , ∂ln(η)

∂θ

)>
are

Un(α) =n

α
+ β

n∑
i=1

log γ1
(
δ + 1, θx2

i

)
+

n∑
i=1

log
[
1− γ1

(
δ + 1, θx2

i

)β]

− 2
n∑
i=1

γ1
(
δ + 1, θx2

i

)αβ
β log γ1

(
δ + 1, θx2

i

)
γ1 (δ + 1, θx2

i )
αβ +

[
1− γ1 (δ + 1, θx2

i )
β
]α

− 2
n∑
i=1

[
1− γ1

(
δ + 1, θx2

i

)β]α log
[
1− γ1

(
δ + 1, θx2

i

)β]
γ1 (δ + 1, θx2

i )
αβ +

[
1− γ1 (δ + 1, θx2

i )
β
]α ,

Un(β) =n

β
+ α

n∑
i=1

log γ1
(
δ + 1, θx2

i

)
− (α− 1)

n∑
i=1

γ1
(
δ + 1, θx2

i

)β log γ1
(
δ + 1, θx2

i

)
1− γ1 (δ + 1, θx2

i )
β

− 2
n∑
i=1

γ1
(
δ + 1, θx2

i

)αβ
α log γ1

(
δ + 1, θx2

i

)
γ1 (δ + 1, θx2

i )
αβ +

[
1− γ1 (δ + 1, θx2

i )
β
]α

− 2
n∑
i=1

α
[
1− γ1

(
δ + 1, θx2

i

)β]α−1
(−γ1

(
δ + 1, θx2

i

)β) log γ1
(
δ + 1, θx2

i

)
γ1 (δ + 1, θx2

i )
αβ +

[
1− γ1 (δ + 1, θx2

i )
β
]α ,

Un(δ) =n log θ + 2
n∑
i=1

log xi + (αβ − 1)
n∑
i=1

1
γ1 (δ + 1, θx2

i )
∂

∂δ
γ1
(
δ + 1, θx2

i

)

+ (α− 1)
n∑
i=1

1
1− γ1 (δ + 1, θx2

i )
β

(−β)γ1
(
δ + 1, θx2

i

)β−1 ∂

∂δ
γ1
(
δ + 1, θx2

i

)

− 2
n∑
i=1

αβγ1
(
δ + 1, θx2

i

)αβ−1

γ1 (δ + 1, θx2
i )
αβ +

[
1− γ1 (δ + 1, θx2

i )
β
]α ∂

∂δ
γ1
(
δ + 1, θx2

i

)

− 2
n∑
i=1

α
[
1− γ1

(
δ + 1, θx2

i

)β]α−1
(−β)γ1

(
δ + 1, θx2

i

)β−1

γ1 (δ + 1, θx2
i )
αβ +

[
1− γ1 (δ + 1, θx2

i )
β
]α ∂

∂δ
γ1
(
δ + 1, θx2

i

)
,

Un(θ) =n(δ + 1)
θ

−
n∑
i=1

x2
i + (αβ − 1)

n∑
i=1

1
γ1 (δ + 1, θx2

i )
∂

∂θ
γ1
(
δ + 1, θx2

i

)

+ (α− 1)
n∑
i=1

1
1− γ1 (δ + 1, θx2

i )
β

(−β)γ1
(
δ + 1, θx2

i

)β−1 ∂

∂θ
γ1
(
δ + 1, θx2

i

)

− 2
n∑
i=1

αβγ1
(
δ + 1, θx2

i

)αβ−1

γ1 (δ + 1, θx2
i )
αβ +

[
1− γ1 (δ + 1, θx2

i )
β
]α ∂

∂θ
γ1
(
δ + 1, θx2

i

)

− 2
n∑
i=1

α
[
1− γ1

(
δ + 1, θx2

i

)β]α−1
(−β)γ1

(
δ + 1, θx2

i

)β−1

γ1 (δ + 1, θx2
i )
αβ +

[
1− γ1 (δ + 1, θx2

i )
β
]α ∂

∂θ
γ1
(
δ + 1, θx2

i

)
.
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From Equations (2.2) and (2.3),

Un(δ) =n log θ + 2
n∑
i=1

log xi + (αβ − 1)
n∑
i=1

H1(δ + 1, θx2
i )− γ1(δ + 1, θx2

i )ψ(δ + 1)
γ1 (δ + 1, θx2

i )

