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José M. Sarabia Universidad de Cantabria, Spain

Helton Saulo Universidade de Braśılia, Brazil
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Abstract

In this paper, the McDonald-Chen distribution is proposed and studied to model dif-

ferent type of data. Its probability density function allows bimodality, thus showing

that the model is very flexible. Its failure or hazard rate function may have increas-

ing, decreasing, bathtub, inverted bathtub and increasing-decreasing-increasing shapes

depending on the parameter values. The new distribution includes at least five major

special cases. Some of its mathematical properties are addressed. The maximum like-

lihood method is adopted to estimate the model parameters. Monte Carlo simulations

evaluate the accuracy of the maximum likelihood estimators. The new distribution is

better than three other popular distributions to model two real data sets.

Keywords: Chen distribution · Family of distributions · Maximum likelihood method

· Moments · Monte Carlo Simulation.

Mathematics Subject Classification: 46N30 · 78M31.

1. Introduction

Several distributions have been proposed to model data in real applications. Lai (2013) de-
tailed the importance of building new survival distributions and the fact that the failure
or hazard rate curves could accommodate di�erent shapes. Thus, there is a need for distri-
butions that are quite flexible to model these shapes. Among the di�erent mechanisms for
proposing new continuous distributions, we have: transformation of the random variable;
random variable convolution; random variable composition (Cordeiro et al., 2018); mixing
distributions between random variables (Nedjar and Zeghdoudi, 2016); distributions that
transform the cumulative distribution (Bourguignon et al., 2014). The choice of generated
distributions can be carried out using transformation in the cumulative distribution. Some
distributions generated using this technique are the beta modified Weibull (Silva et al.,
2010), gamma modified Weibull (Cordeiro et al., 2015), transmuted Dagum (Elbatal and
Aryal, 2015), Harris extended Lindley (Cordeiro et al., 2019).

Eugene et al. (2002) pioneered the beta-generalized (beta-G) family, which includes nearly
all of well-known models as special cases. Further, it can give lighter and heavier tails and be

ú
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applied in several areas such as engineering and biological research, among others. Explicit
expressions are reported in several published papers, which facilitate to find its mathematical
properties for special models. In the last years, several beta-G models have been proposed;
see the list of forty five special models in Table 3 of Tahir et al. (2015). This family has the
major benefit for fitting skewed data that can not be fitted by most well-known continuous
distributions.

In this paper, a flexible extension of the Chen distribution (Chen, 2000) is proposed,
which can be useful in several practical contexts. In particular, adding shape parameters to
a baseline distribution can provide better fits to real data in di�erent settings and extended
Chen distribution has interesting mathematical properties.

The paper is unfolded as follows. In Section 2, a brief introduction to the McDonald-Chen
(MC) distribution is given. In Section 3, the quantile function (QF) of the MC distribution
is determined. In Section 4, the new probability density function (PDF) is expressed as a
linear combination of Chen PDFs. Moments and moments generating function are obtained
in Section 5. In Section 6, its parameters are estimated by the maximum likelihood (ML)
method. In Section 7, some simulation results verify the precision of the parameter estimates.
In Section 8, the MC distribution is proved to outperform some well-known lifetime models.
Finally, Section 9 o�ers some concluding remarks.

2. Background

Based on the beta-G family, Alexander et al. (2012) defined the cumulative distribution
function (CDF) and PDF of the McDonald-generalized (MG) class of distributions as

F (x; a, b, c, ◊) =
BG(x;◊)c(a, b)

B(a, b) = 1
B(a, b)

⁄ G(x)
c

0

w
a≠1(1 ≠ w)b≠1dw (1)

and

f(x; a, b, c, ◊) = c

B(a, b)g(x; ◊) G(x; ◊)ac≠1 [1 ≠ G(x; ◊)c]b≠1
, (2)

respectively, where ◊ is the parameter vector of the baseline distribution G(x; ◊), g(x; ◊) =
d(x; ◊)/dx, a, b and c are three positive additional shape parameters, B(a, b) =

s
1

0
w

a≠1(1 ≠
w)b≠1dw denotes the beta function and Bz(a, b) =

s z
0

w
a≠1(1 ≠ w)b≠1dw denotes the lower

incomplete beta function.
Let X ≥ MG(a, b, c, ◊) be a random variable X having PDF as given in Equation (2).

Although this transformation is simple, the MG family is richer than the corresponding
baseline G(x). For G(x) = x, the MG family reduces to the McDonald distribution pioneered
by Mcdonald (2008). For c = 1 in Equation (1), it follows the beta-G class defined by Eugene
et al. (2002). For a = 1, Equation (1) coincides with the Kumaraswamy-generalized (Kw-
G) class introduced by Cordeiro and de Castro (2011). The MG family is quite important,
since it includes as special cases two of the most well-known classes in the literature, which
generated many published distributions in the last twenty years. According to Cordeiro et
al. (2012a), the MG family allows greater flexibility in its tails and can be widely used in
engineering, biology and other areas.

The hazard rate function (HRF) of X is given by

·(x; a, b, c, ◊) = cg(x; ◊)G(x; ◊)ac≠1[1 ≠ G(x; ◊)c]b≠1

1 ≠ BG(x;◊)c(a, b) . (3)
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The Chen distribution is taken as baseline, since it allows us to model data with bathtub
HRF. The CDF and PDF of the Chen distribution are stated as

G(y; ⁄, —) = 1 ≠ e⁄(1≠ey—
)
, y > 0 (4)

and

g(y; ⁄, —) = ⁄—y
—≠1ey—

+⁄(1≠ey—
)
, y > 0, (5)

respectively, where ⁄ > 0 is the scale parameter and — > 0 is the shape parameter. Hence-
forth, Y ≥ Chen(⁄, —) denotes a random variable with PDF as given in Equation (5).

