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Abstract

The distribution of the square of the sample multiple correlation coefficient, R2, can be
expressed as a negative binomial mixture of the central incomplete beta function and
used to test hypotheses about the population correlation coefficient. Efficient algorithms
for obtaining the distribution function were proposed, but no report was found in lit-
erature on algorithms for obtaining the inverse of the distribution and for calculating
the noncentrality parameter. In this study we propose an algorithm that combines the
method proposed by Benton and Krishnamoorthy (2003) with the inversion of the distri-
bution function with respect to the noncentrality parameter, using the Newton-Raphson
method. Such method provides mechanisms for obtaining confidence intervals for the
population multiple correlation coefficient. Furthermore, this algorithm can be used to
calculate minimal detectable differences in tests of hypotheses with a given pre-specified
power. The algorithm is proposed and successfully implemented in R. Applications to
soil data collected through BiosBrasil project and to state.x77 R dataset are used to
illustrate its use while obtaining confidence interval for the coefficient of determination
in multiple regression models.

Keywords: Algorithm · Coefficient of determination · Incomplete beta function
· Negative binomial.
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1. Introduction

In applied research regression models are widely used to describe the relationship between
one or more predictor variables and the response variable. The multiple correlation coef-
ficient generalizes the correlation coefficient and is used in multiple regression analysis to
assess the goodness of fit of the model. For a set of variables following a multivariate nor-
mal distribution, this coefficient represents the maximum correlation between a response
variable, Y , and a linear combination of predictor variables. The square of the sample mul-
tiple correlation coefficient, that is, the coefficient of determination, denoted R2, measures
the proportion of total variation explained by the regression. Its distribution is useful, for
example, in hypothesis testing on the multiple correlation coefficient of the population, ρ.
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The distribution of the square of the sample multiple correlation coefficient (Muirhead,
1982; Benton and Krishnamoorthy, 2003) is placed within the framework of noncentral dis-
tributions. These distributions are generalizations of the corresponding central distributions,
through the addition of the noncentrality parameter.

The gamma and beta noncentral distributions as well as those derived from them (non-
central t, F , chisquare and the distribution of the square of the sample multiple correlation
coefficient) play an important role in statistics. All of them can be expressed as discrete
mixtures of continuous distributions given by the general formula

P (X ≤ x) =
∞∑
i=0

P (Y = i|δ)FZ(x; θi), (1.1)

where X is a continuous random variable, Y is a discrete random variable, δ is the non-
centrality parameter related to the random variable Y, FZ is the cumulative distribution
function of the continuous variable Z, which dependents on the parameter vector θi and
P (Y = i|δ) is the probability mass function of Y , given the ith value and the noncentrality
parameter δ.

As pointed out by Baharev and Kemény (2008) and Benton and Krishnamoorthy (2003),
when the noncentrality parameter is large many of the existing algorithms for noncentral
distributions produce incorrect results. In the calculation of the distribution function they
are based on computing recursively the probabilities of the mixture from i = 0, which may
lead to several problems: i) if the mean of the discrete random variable Y is very large,
P (Y = 0|δ) will be very small and underflow errors can occur; ii) the processing time of
this algorithm increases excessively as the mean of Y increases; iii) the algorithm can be
inefficient to be used as auxiliary algorithm while calculating percentiles, confidence intervals
and noncentrality parameters.

A way to overcome the aforementioned problems is to start the calculation at the point
k = dE(Y )e, where the operator dxe is the ceiling function that returns the smallest integer
not less than x Benton and Krishnamoorthy (2003). In general, the dominant series in
Equation (1.1) is the probability P (Y = i|δ) of the discrete random variable Y , which
has its maximum close to E(Y ). Then the probabilities for the other terms of the sum
are computed recursively from that point. A second alternative, proposed by Baharev and
Kemény (2008), computes the distribution function recursively from the interval limited by
two integers k1 and k2, obtained from the discrete part of the mixture. These authors used
the Newton-Raphson method for obtaining the noncentrality parameter δ of the noncentral
beta distribution. Combining these ideas, Oliveira and Ferreira (2012) proposed algorithms
for the noncentral gamma, the generalization of the noncentral chisquared distribution.
Their method was implemented as a R package denoted ncg (Ferreira et al., 2012).