− β(α− 1)
n∑
i=1

γ1(δ + 1, θx2
i )β−1 [H1(δ + 1, θx2

i )− γ1(δ + 1, θx2
i )ψ(δ + 1)

]
1− γ1 (δ + 1, θx2

i )
β

− 2αβ
n∑
i=1

γ1
(
δ + 1, θx2

i

)αβ−1 [
H1(δ + 1, θx2

i )− γ1(δ + 1, θx2
i )ψ(δ + 1)

]
γ1 (δ + 1, θx2

i )
αβ +

[
1− γ1 (δ + 1, θx2

i )
β
]α

+ 2αβ
n∑
i=1

[
1− γ1

(
δ + 1, θx2

i

)β]α−1
γ1
(
δ + 1, θx2

i

)β−1

γ1 (δ + 1, θx2
i )
αβ +

[
1− γ1 (δ + 1, θx2

i )
β
]α

×
[
H1(δ + 1, θx2

i )− γ1(δ + 1, θx2
i )ψ(δ + 1)

]
and

Un(θ) =n(δ + 1)
θ

−
n∑
i=1

x2
i + (αβ − 1)

n∑
i=1

1
γ1 (δ + 1, θx2

i )
θδx

2(δ+1)
i e−θx

2
i

Γ(δ + 1)

− β(α− 1)
n∑
i=1

γ1
(
δ + 1, θx2

i

)β−1

1− γ1 (δ + 1, θx2
i )
β

θδx
2(δ+1)
i e−θx

2
i

Γ(δ + 1)

− 2αβ
n∑
i=1

γ1
(
δ + 1, θx2

i

)αβ−1

γ1 (δ + 1, θx2
i )
αβ +

[
1− γ1 (δ + 1, θx2

i )
β
]α θδx2(δ+1)

i e−θx
2
i

Γ(δ + 1)

+ 2αβ
n∑
i=1

[
1− γ1

(
δ + 1, θx2

i

)β]α−1
γ1
(
δ + 1, θx2

i

)β−1

γ1 (δ + 1, θx2
i )
αβ +

[
1− γ1 (δ + 1, θx2

i )
β
]α θδx

2(δ+1)
i e−θx

2
i

Γ(δ + 1) .

The elements of the observed information matrix are obtained by differentiating Un(η)
and computing numerically.

3. The GOLLGR regression

3.1 Context

Recently, some papers on regression models have been published, for example, Hashimoto
et al. (2019), Prataviera et al. (2020), Silva et al. (2020) and Vasconcelos et al. (2021). In a
similar context, we introduce the regression model based on the GOLLGR distribution.

The systematic components of the GOLLGR regression for X are defined by

δi = exp(v>i λ2)− 1 and θi = exp(v>i λ1), i = 1, 2, . . . , n, (3.24)

where λ1 = (λ11, λ12 . . . , λ1p)> and λ2 = (λ21, λ22, . . . , λ2p)> are vectors of unknown coeffi-
cients, and v>i = (vi1, vi2, . . . , vip) is a vector of known explanatory variables.



Chilean Journal of Statistics 13

The survival function of X comes from Equation (2.6) as

S(xi|v) = [1− γ1(δi + 1, θi x2
i )β]α

γ1(δi + 1, θi x2
i )αβ + [1− γ1(δi + 1, θi x2

i )β]α . (3.25)

Equation (3.25) opens new possibilities for fitting different types of regressions. The odd
log-logistic GR (OLLGR) regression follows when β = 1, the exponentiated GR (EGR)
regression when α = 1, and the GR regression when β = α = 1.