By taking G and g as the CDF and PDF of the Chen distribution, respectively, and
substituting in Equations (1), (2) and (3), the CDF, PDF and HRF of the MC distribution
are formulated as

F (x; a, b, c, ⁄, —) = 1
B(a, b)

⁄
Ë

1≠e⁄(1≠ex—
)
Èc

0

w
a≠1(1 ≠ w)b≠1dw, (6)

f(x; a, b, c, ⁄, —) = c⁄—

B(a, b)x
—≠1ex—

+⁄(1≠ex—
)

5
1 ≠ e⁄(1≠ex—

)

6ac≠1
;

1 ≠
5
1 ≠ e⁄(1≠ex—

)

6c<b≠1

(7)
and

·(x; a, b, c, ⁄, —) =
c⁄—x

—≠1ex—
+⁄(1≠ex—

)

5
1 ≠ e⁄(1≠ex—

)

6ac≠1
;

1 ≠
5
1 ≠ e⁄(1≠ex—

)

6c<b≠1

1 ≠
s

Ë
1≠e⁄(1≠ex— )

Èc

0
wa≠1(1 ≠ w)b≠1dw

,

respectively.
Henceforth, let X ≥ MC(a, b, c, ⁄, —) have PDF as given in Equation (7). For c = 1,

the MC distribution becomes the beta-Chen (BC), not yet known in the literature. For
a = 1, it follows the (new) Kumaraswamy-Chen (KC). Further, Equation (7) reduces to the
exponentiated-Chen (b = c = 1) (Dey et al., 2017), exponentiated-Chen Lehmann type 2
(a = c = 1) and the Chen itself (a = b = c = 1) distributions.

Figure 1 displays plots of the MC PDFs for selected parameter values, where it is shown
that this distribution is quite flexible having several forms including bimodality.

The HRF curves for some parameter choices are given in Figure 2. The HRF of X can
be increasing, decreasing, unimodal, crescent-descending-crescent and bathtub shape, which
shows once again its great flexibility.

Summing up what was said above, we cite six basic motivations for the MC distribution:
(i) greater flexibility in the PDF and HRF. In fact, its PDF has bimodality, increasing,
decreasing, bathtub and inverted shapes of the HRF, whereas the Chen PDF has only
increasing, decreasing and unimodal shapes. In addition, the rate of the MC distribution can
be increasing, decreasing, bathtub, inverted bathtub, and increasing-decreasing-increasing
shapes. This last form exists for few distributions, but it can be found in many real data
sets; (ii) make the skewness and kurtosis more flexible compared to the Chen distribution.
The parameter c of the new distribution changes substantially the values of its skewness
and kurtosis as shown in the plots of Figures 3 and 4, thus making it very interesting for
real applications; (iii) provide consistently better fits than other lifetime models as proved
empirically in Section 8; (iv) the proposed distribution includes five others sub-models that



94 Ribeiro-Reis et al.

0.0 0.5 1.0 1.5 2.0 2.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

x

D
e
n
s
it
y

λ = 0.6;  β = 1.7
λ = 0.6;  β = 0.7
λ = 1.6;  β = 0.7
λ = 0.5;  β = 0.4

(a)

0.0 0.5 1.0 1.5 2.0

0
.0

0
.5

1
.0

1
.5

2
.0

x

D
e
n
s
it
y

λ = 0.5;  β = 4.8
λ = 1.2;  β = 4.8
λ = 4.2;  β = 1.6
λ = 0.5;  β = 2.1

(b)

0.0 0.5 1.0 1.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

x

D
e
n
s
it
y

λ = 2.5;  β = 6.5
λ = 2.2;  β = 4.5
λ = 0.6;  β = 3.7
λ = 0.5;  β = 4.7

(c)

0.0 0.5 1.0 1.5 2.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

x

D
e
n
s
it
y

λ = 0.16;  β = 2.53
λ = 1.06;  β = 1.98
λ = 0.34;  β = 1.98
λ = 0.7;  β = 2.5

(d)

Figure 1. The MC PDF for some parameters values: (a) MC(0.5, 0.8, 3.5, ⁄, —), (b) MC(0.86, 0.32, 0.18, ⁄, —), (c)

MC(0.05, 0.2, 5, ⁄, —) and (d) MC(0.5, 0.5, 0.9, ⁄, —).

can be compared by using likelihood ratio (LR) tests to choose the best model to explain a
data set; (v) the properties of the new distribution are easily obtained from those of Chen
due to a linear representation for its PDF; and (vi) construct heavy–tailed special cases that
are not longer-tailed for modeling real data.

3. Quantile function

The QF of the MG family, say Q(u; a, b, c, ◊) = F
≠1(u; a, b, c, ◊), can be expressed in terms of

the beta QF. Basically, according to Cordeiro et al. (2012b), the QF of the MG distribution
(for 0 < u < 1) has the form

Q(u; a, b, c, ◊) = Qg{Q—(u; a, b)
1
c ; ◊},

where Qg is the QF of the baseline G and Q—(u; a, b) is the beta QF with parameters a and
b; see the Wolfram website at http://functions.wolfram.com/06.23.06.0004.01.