Computational methods to obtain the distribution of the square of the sample multiple
correlation coefficient were presented by Benton and Krishnamoorthy (2003). However, no
report was found on methods for calculating the noncentrality parameter of this distribu-
tion. Such a method could be used while obtaining confidence intervals for the coefficient
of determination, which is widely used in applied research. The problem of constructing
confidence interval for the squared multiple correlation coefficient (ρ2) is known. In 1972,
Lee (1972) provided percentage points for the distribution of squared sample multiple cor-
relation coefficient, r2, which allows exact confidence intervals for ρ2 using the pivoting the
distribution function approach. Confidence intervals can be obtained through the calculator
that accompanies the book by Krishnamoorthy (2006). Furthermore, Krishnamoorthy and
Xia (2008) have provided a method computing sample size to obtain the exact confidence
interval within a given precision.

In this paper, we propose an algorithm that uses both the Benton and Krishnamoorthy
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(2003) and Newton-Raphson methods for the inversion of the noncentral cumulative distri-
bution function of the square of the sample multiple correlation coefficient with respect to
the noncentrality parameter.

The paper is organized as follows. A review of the distribution of the square of the multiple
correlation coefficient is the subject of the following section. Section 3 presents the recursive
methods used in the proposed algorithm, which is presented in Appendix A. In Section 4
we use this algorithm to calculate confidence intervals for the coefficient of determination in
multiple regression models. . Soil data sampled in Amazonas state through BiosBrasil project
and the state.x77 R dataset are then used. A Monte Carlo study is performed in Section
5 to evaluate the coverage probability of the confidence intervals. The R implementation is
given in Appendix B.

2. The distribution of the square of the sample multiple correlation
coefficient

Let X = [X1, X2, · · · , Xp, Xp+1]> be a random vector with variance-covariance matrix Σ
(positive-definite) and the following partitions

X =
[
X1
X2

]
and Σ =

[
σ11 Σ12
Σ21 Σ22

]
,

where X2 = [X2, X3, · · · , Xp, Xp+1]> and Σ22 is p× p, so that Var(X1) = σ11, Cov(X2) =
Σ22, Cov(X1,X2) = Σ12 (1× p) and Σ21 = Σ>12.

The population multiple correlation coefficient between X1 and X2 (p × 1), denoted by
ρ, is the maximum correlation between X1 and the linear function a>X2 of X2. Therefore

ρ = max
a

Cov(X1,a
>X2)√

Var(X1)Var(a>X2)
= max

a

a>Σ21√
σ11a>Σ22a

.

The maximum is achieved when a = Σ−1
22 Σ21 and is given by

ρ =
(

Σ12Σ−1
22 Σ21

σ11

)1/2

,

where ρ is the absolute value of the ordinary coefficient of correlation (Muirhead, 1982).
Considering X ∼ Np+1(µ,Σ) and that µ is partitioned as X, then the conditional dis-

tribution of X1 given X2 = x2 is normal with mean and variance given by

E(X1|X2 = x2) = µ1 + Σ12Σ−1
22 (x2 − µ2)

Var(X1|X2 = x2) = σ11 −Σ12Σ−1
22 Σ21,

respectively.
Since E(X1|X2 = x2) can be viewed as the regression function of X1 on x2, the amount

of variability of X1 that can be reduced by conditioning on X2 = x2 is

σ2
X1.x2 = σ11 − Var(X1|X2 = x2) = σ11 −

(
σ11 −Σ12Σ−1

22 Σ21
)

= Σ12Σ−1
22 Σ21.
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Thus the square of the multiple correlation coefficient is defined by

ρ2 =
σ2
X1.x2

σ11
= Σ12Σ−1

22 Σ21

σ11
. (2.2)

Now consider a random sample X1, X2, . . ., Xn of size n from a (p + 1)-variate normal
distribution and set

W = (n− 1)S =
n∑
j=1

(
Xj − X̄.

) (
Xj − X̄.

)>
,

where S is the sample variance-covariance matrix and W is the sum of square and cross
products matrix. Consider partitions of W and S similar to those applied to X and Σ,
thus

W =
[
W11 W12
W21 W22

]
and S =

[
S11 S12
S21 S22

]
.

