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Abstract

By definition, original Besag-conceived spatial auto-random variables incorporate an au-
toregressive spatial lag term (i.e., the sum/average of nearby attribute values) to char-
acterize geospatial data. Very common variates include the auto-normal, auto-logistic,
and auto-binomial; less common ones include the auto-beta and auto-multinomial. Some
of these specifications can capture the full range of spatial autocorrelation, and others
cannot. These latter variates are unorthodox in their nonconformist restrictions to either
only positive or only negative spatial autocorrelation domains. The literature already
offers successful modifications of the auto-Poisson and auto-negative binomial, two pop-
ular random variables for describing counts, but neither of which can encapsulate pos-
itive spatial autocorrelation. The literature dismissively mentions the auto-exponential
variate, which cannot accommodate negative spatial autocorrelation situations. Mean-
while, the literature lacks any discussion about auto-uniform random variables, with
implications especially from point pattern analysis publications that they solely refer to
complete spatial randomness. The purpose of this paper is to postulate a productive and
viable spatialized continuous uniform distribution specification that easily extends to
its corresponding discrete version. A standard benchmark location-allocation simulation
experiment for a simple p = 1 median problem, a spatial optimization circumstance that
illuminates bivariate spatial median properties, illustrates its practical applicability.

Keywords: Auto-model · Moran eigenvector spatial filtering · random effects · spatial
autocorrelation · uniform distribution

Mathematics Subject Classification: 62H11.

1. Introduction

Explicit spatial autocorrelation (SA) concept formation originated in the early part of the
twentieth century (Griffith, 2012) with Cliff and Ord (1973) motivating its popularity within
the context of spatial statistics and quantitative geography in the late 1960s, followed by
Paelinck and Klaassen (1979) initiating a similar promulgation in the context of spatial
econometrics a decade later, with Anselin (1988) subsequently motivating its popularity
within that specialty. These two developments operated with the inverse spatial covariance
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matrix, which is some function of a spatial weights matrix.1 In parallel, geostatistics emerged
as an advancement in the SA realm (Ecker, 2003) directly operating with the spatial covari-
ance matrix itself. This earlier literature is replete with auto-normal spatial counterparts
to the normal probability model, primarily because, commencing with de Moivre in 1733
(Steigler, 1986), the statistics discipline has a prominent normal curve (i.e., Gaussian dis-
tribution) theory based analysis history prior to Nelder and Wedderburn’s formalizing and
implementation of generalized linear model (GLM; McCullagh and Nelder (1989)) theory
in the early 1970s (Hilbe, 2014). The relative simplicity of univariate and multivariate nor-
mal curve theory (e.g., Lohnes and Cooley, (1968)) mathematical statistics helped preserve
its sustained prominence, with the advent of its affiliated normal approximation power
transformation technique (Box and Cox, 1964) extending its suitability to many of the
hundreds of other univariate random variable (RV) distributions that exist (e.g., Johnson
et al. (1994/95)). These numerous distributions have a complex interrelationship structure
(Leemis and McQueston, 2008). However, normal approximation analyses suffer from some
degree of misspecification error (Griffith, 2013), wheter trivial, moderate, or severe, which
helped provoke the eventual discovery and usage of GLM theory, which this paper exploits.

The geospatial sciences mostly deal with just the following few of the hundreds of possi-
ble univariate RVs: Bernoulli, beta, binomial, multinomial, negative binomial (NB), normal,
lognormal, Poisson and uniform. Normal curve theory treats continuous interval/ratio mea-
surement scale georeferenced RVs over a (−∞,∞) support domain, with Box-Cox power
transformations and other normal approximations artificially expanding its practical appli-
cability to limited domains such as the truncated support [0,∞)—the lognormal RV signifies
a special case of this truncation linkage. Pollution contamination levels are a geospatial at-
tribute exemplifying it. NB and Poisson GLM theory treat non-negative integer counts over
a [0,∞) support domain; they have a natural lower bound restriction. Areal unit (e.g.,
government agency polygons such as census tracts) post-stratified demographic data are a
geospatial attribute exemplifying them. Bernoulli (aka logistic) RVs are dichotomous, al-
most always measured by the parsimonious binary set {0,1} in non-physics situations, and
frequently denote presence/absence. The appearance of a disease incidence in a location is a
geospatial example of it. Binomal RVs effectively are percentages (i.e., 100 times categorized
counts divided by their category totals) that span the interval [0,100], are an aggregation—
and hence one type of generalization—of Bernoulli RVs, and have an obvious limit at both
ends of their natural numbers measurement interval, respectively 0 and nT (i.e., the max-
imum number of objects for each category)— in other words, their support domain is the
set {0, 1, . . . , nT}, which converts to percentages by dividing its entries by nT and then
multiplying by 100; their prefix bi- refers to their underlying dichotomy. A population cohort
percentage residing in different locations is a geospatial example of it. Further generalizing
Bernoulli RVs produces a multinomial RV, which is polychotomous (re its multi- prefix), and
whose individual groupings (i.e., in a specific group versus not in that specific group) relate
to binomial RVs. A remotely sensed satellite image pixel land use classification is a geospa-
tial example of it. Unlike a binomial RV, which involves discrete combinations of counts, a
beta RV is continuous over a [0,1] support domain. The proportion of a given heavy metal
concentration in a GPS-tagged soil sample is a geospatial example of it. Finally, a uniform
RV enters geospatial work in various ways, including equally likely geographic probability
sampling, and controlling the geographic distribution of some phenomenon in a simulation
experiment often for benchmark reasons. Under the auspices of a spatial stationarity as-

1A spatial weight matrix, say C, is a n-by-n matrix whose row and column labels virtually always are the same
sequence of areal unit names, solely for the convenience and mostly by convention. In its simplest manifestation,
namely a binary non-negative matrix, its entries are 0 and 1, where 0 denotes that the row and column areal units
are not, whereas 1 denotes that they are, neighbors/adjacent/nearby. In other words, it is a collection of n n-by-1
indicator variable vectors.
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sumption, if a RV has both a mean and a finite variance, then the locational average of
simulation replications across a geographic landscape yields a uniform distribution of its
mean value—the Cauchy RV is perhaps the most famous exception, because its mean and
variance are undefined (Bagui et al., 2013). This simulation context for spatial statistical
numerical experiments constitutes a primary application theme of this paper.