Let Xi be the lifetime and Ci be the non-informative censoring time (assuming indepen-
dent), and xi = min{Xi, Ci}. The total log-likelihood function for η = (α, β,λ>1 )> from
regression given in Equation (3.24) is

l(η) =r log
(

αβ 2
Γ(δi + 1)

)
+ (δi + 1)

∑
i∈F

log(θi) + (2 δi + 1)
∑
i∈F

log(xi)−
∑
i∈F

θix
2
i

+ (αβ − 1)
∑
i∈F

log[γ1(δi + 1, θi x2
i )] + (α− 1)

∑
i∈F

log[1− γ1(δi + 1, θi x2
i )β]

− 2
∑
i∈F

log
{
γ1(δi + 1, θi x2

i )αβ + [1− γ1(δi + 1, θi x2
i )β]α

}

+
∑
i∈C

log
(

[1− γ1(δi + 1, θi x2
i )β]α

γ1(δi + 1, θi x2
i )αβ + [1− γ1(δi + 1, θi x2

i )β]α

)
, (3.26)

where F and C are the sets of observed lifetimes and censoring times, r is the number
of uncensored observations (failures). The MLE η̂ of the vector of unknown parameters
can be found by maximizing Equation (3.26). Here, we use the gamlss package in R (R
Core Team., 2022) described in the generalized additive model class for location, scale
and shape (Rigby et al., 2005). These models are able to model any of the parameters,
location, scale and/or shape, depending on the covariates but without the condition of
belonging to any family, such as exponential for example. We choose this package because
it basically has two algorithms for maximization: CG (Cole et al., 1992) and RS (Rigby
et al., 2005) which guarantee convergence with simple initial values. We work with the
RS algorithm. We make available the gamlss framework of this new distribution at https:
//github.com/gabrielamrodrigues/GOLLGR. From this script, it is possible to extend our
regression model with non-parametric covariate effects, random effects, or other additive
terms, and also model other shape parameters, if necessary.

3.2 Residual analysis

The quantile residuals (qrs) (Dunn and Smyth, 1996) have been adopted frequently in
regression applications to verify possible deviations from the model assumptions. For the
proposed regression, they are

qri = Φ−1

 γ1(δ̂i + 1, θ̂ix2
i )α̂β̂

γ1(δ̂i + 1, θ̂ix2
i )α̂β̂ +

[
1− γ1(δ̂i + 1, θ̂ix2

i )β̂
]α̂
 , (3.27)

where Φ−1(·) is the standard normal QF.

https://github.com/gabrielamrodrigues/GOLLGR
https://github.com/gabrielamrodrigues/GOLLGR
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4. Simulations

In this section, simulation studies are presented by using gamlss package in R software.

4.1 The GOLLGR distribution

For the first study, we verify the accuracy of the MLEs from 10,000 replicates generated
from Equation (2.10) for sample sizes n = 50, 150 and 500 according to the two scenarios
below:

• Scenario 1: Symmetric unimodal density X ∼ GOLLGR(α = 1.2, β = 1.5, δ = 1.5, θ = 5);
• Scenario 2: Bimodal density with asymmetry X ∼ GOLLGR(α = 0.3, β = 1.5, δ =

1.5, θ = 5).

PDF plots for each scenario are reported in Figure 3. The average estimates (AEs), biases
and mean squared errors (MSEs) of the MLEs are calculated from:

AE(η̂) = 1
r

r∑
i=1

η̂i, Bias(η̂) = 1
r

r∑
i=1

(η̂i − ηi), MSE(η̂) = 1
r

r∑
i=1

(η̂i − ηi)2, (4.28)

where η̂> = (α, β, δ, θ) and r = 10, 000.
Table 1 shows that the AEs converge to the true parameters and the biases and MSEs

decay when n increases for both scenarios.
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Figure 3. PDF of X generated for scenarios 1 (a) and 2 (b).

4.2 The GOLLGR regression

The second study examines the accuracy of the MLEs in the proposed regression. Three
censoring percentages are taken (approximately) as 0%, 10% and 30% for n = 100, 300 and
500. For each combination, we generate 10,000 replicates. The lifetimes x∗1, x∗2, . . . , x∗n are
generated from the GOLLGR distribution (αi, βi, δi, θi) and the censoring times c1, c2, . . . , cn
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Table 1. Simulation results from the GOLLGR distribution for each scenario (S).