The square of the sample multiple correlation coefficient is defined as

R2 = W12W
−1
22 W21

W11
= S12S

−1
22 S21

S11
.

If the multivariate normal is the parental distribution, R2 will be the maximum likeli-
hood estimator of ρ2. Here the interest lies on the distribution of R2 in a sample from the
multivariate normal distribution, where the population square of the multiple correlation
coefficient, ρ2, is different from zero. The distribution function of R2 (Muirhead, 1982) is

FR2(x|p, n, ρ2) = P (R2 ≤ x|p, n, ρ2) =
∞∑
i=0

Γ[(n− 1)/2 + i]
Γ(i+ 1)Γ[(n− 1)/2]

(
ρ2)i (1− ρ2)(n−1)/2

×Ix(p/2 + i, (n− 1− p)/2), (2.3)

where the first factor in Equation (2.3) is the negative binomial probability function with
success probability 1 − ρ2, number of success (n − 1)/2 and number of fails i, ρ2 is the
noncentrality parameter corresponding to the population square of the multiple correlation
coefficient, 0 < x < 1 is the observed value of R2, Ix(p/2 + i, (n − 1 − p)/2) is the central
incomplete beta function with parameters α = p/2 and β = (n− 1− p)/2, n is the sample
size and p is the number of predictor variables. Note that this distribution is a special case
of Equation (1.1).

3. Theoretical aspects of the recursive computation

Since Benton and Krishnamoorthy (2003) have not present a specific algorithm for the
inverse of the R2 distribution with respect to the noncentrality parameter, we will do this
as follows. The maximum k of P (Y = i) occurs around the mean of the negative binomial
distribution and it is the smallest integer not less than the mean, that is

k =
⌈

(n− 1)ρ2

2(1− ρ2)

⌉
=
⌈

νρ2

2(1− ρ2)

⌉
,
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where dxe is the smallest integer not less than x and ν = n− 1. The sum in Equation (2.3)
is calculated recursively starting from the kth term. The following results can be used while
calculating the negative binomial probability function recursively from the ith point:

P (Y = i+ 1) = ν/2 + i

i+ 1 ρ2P (Y = i), i = 0, 1, 2, · · ·

P (Y = i− 1) = i

ν/2 + i− 1ρ
−2P (Y = i), i = 1, 2, 3, · · ·

At point k of the infinite sum in Equation (2.3), we define the following functions

g(x|α + k, β) = Γ(α + β + k − 1)
Γ(α + k)Γ(β) xα+k−1(1− x)β,

g(x|α + k + 1, β) = Γ(α + β + k)
Γ(α + k + 1)Γ(β)x

α+k(1− x)β,

and calculate the next term of the central incomplete beta function using forward calcula-
tions, that is,

Ix(α + k + 1, β) = Ix(α + k, β)− g(x|α + k, β)

×α + β + k − 1
α + k

x.

In the same way, backward computation of the central incomplete beta function can be done
by

Ix(α + k − 1, β) = Ix(α + k, β) + g(x|α + k + 1, β)

× α + k

(α + β + k − 1)x.

For the Newton-Raphson method, we obtain the first derivative of Equation (2.3) with
respect to ρ2, that is

dFR2(x|p, n, ρ2)
dρ2 =

∞∑
i=0

Γ(ν/2 + i)
(
ρ2)i (1− ρ2)ν/2

Γ(i+ 1)Γ(ν/2) Ix

(
p

2 + i,
ν − p

2

)[
2i(1− ρ2)− νρ2

2ρ2(1− ρ2)

]
. (3.4)

Observe that the ith term of the infinite series from Equation (3.4) is the value of the ith
term of the distribution function multiplied by ti, where

ti = 2i(1− ρ2)− νρ2

2ρ2(1− ρ2) .

The first derivative can be easily computed using forward and backward calculations,
which are, respectively,

ti+1 = ti + 1
ρ2 and ti−1 = ti −

1
ρ2 .

The proposed algorithm to obtain the noncentrality parameter, δ, is presented in Appendix
A. In the following section we illustrate its use while obtaining cconfidence intervals for the
coefficient of determination in multiple regression models.
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4. Application

In this section we consider soil data from BiosBrasil project (http://www.biosbrasil.ufla.
br/), which study site is located in Benjamin Constant, Amazonas State, Brazil. Data refer
to 30 observations of soil chemical variables from the land use system (LUS) young secondary
forest (Table 1).