Besag (1974) conceived of and coined the term auto-model to label RV equation descrip-
tions that have the dependent variable Y on both sides of their equal sign (=), with the
right-hand side term usually being the spatial lag matrix expression W Y —where matrix W
is the row-standardized (i.e., each row sums to one) version of a spatial weights matrix C—
calculating average neighboring attribute values and emphasizing the previously mentioned
auto-normal specification. These formulations actually correspond to joint statistical distri-
butions of n conditional marginal univariate RVs (Kaiser and Cressie, 2000). Besag (1974)
devoted a profuse amount of his text to the auto-normal model, while not only commenting
on especially the auto-logistic specification—which has been the subject of acute scrutiny
more recently (Bardos et al., 1974)—but also the auto-binomial, auto-Poisson, and auto-
exponential specifications. Cressie (1991), among others, furnishes considerably more detail
about the auto-logistic and auto-binomial models, likewise discussing the auto-beta (p. 440),
gamma (p. 439), NB (p. 432) and Poisson (pp. 427-429) RVs. Besag (1974) dismissed the
auto-exponential and gamma specifications because he views their conditional probability
structures as lacking intuitively appealing mathematical expressions. Furthermore, these
RVs seem to be of little practical interest to most geospatial researchers, and hence are
not subjects of this paper. Meanwhile, Besag (1974) highlights that an auto-Poisson RV is
unorthodox because it is incapable of describing positive SA situations. This feature trans-
fers to its extra-Poisson variation auto-NB relative by the very nature of its equivalency to
the auto-Poisson with a gamma-distributed mean parametric mixture (e.g., a probabilistic
combination of multiple probability distributions such that all but one of them describe the
distribution of a different parameter in the designated other) RV. This precise construct
suggests that the auto-gamma may deserve more attention from spatial scientists than it
currently receives. The auto-multinomial (Kavousi et al., 2011) and auto-beta (Zikariene
and Ducinskas, 2021) RVs have received more consideration in recent years (e.g., Hu et al.
(2020)). As one of various explorations into more realistic real world auto-model applications
(e.g., Bolin et al. (2013)), this paper contributes an additional examination to this literature
of a special auto-beta specification case in order to explore the pair of unorthodox uniform
RVs with regard to their relationship to SA.

2. Positive SA and the unorthodox auto-Poisson and auto-NB RVS

Spatial scientists often contend that positive SA is by far the most common spatial depen-
dence materializing in real world phenomena. Accordingly, the auto-Poisson and auto-NB
RVs are unorthodox as well as wanting because they are unable to depict this situation,
even though most geographic distributions of counts data defy this limitation and display
moderate-to-strong positive SA. In addition, some suitable binomial distribution (i.e., nT is
sizeable and the probability of an event occurring is exceptionally small) provides a good
approximation to a particular Poisson distribution; this contention rests on the property of a
Poisson RV being the limiting case of a binomial RV (Le cam, 1960). Similarly, some fitting
normal distribution also furnishes a good approximation to a particular Poisson distribu-
tion (Cheng, 1948). These two relationships imply that a proper spatial Poisson probability
mass function accounting for positive SA should be feasible. The literature reports three
successful respecifications that remedy this auto-Poisson shortcoming.

Besag et al. (1991) formulated the first spatial Poisson model that efficaciously accounts for
positive SA in georeferenced counts data by invoking statistical random effects mixed models
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theory (Pan et al., 2020) in which they introduce a Gaussian random effects term comprising
a spatially structured (SSRE)—proficient in accounting for positive SA—and unstructured
(SURE) component free of SA. The mixed models maneuver stratagem is an efficient way to
properly handle correlated data. This formulation essentially converts a constant conditional
mean response to a varying intercept term. To wit, the baseline for each areal unit may differ,
with the average of the n individual intercept terms theoretically equal to the global constant
conditional mean. Therefore, some individual intercepts are greater, and others are less,
than the single global value. These fluctuations reflect heterogeneity, correlatedness, omitted
variables, and other data and/or mathematical expression corruptions and noise. In Besag et
al. (1991), the SSRE component is an auto-normal (specifically a conditional autoregression)
term, and their estimation method is Bayesian implemented with Markov chain Monte Carlo
(MCMC) techniques (Gilks et al. (1996); Casella and George (2008)) requiring numerically
intensive calculations. Their shift from a frequentist standpoint directly extends to the auto-
NB specification.

Alternatively, Kaiser and Cressie (1997) proposed truncating an auto-Poisson probabil-
ity model support domain through data Winsorizing (i.e., a statistical transformation that
constrains count data in order to eliminate the possibility of extreme observed values that
qualify as potentially spurious outliers). Doing so causes the sum of all possible probabilities
to be less tan one (their trick is to decrease this sum by a trivial amount), violating a fun-
damental axiom of probability theory. The trade-off is that this model specification allows
positive SA to materialize in joint multivariate count data by utilizing modified conditional
univariate distributions that are Winsorized Poisson probability mass functions. Again, esti-
mation proceeds with MCMC techniques, retaining the numerical intensity associated with
the original auto-Poisson specification. One advantageous consequences is that, unlike Be-
sag’s original auto-Poisson form, their model is capable of accounting for either positive or
negative SA among georeferenced counts while retaining Besag’s original auto- formulation.
A rather cumbersome trait it display is that the interval length of the positive SA feasible
parameter space often tends to be quite small. This reconstruction directly extends to the
auto-NB specification, too.

Griffith (2002) devised a third way to account for positive SA in these two GLM versions
by exploiting Moran eigenvector spatial filtering (MESF) theory (Griffith, 2003). This ap-
proach first extracts n synthetic variates called eigenvectors (see Abdi (2007) for a reader-
friendly overview of these mathematical entities), each of size n-by-1, from the modified
spatial weights matrix (I−11>/n)C(I−11>/n) appearing in the numerator of the Moran
coefficient (MC) index of SA, where I is the n-by-n identity matrix, 1 is the n-by-1 vector of
ones, and superscript T denotes the matrix transpose operator. Each eigenvector represents
a distinct SA map pattern for which each of its n elements links to its assigned row label
areal unit in its parent spatial weights matrix. Next, a selected subset of these eigenvectors
best describing SA in a given response variable Y becomes a surrogate for it; screening by
their nature and minimal degree—which their accompanying eigenvalues index—coupled
whit stepwise regression routines accomplishes this selection task. Moreover, eigenvectors
in the judiciously chosen subset become additional covariates in a GLM regression, with
their resulting linear combination being a constructed eigenvector spatial filter (ESF). This
implementation is analogous to incorporating just the SSRE component of a random effects
term (e.g., Besag et al. (1991)) into the mean response equation. Estimation commonly is
with maximum likelihood techniques, often implemented using iteratively reweighted least
squares; in other words, standard GLM estimation. The greatest advantage of MESF is
that it dramatically reduces the numerical intensity of accounting for SA by switching from
MCMC to conventional estimation procedures while accommodating not only positive and
negative SA, but also mixtures of these two. One of its weaknesses is that the number of
candidate synthetic variable eigenvectors for constructing an ESF increases with n (but at
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a decreasing rate).
All three of these methodologies rewrite the RV mean (e.g., see Ferrari and Cribari-Neto

(2004)) such that it can account for positive SA. In addition, this is the general viewpoint
conveyed in Kaiser and Cressie (2000), Hardouin and Yao (2008) and Hu et al. (2020), for
the auto-beta kind of conceptualization. This facet is noteworthy when considering the final
unorthodox RV listed in this paper’s introduction, namely the uniform distribution, the
topic of the next section.

