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Abstract

About seventy years ago, Shannon (1948) introduced the concept of entropy, a measure
of uncertainty associated with the random variable X. Lad et al. (2015) identified that
Shannon’s entropy function has a complementary dual function, named as extropy. For
developing inferential aspects of this measure, in this work, we propose a log kernel
estimator for the new measure of uncertainty, extropy. Asymptotic properties of the
estimator is proved under suitable regularity conditions. A Monte Carlo simulation
study is explored to illustrate the performance of the proposed estimator. The methods
are illustrated using real data sets.
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1. Introduction

Shannon (1948), made his remarkable contribution in statistics by introducing the concept
of entropy, a measure of disorder in a probability distribution. Starting from the pioneer-
ing work of Shannon, different researchers have shown advantages of entropy in different
fields. Apart from statistics and thermodynamics, application of Shannon entropy varies
over diverse fields such as information theory, economics, finance, psychology, wavelet anal-
ysis, image recognition, computer sciences, fuzzy sets and so on. Inspite of its well known
applications, Shannon entropy possesses some demerits that have been suitably modified
by different researchers. Now one may use modified entropies which serve the same purpose
as that of using Shannon entropy. Because the modified entropies are improvement over
Shannon entropy in some sense, it is expected that the tests developed (or distribution es-
timated) based on the modified entropies will be better, which may be in terms of power of
the test or anything alike. Thus the literature on entropy has been developing for the last
seven decades. An excellent review of various variants on entropy and its inferential aspects
can be found in the book by Cover and Thomas (2006).

Surprisingly, after seventy years, Lad et al. (2015) discovered that the entropy measure
of a probability distribution has a dual measure, a complementary companion named as
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extropy. The authors motivation for finding such a measure came from their interest in the
use of proper scoring rules for assessing the quality of alternative probability distributions
asserted as forecasts of observable quantities of interest. Also they observed that the
entropy and the extropy of a binary distribution are identical and as in the case of entropy,
the maximum extropy distribution is the uniform distribution. As companions these two
measures associate as do the positive and negative images of a photographic film and they
contribute together to characterizing the information in a distribution in much the same
way. Following the work of Lad et al. (2015), the study of extropy has gained momentum
in theoretical perspective as well as in terms of its applications. Qiu (2017) developed
some interesting properties of extropy, including some characterization results using order
statistics and record values. Qiu and Jia (2018) proposed extropy estimators with appli-
cations in testing uniformity. Qiu et al. (2018) used extropy to compare the uncertainties
of two random variables and from applied perspective, Becerra et al. (2018) used extropy
in the methods of automatic speech recognition. For various variants of extropy one can
also refer Lad et al. (2018). While considering the inferential aspects of extropy, there is
a necessity to develop some reasonably good estimators for extropy. Hence in this work,
our aim is to develop a nonparametric estimator for extropy function using kernel type
estimation. For the survey of nonparametric estimation using kernel type estimation, one
may refer Azevedo and Oliveira (2011), Maya and Irshad (2019) and Maya and Irshad (2021).

The remaining part of the paper is organized as follows. In Section 2, we provide a non-
parametric log kernel estimator for extropy function and studied its asymptotic properties.
The empirical illustration of the proposed estimator is given in Section 3. The performance
of the proposed estimator is validated through a simulation study and are discussed here.
The conclusion is given in Section 4.

2. Log kernel estimator of extropy function

In the following subsection, we present the definition of entropy and extropy functions.

2.1 Entropy and extropy

Let X be a non-negative random variable admitting an absolutely continuous cumulative
distribution function (CDF) FX(x) and with probability density function (PDF) fX(x).
Then the Shannon entropy associated with X is defined as

H(X) = −
∞∫

0

fX(x) log fX(x)dx.

For a non-negative absolutely continuous random variable X with PDF fX(x), extropy is
defined as

J(X) = −1
2

∞∫
0

f2
X(x)dx.