Table 1. Data on soil chemical variables from the land use system (LUS) young secondary forest. Source:
BiosBrasil Project.

obs pH Ca Mg BS obs pH Ca Mg BS
1 4.4 3.1 2.1 5.3 16 5.0 5.1 2.2 7.4
2 4.6 4.1 2.4 6.8 17 5.1 7.3 1.7 9.2
3 5.2 8.3 2.6 11.1 18 5.1 8.5 3.6 12.3
4 4.4 5.2 2.3 7.7 19 4.7 5.2 1.9 7.3
5 5.0 8.5 4.1 12.8 20 4.6 5.0 2.5 7.7
6 4.9 4.2 2.5 6.9 21 4.8 7.8 2.2 10.3
7 4.9 10.5 4.8 15.5 22 4.6 4.4 2.1 6.6
8 4.8 6.9 3.1 10.4 23 5.2 7.9 3.1 11.2
9 4.3 3.4 1.6 5.3 24 5.4 7.0 2.3 9.6
10 4.4 2.6 1.8 4.5 25 4.8 5.0 2.5 7.6
11 5.3 7.6 2.1 10.0 26 4.7 2.9 1.2 4.4
12 4.6 5.4 3.6 9.2 27 5.0 6.4 2.6 9.1
13 4.7 4.9 2.1 7.2 28 4.9 5.7 1.2 7.0
14 5.8 10.4 4.8 15.5 29 5.1 7.3 2.2 9.6
15 5.4 7.1 2.2 9.5 30 4.8 6.2 1.8 8.2

Example 4.1 The response variable (Y ) is pH and the predictors variables are Ca, Mg and
base saturation. We assumed the linear model Y = β0 + β1Ca + β2Mg + β3BS + ε.

The fitted model is Ŷ = 4.176061 + 0.146359Ca − 0.109784Mg + 0.009647BS and the
square of the multiple correlation coefficient, R2, is 0.6106. The proposed algorithm was
implemented in R with code reported in Appendix B. We set x = 0.6106, ν = 26, p = 3,
prob = 0.975, for the lower limit, and prob = 0.025 for the upper limit of the confidence
interval. The estimated 95% confidence interval for ρ2 is

IC0.95(ρ2) : [0.257367, 0.777491].

For illustration purposes, we also apply our algorithm to high and low R2 values.

Example 4.2 Taking base saturation (BS) as response (Y ), Ca and pH as predictors, the
fitted model is Ŷ = 4.23622 + 1.41713Ca − 0.83616pH and R2 equals 0.9499. We set x =
0.9499, ν = 27, p = 2, prob = 0.975, for the lower limit, and prob = 0.025 for the upper
limit of the confidence interval. The estimated 95% confidence interval is

IC0.95(ρ2) : [0.8845673, 0.9748879].

Example 4.3 Finally, an application that results in a low R2 value is obtained with the
state.x77 data available in the datasets R package. Data refer to statistics (eight columns)
for the 50 states (rows) of the United States of America. We consider per capita income
(1974) as response (Y ), Life expectancy in years (1969 − 71), and murder and non-negligent
manslaughter rate per 100,000 population (1976) as predictors. The fitted model is Ŷ =

http://www.biosbrasil.ufla.br/
http://www.biosbrasil.ufla.br/
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−9027.01 + 188.36Life Exp + 15.19Murder and R2 equals 0.119. For this application, we set
x = 0.119, ν = 47, p = 2, prob = 0.975, for the lower limit, and prob = 0.025 for the upper
limit of the confidence interval. The estimated 95% confidence interval is

IC0.95(ρ2) : [0.001772758, 0.3047753].