S η
True n = 50 n = 150 n = 500

value AEs Biases MSEs AEs Biases MSEs AEs Biases MSEs

1
δ 1.5 1.5050 0.0050 0.0261 1.5010 0.0010 0.0088 1.5001 0.0001 0.0027
θ 5.0 5.0129 0.0129 0.0116 5.0038 0.0038 0.0034 5.0012 0.0012 0.0012
α 1.2 1.2289 0.0289 0.0184 1.2097 0.0097 0.0056 1.2030 0.0030 0.0016
β 1.5 1.5271 0.0271 3.9553 1.5020 0.0020 0.0007 1.5011 0.0011 0.0026

2
δ 1.5 1.5903 0.0903 0.4930 1.5323 0.0323 0.1285 1.5154 0.0154 0.0342
θ 5.0 5.2360 0.2360 0.8387 5.0782 0.0782 0.2072 5.0213 0.0213 0.0635
α 0.3 0.3015 0.0015 0.0024 0.3004 0.0004 0.0008 0.3003 0.0003 0.0002
β 1.5 1.6458 0.1458 0.6741 1.5473 0.0473 0.1338 1.5077 0.0077 0.0285

from a uniform distribution (0, ν), where ν controls the censoring percentage. We include a
covariate v1i ∼ Binomial(1, 0.5), where v1i is taken in two groups (0 and 1) in the systematic
components:

δi = exp(λ10+λ11v1i)−1, θi = exp(λ20+λ21v1i), αi = exp(λ30), βi = exp(λ40). (4.29)

The true parameter values are: λ10 = 0.65, λ11 = 2.75, λ20 = 0.55, λ21 = 1.75, λ30 = 0.37
and λ40 = 0.61. The AEs, biases and MSEs of the MLEs are calculated from Equation
(4.28), where η̂> = (λ̂10, λ̂11, λ̂20, λ̂21, λ̂30, λ̂40).

The simulation process follows as:
(i) Generate v1i ∼ Binomial(1, 0.5);
(ii) Calculate δi and θi from the systematic components given in Equation (4.29);
(iii) Generate ui ∼ U(0, 1);
(iv) The previous steps give x∗i ’s from (2.10);
(v) Generate ci ∼ uniform(0, ν) and determine the survival times xi = min(x∗i , ci). If

x∗i < ci, then γi = 1; otherwise, γi = 0 (for i = 1, 2, . . . , n), where γi is the censoring
indicator;

(vi) Obtain the MLEs and calculate the AEs, biases and MSEs from Equation (4.28).
The numbers in Table 2 reveal that the AEs converge to the true values, and the biases

and MSEs decrease when n increases, thus indicating the consistency of the estimators for
these censoring percentages.

Table 2. Simulation results from the GOLLGR regression model.
n = 100 n = 300 n = 500

% η AEs Biases MSEs AEs Biases MSEs AEs Biases MSEs

0%

λ10 0.6495 -0.0005 0.0095 0.6507 0.0007 0.0032 0.6508 0.0008 0.0019
λ11 2.7500 -0.0000 0.0120 2.7491 -0.0009 0.0040 2.7490 -0.0010 0.0023
λ20 0.5495 -0.0005 0.0117 0.5509 0.0009 0.0040 0.5510 0.0010 0.0023
λ21 1.7502 0.0002 0.0134 1.7489 -0.0011 0.0045 1.7489 -0.0011 0.0027
λ30 0.3861 0.0161 0.0084 0.3753 0.0053 0.0027 0.3729 0.0029 0.0016
λ40 0.6123 0.0023 0.0046 0.6110 0.0010 0.0012 0.6110 0.0010 0.0007

10%

λ10 0.6581 0.0081 0.0116 0.6533 0.0033 0.0043 0.6519 0.0019 0.0024
λ11 2.7419 -0.0081 0.0119 2.7467 -0.0033 0.0043 2.7481 -0.0019 0.0025
λ20 0.5591 0.0091 0.0104 0.5531 0.0031 0.0038 0.5520 0.0020 0.0022
λ21 1.7408 -0.0092 0.0106 1.7469 -0.0031 0.0038 1.7480 -0.0020 0.0022
λ30 0.3755 0.0055 0.0019 0.3711 0.0011 0.0003 0.3707 0.0007 0.0002
λ40 0.6103 0.0003 0.0001 0.6100 -0.0000 0.0000 0.6100 0.0000 0.0000