3. Positive SA and auto-uniform RVS

The only conspicuous parameterization a uniform RV may have concerns its extremes (say Ψ
and/or θ), such that its continuous case probability density function, for example, is written
as

f(y) = 1
(θ −Ψ) , Ψ ≤ y ≤ θ

when both are unknown. A diverse assortment of estimators exists for these two parameters
(e.g., Jabeen and Zaka, (2020)). Their maximum likelihood estimators (MLEs) are simply
x1 and xn, the extreme values of a sample. Their individual uniformly minimum variance
unbiased estimators (MVUEs) are, conditional on the other being known, [(n+1)x1−θ]/n for
Ψ and [(n+1)xn−Ψ]/n for θ. This collective outcome implies the following iterative/recursive
calculations, alternately assuming one parameter is known to estimate the other, employing
the following two estimators that are functions stricly of x1, xn and n:

initial estimates : Ψ0 = x1, and θ0 = xn

iteration τ(= 1, 2, . . . , )
estimates : Ψτ+1 = θτ + (x1 − θτ )(n+ 1)/n

θτ+1 = Ψτ + (xn −Ψτ )(n+ 1)/n

In addition, the method of moments estimators (MMEs) for these two parameters are ȳ±s
√

3
(⇒ θ̂ = 2ȳ when Ψ is known), where s denotes the sample standard deviation. Implications
include µ̂ = (x1 + xn)/2 (MLEs), µ̂ = [(x1 + xn)(n + 1)/n − (Ψ∞ + θ∞)/n]/2 (MVUEs),
and, statistically speaking, that the MMEs are inadmissible1, mean response parameter
estimator expressions lacking any apparent valid operational opportunity to introduce a
bone fide spatial lag term; for the first two estimators, only two of n terms can be cast as
functions of weighted averages of their neighboring values in an auto- specification. However,
the beta conditional conception (James, 1975), which dovetails with the preceding mixed
models scheme and promoted by Kaiser and Cressie (2000) and by Hardouin and Yao (2008),
offers useful insights.

The usual simulation experiment situation assuming a uniform RV sets Ψ = 0 and θ = 1,
a standard uniform RV whose extremes easily rescale and translate to any other pair of
real numbers. Likewise, the following beta RV may characterize this unit interval support

1As a counterexample to this estimator’s admissibility, nearly 40% of the output from a simple 10,000 replications
simulation experiment with samples of size n = 100 drawn from a continuous uniform distribution over the interval
[5,21] contains MMEs that do not exceed one or the other of their sample extremes, with roughly 10% of these
samples failing to exceed both of their sample extremes.
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domain stated as

f(y) = Γ[2y]
(Γ[y])2 y

γ−1(1− y)γ−1, 0 ≤ y ≤ 1 and γ > 0 is a shape parameter,

where this function has only a single parameter (i.e., its two shape parameters are identical
and equal to γ) to ensure the uniform distribution symmetry property, and γ = 1, whose
substitution into the probability density function renders the expression given by

f(y) = Γ[2]
(Γ[1])2 y

0(1− y)0 = 1, 0 ≤ y ≤ 1, (3.1)

which is the unit interval form of a continuous uniform RV. Its mean and variance are the re-
spective constants 1/2 and 1/12, quantities failing to provide an entrance into this probabil-
ity density function for SA like larger values of γ supply [e.g., µ = γ/2 and σ2 = 1/4(2γ+1)].
Its theoretical frequency distribution is flat, preventing the standard SA variance inflation
from materializing. However, one of its conventional probability density function revisions
may be written as1

f(z) = 1
12

( 1
1 + exp(−z)

)1−1 (
1− 1

1 + exp(−z)

)1−1
= 1, −∞ ≤ z ≤ ∞ (3.2)

where z = LN [Y/(1 − Y )]—with Y being the RV in Equation (3.1)—the standard logit
transformation historically employed in logit-linear regression assuming normally distributed
errors. This is the same compound probability distribution variable argument form as for
the auto-Bernoulli (i.e., logistic), binomial, and multinomial RVs. One assumption govern-
ing variate Z, in keeping with the beta conditional tradition (James, 1975), is that, besides
being a logarithmic quantity, its underlying distribution is beta(γ,γ), with γ →∞ resulting
in this beta distribution increasingly mimicking a normal distribution (Peizer and Pratt
(1968),Pratt (1968))—e.g., at least the first four moments of both distributions match,
satisfying the convergence in the rth moment principle (e.g., Hoeffding (1952))—creating
a parametric mixture situation resembling that promoted by Besag et al. (1991), and ex-
ploited by Griffith (2002). Furthermore, as the auto-logistic specification demonstrates, this
mathematical alteration can contain a spatial lag term.

A well-known and previously noted auto-RV property induced by SA is variance infla-
tion (also see Griffith (2011), Chun and Griffith (2018), and Hu et al. (2020)). The only
way that Equation (3.2) can integrate SA and experience variance inflation is through the
logistic function 1/(1 + exp(−z)), although theoretically its zero exponent neutralizes this
impact. Because the final variance is a constant (e.g., 1/12 for the standard uniform RV),
the hyperprior type of RV needs to have less variance, enabling this smaller variance to
inflate to the final constant variance through the presence of SA. This is a rather rare case
in which the resulting posterior distribution has more variance than its input prior distri-
bution. An approximately normal beta RV is suitable for this purpose: deflating its center
while simultaneously inflating both of its tails in a complete transition from bell-shaped to
perfectly flat symbolizes this variance inflation. Additionally, because variance inflation is a
function of the latent positive SA’s magnitude, if its parameter is ρ = 0, then the outcome
should be a uniform distribution, whereas as |ρ| → 1, the solitary beta shape parameter γ

1Replacing the exponent of zero by a logarithmic function in accordance with the indefinite integral equivalency∫
dy/y = LN |y| (Dwight, 1961) because y0 and (1 − y)0 in Equation (3.1) do not produce a sensible solution,

yielding LN(y) × LN(1 − y)—a pooled LN [y(1 − y)] is infeasible because it gives negative quantities—where LN
denotes the natural logarithm, fails to render a uniform distribution.
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should increase. Appendix A expounds upon the theoretical framework underpinning this
conceptualization in some detail.

4. A numerical example: a spatially autocorrelated continuous uniform
RV

The objetive pursued here is to generate a set of pseudorandom numbers spatially distributed
across a geographic landscape that globally closely conform to a uniform distribution, and
that contain visibly apparent SA in their map pattern. The simulation experiment executed
for this section utilizes either a 40-by-40 regular square tessellation of pixels (a la the High
Peak empirical example in Bailey and Gatrell (1995)) or the 2010 Dallas-Ft. Worth (DFW)
Metropolitan Statistical Area (MSA) census tracts irregular lattice, a rook’s chess move type
of adjacent neighbors definition, the row-standardized spatial weights matrix version of this
binary 0-1 matrix, an initiating random geographic distribution of sampled beta RV values (a
randomly permuted representative systematic sample from across the uniform distribution
support based upon Blom (1958) quantile points (r − 3/8)/(n + 1/4), r = 1, 2, . . . , n), and
10 (i.e., essentially the number recommended by practical guidelines) frequency distribution
bins.

