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Héctor Allende Cid Pontificia Universidad Católica de Valparáıso, Chile
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George Christakos San Diego State University, US

Enrico Colosimo Universidade Federal de Minas Gerais, Brazil

Gauss Cordeiro Universidade Federal de Pernambuco, Brazil

Francisco Cribari-Neto Universidade Federal de Pernambuco, Brazil

Francisco Cysneiros Universidade Federal de Pernambuco, Brazil

Mário de Castro Universidade de São Paulo, São Carlos, Brazil

Raul Fierro Universidad de Valparáıso, Chile
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Diego Gallardo Universidad de Atacama, Chile

Christian Genest McGil University, Canada

Marc G. Genton King Abdullah University of Science and Technology, Saudi Arabia

Viviana Giampaoli Universidade de São Paulo, Brazil
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Abstract

In the realm of astronomy, the two-parameter log-normal distribution has ominous im-

plications. In this article, we propose a new version of the two-parameter log-normal

distribution with an application to astronomical data. More precisely, a new modulat-

ing parameter is added to the two-parameter log-normal distribution through the use

of the Topp-Leone generator of distributions. The moments, quantile function, several

reliability measures, and other significant aspects of the proposed distribution are inves-

tigated. The maximum likelihood approach and a Bayesian technique are both utilized

to estimate the unknown parameters. In addition, we present a parametric regression

model and a Bayesian regression method. A simulation study is carried out to assess

the long-term performance of the estimators of the distribution parameters. Two real

datasets are employed to show the applicability of this new distribution. The e�ciency

of the newly added parameter is tested by utilizing the likelihood ratio test. The para-

metric bootstrap approach is also utilized to determine the adequacy of the suggested

model for the datasets.

Keywords: Bayesian estimation · bootstrapping · maximum likelihood estimation

· regression · simulation.

Mathematics Subject Classification: Primary 60E05 · Secondary 62F15.

1. Introduction

In practice, the two-parameter log-normal (LN) distribution can be used to fit empirical
data in a variety of ways. This is especially true in the field of astronomy. Studies and re-
search have established evidence of an LN distributional characteristic for very high energy
emission of light curves from galaxies; for more information, see Abdalla et al. (2017). It
is also worth noting that the distribution of galaxy density contrast, which is a parame-
ter utilized in galaxy formation to indicate where there are local enhancements in matter
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density, is roughly an LN distribution; whether the distribution of mass fluctuation from
the Dark Energy Survey, which is derived from weak lensing convergence in a similar way
to convex glass lenses, is an LN distribution is less clear. It was first identified by Hubble
(1934) that the distribution of galaxies in angular cells on the celestial sphere is well pre-
dicted by an LN distribution. Again, recently, Shah et al. (2018) and Shah et al. (2020)
elaborately highlighted the considered LN distributional behavior of the gamma-ray (“-ray)
flux distribution on the brightest blazars, which are observed by the Fermi-LAT, a space
observatory’s large area telescope (LAT) being used to perform “-ray. For more applications
of the LN distribution in the area of astrophysics and cosmology, one can go through the
articles by Bernardeau and Kofman (1994), Blasi et al. (1999) and Parravano et al. (2012).

Fundamental distributions occasionally fail to adequately characterize and anticipate the
vast majority of real-world datasets resulting from complicated processes. Because the qual-
ity of statistical analysis results is strongly dependent on the assumed model, choosing an
adaptive model for data analysis is critical. Therefore, more allied distributions must be
found in order to obtain better quality and more accurate results. Since the LN distribution
has superior importance in the field of astronomy, it is inevitable to derive new generalized
versions of the LN distribution, not only for modeling astronimocal data but also for the
variety of datasets from other study areas where the LN distribution has the best fit. Note
that the LN distribution has been utilized in a range of domains which includes most of the
applied areas such as economics, sociology, biology, and meteorology, to name just a few;
for more details, see Jobe et al. (1989).

There has recently been a boom in interest in the art of adding parameters to well-known
existing distributions in order to obtain diverse forms of hazard rate functions (HRFs) for
use in various real-life circumstances, as well as for evaluating data with a high degree of
skewness and kurtosis. Several researchers have started to build families of distributions
based on conventional distributions or using di�erent methodologies in order to generalize
any baseline distribution; for example, see Afify (2017). In this article, using a flexible
generalization technique that includes an additional shape parameter, we investigate a novel
lifetime distribution that is also a generalized version of the two-parameter LN distribution.
The aim is to uncover some of the suggested model’s statistical features and apply them
to real-world data. The main motivations for developing this lifetime model are: (i) to
propose a new flexible version of the LN distribution that can be used, particularly to
analyze astronomical data, because the LN distribution has eminent superiority in the field
of astronomy, as well as the ability to be applied to a broader class of reliability problems, (ii)
to extend both the LN and Topp-Leone distributions, and (iii) to investigate some additional
shapes of the HRF.