30%

λ10 0.6578 0.0078 0.0128 0.6529 0.0029 0.0043 0.6518 0.0018 0.0025
λ11 2.7422 -0.0078 0.0128 2.7471 -0.0029 0.0043 2.7481 -0.0019 0.0025
λ20 0.5582 0.0082 0.0114 0.5525 0.0025 0.0038 0.5520 0.0020 0.0022
λ21 1.7418 -0.0082 0.0116 1.7475 -0.0025 0.0039 1.7481 -0.0019 0.0023
λ30 0.3705 0.0005 0.0000 0.3701 0.0001 0.0000 0.3700 0.0000 0.0000
λ40 0.6100 0.0000 0.0000 0.6100 0.0000 0.0000 0.6100 0.0000 0.0000

True values: λ10 = 0.65, λ11 = 2.75, λ20 = 0.55, λ21 = 1.75, λ30 = 0.37 and λ40 = 0.61.
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5. Applications

We perform two applications and compare the GOLLGR model with its submodels GR,
EGR, OLLGR and with the Maxwell, Rayleigh, Chi-square, Half-normal, Weibull and In-
verse gamma models. We calculate the MLEs, and the criteria: Akaike Information Criterion
(AIC), Consistent Akaike Information Criterion (CAIC), and Bayesian Information Crite-
rion (BIC).

5.1 Application 1: Voltage data

We consider the times of failure and running times for a field-tracking study (Meeker and
Escobar, 1998). The failure times and operating times for a sample of devices from a field
tracking system study. At a given time, 30 units are determined for each failed unit. The
S-mode failures are caused by an accumulation of random damage caused by voltage spikes
on the power line during electrical storms, thus resulting in early life. The W Mode failures,
caused by normal product wear and tear, started to appear after 100,000 usage cycles.

Table 3 provides a descriptive summary of the failure times which have negative kurtosis.
This fact can justify distributions with heavier tails required to be used to model these data.
It can be seen that the mean value is smaller than the median and negative skewness, thus
indicating a negative asymmetric distribution.

Table 3. Descriptive analysis for voltage data.

Data n Mean Median Mode s.d. Skewness Kurtosis Min. Max.
Times 30 177.03 196.5 300 114.99 -0.2992 -1.6087 2 300

of failure

We fit the Rayleigh distribution (α = β = 1) to find initial values for θ and δ. All
computations are done through the NLMIXED subroutine in SAS. Table 4 lists the MLEs
(their standard errors in parentheses), and the previous measures, which reveal that the
GOLLG distribution can be chosen as the best model.

The likelihood ratio (LR) statistics in Table 5 indicate that the GOLLGR distribution is
the best model among the others. The histogram and the plots of the estimated densities
in Figure 4(a), and those of the empirical and estimated survival functions in Figure 4(b)
support the previous conclusion.

We note extremum problems (see Figure 4(a)) in the histogram of these data, i.e., there
are two peaks (two modes) at the beginning and end of the experiment. Also, from Figure
4(a), we can clearly note that the proposed distribution fits well to these two modes.

5.2 Application 2: COVID-19 data

The second application refers to lifetimes of individuals diagnosed with COVID-19 (Coro-
navirus Disease 1999) (Galvão and Roncalli, 2021). Since it was declared an international
health emergency, many studies have been conducted to obtain information about the clin-
ical, epidemiological and prognostic aspects of the disease; see, for example, Cordeiro et al.
(2021a), Cordeiro et al. (2021b) and Marinho et al. (2021).

In Brazil, the epidemiological data are disclosed by the Health Information System (avail-
able in: https://opendatasus.saude.gov.br/en/dataset/srag-2021-e-2022. In this analysis, we
work with the gamlss package of R. The codes and dataset used here are available at:
https://github.com/gabrielamrodrigues/GOLLGR.

https://opendatasus.saude.gov.br/en/dataset/srag-2021-e-2022
https://github.com/gabrielamrodrigues/GOLLGR
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Table 4. Findings for voltage data.

Model α β δ θ AIC CAIC BIC

GOLLGR 0.0970 0.1663 30.5610 0.0008 353.6 355.2 359.2
(0.0185) (0.0517) (0.0203) (0.00002)

OLLGR 0.0246 1 37.0100 0.0010 383.2 384.1 387.4
(0.0041) (0.0070) (0.00006)

EGR 1 0.0133 35.3427 0.00019 366.5 367.4 370.7
(0.0014) (0.0051) (0.00003)

GR 1 1 -0.5079 0.000011 368.4 368.8 371.2
(0.1147) (5.1E-6)

λ 0
Rayleigh 210.06 380.1 380.2 381.5

(19.1758)
λ 1/2

Maxwell 121.28 405.2 405.3 406.6
(9.0394)

τ n

Chi-square 211.74 0.9841 368.4 368.8 371.2
(35.5963) (0.2095)

σ -1/2
Half-normal 420.11 366.4 366.5 367.8

(54.2363)

Table 5. LR statistics for voltage data.