Thus, the QF of the MC distribution can be expressed as

Q(u; a, b, c, ⁄, —) =
;

log
5
1 ≠ 1

⁄
log

1
1 ≠ Q—(u; a, b)

1
c

26< 1
—

, 0 < u < 1.

The simulation of X is very easy. If U is a uniform random variable on the unit interval

http://functions.wolfram.com/06.23.06.0004.01
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Figure 2. The HRF of the MC model for some parameters values: (a) MC(0.6, 0.3, 1.35, ⁄, —), (b)

MC(1.2, 0.7, 15, ⁄, —), (c) MC(0.66, 0.7, 0.35, ⁄, —) and (d) MC(0.07, 0.08, 20, ⁄, —).

(0, 1), then

X =
;

log
5
1 ≠ 1

⁄
log

1
1 ≠ Q—(U ; a, b)

1
c

26< 1
—

,

wis an MC distributed random variable.
Let Q(u) = Q(u; a, b, c, ⁄, —) be the QF of the MC distribution by omitting the arguments.

The baseline parameters are ⁄ = 5 and — = 1.62 and c varies in {0.2, 1, 5, 10} for the
scenarios (a)-(d), respectively, to study the influence of the generator parameters a and b

on the skewness and kurtosis of the MC distribution. The parameters a and b vary in the
interval (0.1, 1). Figure 3 displays the Bowley skewness, as functions of a and b, defined as

B = Q(3/4) + Q(1/4) ≠ 2 Q(2/4)
Q(3/4) ≠ Q(1/4) .

The minimum and maximum values for B are then (≠0.1542, 1.0000), (≠0.1272, 0.8406),
(≠0.0690, 0.3101) and (≠0.0425, 0.2649) for the scenarios (a)-(d), respectively. For the
selected parameter values, the asymmetry becomes increasingly negative when c increases.

Consider the same parameter values for the Moor kurtosis, as functions of a and b, ex-
pressed as

M = Q(7/8) ≠ Q(5/8) ≠ Q(3/8) + Q(1/8)
Q(6/8) ≠ Q(2/8) ,
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Figure 3. Bowley skewness as function of c: (a) c = 0.2, (b) c = 1, (c) c = 5 and (d) c = 10.

Figure 4 displays the Moor kurtosis, where the minimum and maximum values of M

are (≠0.1985, 116.5147), (≠0.1667, 2.4161), (≠0.0744, 0.6191) and (≠0.0260, 0.4811) for the
scenarios (a)-(d), respectively. Small values of c give higher kurtosis. The kurtosis decreases
and stabilizes when c increases.

4. Linear representation

Equations (6) and (7) can be expressed in terms of exponentiated distributions. For a given
CDF G(z; ◊) with parameter vector ◊, the random variable Z is exponentiated-G (exp-G)
distributed, with power parameter a > 0, if its CDF and PDF are

H(z; a, ◊) = G(z; ◊)a
, h(x) = a g(z; ◊)G(z; ◊)a≠1

,

respectively, where g(z; ◊) = dG(z; ◊)/dz. The exp-G model is also called the Lehmann type
I distribution. From now on, we denote it as Z ≥ exp-G(a, ◊).

Following Alexander et al. (2012), Equation (2) can be expressed as

f(x; a, b, c, ◊) =
Œÿ

k=0

bk h(x; c(a + k), ◊), (8)
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Figure 4. Moor kurtosis as function of c: (a) c = 0.2, (b) c = 1, (c) c = 5 and (d) c = 10.

where h(x; c(a + k), ◊) is the exp-G(c(a + k), ◊) PDF, and the coe�cients bk are

bk = (≠1)k �(a + b)
(a + k) k! �(a) �(b ≠ k) ,

where �(p) =
s Œ

0
w

p≠1e≠wdw denotes the gamma function. We can prove that
qŒ

k=0
bk = 1.

Equation (8) reveals that MG PDF is a linear combination of exp-G PDFs. Thus, sev-
eral MG properties can be determined by knowing those corresponding exp-G properties
(Cordeiro et al., 2012a). By integrating Equation (8), the MG CDF follows as

F (x; a, b, c, ◊) =
Œÿ

k=0

bk H(x; c(a + k), ◊),

where H(x; c(a + k), ◊) is the exp-G(c(a + k), ◊) CDF.

Theorem 4.1 Let Y be a random variable having a Chen CDF as given in Equation (4).
Then, the CDF and PDF of the exp-Chen(a, ⁄, —) distribution are stated as

H(y; a, ⁄, —) = 1 +
Œÿ

m=1

(≠1)m

A
a

m

B

[1 ≠ G(y; m⁄, —)]
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and

h(y; a, ⁄, —) =
Œÿ

m=1

wm(a) g(y; m⁄, —),

respectively, where wm(a) = (≠1)m+1
! a

m

"
.

Proof For |x| < 1 and any real a ”= 0, the convergent power series holds by means of

(1 ≠ x)a =
Œÿ

m=0

(≠1)m

A
a

m

B

x
m

.

Thus, the CDF of the exp-Chen distribution is given by

H(y; a, ⁄, —) =
5
1 ≠ e⁄(1≠ey—

)

6a

=
Œÿ

m=0

(≠1)m

A
a

m

B

em⁄(1≠ey—
)

=1 +
Œÿ

m=1

(≠1)m

A
a

m

B

[1 ≠ G(y; m⁄, —)].