Although these two specimen geographic landscapes are modest in their areal unit sizes,
the methodology and conceptualizations inaugurated in this paper extend to virtually any
size regular square tessellation (see Griffith and Chun (2019)), as well as to irregular surface
partitonings comprising many thousands of polygons (e.g., Griffith (2018)).

4.1 Preliminary simulation experiment inputs

Figure 1 portrays the relationship between the SA parameter1 ρ, through its much sim-
pler and more readily available MC computation2, and beta hyperparameter γ for this
experimental design. This association summarizes data from an idealized auto-beta type
of reconnaissance (Figure 1a); the second reconnaissance exploited an empirical geographic
landscape (i.e., 2010 DFW MSA census tracts), furnishing confirmatory data (Figure 1b).
Meanwhile, Figure 2 reveals that for the most commonly encountered georeferenced socio-
economic/demographic attribute variable degree of SA (i.e., MC = 0.5, indicating a moder-
ate level), the mixed model SSRE type of random effects term does not closely conform to
a bell-shaped curve. In contrast, high SA levels like those found in remotely sensed imagery
(i.e., MC = 0.9) closely mimic, and essentially are indistinguishable from, a bell-shaped
curve. As an aside, the critical feature of a random effects RV seems to be symmetry, with
the magnitude of kurtosis (i.e., peakedness) primarily managing the prerequisite realized
degree of SA. Because both the input to and output from this mixture is a beta RV, this
situation is reminiscent of that for traditional conjugate priors.

Figure 1 suggests that this γ-MC relationship is reasonably robust against varying surface
partitionings. Future research needs to address this hypothesis. In addition, future research

1The spatial linear operator employed in this analysis is from the spatial simultaneous autoregressive (SAR), also
known in the spatial econometrics literature as the spatial error, specification. Because the regression equation
contains no covariates, in this simulation experimental context, this specification is equivalent to the spatial autore-
gressive response (AR), also known in the spatial econometrics literature as the spatial lag, specification.
2Luo et al. (2018) discuss the relationship between ρ and the MC. The two illustrative datasets used in this paper
deliver the following approximations:

40-by-40 regular square tessellation:ρ̂ ≈ −1.76317 + 2.76317/(1−MC2), R2 ≈ 1

2010 DFW MSA:ρ̂ ≈ −0.75807 + 1.75807/(1−MC2), R2 ≈ 1
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needs to establish whether or not any higher SA degree deviations from the theoretical
trendline change with n; the difference here of 284 areal units may be sufficient to hypothesize
that it does not, and that, rather, it may be a function of irregular surface partitioning
effects. A similar hypothesis concerns the maximum MCs, which here are 1.018 and 1.175,
respectively, for the 40-by-40 regular square tessellation and the 2010 DFW MSA geographic
landscapes.

4.2 Preliminary simulation experiment outputs
The goal of the knowledge formation simulation experiments outlined in this paper is to
generate globally uniform RV geographic distributions that display approximately targeted
levels of positive SA. One benefit of this capability is the ability to engage in exploratory
spatial analysis simulation studies that assume uniformly distributed georeferenced attribute
values; SA is a requisite property of virtually all geospatial attribute data. The previous sec-
tion documents that introducing SA into Equation (3.2) is no easy feat, appearing almost
impossible at first glance, branding it an unorthodox spatial RV. The preceding subsection
documents that incorporating SA into a beta RV through a SSRE term progressively trans-
forms it from a uniform toward a bell-shaped frequency distribution as the degree of positive
SA increases. Figure 3 visualizes specimen frequency distributions output from performing
its itemized workflow.

Figure 1. Relationships between the standard equal shape parameters, γ, beta RV and the induced SA level (0 ≤ ρ ≤
0.99) MC, rook’s adjacency; the gray curved lines denote the theoretical trendline given by Equation (6.6) appearing
in the appendix, calibrated with data generated by Equation (6.7), and filled black circles denote observed values from
numerical analyses—for both cases, the accompanying nonlinear regression pseudo-R2 is approximately 0.99. Left
(a): a regular square tessellation (n = 40× 40 = 1, 600). Right (b): the 2010 DFW MSA census tracts (n = 1, 314).

Figure 2. Comparisons of selected independent and identically distributed beta RVs with a normal RV. Left (a):
normal quantile plot for γ = 1.2 [MC ≈ 0.5, Probability (Shapiro-Wilk) < 0.001]. Left middle (b): γ = 1.2 beta
distribution histogram with superimposed normal curve. Right middle (c): normal quantile plot for γ = 21 [MC
≈ 0.9, Probability (Shapiro-Wilk) ≈ 0.997]. Right (d): γ = 21 beta distribution histogram with superimposed
normal curve.

Figures 3a and 3b portray the representative systematic sample with zero SA; the uni-
form distribution is unchanged. These frequency distributions contain negligible variation
across their 10 bins because the sample is not, although its allocation to the geographic
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landscape pixels is, random. This is the SA context characterizing all geospatial simulation
experiments to date that involve a bivariate uniform distribution (e.g., demand across a
regional economic landscape). Figures 3b and 3e reflect the modest variation across bins
introduced by weak SA. This fluctuation is consistent with that attributable to simple ran-
dom sampling, and, in part, reflects the small variance inflation weak SA induces. Figures
3c and 3f signal two sources of variation, the first once more being SA, which the hyperprior
beta distribution successfully handles, and the second being influences of an asymmetric
distribution of spatial weights matrix eigenfunctions (see Section 2), which include both
more negative than positive SA ones, and positive extreme SA that is considerably greater
in extent than its negative extreme SA counterpart (Griffith, 2017). A redeeming feature of
this latter situation is that few georeferenced socioeconomic/demographic, although most
remotely sensed image, attributes have a MC value noticeably in excess of the reported
magnitude here. Nevertheless, for this particular realization, χ̂2 ≈ 11.9 < χ2

9,.09 ≈ 14.7 (i.e.,
fail to reject the null hypothesis that the global frequency distribution of the 1,314 values
does not conform to a uniform distribution in the population). In addition, all of the beta
estimated shape parameter pairs γ̂1 and γ̂2, are nearly equal, corroborating the assumption
of a single γ value necessary to produce both a bell-shaped and a uniform distribution. As
an aside, being able to estimate these parameters from data confirms the identifiability of
the new spatialized uniform RV specification. Figure 4 visualizes the six respective maps for

Figure 3. Simulated compound conjugate posterior uniform frequency distributions containing SA with superim-
posed beta distribution curves (red lines); the top row displays results for a 40-by-40 regular square tessellation,
and the bottom row displays results for the 2010 DFW MSA census tracts. Top left (a): ρ = 0.00; MC = -0.01,
γ̂1 = γ̂2 = 1.002. Top middle (b): ρ = 0.50; MC = 0.30, γ̂1 = 0.997,γ̂2 = 0.998. Top right (c): ρ = 0.95; MC = 0.78,
γ̂1 = 0.995,γ̂2 = 1.010. Bottom left (d): ρ = 0.00; MC = 0.01, γ̂1 = γ̂2 = 1.003. Bottom middle (e): ρ = 0.50; MC =
0.28, γ̂1 = 1.023,γ̂2 = 1.011. Bottom right (f): ρ = 0.95; MC = 0.75, γ̂1 = 1.081,γ̂2 = 1.054.