In the next subsection, we look into some basics about the log-kernel density estimator
(log-KDE).
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2.2 Log kernel density estimator

Let X be a random variable having an unknown PDF fX(x). Assume that, A1: Support of
X is on R and A2: fX(x) is continuously differentiable. Suppose {Xi; 1 ≤ i ≤ n} be a
sequence of independently and identically distributed (iid) random variables. Then under
the assumptions A1 and A2, the most common kernel density estimator (KDE) of fX(x) is
given by (Parzen (1962) and Rosenblatt (1956)),

f̂(x) = 1
nh

n∑
i=1

K

(
x−Xi

h

)
,

where K(x) is the kernel function satisfying the conditions, B1:
∫
RK(x)dx = 1, B2:∫

R xK(x)dx = 0, B3:
∫
R x

2K(x)dx = 1 and B4:
∫
RK

2(x)dx < ∞ and h = hn is a band-
width sequence of positive numbers such that C1: hn → 0 and C2: nhn → ∞ as n → ∞.
KDE are inevitable tools for nonparametric estimation of PDF for real valued data sets.
When we deal with positive data, these usual KDEs do not provide bonafide PDFs. A log-
transformation methodology can be applied to produce a nonparametric estimator that is
appropriate and yields proper PDFs over positive supports, see Charpentier and Flachaire
(2015). Nguyen et al. (2018) called the KDE obtained using this transformation as log-KDE.
Nguyen et al. (2018) provided biases, variances and mean-squared errors (MSEs), mean in-
tegrated squared error (MISE) and asymptotic MISE results of log-KDE and demonstrate
the log-KDEs methodology via R package, logKDE.

The procedure developed for obtaining log-KDE by Nguyen et al. (2018) is explained in
the following steps. Here the assumption A1 is replaced by A∗1, where A∗1: Support of X is
on (0,∞). Let Y = logX, Yi = logXi, i = 1, 2, · · · , n and fY (y) be the PDF of Y . As a
result X is supported on (0,∞), then the support of fY (y) satisfies A1.

A log-KDE is given by (Nguyen et al. (2018))

f̂log(x) = x−1f̂Y log(x) = 1
nh

n∑
i=1

x−1K

(
log x− log Xi

h

)
= 1
n

n∑
i=1

L(x;Xi, h), (2.1)

where L(x; z, h) = (xh)−1K
(
log[(x/z)1/h]

)
is the log-kernel function with bandwidth h >

0, at location parameter z. For any z, h ∈ (0,∞), L(x; z, h) satisfies the conditions D1:
L(x; z, h) ≥ 0 for all x ∈ (0,∞) and D2:

∫∞
0 L(x; z, h)dx = 1 and by using the property D2,

we get
∫∞

0 fX(x)dx = 1, thus making Equation (2.1) a bonafide PDF on (0,∞). Under the
assumptions A1 and A2 regarding fY (y), A∗1 and A2 regarding fX(x) and B1 - B4 regarding
K(y), for y ∈ R, we have the bias and variance of f̂(y) as (Nguyen et al. (2018))

Bias[f̂(y)] = E[f̂(y)]− fY (y) = 1
2h

2f
(2)
Y (y) +O(h2),

Var[f̂(y)] = 1
nh
fY (y)

∫
R
K2(z)dz +O

(
(nh)−1

)
,

where an = o(bn) as n→∞ if and only if limn→∞|an/bn| = 0. Therefore, for any x ∈ (0,∞),
the bias and variance of f̂log(x) is given by

Bias[f̂log(x)] = E[f̂log(x)]− fX(x) = h2

2 {fX(x) + 3xf (1)
X (x) + x2f

(2)
X (x)}+O(h2),

Var[f̂log(x)] = 1
nhx

fX(x)
∫
R
K2(z)dz +O

(
(nh)−1

)
.
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2.3 Log kernel estimator for extropy function and some asymptotic
results

In this subsection, we propose a nonparametric log-kernel estimator (log-KE) for extropy
function.

As in the line of proposing Equation (2.1), here we propose a nonparametric log-KE for
extropy function and is given by

Ĵn(X) = −1
2

∞∫
0

f̂2
log(x)dx. (2.2)

In the following theorem, we study the consistency of our estimator Ĵn(X).