Model Hypotheses LR statistic p-value
GOLLGR vs OLLGR H0 : β = 1 vs H1 : H0 is false 23.2 <0.00001

GOLLGR vs EGR H0 : α = 1 vs H1 : H0 is false 6.5 0.0001
GOLLGR vs GR H0 : β = α = 1 vs H1 : H0 is false 10.4 <0.00001

In this study, 881 patients infected by the virus are considered, confirmed by the RT-PCR
test method. The participants consisted of hospitalized patients and outpatients living in
the city of Campinas (Brazil) in January and February 2021. The survival consisted of the
interval between the first symptoms until the date of death due to COVID-19 (failure).
Deaths due to other causes or after the is 73.6%. Equation (3.24) is considered with factors
associated with the highest risk of death. The results are compared with the OLLGR, EGR
and GR sub-regressions.

The following variables were considered for each patient (i = 1, 2, . . . , 881):

• xi: time until death due to COVID-19 (in days);
• censi: censoring indicator (0 = censored, 1 = observed lifetime);
• vi1 : age (in years);
• vi2 : diabetes mellitus (0= no or not reported, 1= yes).
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Figure 4. Estimated densities (a); and Empirical and estimated survival functions (b) for voltage data.

The total number of patients suffering from the comorbidity diabetes was 264 (29.97%),
among whom 104 (39.39%) died. In turn, of the 617 patients (70.03%) without the disease
or who did not report it, 128 (20.75%) died. Figure 5 presents the Kaplan-Meier survival
curve, showing the greater risk of death among patients suffering from diabetes.
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Figure 5. Kaplan-Meier survival curve for the variable diabetes mellitus (1 = yes, 0 = no or not informed).

Table 6 reveals the descriptive statistics according to the diabetes variable. We can verify
asymmetry and positive kurtosis for the presence or absence of the disease. Figure 6 displays
the histogram of the age variable which indicates a higher frequency of hospitalized patients
aged between 55 and 75 years.
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Table 6. Descriptive analysis for COVID-19 data.

Diabetes n Mean Median s.d. Skewness Kurtosis Min. Max.
0 617 20.49 16.00 14.02 2.08 8.10 1.00 89.00
1 264 21.56 18.00 14.19 2.40 11.82 3.00 108.00

Age (years)

F
re

q
u

e
n

c
y

0 20 40 60 80 100

0
2

0
4

0
6

0
8

0
1

0
0

Figure 6. Histogram of the covariate “age”.

The covariates are related to the GOLLGR model and its submodels according to the
systematic components:

δi = exp(λ10 + λ11v1i + λ12v2i)− 1, θi = exp(λ20 + λ21v1i + λ22v2i). (5.30)

Note that the Maxwell, Rayleigh and Half-normal models have one positive scale parameter.
So, we use the logarithm link function to relate the covariates, just like for δ in (5.30). For
the Weibull and Inverse Gamma distributions that have two positive parameters, we adopt
the logarithm function to link the covariates to the two parameters.

The statistics in Table 7 support that the GOLLGR regression can be chosen as the best
model. Further, the LR statistics in Table 8 indicate that the wider regression yields the
best fit. Table 9 reports the MLEs (SEs in parentheses) from the fitted GOLLGR regression.

Table 7. Findings from the fitted regressions to COVID-19 data.

Model AIC BIC CAIC
GOLLGR 2222.54 2260.78 2237.66

OLLGR 2237.73 2271.19 2262.63
EGR 2240.17 2273.63 2265.07

GR 2238.66 2267.34 2273.34
Maxwell 2282.49 2317.18 2299.84
Rayleigh 2236.72 2271.40 2254.06

Half-normal 2342.07 2376.76 2359.41
Weibull 2236.85 2265.54 2271.54

Inverse gamma 2240.60 2269.28 2275.28
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Table 8. LR statistics for COVID-19 data.