the set of frequency distributions displayed in Figure 3 for which the cornerstone interval
[0,1] encompasses all attributes values. Its perusal from left to right discloses the increas-
ing geographic clustering of similar values with increasing positive SA. Currently geospatial
simulation experiments can use just maps like those in Figures 4a and 4d. A principal aim
of this paper is to expand that possibility to a continuum of more realistic maps epitomizing
various degrees of positive SA (e.g., Figures 4b 4c, 4e, and 4f) through embedding rather
than constrained permutations (see Figure 5).
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Figure 4. Specimen uniform RV geographic distributions, with green, yellow, and red respectively denoting values
between 0 and 1/3 (relatively low), 1/3 and 2/3 (moderate), and 2/3 and 1 (relatively high); the top row displays
results for a 40-by-40 regular square tessellation, and the bottom row displays results for the 2010 DFW MSA census
tracts. Top left (a): MC = -0.01 and Geary Ratio (GR) = 1.02. Top middle (b): MC = 0.30 and GR = 0.70. Top
right (c): MC = 0.78, and GR = 0.22. Bottom left (d): MC = 0.01 and GR = 0.98. Bottom middle (e): MC = 0.28
and GR = 0.73. Bottom right (f): MC = 0.75 and GR = 0.24.

4.3 A testbed demonstration

The interface between SA and spatial optimization (Griffith et al. (2022); Griffith et al.
(2023)) furnishes a spatial statistics relevant as well as a sound laboratory setting for illus-
trating rigorous, transparent, and replicable utilization testing of the new spatially autocor-
related uniform RV specification. The specific spatial analysis problem here is to calculate a
solitary spatial median (Small (1990); Ninimaa (1995); Eftelioglu (2017); i.e., the simplest
Weberian location problem of economic geography and location-allocation fame, and a ba-
sic descriptive centrographic spatial statistic) given a uniform distribution of demand. The
spatial mean and the standard distance centrographic measures quantifying variations in
the computation of this location across a set of simulated geographic landscapes illuminates
that acknowledging the prevailing degree of positive SA matters.

The simulation experiments here begin with unrestricted random sampling from a uni-
form distribution by location, differing from the preceding experiments because those draw a
single representative systematic sample from across the full range of a uniform distribution,
and then randomly allocate the carefully selected sample values to locations by randomly
permuting them. Given that the intention of this exercise is to show that non-zero SA in
a uniform RV has a pronounced impact on spatial analysis outcomes, these experiments
executed only 100 replications, enough to expose whether or not a discrepancy exists, but
not truly enough for suitable precision to accurately quantify the size of that discrepancy. In
other words, they are more exploratory than explanatory. This is a proof of concept demon-
stration project, not an attempt to establish exact magnitudes of differences attributable
to SA. Table 1 tabulates selected substantiating results from these experiments. One treat-
ment factor manipulated across experiments is the degree of SA, which the MC and the GR
index; a second is the prevailing surface partitioning. Control factors include the beta RV,
its versions with equal shape parameters, and the mean and variance parameters of a stan-
dard uniform RV (i.e., 1/2 and 1/12). The chance aspect is unrestricted random sampling
from a beta distribution with an assigned value to a designated single shape parameter, γ.
Corresponding findings appearing in Figure 4 and Table 1 are coherent, as are the mean
and variance of the SA injected posterior uniform distributions vis-à-vis their theoretical



Chilean Journal of Statistics 143

Table 1. Simulation experiment summary statistics for the p = 1 (bivariate) spatial median location-
allocation problem solution for SA embedded with an autoregressive spatial linear operator; 100 replica-
tions.

statistic 40-by-40 regular square tessellation 2010 DFW MSA census tracts
ρ = 0.00 ρ = 0.50 ρ = 0.95 ρ = 0.00 ρ = 0.50 ρ = 0.95

ȳ(µ = 0.5) 0.499 0.503 0.501 0.500 0.499 0.508
sy(σ = 0.289) 0.289 0.289 0.302 0.288 0.286 0.290
MC −0.001 0.281 0.803 −0.000 0.242 0.779
sMC 0.018 0.020 0.025 0.017 0.024 0.031
GR 1.000 0.718 0.193 0.998 0.755 0.213
sGR 0.018 0.020 0.025 0.018 0.024 0.029
U 20.518 20.507 20.397 -96.911 -96.912 -96.911
sU 0.222 0.410 1.628 0.007 0.012 0.036
V 20.486 20.447 20.629 32.857 32.856 32.857
sV 0.197 0.419 1.574 0.003 0.006 0.025

counterparts. The average bivariate spatial medians are very close to their respective the-
oretically expected two-dimensional points: (20.5, 20.5) = ((40 + 1)/2, (40 + 1)/2) for the
regular square tessellation, and (longitude = -96.943, latitude = 32.851) for the DFW MSA;
SA tends not to impact first moment calculations. However, their variability (used to com-
pute centrographic standard distance statistics) strikingly increases with increasing SA; SA
tends to spawn variance inflation.

This increased locational variance occurs because relatively large weights (i.e., the georef-
erenced attribute values) tend to form influential geographic clusters under the influence of
positive SA, which, in turn, pull a bivariate spatial median optimal location toward them.
Each Gaussian random field generates positive SA clusters that randomly disperse across a
geographic landscape, such that the average of their replications is the bivariate midpoint
of the given surface (a la the Law of the Large Numbers). A particular spatial linear op-
erator, (I − ρW )−1, preserves the approximate level of SA within random sampling error
bounds, but not any particular map pattern realization. In contrast, simulation experiments
by means of MESF maintain a specific created ESF map pattern, as well as an approximate
SA level, across replications (Griffith, 2017). Therefore, as Table 2 discloses, the collective
pull of more peripheral large weight geographic clusters preserved by an ESF moves the
average bivariate median away from a given landscape’s midpoint (i.e., the bivariate spatial
median in the presence of zero SA in the weights is the center of gravity for a geographic
landscape) and toward such a map pattern’s prominent weight clusters, markedly reduc-
ing its standard distance through an ESF’s perpetuation of the same map pattern from
one replication to another. In other words, results become conditional on an observed map
pattern.

Impacts of SA on their answers is an important feature for location-allocation problems,
and alludes to a relationship between SA hot spots and these location-allocation solutions
(Griffith (2021); Griffith et al. (2022) Griffith et al. (2023)). Consequently, as anticipated and
stated previously, SA in a uniform RV matters! This state of affairs is completely ignored
in the literature.