By di�erentiating the last equation, we have that

h(y; a, ⁄, —) =
Œÿ

m=1

(≠1)m+1

A
a

m

B

g(y; m⁄, —),

which shows that the exp-Chen PDF is a linear combination of Chen PDFs. ⌅

Based on Equation (8) and Theorem 4.1, the PDF of X can be expressed as

f(x; a, b, c, ⁄, —) =
Œÿ

m=1

dm g(x; m⁄, —), (9)

where

dm = dm(a, b, c) =
Œÿ

k=0

(≠1)k+m+1�(a + b)
(a + k) k! �(a) �(b ≠ k)

A
c(a + k)

m

B

,

and g(x; m⁄, —) is the Chen PDF with scale parameter m⁄ and shape parameter —. Clearly,
the shape parameters of the MC generation are restricted to the coe�cients in Equation
(9).

Some mathematical properties of the MC distribution can be derived from Equation (9)
and those properties of the Chen distribution. For example, the ordinary and incomplete
moments and moment generating function (MGF) of X can be determined from the corre-
sponding quantities of the Chen distribution. Consequently, the beta-Chen and Kw-Chen
PDFs are also linear combinations of Chen PDFs when c = 1 and a = 1, respectively.

By integrating Equation (9), the CDF of the MC distribution is given by

F (x; a, b, c, ⁄, —) =
Œÿ

m=1

dm G(x; m⁄, —),

where G(x; m⁄, —) is the CDF of the Chen(m⁄, —) distribution.
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5. Moments and Moment generating function

Let Ym be a random variable having the Chen PDF with scale parameter m⁄ and shape
parameter —, that is, Ym ≥ Chen(m⁄, —). By using Equation (9), the rth moment of X can
be written as

E[Xr] =
Œÿ

m=1

dm E[Y r
m].

Pogany et al. (2017) demonstrated that the rth moment of Y has the form

E[Y r] = ⁄ e⁄ Dr—≠1

t

5�(t + 1, ⁄)
⁄t+1

6

t=0

. (10)

Here, we have that

Dp
t

5�(t + 1, ⁄)
⁄t+1

6

t=0

= �(p + 1)
ÿ

kØ0

(2)k

k! �(0,1)

µ,1 (≠k, p + 1, 1) 1F1(k + 2; 2; ≠⁄),

where �(0,1)

µ,1 (≠a, p + 1, 1) =
q

nØ0
(≠a)n

/n!(n + 1)p+1 for µ œ C, 1F1(a; b; x) =q
nØ0

(a)nx
n
/(b)nn!, for x, a œ C and b œ C \ Z

≠
0

, is the confluent hypergeometric func-
tion (Kilbas et al., 2006, p. 29, Eq. 1.6.14) and (⁄)÷ = �(⁄ + ÷)/�(⁄), for ⁄ œ C \ {0}, is
the generalized Pochhammer symbol, under the convention (0)0 = 1.

The rth ordinary moment of X follows from Equation (10) as

E[Xr] = ⁄

Œÿ

m=1

m dm em⁄ Dr—≠1

t

5�(t + 1, m⁄)
(m⁄)t+1

6

t=0

.

The incomplete moments of a distribution have great applicability to measure inequality.
The first incomplete moment is used to construct Lorenz and Bonferroni curves.

For z > 0, the rth incomplete moment of Y , say qr(z; ⁄, —) =
s z

0
y

r
g(y; ⁄, —)dy, follows

from Pogany et al. (2017) as

qr(z; ⁄, —) = ⁄e⁄
ÿ

n,kØ0

kÿ

j=1

(2)n+k

(2)n

(≠1)n+j
⁄

n
!k

j

"

n!k!(j + 1)r—≠1+1
“(r—

≠1
, (j + 1)(1 ≠ z

≠1)), (11)

where “(p, z) =
s z

0
w

p≠1 e≠wdw denotes the lower incomplete gamma function.
The rth incomplete moment of X can be expressed from Equation (9) as

mr(z) =
Œÿ

m=1

dm qr(z; m⁄, —),

which depends directly on the rth incomplete moment of the Chen(m⁄, —) distribution.
By using Equation (11), the rth incomplete moment de X can be written as

mr(z) = ⁄

Œÿ

m=1

m em⁄
dm

ÿ

n,kØ0

kÿ

j=1

(2)n+k

(2)n

(≠1)n+j(m⁄)n
!k

j

"

n!k!(j + 1)r—≠1+1
“(r—

≠1
, (1 ≠ z

≠1)(j + 1)).
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The MGF of Y , say MY (t) = E
#
e≠tY

$
, for t > 0, can be determined from Pogany et al.

(2017) as

MY (t) = ⁄ — e⁄
t
≠—

ÿ

nØ0

(≠⁄)n

n! 1�0

5
(—, —); ≠; n + 1

t—

6
, (12)

where

1�0 [(a, b); ≠; z] =
ÿ

nØ0

�(a + bn) z
n

n! , z, a œ C, b > 0,

is the generalized Fox-Wright function. Thus, using Equations (9) and (12), the MGF of X

is stated as

MX(t) = ⁄ — e⁄
t
≠—

Œÿ

m=1

ÿ

nØ0

(≠m⁄)n
dm

n! 1�0

5
(—, —); ≠; n + 1

t—

6
.