The remaining sections of the article are structured as follows. Section 2 reveals our dis-
tribution methodology. The specification of the new distribution is presented in Section 3.
In Section 4, its moments are calculated. The quantile function (QF) and some of its asso-
ciated measures are obtained in Section 5. The various functions and moments related to
the reliability measures are discussed in Section 6. In Section 7, the maximum likelihood
(ML) and Bayesian estimation techniques are employed to estimate the unknown param-
eters of the new model. Also, a parametric bootstrap method of simulation using the ML
estimates is presented in Section 8. A parametric regression model associated with the new
distribution is defined in Section 9. Again, a Bayesian regression method is presented in
Section 10. A simulation study is proposed in Section 11 to analyze the performance of
the ML estimators of the parameters. In Section 12, one univariate uncensored real dataset
based on an astronomical study, and one censored real dataset based on a cancer study are
evaluated to depict the potential of the new distribution over competing distributions. The
final concluding remarks are given in Section 13.
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2. Construction of the distribution

A simple bounded J-shaped distribution that has attracted various statisticians as an alter-
native to uniform(0,1) and beta distributions was proposed by Topp and Leone (1955). It is
called the Topp-Leone (TL) distribution. The cumulative distribution function (CDF) and
probability density function (PDF) of the TL distribution are respectively stated as

FTL(x; –) = [x(2 ≠ x)]–,

and

fTL(x; –) = 2–x
–≠1(1 ≠ x)(2 ≠ x)–≠1

, – > 0, x œ (0, 1).

It is worth mentioning that the TL distribution has a bathtub shaped HRF for all – < 1.
Later, Sangsanit and Bodhisuwan (2016) introduced the Topp-Leone generalized exponential
distribution, using the TL distribution as a generator distribution with application to the
maximum stress per cycle and breaking stress of carbon fiber datasets. Now, we consider
the method for generating new distributions, called the TX family, proposed by Alzaatreh
et al. (2013). The essence of the TX family is presented below. Let X be a continuous
baseline random variable with CDF FX , and T be a continuous generator random variable
of a distribution with support on [a, b] and CDF �. Then, the CDF of the TX family is
given by

FTX(x) = �[W (FX(x))], (1)

where W (FX(x)) œ [a, b] is di�erentiable and monotonically non-decreasing.
Considering the immense applicability of the TL and LN distributions, we propose to ap-

ply both the distributions in Equation (1), in which the LN distribution is the baseline and
the TL distribution is a generator distribution, and henceforth, we call the resulting distri-
bution the Topp-Leone log-normal (TLLN) distribution, which provides greater versatility
in modeling skewed datasets.

We also propose an entirely di�erent method to derive the new distribution. Sharma
(2018) proposed a new three-parameter distribution called the Topp-Leone normal (TLN),
which is defined on the entire real line and is ideal for modeling increasing HRF data. The
CDF of the TLN distribution is expressed as

FTLN(y) =
;

�
3

y ≠ µ

‡

4 5
2 ≠ �

3
y ≠ µ

‡

46<–

, y, µ œ , ‡, – > 0,

where � is the CDF of the standard normal distribution. Then, the random variable X = e
Y

follows the TLLN distribution with parameters –, µ and ‡.

3. Definition of the distribution

The definition of the new distribution, as well as several key features, are examined in this
section.
Definition 3.1 Let X be a random variable which follows the TLLN distribution with
parameters –, µ and ‡. Then, its CDF is given by

F (x) =
;

�
3 log(x) ≠ µ

‡

4 5
2 ≠ �

3 log(x) ≠ µ

‡

46<–

, (2)
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and its PDF is defined as

f(x) = 2–

‡x
„

3 log(x) ≠ µ

‡

4 5
1 ≠ �

3 log(x) ≠ µ

‡

46
◊

;
�

3 log(x) ≠ µ

‡

4 5
2 ≠ �

3 log(x) ≠ µ

‡

46<–≠1

,

(3)

where x > 0, µ œ and ‡, – > 0. Also, „ is the PDF of the standard normal distribution.
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Figure 1. Plots of the CDF of the TLLN distribution.