5. Estimating SA in uniform RVs with MESF methodology

MESF furnishes one way to avoid inserting spatial lag terms into spatial statistical model
specifications, enabling an unrestricted utilization of GLM theory. This circumstance ex-



144 Griffith

Table 2. Simulation experiment summary statistics for the p = 1 (bivariate) spatial median location-
allocation problem solution with 100 replications.

statistic 40-by-40 regular square tessellation 2010 DFW MSA census tracts
weak SA moderate SA strong SA weak SA moderate SA strong SA

ESF eigenvectors 1st 10 1st 10 1st 10 1st 10 1st 10 1st 10
beta γ, ESF weight 1.2, 8 2.0, 17 3.5, 21 1.2, 8 2.0, 17 3.5, 20
: ȳ(µ = 0.5) 0.502 0.514 0.526 0.500 0.500 0.500
sy(σ = 0.289) 0.284 0.286 0.287 0.285 0.287 0.280
MC 0.140 0.529 0.747 0.164 0.552 0.748
sMC 0.021 0.017 0.012 0.022 0.018 0.012
GR 0.861 0.480 0.266 0.857 0.503 0.323
sGR 0.021 0.017 0.012 0.021 0.016 0.012
U 20.209 19.770 19.442 32.882 32.906 32.912
sU 0.206 0.155 0.114 0.003 0.002 0.002
V 19.215 18.286 18.016 -96.902 −96.891 −96.887
sV 0.195 0.119 0.083 0.005 0.003 0.002

tends to the uniform distriburion via its formulation as a beta RV. In addition, MESF
methodology confirms the identifiability of the spatially autocorrelated uniform RV specifi-
cation: the values of its parameters (e.g., µ and σ) are ascertainable from empirical obser-
vations with MESF estimation techniques (e.g., Table 3 reports a correct estimated mean
of roughly 0.500).

Equation (3.2) divulges that the spatialized beta probability model lacks an explicit con-
ventional autoregressive spatial lag term, deviating from Besag’s inaugural blueprint. Table
3 uncovers the following SA effects exhibited as changes with increasing uniform RV MC
values: an increasing number of statistically significance eigenvectors selected by stepwise
regression to describe latent SA; a redistribution of eigenvector frequencies from a lesser (i.e.,
near 10%) to a greater (i.e., < 1%) statistical significance category; an increasing pseudo-R2

(i.e., the squared correlation between the simulated Y values and their MESF beta regres-
sion fitted values)—redundant information in nearby weights (i.e., observed attribute values)
increases with increasing SA; and, an increasing beta regression scale estimate—SA induced
variance inflation. Diagnostic metrics imply that the selected eigenvector percentages in the
presence of zero SA (i.e., roughly 13.4% and 12.5%) are very close to their 10% expectation;
the magnitudes of their differences are not substantively significant, with one barely being
statistically significant (40-by-40 regular square tessellation: z ≈ 2.53, p ≈ 0.006), whereas
many quantitative researchers usually would consider the other not statistically significant
(DFW MSA: z = 1.47, p = 0.071); this stepwise selection issue is the topic of vital contem-
porary research (e.g., G’Sell et al. (2016)). These computations rest on a single simulation
experiment replication involving a nearflawlessly representative sample; conferring more pre-
cision upon this deviation requires thousands of additional replications. The overdispersion
deviance statistics essentially match their expectations (of 1), and all intercepts essentially
are the same (implying correctly that µ = 1/2). Overall, then, this tabulation reinforces the
contention that the procedure outlined in this paper successfully embeds SA in uniform RVs,
and that identifiability accompanies this proposed spatialized uniform RV specification.
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Table 3. Beta regression results for intercept-only and constructed ESFs for the Figure 3 specimen geo-
graphic distributions.

statistic simple with covariates simple with covariates simple with covariates
40-by-40 regular tessellation

intercept 0.000 0.003 −0.001 −0.001 −0.015 −0.014
scale 2.004 2.398 1.994 4.193 2.005 22.811
deviance 1 1.01 1 1.02 1.03 1.01

#vectors†:
< 0.01 0 6 0 93 0 216

0.01-0.05 0 31 0 58 0 45
0.05-0.10 0 29 0 37 0 13

pseudo-R2 0 0.152 0 0.494 0 0.866
a: bivariate regression intercept ***‡ 0.499 *** 0.500 *** 0.503
b: bivariate regression slope *** 0.245 *** 0.219 *** 0.177

2010 DFW MSA (n = 1, 314)
intercept 0.000 −0.001 0.001 0.013 0.025 0.037
scale 2.005 2.311 2.034 3.516 2.135 16.202
deviance 1.00 1.02 1.02 1.03 1.01

#vectors∗:
< 0.01 0 4 0 46 0 131

0.01-0.05 0 23 0 41 0 33
0.05-0.10 0 13 0 29 0 17

pseudo-R2 0 0.123 0 0.400 0 0.788
a: bivariate regression intercept *** 0.500 *** 0.501 *** 0.509
b: bivariate regression slope *** 0.247 *** 0.229 *** 0.171

‡ denotes not applicable
† selected from 492 (∗321) candidate positive SA eigenvectors (MCj/MCmax > 0.25)

6. Conclusions and implications

Major findings conveyed in this paper are that spatial autocorrelation can materialize in a
uniform random variable—and appropriate permutation of map values [e.g., (near-)perfectly
uniformly distributed integers from the set {1, 2, . . . , 10} portrayed in Figure 5] shows the
feasibility of this possibility, too—and its presence can make a difference in an analysis (e.g.,
the bivariate spatial median equivalence of the Weberian location problem). The intellectual
product presented in this paper should prove useful to spatial scientists conducting simu-
lation experiments involving a uniform random variable distributed across two dimensions,
especially for the frequency distribution of attribute values; extending the continuous case
treated here to its discrete case companion is straightforward (e.g., Figure 5). A more general
implication from these conclusions is that a respecification should exist for any unorthodox
random variable that introduces spatial autocorrelation into it. Key ingredients for such
a transformation include a parametric mixture perspective, a spatially structured random
effect component, and a compatible hyperprior that most likely relates to a normal random
variable, the approach pioneered by Besag et al. (1991).

Besides some of the nine random variables considered in this paper, Besag (1974) similarly
discusses auto-exponential and auto-gamma random variables, varieties not commonly found
in geospatial science analysis descriptions, although the Poisson-gamma mixture rendering a
negative binomial random variable normatively suggests otherwise for the auto-gamma spec-
ification. Nevertheless, in keeping with the theme of this paper, because the auto-exponential
can describe only positive spatial autocorrelation situations, it also qualifies as an unortho-
dox random variable, expressly in light of arguments given in Griffith (2019) concerning
negative spatial autocorrelation. These two random variables merit subsequent spatial sta-
tistical research attention along the lines of the conceptualization advanced in this article.
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Figure 5. Judiciously permuted discrete uniform random variable geographic distributions, with green, yellow, and
red respectively denoting values 1-4 (relatively low), 5-7 (moderate), and 8-10 (relatively high); the top row displays
results for a 40-by-40 regular square tessellation, and the bottom row displays results for the 2010 DFW MSA census
tracts. Top left (a): complete spatial randomness: MC = -0.01 and GR = 1.01. Top middle (b): E169 rank ordering:
MC = 0.69 and GR = 0.31. Top right (c): E1 rank ordering: MC = 1.01 and GR = 0.02. Bottom left (d): complete
spatial randomness: MC = -0.00 and GR = 1.01. Bottom middle (e): E75 rank ordering: MC = 0.79 and GR = 0.26.
Bottom right (f): E1 rank ordering: MC = 0.96 and GR = 0.13.