Theorem 2.1 Suppose Ĵn(X) is a log-KE of J(X) as defined in Equation (2.2). Then, it
can be concluded that Ĵn(X) is a consistent estimator of J(X). That is, as n→∞

Ĵn(X) = −1
2

{ ∞∫
0

f̂2
log(x)dx

}
p→ −1

2

{ ∞∫
0

f2
X(x)dx

}
= J(X).

Proof By using Taylor’s series expansion, the expressions for the bias and the variance of
∞∫
0
f̂2
log(x)dx are given by

Bias

( ∞∫
0

f̂2
log(x)dx

)
= h2

∞∫
0

fX(x)
{
fX(x) + 3xf (1)

X (x) + x2f
(2)
X (x)

}
dx+O(h2), (2.3)

Var

( ∞∫
0

f̂2
log(x)dx

)
= 4
nh
Ck

∞∫
0

f3
X(x)
x

dx+O
(
(nh)−1

)
, (2.4)

where Ck =
∫
RK

2(z)dz.
The corresponding MSE is given by

MSE

( ∞∫
0

f̂2
log(x)dx

)
=
(
h2
∞∫

0

fX(x)
{
fX(x) + 3xf (1)

X (x) + x2f
(2)
X (x)

}
dx

)2

(2.5)

+ 4
nh
Ck

∞∫
0

f3
X(x)
x

dx+O(h4) +O
(
(nh)−1

)
.

From Equation (2.5), as n→∞, MSE

(
∞∫
0
f̂2
log(x)dx

)
→ 0. Therefore,

Ĵn(X) = −1
2

{ ∞∫
0

f̂2
log(x)dx

}
p→ −1

2

{ ∞∫
0

f2
X(x)dx

}
= J(X).

That is, Ĵn(X) is a consistent estimator of J(X). Thus the theorem is proved. �
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The expressions for the bias and variance of the estimator Ĵn(X) is given in the following
theorem.

Theorem 2.2 Suppose Ĵn(X) is a log-KE of J(X) as defined in Equation (2.2). Then

Bias
(
Ĵn(X)

)
= −h

2

2

∞∫
0

fX(x)
{
fX(x) + 3xf (1)

X (x) + x2f
(2)
X (x)

}
dx+O(h2), (2.6)

Var
(
Ĵn(X)

)
= − 2

nh
Ck

∞∫
0

f3
X(x)
x

dx+O
(
(nh)−1

)
. (2.7)

The proof of the theorem is easily obtained using Equation (2.3) and (2.4) and hence
omitted. �

In the following theorem, we prove that Ĵn(X) is integratedly uniformly consistent in
quadratic mean estimator of J(X).

Theorem 2.3 Suppose Ĵn(X) is a log-KE of J(X) as defined in Equation (2.2). Then,
Ĵn(X) is integratedly uniformly consistent in quadratic mean estimator of J(X).

Proof Consider the MISE of the estimator Ĵn(X). That is

MISE(Ĵn(X)) = E

∞∫
0

[
Ĵn(X)− J(X)

]2
dx =

∞∫
0

E
[
Ĵn(X)− J(X)

]2
dx

=
∞∫

0

[
Var(Ĵn(X)) + [Bias(Ĵn(X))]2

]
dx =

∞∫
0

MSE(Ĵn(X))dx.

Using Equation (2.6) and (2.7), we have

MISE(Ĵn(X)) =
∞∫

0

(
−h2

2

∞∫
0

fX(x)
[
fX(x) + 3xf (1)

X (x) + x2f
(2)
X (x)

]
dx

)2

dx (2.8)

+
∞∫

0

(
−2
nh

Ck

∞∫
0

f3
X(x)
x

dx

)
dx+O

(
(nh)−1

)
+O(h4).

We have, as n→∞,

MSE
(
Ĵn(X)

)
→ 0.