6. Estimation

The ML estimators enjoy desirable properties that can be used when constructing confidence
intervals for the model parameters. Let X1, . . . , Xn be a random sample of size n from
X ≥ MC(a, b, c, ⁄, —) with observations x1, . . . , xn. The log-likelihood function for ◊ =
(a, b, c, ⁄, —)€ from this sample is formulated as

L(◊) =n[log c⁄— ≠ log B(a, b) + ⁄] + (— ≠ 1)
nÿ

i=1

log xi +
nÿ

i=1

x
—
i ≠ ⁄

nÿ

i=1

ex—
i

+ (ac ≠ 1)
nÿ

i=1

log t(xi) + (b ≠ 1)
nÿ

i=1

log{1 ≠ t(xi)c},

(13)

where t(xi) = 1 ≠ exp{⁄(1 ≠ ex—
i )}.

The function L(◊) can be maximized either directly by using well-known platforms such
as the R (optim function), SAS (PROC NLMIXED), Ox program (MaxBFGS sub-routine) or by
solving the nonlinear likelihood equations of the score vector obtained by di�erentiating
Equation (13).

The components of the score vector U(◊) are given by

Ua(◊) = nÂ(a + b) ≠ nÂ(a) + c

nÿ

i=1

log t(xi),

Ub(◊) = nÂ(a + b) ≠ nÂ(b) +
nÿ

i=1

log{1 ≠ t(xi)c},

Uc(◊) = n

c
+ a

nÿ

i=1

log t(xi) ≠ (b ≠ 1)
nÿ

i=1

t(xi)c log t(xi)
1 ≠ t(xi)c

,

U⁄(◊) = n

⁄
+ n ≠

nÿ

i=1

ex—
i ≠ (ac ≠ 1)

nÿ

i=1

r(xi)
t(xi)

+ c(b ≠ 1)
nÿ

i=1

r(xi)t(xi)c≠1

1 ≠ t(xi)c
,
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U—(◊) = n

—
+

nÿ

i=1

log xi +
nÿ

i=1

x
—
i log xi ≠ ⁄

nÿ

i=1

x
—
i ex—

i log xi

+⁄(ac ≠ 1)
nÿ

i=1

s(xi)
t(xi)

≠ c⁄(b ≠ 1)
nÿ

i=1

s(xi)t(xi)c≠1

1 ≠ t(xi)c
,

where Â(q) = d log �(q)/dq is the digamma function, r(xi) = (1 ≠ ex—
i )e⁄(1≠e

x
—
i ) and s(xi) =

x
—
i e⁄(1≠e

x
—
i )+x—

i log xi.
The ML estimate ‚◊ = (‚a,‚b, ‚c, ‚⁄, ‚—)€ of ◊ = (a, b, c, ⁄, —)€ is determined by the simultane-

ous solutions of the equations U(◊) = 0. These solutions are those ‚◊ values that maximize
Equation (13). The estimates of the unknown parameters can not be obtained analytically,
and then interactive methods such as the quasi-Newton BFGS and Newton-Raphson algo-
rithms are required.

The estimated observed information matrix is given by

J(◊) = ≠

S

WWWWU

Uaa(◊) Uab(◊) Uac(◊) Ua⁄(◊) Ua—(◊)
Uba(◊) Ubb(◊) Ubc(◊) Ub⁄(◊) Ub—(◊)
Uca(◊) Ucb(◊) Ucc(◊) Uc⁄(◊) Uc—(◊)
U⁄a(◊) U⁄b(◊) U⁄c(◊) U⁄⁄(◊) Ua—(◊)
U—a(◊) U—b(◊) U—c(◊) U—⁄(◊) U——(◊)

T

XXXXV

◊=‚◊

,

where Upq(◊) = ˆ
2L(◊)/(ˆ„pˆ„q), and Upq(◊) = Uqp(◊). Thus, we get

Uaa(◊) = nÂ
Õ(a + b) ≠ nÂ

Õ(a), Uab(◊) = nÂ
Õ(a + b), Uac(◊) =

nÿ

i=1

log t(xi),

Ua⁄(◊) = ≠c

nÿ

i=1

r(xi)
t(xi)

, Ua—(◊) = c⁄

nÿ

i=1

s(xi)
t(xi)

, Ubb(◊) = nÂ
Õ(a + b) ≠ nÂ

Õ(b),

Ubc(◊) = ≠
nÿ

i=1

t(xi)c log t(xi)
1 ≠ t(xi)c

, Ub⁄(◊) = c

nÿ

i=1

r(xi)t(xi)c≠1

1 ≠ t(xi)c
,

Ub—(◊) = ≠c⁄

nÿ

i=1

s(xi)t(xi)c≠1

1 ≠ t(xi)c
,

Ucc(◊) = ≠ n

c2
≠ (b ≠ 1)

nÿ

i=1

t(xi)c[log t(xi)]2
[1 ≠ t(xi)c]2 ,

Uc⁄(◊) = ≠a

nÿ

i=1

r(xi)
t(xi)

+ (b ≠ 1)
nÿ

i=1

r(xi)t(xi)c≠1

1 ≠ t(xi)c
+ c(b ≠ 1)

nÿ

i=1

r(xi)t(xi)c≠1 log t(xi)
[1 ≠ t(xi)c]2 ,

Uc—(◊) = a⁄

nÿ

i=1

s(xi)
t(xi)

≠ ⁄(b ≠ 1)
nÿ

i=1

s(xi)t(xi)c≠1

1 ≠ t(xi)c
≠ c⁄(b ≠ 1)

nÿ

i=1

s(xi)t(xi)c≠1 log t(xi)
[1 ≠ t(xi)c]2 ,
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⁄2
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i=1
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i )r(xi)t(xi)c≠1 ≠ (c ≠ 1)r(xi)2

t(xi)c≠2

1 ≠ t(xi)c
,
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U⁄—(◊) = ≠
nÿ

i=1

x
—
i ex—

i log xi + (ac ≠ 1)
nÿ

i=1

s(xi)
t(xi)