Expanding upon this preceding payoff notion, a major general implication stemming from
the novel work summarized in this paper pertains to the probability integral transform (aka
the universality of the uniform) theorem, which asserts that random variable values from
any continuous distribution are transformable to a standard uniform random variable (Que-
senberry, 2006). Given this perspective, the framework devised for and outlined in this paper
potentially could enable a very broad treatment of spatial dependence embedding in random
variables through this theorem, and hence the uniform random variable. In other words, be-
ginning with any of the continuous random variables as a prior distribution may produce a
posterior spatialized uniform distribution. This conjecture warrants careful, intensive, and
thorough future consideration.

A final specific takeaway from this paper is that spatial autocorrelation may be inte-
grated into probability density/mass functions through either their parameters—e.g., spatial
autoregression, mixed models theory, and Moran eigenvector spatial filtering give prefer-
ence to the mean response, whereas geostatistics gives preference to the variance-covariance
structure—or strictly their support argument(s). The former almost always is the strategy
taken by theorists and methodologists; convoluting a subtle version of it with the latter
appears to be the only viable option for a uniform random variable. Perhaps this is the
approach to use with an auto-gamma specification, in keeping with the probability integral
transform revelation, and given Besag’s criticism about its nonintuitive and cumbersome
form when written using his traditional auto-specification. The Poisson-gamma parametric
mixture model favors at least an examination of this possibility.
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Appendix A
Mathematical statistical theory underlying a uniform RV containing SA

Merging statistical distributions can occur in at least three different ways: Bayesian analysis
(Freund (1992), pp. 398-397); hierarchical/parametric mixture combinations (e.g., Lindsay
(1995)); and, the variable transformation technique (Freund (1992), pp. 264-272; Griffith
(2013)). All three have the same independence assumption, almost always involve standard
RVs (e.g., Johnson et al. (1994/95),Johnson et al. (2005); Leemis and McQueston (2008)),
and posit some kind of (hyper)prior distribution mechanism. The naive Bayesian approach
postulates independent variables (i.e., a product of marginal univariate densities character-
ize its joint probability density). In contrast, a mixture model approximates a probability
density with either a linear combination of component RVs accompanied by a full covariance
matrix indicating pairwise independence if and only if it is diagonal, or sometimes a con-
jugate prior closed form expression, and other times messy open-form expressions yielding
posterior distributions solely via numerical integration, when parameters become RVs. Mean-
while, a variable transformation—the most popular being the Box and Cox (1964) power
kind—frequently allows a preferable output RV to approximate another undesirable input
RV. These procedures furnish powerful techniques for integrating multiple data generating
processes into a single RV specification. Furthermore, their (effective) posterior distributions
most often experience variance reduction.

The theoretical basis for this paper explicitly builds upon the variable transformation
technique, predicating a specific auto-uniform type RV upon a prior beta RV with equal
shape parameters (i.e., γ1 = γ2 = γ), ensuring its symmetry, and hence a mean of 1/2,
coupled with variance inflation attributable to SA that shrinks in the ensuing posterior
distribution (i.e., this inflation is from the posterior uniform to the prior bell-shaped beta).
The prior distribution is the standard beta RV probability density function

f(x) = Γ[2γ]
(Γ[γ])2X

γ−1(1−X)γ−1, 0 ≤ X ≤ 1. (6.3)

Variable X may be rewritten in its equivalent logistic function expression 1/{1 +
exp(−LN [(1 − x)/x])}. This is the form allowing the logit function −LN [(1 − x)/x] to
become part of a random effects term, enabling the embedding of SA in a manner paral-
leling that by Besag et al. (1991) for Bayesian map analysis. The auto-normal logit-linear
regression specification permits a convolution of SA and probabilities using, for example,
the simultaneous autoregressive (SAR) spatial linear operator (I − ρW )−1 extracted from
the following description of a georeferenced sample of n proportion/probability values:

< LN [(1− xi)/xi] >= ρW < LN [(1− xi)/xi] > +ε, (6.4)

where < • > denotes an n-by-1 vector, • is a wild card character, and ε is an n-by-1
vector of independent and identically distributed normal errors. The matrix expression
TR[(I − ρW )−1(I − ρW T )−1]/n quantifies the variance inflation induced by this data
generating mechanism, where TR denotes the transpose operator. Applying the trapezoidal
rule of elementary integral calculus to approximate this quantity, as n increases, this variance
inflation term converges on

1− (−1)
2n {2TR[(I − ρW )−1(I − ρW T )−1]− 2} ≈

∫ 1

−1

1
(1− ρλ)2 dλ, (6.5)

where −1 ≤ λ ≤ 1 denotes the variable representing the n eigenvalues of spatial weights ma-
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trix W , which partition their domain1, [-1,1], into increasingly finer intervals as n increases.
The solution to Equation (6.5) yields variance inflation factor d1/

√
1− ρ2e2, a limiting re-

sult that rescales2 each initial beta RV value by 1/
√

1− ρ2. This is the variance inflation
generated by SA for which a prior beta RV must compensate through deflation in order to
have a posterior type uniform RV. Table 4 tabulates the values that a single shape parameter
prior beta distribution takes on to render the posterior uniform RV. The affiliated trendline
is, approximately,

γ = 0.2961 + 0.7039
1− ρ2 , R2 ≈ 1, (6.6)

whose bivariate regression equation calculating γ̂ with its predicted values has an intercept
of 0.02538, indicating some possible bias in the specification of Equation (6.6), although
it might be compensating for the beta shape parameter γ being strictly positive rather
than non-negative, and a slope of 0.99939, which is almost identical to 1. Figure 6 portrays
selected theoretical prior distributions listed in Table 4.

Table 4. Summary statistics for selected representative systematic samples drawn from uniform RVs con-
taining SA via a beta RV specification.