The plots in Figures 1 and 2 depict the corresponding CDF and PDF of the TLLN
distribution. We observe that the PDF may be decreasing and unimodal with a certain
flexibility in the mode and tails. It is, however, mainly right-skewed or almost symmetrical.
Next, some expansions for the CDF and PDF are provided. It is also interesting to note that
the TLLN distribution can be expressed as an infinite sum of exponentiated LN distributions
when – is a non-integer or as a finite sum when – is an integer. Indeed, the CDF of the
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Figure 2. Plots of the PDF of the TLLN distribution.

TLLN distribution in Equation (2) can be simplified as follows:

F (x) =
Œÿ

j=0

A
–

j

B

(≠1)j2–≠j
5
�

3 log(x) ≠ µ

‡

46–+j

because of the identity given by

(2 ≠ b)– =
Œÿ

j=0

A
–

j

B

(≠1)j2–≠j
b

j
,

for |b| < 2.
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Now, note that

[�(.)]–+j = [1 ≠ (1 ≠ �(.))]–+j =
Œÿ

k=0

A
– + j

k

B

(≠1)k[1 ≠ �(.)]k

=
Œÿ

k=0

kÿ

r=0

A
– + j

k

BA
k

r

B

(≠1)k+r[�(.)]r.

As a result, the CDF of the TLLN distribution takes the form

F (x) =
Œÿ

j=0

Œÿ

k=0

kÿ

r=0

Wj,k,r(–)
5
�

3 log(x) ≠ µ

‡

46r

,

where

Wj,k,r(–) =
A

–

j

BA
– + j

k

BA
k

r

B

(≠1)j+k+r2–≠j
.

Thus, the TLLN distribution can be expressed as the infinite sum of exponentiated LN
distributions indexed by the power parameter r. If the parameter – is an integer, the TLLN
distribution can be expressed as the finite sum of exponentiated LN distributions given as

F (x) =
–ÿ

j=0

–+jÿ

k=0

kÿ

r=0

Wj,k,r(–)
5
�

3 log(x) ≠ µ

‡

46r

.

Again, applying the series expansion in Equation (3), the PDF of the TLLN distribution
can be written as

f(x) = 2–

‡x
„

3 log(x) ≠ µ

‡

4 Œÿ

j=0

A
– ≠ 1

j

B

(≠1)j
5
1 ≠ �

3 log(x) ≠ µ

‡

462j+1

,

or

f(x) =
Œÿ

j=0

2j+1ÿ

k=0

b–(j, k)Âk(x), (4)

where

b–(j, k) = 2
A

– ≠ 1
j

BA
2j + 1

k

B
(≠1)j+k

k + 1 (5)

and

Âk(x) = k + 1
‡x

„

3 log(x) ≠ µ

‡

4 5
�

3 log(x) ≠ µ

‡

46k

is the PDF of the exponentiated LN distribution with power parameter k + 1.
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Remark 1 If x is fixed, the PDFs of the TLLN and LN distributions correspond when

– =
log

Ë
�

1
log(x)≠µ

‡

2È

log
Ó

�
1

log(x)≠µ
‡

2 Ë
2 ≠ �

1
log(x)≠µ

‡

2ÈÔ .

The proof is straightforward and omitted for the sake of brevity.

Lemma 3.2 For – = 1, the CDF of the TLLN distribution in Equation (2) becomes the
CDF of the transmuted LN distribution with transmuted parameter equals to 1.

Proof : To begin with, a retrospective on the transmuted distributions is necessary. Shaw
and Buckley (2009) introduced a new family of distributions called transmuted distributions,
and the general expression of its CDF is

FT (x) = (1 + ⁄)G(x) ≠ ⁄[G(x)]2, |⁄| Æ 1,

where G is the baseline CDF and ⁄ is called the transmuted parameter. Thus, the CDF of
the TLLN distribution can be written as

F (x) = 2�
3 log(x) ≠ µ

‡

4
≠

5
�

3 log(x) ≠ µ

‡

462

,

which is also the CDF of the transmuted LN distribution with ⁄ = 1. It is worth mentioning
that the transmuted LN distribution is not discussed in the available literature. Hence, one
may study its properties and applications in detail.

4. Moments

In this section, we derive the expression for the raw moments of the TLLN distribution. Let
m be a positive integer and X be a random variable following the TLLN distribution. The
mth raw moment of the TLLN distribution is then calculated using Equation (4) as

µ
Õ
m = E(Xm) =

Œÿ

j=0

2j+1ÿ

k=0

(k + 1)b–(j, k)µÕ
m,k, (6)

where

µ
Õ
m,k =

⁄ Œ

0

x
m≠1

‡
„

3 log(x) ≠ µ

‡

4 5
�

3 log(x) ≠ µ

‡

46k

dx

is the probability-weighted moment of the LN distribution. In other words, the raw moments
of the TLLN distribution can be written as the weighted sum of the probability-weighted
moments of the LN distribution.