+c
2
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where Â
Õ(q) = d2 log �(q)/dq

2 is the trigamma function and v(xi) = s(xi)[log xi ≠
⁄x

—
i e

x—
i log xi + x

—
i log xi]

The normal approximation for ‚◊ in distribution theory is easily handled numerically.
Under general regularity conditions, we have the result ( ‚◊ ≠ ◊) a≥ N5(0, K(◊)≠1), where
K(◊) is the 5 ◊ 5 expected information matrix and a≥ denotes asymptotic distribution. For
n large, K(◊) can be approximated by the estimated observed information matrix J(‚◊). This
multivariate normal approximation for ‚◊ can be used for construing approximate confidence
intervals for the model parameters. The LR statistics can be used for testing hypotheses on
these parameters.

7. Simulation study

A Monte Carlo simulation is performed to empirically evaluate some asymptotic properties
of the ML estimators for the parameters of the MC distribution. The MC observations
are generated from three di�erent combinations of a, b, c, ⁄ and — with samples sizes n =
25, 50, 75, 100, 200 and 500 and repeat the simulations N = 1, 000 times. The subroutine
optim in R (R Core Team, 2020) is used for maximizing the log-likelihood Equation (13).
The average estimates (AEs) of the ML estimators and their mean squared errors (MSEs)
are reported in Tables 1, 2 and 3. The AEs tend to be closer to the true parameters and the
MSEs decrease when the sample size n increases in agreement with first-order asymptotic
theory. Note that the parameter — presents the lowest MSE in all scenarios. In addition, the
parameter ⁄ is the one which presents the highest MSE.



Chilean Journal of Statistics 103

Table 1. Monte Carlo results under ◊ = (1.3, 1.6, 1.4, 1.2, 0.6).

AE MSE
n ‚a ‚b ‚c ‚⁄ ‚— ‚a ‚b ‚c ‚⁄ ‚—

25 2.219 2.102 2.916 2.958 1.483 7.706 6.801 10.945 11.097 3.319
50 1.942 1.913 2.658 2.689 0.946 5.256 4.602 7.705 8.133 0.728
75 1.834 1.927 2.563 2.423 0.835 4.197 4.062 6.320 5.910 0.348
100 1.908 1.788 2.403 2.399 0.788 4.251 3.314 5.917 5.272 0.218
200 1.726 1.805 2.133 2.089 0.681 2.557 2.654 3.500 3.389 0.053
500 1.630 1.770 1.892 1.717 0.632 1.727 1.712 2.160 1.511 0.013

Table 2. Monte Carlo results under ◊ = (1.4, 2, 0.9, 2.8, 1.1).

AE MSE
n ‚a ‚b ‚c ‚⁄ ‚— ‚a ‚b ‚c ‚⁄ ‚—

25 2.173 3.919 2.110 5.153 2.497 6.493 12.609 8.104 19.458 6.186
50 2.028 3.514 1.822 4.353 2.251 4.719 9.481 6.205 13.103 4.631
75 1.932 3.381 1.612 3.958 2.180 3.297 7.829 4.690 10.588 4.319
100 1.911 3.271 1.614 3.701 1.983 3.407 6.675 4.481 8.492 3.269
200 1.904 3.025 1.443 3.328 1.792 2.845 4.440 2.989 6.200 2.297
500 1.818 2.835 1.347 2.916 1.405 1.972 3.225 2.057 3.555 0.808

Table 3. Monte Carlo results under ◊ = (1.7, 1.9, 1.2, 2.2, 0.7).

AE MSE
n ‚a ‚b ‚c ‚⁄ ‚— ‚a ‚b ‚c ‚⁄ ‚—

25 2.689 3.342 2.302 4.495 2.056 8.880 10.736 8.074 17.959 5.889
50 2.367 3.046 2.132 3.610 1.700 5.293 7.422 6.402 11.657 3.954
75 2.262 2.859 2.094 3.479 1.471 4.589 6.739 5.869 10.489 2.886
100 2.297 2.734 1.897 3.279 1.263 4.167 5.378 4.320 8.920 1.844
200 2.209 2.599 1.925 2.913 0.968 3.824 4.000 3.793 5.655 0.638
500 2.087 2.412 1.694 2.609 0.798 2.235 2.489 2.114 2.963 0.187

8. Applications

Two real data applications prove empirically the adequacy of the MC distribution. The
applications are developed using the R software (version 3.6.3) (R Core Team, 2020) with
the script AdequacyModel (Marinho et al., 2019). The criteria for model selection are based
on the statistics defined by Chen and Balakrishnan (1995): Anderson Darling (Aú) and
Cramér-von Mises (W ú). In addition to these statistics, we consider the Akaike information
criterion (AIC), Consistent Akaike information criterion (CAIC), Bayesian information cri-
terion (BIC), Hannan-Quinn information criterion (HQIC) and Kolmogorov-Smirnov (KS)
statistic with its p-value for model comparisons. The smaller the value of these statistics
evidence we have for a good fit. All these important statistics for selecting the best models
are provided in the AdequacyModel package. The graphical analysis is also important to
identify the best fitted model. We analyze the data histograms, the estimated PDFs and
CDFs and the empirical CDF calculated by the Kaplan-Meier (Kaplan and Meier, 1958)
method.
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The MC distribution is compared with three popular lifetime models. The first one is the
beta-modified Weibull (BMW) distribution defined by Silva et al. (2010), whose PDF is
given by

fbmw(x; a, b, –, ⁄, “) = ax
“≠1(“ + ⁄x)e⁄x

B(a, b) e≠b–x“e⁄x
Ë
1 ≠ e≠–x“e⁄x

Èa≠1

, x > 0,

where a, b, and “ are positive shape parameters, – > 0 is a scale parameter and ⁄ > 0 is
an accelerating factor in imperfection time which acts as a fragility factor in the survival of
the individual as time increases.