ρ
Mathematica 12.3 40-by-40 square tessellation 2010 DFW MSA
γ σ =

√
1/12 γ σ̂ γ̂1 γ̂2 MC GR γ σ̂ γ̂1 γ̂2 MC GR

0.00 1.00 0.289 1.00 0.289 1.00 1.00 -0.02 1.02 1.00 0.289 1.00 1.00 -0.02 1.02
0.10 1.01 0.289 1.01 0.288 1.01 1.01 0.04 0.96 1.01 0.289 1.00 1.00 0.08 0.91
0.20 1.03 0.289 1.03 0.287 1.01 1.01 0.08 0.92 1.03 0.288 1.01 1.01 0.09 0.90
0.30 1.07 0.289 1.07 0.289 1.00 1.00 0.19 0.81 1.07 0.287 1.02 1.02 0.14 0.86
0.40 1.14 0.289 1.14 0.288 1.02 1.02 0.24 0.76 1.14 0.287 1.04 1.04 0.21 0.79
0.50 1.25 0.289 1.24 0.289 1.03 1.03 0.31 0.69 1.23 0.286 1.06 1.07 0.25 0.74
0.60 1.41 0.289 1.38 0.289 1.03 1.03 0.38 0.63 1.34 0.288 1.04 1.05 0.32 0.67
0.70 1.70 0.289 1.68 0.287 1.06 1.06 0.47 0.53 1.57 0.291 1.03 1.03 0.44 0.56
0.80 2.29 0.289 2.20 0.288 1.08 1.09 0.58 0.42 2.01 0.284 1.14 1.07 0.51 0.48
0.85 2.87 0.289 2.40 0.291 1.05 1.05 0.60 0.40 2.07 0.293 1.02 0.94 0.57 0.43
0.90 4.04 0.289 3.80 0.284 1.11 1.11 0.71 0.28 3.70 0.288 1.05 1.05 0.72 0.27
0.95 7.56 0.289 5.93 0.283 1.12 1.11 0.80 0.20 5.95 0.286 1.02 1.12 0.79 0.19
0.99 35.68 0.289 33.50 0.287 1.13 1.14 0.96 0.05 25.00 0.291 1.06 0.98 0.93 0.06

square tessellation: MCmax = 1.02, MCmin = -1.02; GRmin = 0.01, GRmax 2.05
DFW MSA: MCmax = 1.18, MCmin = -0.69; GRmin = 0.33, GRmax 2.53, λn(W ) = -0.79651

Figure 6. Shrinking variance frequency distributions of selected hyperpriors across increasing levels of positive SA.
Left (a): ρ = 0, γ = 1. Middle (b): ρ = 0.7, γ = 1.70. Right (c): ρ = 0.99, γ = 35.68.

1The largest eigenvalue of matrix W always is one, by the Perron-Frobinius theorem, whereas its opposite extreme
varies within the relatively wide interval [-1,-1/2], depending upon surface partitioning idiosyncrasies and nuances
and the employed neighbors definition. A regular square tessellation coupled with a rook adjacency definition gives
the ideal full interval [-1,1].
2Multiplicative rescaling proportionally decreases/increases each value, moving them forward/away from zero. Ex-
ponentiation rescaling differentially decreases/increases each value, moving them toward/away from one.
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Inducing SA in the logit function via Equation (6.4), following standard spatial autoregres-
sive SAR manipulations, produces individual observation values −LN [(1− x)/x]/

√
1− ρ2,

with the denominator deriving from Equation (6.4). Rewriting this term as the variable
transformation

y = x
1√

1−ρ2 /

[
x

1√
1−ρ2 + (1− x)

1√
1−ρ2

]
⇒ x = y

√
1−ρ2

/

[
y
√

1−ρ2 + (1− y)
√

1−ρ2
]

—with the left-hand equation reducing to x if ρ = 0—followed by making the appropriate
substitutions, replaces the probability density given in Equation (6.3) with

g(y) = Γ[2γ]
(Γ[γ])2

√
1− ρ2[y(1− y)]γ

√
1−ρ2

[y(1− y)][y
√

1−ρ2 + (1 + y)
√

1−ρ2 ]2γ
, 0 ≤ y ≤ 1, (6.7)

which includes the Jacobian, |dx/dy| = (
√

1− ρ2[y(1 − y)]
√

1−ρ2−1)/([y
√

1−ρ2 + (1 −
y)
√

1−ρ2 ]2), for each individual observation, and which reduces to the functional form of
Equation (6.3) if ρ = 0. This hypothetical asymptotic outcome furnishes guidelines for
empirical cases, such as the 40-by-40 regular tessellation, and the 2010 DFW MSA census
tracts. An iterative computer program script initiated with the appropriate theoretical value
converges to its case specific empirical surface equivalent based upon an objective function
defined as, for example, the squared difference between the empirical variance and 1/12, the
theoretical variance (see Table 4 and Figure 1 in the main body of this paper); this stated
procedure is a mean squared errors criterion variety of minimization. The empirical surface
counterparts begin to deviate somewhat from the reported theoretical trajectory in the pres-
ence of a moderate-to-strong degree of SA (see Figure 1). Differences are attributable, in
part, to the finite number as well as any skewness of the empirical eigenvalue distributions
(Figure 7). All of the empirical cases reported in Table 4 conform to a beta distribution
whose two shape parameters are nearly equal, and very close to one.

Figure 7. Dot plot (each dot represents five eigenvalues) portrayal of the matrix W eigenvalue frequency distri-
butions. Left (a): 40-by-40 regular square tessellation; skewness = 0, kurtosis = 2.23. Right (b): 2010 DFW MSA;
skewness = 0.64 (with a normal curve theory based z = 9.49), kurtosis = 2.34.

Conceptually, the implementation here is analogous to a SSRE term inserted into a beta
RV. Mixed models theory (e.g., McCulloch (2008)) regularly links its random effects term to
a normal distribution. Accordingly, evaluation of the entries in Table 4 reveals, based upon
kurtosis—this beta measurement for equal shape parameters γ equals 4[3−6/(2γ+3)], versus
3 for a normal RV—has a test statistic of |z| = 6/[(2γ + 3)σK ], where σK denotes kurtosis
variance, which for the normal distribution is σ2

K = 24n(n−1)2/[(n−3)(n−2)(n+3)(n+5)].
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The corresponding 95% confidence interval critical values attained are as follows:

n = 1, 600 : γ ≈ 11(|Zkurtosis| = 1.96),Prob(Shapiro-Wilk) = 0.59
n = 1, 314 : γ ≈ 10(|Zkurtosis| = 1.96),Prob(Shapiro-Wilk) = 0.58

In other words, positive SA needs to be at or beyond the level computed for remotely sensed
images before the necessary prior beta RV closely mimics a bell-shaped curve. Less sensitive
Shapiro-Wilk normality diagnostic statistics decrease this threshold to

n = 1, 600 : γ ≈ 7.61,P(S-W) = 0.10
n = 1, 314 : γ ≈ 6.91,P(S-W) = 0.10

which, nevertheless, corroborates the preceding finding. Figure 8 uncovers modest deviations
in both tails of the transformed distributions, the principal source of any detected discrepan-
cies between a beta and the normal distribution it attempts to mimic. Regardless, Figure 6c
visually resembles a bell-shaped curve, implying that perhaps symmetry is more important
than unimodal peakedness (i.e., kurtosis). This conjecture merits future investigation.

Figure 8. Beta-normal quantile plots. Left (a): square tessellation (n = 40× 40 = 1, 600, γ = 11). Right (b): 2010
DFW MSA (n = 1, 314, γ = 10).

In conclusion, the variable transformation technique offers a fruitful tool for constructing a
uniform RV in which SA can materialize. Although much mixed models theory relies heavily
upon the normal distribution for a random effects term, among the findings enumerated
in this appendix is that symmetry alone may be the necessary quality for establishing a
successful prior distribution.