Remark 1 If – is an integer, then the mth raw moment of the TLLN distribution is directly
derived from Equation (6), and it is stated as

µ
Õ
m = E(Xm) =

–≠1ÿ

j=0

2j+1ÿ

k=0

(k + 1)b–(j, k)µÕ
m,k.
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5. Quantile function and associated measures

In this section, we derive an explicit expression for the QF of the TLLN distribution as well
as several of its associated measures.

Theorem 5.1 Let p œ (0, 1). Then, the pth quantile of the TLLN distribution is given by

Qp = F
≠1(p) = exp

5
µ + ‡�≠1

3
1 ≠

Ò
1 ≠ p1/–

46
, (7)

where �≠1 is the QF of a standard normal distribution.

Proof : For the TLLN distribution, Qp is the solution of the following equation:

;
�

3 log(Qp) ≠ µ

‡

4 5
2 ≠ �

3 log(Qp) ≠ µ

‡

46<–

= p

∆ 2�
3 log(Qp) ≠ µ

‡

4
≠

5
�

3 log(Qp) ≠ µ

‡

462

= p
1/–

. (8)

On simplifications, since p œ (0, 1), Equation (8) reduces to

5
1 ≠ �

3 log(Qp) ≠ µ

‡

462

= 1 ≠ p
1/–

∆ log(Qp) ≠ µ

‡
= �≠1

3
1 ≠

Ò
1 ≠ p1/–

4

∆ Qp = exp
5
µ + ‡�≠1

3
1 ≠

Ò
1 ≠ p1/–

46
.

Remark 1 Since �≠1 is the QF of the standard normal distribution, Qp in Equation (7) also
gets the form

Qp = exp
5
µ + ‡

Ô
2erf≠1

3
1 ≠ 2

Ò
1 ≠ p1/–

46
, (9)

where erf≠1 is the inverse error function.

By putting p = 1/2 in Equation (9), we get the median of the TLLN distribution, and it
is given by

M = Q0.5 = exp

S

Uµ + ‡

Ô
2erf≠1

Q

a1 ≠ 2

Û

1 ≠
31

2

4
1/–

R

b

T

V.

Equation (9) delivers the first and third quartiles of the TLLN distribution (Q0.25 and Q0.75)
for p = 1/4 and p = 3/4, respectively.
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6. Reliability measures

We derive the expressions for various reliability measures in this section. The HRF of the
TLLN distribution is expressed by

h(x) = f(x)
S(x) ,

where S(x) = 1 ≠ F (x) is the survival function of the TLLN distribution given by

S(x) = 1 ≠
;

�
3 log(x) ≠ µ

‡

4 5
2 ≠ �

3 log(x) ≠ µ

‡

46<–

.

Thus, the desired HRF gets the following form:

h(x) =
2–„

1
log(x)≠µ

‡

2 Ë
1 ≠ �

1
log(x)≠µ

‡

2È Ó
�

1
log(x)≠µ

‡

2 Ë
2 ≠ �

1
log(x)≠µ

‡

2ÈÔ–≠1

‡x

Ë
1 ≠

Ó
�

1
log(x)≠µ

‡

2 Ë
2 ≠ �

1
log(x)≠µ

‡

2ÈÔ–È .

Also, plots in Figure 3 refer to the shapes of the HRF and show that the TLLN distribution
possesses increasing, decreasing, and upside-down bathtub shapes. Also, as seen in Figure 3,
the distribution has a new decreasing-increasing-decreasing shape that we call the inverted
N-shaped HRF, as well as a special shape that starts with a flat region and continues with
an increasing-decreasing shape that we call the constant-increasing-decreasing shaped HRF.

Let r be a positive integer and X be a random variable following the TLLN distribution.
Then, the rth conditional moment of the TLLN distribution is stated as

E(Xr|X > t) = 1
S(t)

⁄ Œ

t
x

r
f(x)dx

= 1
S(t)

Œÿ

j=0

2j+1ÿ

k=0

3
k + 1

‡

4
b–(j, k)I1(r, k), (10)

where b–(j, k) is given in Equation (5) and I1(r, k) is formulated as

I1(r, k) =
⁄ Œ

t
x

r≠1
„

3 log(x) ≠ µ

‡

4 5
�

3 log(x) ≠ µ

‡

46k

dx. (11)

It is worth mentioning that the rapid aging of a component requires low vitality, whereas
high vitality implies relatively slow aging during the given time period.