5. Monte Carlo simulations

Monte Carlo simulations were performed to verify the accuracy of confidence intervals for ρ2.
Random samples of (p + 1)-dimensional multivariate normal distributions were generated
considering the sample sizes 30, 50, 100 and 200, and ρ2 = 0.1, 0.5 and 0.9. The random
vectors [Y |X>]> were simulated from a multivariate normal distribution, without loss of
generality, with vector mean 0 ((p+1)×1) and covariance matrix Σ = (1−ϕ)I+ϕJ , where
0 < ϕ < 1, I is an identity matrix of order p+ 1 and J is a unitary matrix (p+ 1)× (p+ 1).
The ϕ parameter was chosen after set the p value, to achieve a desired ρ2 by trial and error
using expression given in Equation (2.2). In each case, 1.000 samples were simulated and the
coverage probability of the 95% confidence intervals was computed. A 99% exact binomial
confidence interval of the coverage probability was computed to verify if the estimated level
differs from the nominal level of 95%. This interval was computed using the pseudo random
observation of 950 success obtained in 1.000 Monte Carlo simulations and was [0.9295,
0.9661]. Observed values that deviate from 0.95 but still are in this interval were considered
a Monte Carlo error.

Results from the simulation study are reported in Table 2. Note that in almost all cases,
the coverage probability is close to the confidence value and does not differ significantly
(P ≤ 0.01) from the nominal confidence level of 95%. Only in one case, the coverage prob-
ability was significantly smaller and in 3 cases, they were greater than the nominal level
of 95%, what is just a minor issue (Table 2). Then, for different sample sizes and strength
of relationship between the response and predictor variables, assuming (p+ 1)-dimensional
normality, the exact interval based on the proposed algorithm can be used while estimating
ρ2. A detected issue was due to the initial value of the noncentrality parameter, leading to
convergence problems in the simulation study. To mitigate this issue, we choose the sample
estimate to be the initial value in the algorithm. For example, for the case where ρ2 = 0.1,
n = 30 and p = 10, the coverage probability was 84.8% (Table 2). However, if we choose
a fixed value of 0.01 to the initial value for each simulation, the coverage probability was
93.7%, that can be considered exact. Therefore, additional studies are needed to further
understand the sensitivity in the choice of initial values.

Table 2. Coverage probability for 95% confidence intervals obtained through 1.000 Monte Carlo simulations
of multivariate normal distributions, considering different values of ρ2, p and n.

n
ρ2 p 30 50 100 200
0.1 5 0.950 0.934 0.957 0.962

10 0.848 0.938 0.951 0.950
0.5 5 0.958 0.972 0.945 0.951

10 0.926 0.974 0.970 0.961
0.9 5 0.969 0.944 0.952 0.950

10 0.957 0.968 0.958 0.944
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6. Conclusions, limitations and future research

The algorithm for obtaining the noncentrality parameter of the distribution of the square
of the sample multiple correlation coefficient was successfully proposed. Using real datasets,
we apply it to obtain confidence intervals for the coefficient of determination of multiple
regression models. For this, we use the R implementation, which is made available as Ap-
pendix B. Finally, a simulation study showed the good accuracy of the intervals obtained
under different scenarios, allowing its use in many real applications.

In the simulation study we detected an issue related to the initial value of the noncen-
trality parameter. Possibly it is related to the use of the built-in gamma function in R. Our
hypothesis is that a more precise implementation of this function would be enough to solve
this issue. We started to investigate this by implementing our algorithm in Java and no
such problem was detected. However, additional studies are needed.
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Appendix A: The algorithm

Using the expressions presented in Section 3 we propose the following algorithm to obtain
the noncentrality parameter, δ, of the R2 distribution.

(1) set 0 ≤ x ≤ 1, ν > 0, p > 0 and 0 ≤ prob ≤ 1;
(2) obtain α = p/2 and β = (ν − p)/2;
(3) set errtol = 1× 10−12 for the maximum error and maxitr for the maximum number of interactions;
(4) get an initial value of ρ2, given by dnew = d0(= x);
(5) set it = 1 and repeat steps (6) to (18) Nmax times;
(6) d = dnew and k = dνd/[2(1− d)]e;
(7) a = α+ k and b = β;
(8) betac = Ix(a, b) and betad = betac;

(9) gxc =
Γ(a+ b− 1)

Γ(a)Γ(b)
xa−1(1− x)b and gxd = gxc× (a+ b− 1)× x/a;

(10) tic = [2k(1− d)− νd]/[2d(1− d)] and tid = tic;
(11) calculate the kth term to the negative binomial probability and represent it by “pbnec” and “pbned” for

forward and backward computations as follow:
pbnec = exp{ln Γ(ν/2 + k)− ln Γ(k + 1)− ln Γ(ν/2) + k ln(d) + (ν/2) ln(1− d)} and pbned = pbnec;