The second one is the three-parameter Burr XII distribution (Zimmer et al., 1998), whose
PDF has the form

fbxii(x; s, d, c) = cd

sc
x

c≠1

5
1 +

3
x

s

4c6≠(d+1)

, x > 0,

where s > 0 is a scale parameter and c and d are two positive shape parameters.
The third distribution is the Kumaraswamy-log logistic (KLL) (de Santana et al., 2012)

model, whose PDF is stated as

fkll(x; a, b, –, “) = ab“

–a“
x

a“≠1

5
1 +

3
x

–

4“6≠(a+1)
I

1 ≠
C

1 ≠ 1
1 +

! x
–

"“

D–Jb≠1

, x > 0,

where – > 0 is a scale parameter and a, b and “ are positive shape parameters.

8.1 Windshields data

We consider 85 uncensored failure times for a specific windshield model studied by Murthy et
al. (2004) and Cordeiro et al. (2015). A problem of interest would be to accurately estimate
the probability of failure of this windshield model within a specified period time.

The descriptive statistics for these data are listed in Table 4, including minimum and
maximum values, first and third quartile, median (Med), mean, standard deviation (SD),
and coe�cients of skewness and kurtosis.
Table 4. Descriptive statistics for windshields data.

n Min 1st quartile Med Mean 3rd quartile Max SD Skewness Kurtosis
85 0.04 1.87 2.38 2.56 3.38 4.66 1.11 0.09 2.37

The ML estimates and their associated standard errors (SEs) in parentheses for the fitted
distributions are reported in Table 5. Some estimators have large SEs for the BMW and
BXII distributions. In addition, the MC and KLL distribution parameters are significant.
Table 6 gives the values of the information criteria described before. The MC distribution
has the lowest values for all information criteria. Thus, it is the distribution that yields the
best fit to the current data. The p-values of the KS statistic also reveal that the data are
described well for all distributions.

Since the MG family includes as special cases the beta-G and Kumaraswamy-G classes,
two LR tests are performed: MC versus beta-Chen (c = 1) and MC vs Kumasrawamy-Chen
(a = 1). The LR statistics for these tests are 7.0369 and 7.2441, respectively. The two null
hypotheses are rejected, thus indicating that the MC distribution is the most suitable for
the current data.
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Table 5. ML estimates and their associated standard errors (SEs) in parentheses for the
distributions fitted to windshields data.

Distribution Estimate
MC(a, b, c, ⁄, —) 0.0360 0.0994 22.2596 0.0451 1.2201

(0.0051) (0.0228) (0.6653) (0.0186) (0.0139)
BMW(a, b, –, ⁄, “) 4.9756 0.1824 1.0938 0.6004 0.1290

(5.2775) (0.1640) (0.7173) (0.1519) (0.1963)
KLL(a, b, –, “) 0.3359 3.5033 5.6294 6.2686

(0.0374) (0.6590) (0.0304) (0.0306)
BXII(s, d, c) 13.5330 42.7872 2.4122

(8.5003) (59.8242) (0.2171)

Table 6. Statistics for the fitted distributions to windshields data.

Distribution W
ú

A
ú AIC CAIC BIC HQIC KS p-value (KS)

MC 0.0576 0.3684 259.0505 259.8100 271.2638 263.9630 0.0810 0.6332
BMW 0.0683 0.4849 264.4261 265.1856 276.6394 269.3387 0.0820 0.6173
KLL 0.0617 0.5597 268.1631 268.6631 277.9337 272.0931 0.0570 0.9454
BXII 0.0590 0.5973 269.0118 269.3081 276.3398 271.9594 0.0538 0.9663

A graphical analysis can show the best choice for a model. First, the estimated PDFs are
plotted on the data histogram in Figure 5(a). These plots show that the MC distribution
is the most appropriate model for the current data and that its estimated PDFs captures
the bimodality of the histogram. Figure 5(b) displays the empirical CDF and the estimated
CDFs of the MC, BMW and KLL models, which also reveals the superiority of the MC
distribution for these data.
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Figure 5. Histogram with estimated PDFs (a) and empirical CDF with estimated CDFs (b) of the MC, BMW and

KLL models for windshields data.
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8.2 Kevlar/epoxy data

This data set is about the lifetime of spherical pressure vessels under constant pressure
until vessel failure, commonly known as static fatigue or stress rupture. NASA space shuttle
uses Kevlar/epoxy spherical pressure vessels in a sustained pressure mode for the life of the
vessel. The use of this material can be found in air-space breathing apparatus. These data
are available in Andrews and Herzberg (1985). The main interest in this application would
be to accurately estimate the survival function of these spherical pressure vessels.