Therefore, from Equation (2.8), we have

MISE
(
Ĵn(X)

)
→ 0, as n→∞. (2.9)

From Equation (2.9), we can say that Ĵn(X) is integratedly uniformly consistent in quadratic
mean estimator of J(X) (Wegman (1972)).
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Thus the theorem is proved.
�

2.4 Optimal band width selection

In this section, we derive the expression for the bandwidth. The expression for MISE of the
log-KE Ĵn(X) is given in Equation (2.8). By ignoring higher order terms, we get asymptotic-
MISE (A-MISE). By minimizing A-MISE(Ĵn(X)) with respect to the parameter h, we get
the optimal bandwidth h0. By the definition,

A-MISE(Ĵn(X)) = h4

4

∞∫
0

( ∞∫
0

fX(x)
[
fX(x) + 3xf (1)

X (x) + x2f
(2)
X (x)

]
dx

)2

dx

+ 1
nh

∞∫
0

(
− 2Ck

∞∫
0

f3
X(x)
x

dx

)
dx.

∂A-MISE(Ĵn(X))
∂h = 0⇒

h3
∞∫

0

( ∞∫
0

fX(x)
[
fX(x) + 3xf (1)

X (x) + x2f
(2)
X (x)

]
dx
)2

dx = 1
nh2

∞∫
0

(
− 2Ck

∞∫
0

f3
X(x)
x

dx

)
dx.

⇒

h5 =
1
n

∞∫
0

(
− 2Ck

∞∫
0

f3
X(x)

x dx
)
dx

∞∫
0

( ∞∫
0
fX(x)

[
fX(x) + 3xf (1)

X (x) + x2f
(2)
X (x)

]
dx
)2
dx
.

Therefore,

h0 =


∞∫
0

(
− 2Ck

∞∫
0

f3
X(x)

x dx
)
dx

∞∫
0

(∞∫
0
fX(x)

[
fX(x) + 3xf (1)

X (x) + x2f
(2)
X (x)

]
dx

)2
dx


1
5

n−
1
5

= O
(
n−

1
5

)
.

3. Empirical illustration and simulation study

In this section, we provide empirical and simulation study in order to evaluate the perfor-
mance of the proposed estimator.
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3.1 Empirical illustration

In this section, we illustrate the estimator of the extropy function using the real data sets
reported by Bjerkedal (1960) and it represents the survival times of guinea pigs injected
with different doses of tubercle bacilli. Guinea pigs are known to have high susceptibility
to human tuberculosis. Even an infection initiated with a few virulent tubercle bacilli will
lead to progressive disease and death. We consider the data sets obtained under regimens
1.4, 2.4, 3.4, 4.4 and 6.4 and there were 79 observations each. Using this data, the estimator
Ĵn(X) is calculated using the log-gaussian kernel and is given in Table 1. From the table
it is inferred that, the extropy is minimum corresponding to regimen 6.4 and it is max-
imum corresponding to regimen 1.4. All these calculations were done using the software
Wolfram Mathematica10 with standard computation time.

Table 1. Values of Ĵn(X)

Regimen Ĵn(X)
1.4 -1.07303 ×10−38

2.4 -7.37904 ×1025

3.4 -1.63298 ×1045

4.4 -1.73375 ×1055

6.4 -1.21396 ×1067

3.2 Simulation study

A Monte Carlo simulation study is carried out to compare the kernel estimator Ĵn(X) in
terms of the MSE. We consider the normal distribution with parameters µ = 5 and σ = 2.
The log-gaussian kernel is used as the kernel function for the estimation. The bias and MSE
of Ĵn(X) for various sample sizes 10, 20, 50, 100, 150, 200, 250, 300, 350, 400, 450 and 500 are
calculated and are given in Table 2.

Table 2. Bias and MSE of Ĵn(X)

Bias and MSE of Ĵn(X)
Sample size Bias MSE
n=10 0.281 0.0386
n=20 0.212 0.0355
n=50 0.186 0.0289
n=100 0.155 0.0192
n=150 0.113 0.0138
n=200 0.098 0.0130
n=250 0.090 0.0126
n=300 0.083 0.0093
n=350 0.081 0.0090
n=400 0.078 0.0072
n=450 0.075 0.0067
n=500 0.069 0.0056
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4. Conclusion

In this work, we propose a nonparametric estimator for extropy function using log kernel
type estimation. Certain asymptotic properties of the proposed estimator is established. A
simulation study is conducted to find the MSE of the estimator and it shows that it decreases
with increasing sample size. The performance of the estimator is elucidated using real life
data sets.
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