(12) remain = 1− pbnec;
(13) cdf = pbnec× betac;
(14) calculate the first derivative at the kth term of the infinity series: g = pbnec× betac× tic;
(15) set i = 1;
(16) repeat steps (16)a to (16)t until convergence;

a) starting forward sum:
gxc = gxc× (a+ b+ i− 2)× x/(a+ i− 1);

b) betac = betac− gxc;
c) tic = tic+ 1/d;
d) pbnec = pbnec× d(ν/2 + k + i− 1)/(k + i);
e) cdf = cdf + pbnec× betac;
f) g = g + pbnec× betac× tic;
g) error = remain× betac;
h) remain = remain− pbnec;
i) getting backward sum, if there are still remaining terms. Thus,

if (i > k) then do:
if (error ≤ errortol) or (i > maxitr) go to step (17);
do i = i+ 1 and go to step (16);
end of if (i > k);

j) else (i ≤ k). There are still remaining terms for the backwards computations and the steps (16).(16)k
to (16).(16)t should be evaluate;

k) gxd = gxd× (a− i+ 1)/(x× (a+ b− i));
l) betad = betad+ gxd;

m) tid = tid− 1/d;
n) pbned = pbned× (k − i+ 1)/(d(ν/2 + k − i);
o) cdf = cdf + pbned× betad;
p) g = g + pbned× betad× tid;
q) remain = remain− pbned;
r) if (remain ≤ errortol) or (i > maxitr) go to (17);
s) i = i+ 1;
t) go to step (16);

(17) if d− (cdf − prob)/g ≤ 0, then dnew = d/2; else if d− (cdf − prob)/g ≥ 1, then dnew = d+ (1− d)/2; else
dnew = d− (cdf − prob)/g (Newton-Raphson’s step);

(18) if |dnew − d| ≤ d × tol, where tol = 1 × 10−12, then return dnew and exit; else go to step (6), updating
the interactions counter (it = it+ 1) before. Check if the maximum iterations Nmax has been exceeded. If
true, go to (19);

(19) print the error message: “iterative process did not converge in Nmax steps.”
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Note that the first two conditions in step (17) refers to a protection for the Newton-
Raphson step size. If the step size leads to a value to be used in the next step which is less
than zero or greater than 1, the method ignores the Newton-Raphson formula and uses the
expressions displayed in this step. Specifically, if the value for the new step is less than zero,
the current value of the noncentrality parameter is too distant and far greater than the true
value, which is the solution of the equation. Then, the value of the noncentrality parameter
is reduced by half. On the other hand, if the new value of the noncentrality parameter
exceeds 1 in the Newton-Raphson step, the value to be updated will be half the previous
value plus 1/2.

Appendix B: R functions

This appendix contains the R functions used in the paper. First we implement the function
lnFunGamaLanczos that should be used within the algorithm to obtain the noncentrality
parameter (inrho). The use of the proposed algorithm to obtain a confidence interval for
the coefficient of determination is illustrated. Finally, the R function to evaluate the coverage
probability of confidence intervals is also made available.

ln of gamma fuction

# lngamma function
lnFunGamaLanczos <- function(z)
{

Lanczos <- function(z)
{

lc <- c(5716.400188274341379136, -14815.30426768413909044,
14291.49277657478554025, -6348.160217641458813289,
1301.608286058321874105, -108.1767053514369634679,
2.605696505611755827729, -0.7423452510201416151527e-2,
0.5384136432509564062961e-7, -0.4023533141268236372067e-8)

if (z < 0.5) return(log(pi) - log(sin(pi * z)) - Lanczos(1.0 - z)) else
{

g <- 9.0
y <- z - 1.0
lnfg <- 1.000000000000000174663 #rho0
for (i in 1:10)
{

y <- y + 1.0
lnfg <- lnfg + lc[i] / y

}
t <- z + g - 0.5;
lnfg <- log(sqrt(2 * pi)) + (z - 0.5) *

log(t) - t + log(lnfg);
return(lnfg)

}
}
if (z <= 0) # reflection formula
{

lnfg <- log(pi) - log(abs(sin(pi * z))) - Lanczos(1.0 - z);
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} else lnfg <- Lanczos(z);
return(lnfg);