Model Hypotheses LR statistic p-value
GOLLGR vs OLLGR H0 : β = 1 vs H1 : H0 is false 17.1915 <0.00001

GOLLGR vs EGR H0 : α = 1 vs H1 : H0 is false 19.6298 <0.00001
GOLLGR vs GR H0 : β = α = 1 vs H1 : H0 is false 20.1202 <0.00001

Table 9. Results from the fitted GOLLGR regressions to COVID-19 data.

MLE SE p-value
λ10 -0.3599 0.0289 <0.0001
λ11 -0.0028 0.0006 <0.0001
λ12 0.0468 0.0359 0.1920
λ20 -10.1148 0.1176 <0.0001
λ21 0.0480 0.0022 <0.0001
λ22 0.3331 0.0774 <0.0001

log(α) -0.9748 0.0130
log(β) 2.0127 0.0130

Figure 7 provides the plots of the quantile residuals (qri’s) (3.27). The residual index plot
(Figure 7(a)) reveals that the qrs have a random behavior and that only four observations
are outside the [−3, 3] range. The normal probability plot with simulated envelope for the
qr′s (Figure 7(b)) indicates that the residuals follow approximately a normal distribution
and does not show any points outside the envelope, which support the fitted regression.
Thus, there is no evidence against the GOLLGR regression assumptions.
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Figure 7. Index plot of the qri’s (a), and Normal probability plots with simulated envelope of the qri’s (b) for
COVID-19 data.

We conclude from Table 9 that:

• The covariate age is significant (λ11), thus indicating that older individuals tend to have
a progressively shorter period until death due to this coronavirus. Further, the age is
significant for the variability of survival times (λ21).

• There is no significant difference between patients with or without diabetes mellitus in
terms of time to death due to COVID-19 (λ12). On the other hand, there is a significant
difference in relation to the variability of the time until death due to the coronavirus when
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comparing patients with or without diabetes mellitus (λ22). So, the patients with diabetes
mellitus have greater variability regarding the time of death from COVID-19 compared
to patients who do not have diabetes mellitus.

6. Conclusions, limitations, and future research

We introduced the generalized odd log-logistic generalized Rayleigh distribution and studied
some of its structural properties. The new distribution generalizes some models studied
recently in the literature. It is important for the analysis of asymmetric and bimodal lifetime
data. The estimation of parameters is approached by the maximum likelihood method and
the observed information matrix is derived. We proposed a new regression model based on
the generalized odd log-logistic generalized Rayleigh distribution for censored data. The
usefulness of the new models is illustrated by means of two real data sets via classical
criterion. Future research using the proposed distribution can be directed to study other
estimation methods such as Bayesian and Jackknife. Regarding the generalized odd log-
logistic generalized Rayleigh regression model, the diagnostic analysis can be discussed to
study its robustness in relation to possible influential points and construct regression models
with random effects based on the new distribution. Finally, we can extend the proposed
regression model to the multivariate case.

Appendix. Proofs

Proof of Proposition 2.3 By differentiating Equation (2.12) with respect to x, we
obtain

f(x;α, β, δ, θ) = fY (T (x); 1, α)T ′(x), Y ∼ LL(1, α). (6.31)

Then, the derivative of f(x;α, β, δ, θ) is

f ′(x;α, β, δ, θ) = f ′Y (T (x); 1, α)[T ′(x)]2 + fY (T (x); 1, α)T ′′(x). (6.32)

Since

f ′Y (t; 1, α) = −fY (t; 1, α)r[t] with r[t] = tα + α(tα − 1) + 1
t(tα + 1) ,

Equation (6.32) can be expressed as

f ′(x;α, β, δ, θ) = fY (T (x); 1, α)
{
T ′′(x)− r[T (x)][T ′(x)]2

}
,

where

T ′(x) = βgGR(x; δ, θ)T (x)
GGR(x; δ, θ)[1−GGR(x; δ, θ)β] ,

T ′′(x) = T ′(x)
{
g′GR(x; δ, θ)
gGR(x; δ, θ) + gGR(x; δ, θ) (β + 1)GGR(x; δ, θ)β + β − 1

GGR(x; δ, θ)[1−GGR(x; δ, θ)β]

}
,
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and

g′GR(x; δ, θ)
gGR(x; δ, θ) = 2δ + 2θx2 − 1

x
.