The descriptive statistics for these data are given in Table 7. The ML estimates of the
parameters for four fitted models are listed in Table 8. Again, the BMW and BXII distri-
butions have large SEs for some estimates. Di�erently, all the MC and KLL parameters are
significant.

Table 7. Descriptive statistics for Kevlar/epoxy data.

n Min 1st quartile Med Mean 3rd quartile Max SD Skewness Kurtosis

49 1051 5620 8831 8805.69 11745 17568 4553.92 0.10 2.17

Table 8. ML estimates and their associated standard errors (SEs) in parentheses for the
distributions fitted to Kevlar/epóxy data.

Distribution Estimate
MC(a, b, c, ⁄, —) 0.3290 0.1171 5.3114 0.1595 0.5822

(0.0758) (0.0248) (0.0380) (0.0137) (0.0114)
BMW(a, b, –, ⁄, “) 0.7204 0.4003 0.0162 0.0814 1.7067

(0.5976) (1.1377) (0.0308) (0.1062) (1.6739)
KLL(a, b, –, “) 0.2718 13.0771 37.9120 7.1778

(0.0433) (4.5558) (0.4090) (0.6379)
BXII(s, d, c) 39.5646 18.5077 2.0830

(28.7962) (25.6918) (0.2439)

The LR values for the tests MC vs BC (c = 1) and MC vs KC (a = 1) are 1.1182 and
0.8931, respectively, and therefore the two null hypotheses are not rejected. In Table 9, the
more useful statistics W

ú and A
ú to compare nested and non-nested models indicate that

the MC distribution is more appropriate for the current data. The KC distribution can also
be chosen based on the AIC, CAIC and HQIC criteria. According to BIC criteria the BXII
model is chosen. However, these criterions are more useful to compare nested models. The
p-values of the KS statistic indicate that all models can be adopted to fit the current data,
although it is higher for the BXII model.

Table 9. Statistics for the fitted models to Kevlar/epóxy data.

Distribution W
ú

A
ú AIC CAIC BIC HQIC KS p-value (KS)

MC 0.0294 0.2228 291.3719 292.7673 300.8310 294.9607 0.0724 0.9593
BMW 0.0313 0.2304 291.6484 293.0438 301.1075 295.2372 0.0697 0.9711
KLL 0.0639 0.4196 291.8350 292.7441 299.4023 294.7060 0.0849 0.8716
BXII 0.0800 0.5221 291.4196 291.9530 297.0951 293.5729 0.0902 0.8198
BC 0.0350 0.2491 290.4901 291.3992 298.0574 293.3612 0.0750 0.9455
KC 0.0354 0.2494 290.2651 291.1742 297.8324 293.1361 0.0749 0.9463
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Figure 6. Histogram with estimated PDFs (a) and empirical CDF with estimated CDFs (b) of the MC, KLL and

BXII models for Kevlar/epoxy data.

The histogram and estimated PDFs are reported in Figure 6(a), where the superiority of
the MC distribution is noted, thus corroborating with the W

ú and A
ú statistics.

The estimated CDFs along and the empirical CDF are displayed in Figure 6(b). These
plots reveal that the estimated CDF of the MC model is closer to the empirical one. Thus,
the MC model has a better performance to explain the survival function of the data.

The probability-probability (PP) plots for windshields and Kevlar/epóxy data are given
in Figures 7 and 8, respectively. For both data sets, the plot points are close to the diagonal
line for the MC model, followed by the KLL distribution. This is a further indication that
the MC distribution is the best model for these data sets. Plot of the profile log-likelihood
function for windshields and Kevlar/epóxy data are shown in Figures 9 and 10, respectively.
These plots were constructed by fixing the other parameters and varying the parameter of
interest in a range covering the respective ML estimate. For example in Figure 9(a), the
parameter a varies between 0.01 and 0.2, in Figure 9(b) 0.01 < b < 0.8, in Figure 9(c)
10 < c < 40, in Figure 9(d) 0.004 < ⁄ < 0.05 and Figure 9(e) 0.3 < — < 1.24. The plots of
the Figure 10 are constructed in an analogous way.

9. Conclusions, limitations, and future research

In this paper, the new McDonald-Chen distribution was proposed, which extended the
Chen distribution and presented more flexibility. In the proposal, three shape parameters
were added to the Chen distribution to obtain more flexibility and bimodality for the gen-
erated probability density function. Its failure or hazard rate function can be increasing,
decreasing, upside-down bathtub, bathtub and increasing-decreasing-increasing shapes. Few
distributions have this last form. As a result, the new distribution can accommodate sev-
eral types of data sets, so providing a good alternative for fitting survival and fatigue data.
Monte Carlo simulations evaluated the accuracy of the maximum likelihood estimators of
the parameters. Finally, two real applications showed that the McDonald-Chen distribution
provided better fits than three well-known models because it accommodates bimodality.

A limitation of the new distribution proposed here is its usefulness in fitting data with
very small samples because this distribution has five parameters. This compromises the
degrees of freedom for data with small samples.
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Figure 7. PP-plots for windshields data.
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Figure 8. PP-plots for Kevlar/epóxy data.
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Figure 9. Profile log-likelihood functions for windshields data.
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Figure 10. Profile log-likelihood functions for Kevlar/epóxy data.
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Future work can be directed to: (i) correct the maximum likelihood estimators analytically
(if possible) or numerically (via bootstrap resampling); (ii) reparameterize the McDonald-
Chen distribution in terms of the median and propose a regression model to model the
median; and (iii) perform inference studies on the McDonald-Chen regression model and
diagnostic analysis.
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