}

R function to obtain the noncentrality parameter of the distribution of
the square of the sample coefficient of correlation (R2)

inrho <- function(x,p,ni,prob)
{

if ((x <= 0) | (x >= 1)) stop("x should be between 0 and 1!")
if (ni < 0) stop("nu should be equal or greater than 0!")
if ((p <= 0)) stop("p should be greater than 0!")
alpha <- p / 2.0
beta <- (ni - p) / 2.0
b <- beta
errortol <- 1e-12
maxitr <- 5000
dn <- 0.237
it <- 1
convnewton <- FALSE
while (!convnewton)
{

d <- dn
k <- ceiling(ni * d/(2 * (1 - d)))
a <- alpha + k
betac <- pbeta(x, a, b)
betad <- betac
gxc <- lnFunGamaLanczos(a + b - 1) - lnFunGamaLanczos(a) - lnFunGamaLanczos(b)

+ (a - 1) * log(x) + b * log(1 - x)
gxc <- exp(gxc)
gxd <- gxc * (a + b - 1) * x / a
pbnec <- lnFunGamaLanczos(ni / 2 + k) - lnFunGamaLanczos(k + 1) -

lnFunGamaLanczos(ni / 2) + k * log(d) + (ni / 2) * log(1 - d)
pbnec <- exp(pbnec)
pbned <- pbnec
remain <- 1 - pbnec
cdf <- pbnec * betac
tic <- (2 * k *(1 - d)- ni * d) / (2 * d * (1 - d))
tid <- tic
g <- pbnec * betac * tic
i <- 1
convergiu <- FALSE
while (!convergiu)
{

gxc <- gxc * (a + b + i - 2) * x / (a + i - 1)
betac <- betac - gxc
tic <- tic + 1.0 / d
pbnec <- pbnec * d * (ni / 2 + k + i - 1) / (k + i)
cdf <- cdf + pbnec * betac
g <- g + pbnec * betac * tic
error <- remain * betac
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remain <- remain - pbnec
if (i > k)
{

if ((error <= errortol) | (i > maxitr)) convergiu <- TRUE
i <- i + 1

} else
{

gxd <- gxd * (a - i + 1) / (x * (a + b - i))
betad <- betad + gxd
tid <- tid - 1.0 / d
pbned <- pbned * (k - i + 1) / (d * (ni / 2 + k - i))
cdf <- cdf + pbned * betad
g <- g + pbned * betad * tid
remain <- remain - pbned
if ((remain <= errortol) | (i > maxitr)) convergiu <- TRUE
i <- i + 1

}
}#convergiu
if ((d - (cdf - prob) / g) <= 0) dn <- d / 2 else

if ((d - (cdf - prob) / g) >= 1) dn <- d + (1 - d) / 2.0 else
dn <- d - (cdf - prob) / g

if ((abs(dn - d) <= d * errortol) | (it > maxitr)) convnewton <- TRUE
it <- it + 1

}#convnewton
return(dn)

}#general

Confidence interval for R2: application to soil data

inrho(x=0.6106,p=3,ni=26,prob=0.975)

inrho(x=0.6106,p=3,ni=26,prob=0.025)

Coverage probability for confidence intervals

library(MASS)

pc <- function(N, n, p, rho)
{

S <- (1-rho)*diag(p+1) + rho*(matrix(1,p+1,p+1))
delta2 <- as.numeric(t(S[1,2:(p+1)])%*% solve(S[(2):(p+1),(2):(p+1)])%*%

S[1,2:(p+1)]/S[1,1])
cont <- 0
for (i in 1:N){
X <- mvrnorm(n,rep(c(0), times=p+1), S)
reg <- lm(X[,1]˜X[,2:(p+1)])
R2 <- summary(reg)$r.squared
nu <- anova(reg)[2,1]
if (delta2 >= inrho(R2,p,nu,0.975)
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& delta2 <= inrho(R2,p,nu,0.025)) {
y <- 1} else {y <- 0}
if (y==1) cont <- cont + 1/N

}
return(cont)

}

N <- 1000

Coverage probability when R2 = 0.5, p = 5 and n = 30

p <- 5
rho <- 0.5741657565656567
n <- 30
pc_05_5_30 <- pc(N, n, p, rho)