Then,

f ′(x;α, β, δ, θ) = fY (T (x); 1, α)T ′(x) g
′
GR(x; δ, θ)
gGR(x; δ, θ)

+fY (T (x); 1, α)T ′(x) gGR(x; δ, θ)
GGR(x; δ, θ) [T (x)+1]

{
(β + 1)GGR(x; δ, θ)β−αβ

[
T (x)α − 1
T (x)α + 1

]
−1
}
.

Equation (6.31) gives fY (T (x); 1, α)T ′(x) = f(x;α, β, δ, θ), which is a positive function.
Hence, any critical point of the PDF of X satisfies the non-linear equation:

g′GR(x; δ, θ)
gGR(x; δ, θ) + gGR(x; δ, θ)

GGR(x; δ, θ) [T (x) + 1]
{

(β + 1)GGR(x; δ, θ)β − αβ
[
T (x)α − 1
T (x)α + 1

]
− 1

}
= 0.

The previous equation provides the required result.

Proof of Proposition 2.5 If Y ∼ LL(1, α), by Equation (2.12), F (x;α, β, δ, θ) = P(Y ≤
T (x)). Moreover, it is well-known that P(Y ≤ y) = yα/(1 + yα). Then, from the definition
given in Equation (2.13) of T , we have (for any t > 0),

e−tx

1− F (x;α, β, δ, θ) = e−tx

1− P(Y ≤ T (x)) = e−tx[1 + T (x)α]

≥ e−txT (x)α = e−txGGR(x; δ, θ)αβ[
1−GGR(x; δ, θ)β

]α . (6.33)

The L’Hospital’s rule yields

lim
x→∞

e−tx[
1−GGR(x; δ, θ)β

]α = lim
x→∞

t
[

e−tx

gGR(x;δ,θ)
]

αβ
[
1−GGR(x; δ, θ)β

]α−1
GGR(x; δ, θ)β−1

. (6.34)

Since (for α ≥ 1),

lim
x→∞

e−tx

gGR(x; δ, θ) =
[ 2θδ+1

Γ(δ + 1) x
2δ+1 e−θx

2+tx
]−1

=∞

and limx→∞GGR(x; δ, θ) = 1. We have from Equation (6.34)

lim
x→∞

e−tx[
1−GGR(x; δ, θ)β

]α =∞.

Hence, by taking x→∞ for both sides of inequality given in Equation (6.33), the limit in
Equation (2.16) follows.
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Proof of Proposition 2.6 By inequality in Equation (6.33), it is enough to prove

lim
x→∞

e−tx[
1−GGR(x; δ, θ)β

]α = lim
x→∞

1
etx
[
1− γ1(δ + 1, θx2)β

]α =∞. (6.35)

Indeed, by using the Cp inequality:

∀x, y ≥ 0; (x+ y)p ≤ Cp(xp + yp), where p > 0 and Cp = max{1, 2p−1};

we have (for 0 < β ≤ 1)

1− γ1(δ + 1, θx2)β ≤ [1− γ1(δ + 1, θx2)]β = Γ1(δ + 1, θx2)β, (6.36)

where Γ1(p, x) = Γ(p)−1 ∫∞
x wp−1 e−wdw is the upper incomplete gamma function ratio.

By using the inequality of Natalini and Palumbo (2000): for a > 1, B > 1 and x >
B(a− 1)/(B − 1),

Γ(a, x) < B xa−1 e−x;

we have (for x >
√
Bδ/[θ(B − 1)] and δ > 0)

Γ1(δ + 1, θx2)β < Bβ θβδ Γ(δ + 1)−βx2βδ e−βθx
2
. (6.37)

By combining Equations (6.36) and (6.37), we obtain (for any x >
√
Bδ/[θ(B − 1)])

etx
[
1− γ1(δ + 1, θx2)β

]α
< BαβθαβδΓ(δ + 1)−αβx2αβδe−αβθx

2+tx.

Letting x → ∞ in the above inequality, we have etx
[
1 − γ1(δ + 1, θx2)β

]α tends to zero,
proving the limit in Equation (6.35). Thus, we complete the proof.
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