For r = 1, Equation (10) gives the vitality function of the TLLN distribution, which is

V (t) = E(X|X > t) = 1
S(t)

⁄ Œ

t
xf(x)dx

= 1
S(t)

Œÿ

j=0

2j+1ÿ

k=0

3
k + 1

‡

4
b–(j, k)I1(1, k), (12)

where I1(1, k) is obtained by putting r = 1 in Equation (11), and is given by

I1(1, k) =
⁄ Œ

t
„

3 log(x) ≠ µ

‡

4 5
�

3 log(x) ≠ µ

‡

46k

dx.
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Figure 3. Plots of the HRF of the TLLN distribution.

If X is a random variable representing a component’s lifetime, then log(G(t)) =
E(log(X)|X > t) represents the ideal geometric mean of the lifetimes of components that
have survived up to time t. The geometric vitality function of the TLLN distribution is
stated as

log(G(t)) = 1
S(t)

Œÿ

j=0

2j+1ÿ

k=0

(k + 1)b–(j, k)I2(k),

where I2(k) can be expressed as

I2(k) =
⁄ Œ

t

log(x)
‡x

„

3 log(x) ≠ µ

‡

4 5
�

3 log(x) ≠ µ

‡

46k

dx.

The concept of residual life is of special interest in reliability theory. It measures the amount
of time a unit has left after reaching the age of t. The rth order moment of the residual life
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of the TLLN distribution is defined as

µr(t) = E [(X ≠ t)r|X > t] = 1
S(t)

⁄ Œ

t
(x ≠ t)r

f(x)dx

= 1
S(t)

rÿ

i=0

A
r

i

B

(≠1)r≠i
t
r≠i

I1(i, k),

where I1(i, k) is given in Equation (11). Now, by taking r = 1, we get the expression for the
mean residual life (MRL) function, which also gets the form

µ1(t) = V (t) ≠ t,

where V (t) is given in Equation (12). Similarly, the second moment of the residual lifetime
of the TLLN distribution is stated as

µ2(t) = 1
S(t)

Œÿ

j=0

2j+1ÿ

k=0

3
k + 1

‡

4
b–(j, k)I1(2, k) ≠ 2tV (t)

S(t) + t
2
,

where I1(2, k) is defined as

I1(2, k) =
⁄ Œ

t
x„

3 log(x) ≠ µ

‡

4 5
�

3 log(x) ≠ µ

‡

46k

dx.

Thus, the variance of the residual life function of the TLLN distribution can be obtained
using µ1(t) and µ2(t). The rth order moment of the reversed residual life of the TLLN
distribution is formulated as

mr(t) = E [(t ≠ X)r|X Æ t] = 1
F (t)

⁄ t

0

(t ≠ x)r
f(x)dx

= 1
F (t)

rÿ

i=0

A
r

i

B

(≠1)i
t
r≠i [µÕ

i ≠ I1(i, k)] , (13)

where I1(i, k) is given in Equation (11). Now, the mean m1(t) and second moment m2(t)
of the reversed residual life of the TLLN distribution can be obtained by setting r = 1 and
r = 2, respectively, in Equation (13). Again, using m1(t) and m2(t), one can obtain the
variance of the reversed residual life function of the distribution.

7. Estimation of the parameters

In this section, we discuss how to estimate the parameters of the TLLN distribution utilizing
two well-known methods, namely the maximum likelihood (ML) method and the Bayesian
method. Next, we consider the ML estimation for the TLLN model parameters –, µ and
‡. Let X1, . . . , Xn represent a random sample from the TLLN distribution, and x1, . . . , xn

represent the observed values. Then, the log-likelihood function can then be written in the
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following form:

Ln =
nÿ

i=1

log[f(xi)]

= n log(2) + n log(–) ≠ n log(‡) ≠
nÿ

i=1

log(xi) +
nÿ

i=1

log
5
„

3 log(xi) ≠ µ

‡

46

+
nÿ

i=1

log
5
1 ≠ �

3 log(xi) ≠ µ

‡

46
+ (– ≠ 1)

nÿ

i=1

log
5
�

3 log(xi) ≠ µ

‡

46

+ (– ≠ 1)
nÿ

i=1

log
5
2 ≠ �

3 log(xi) ≠ µ

‡

46
.

The ML estimates of (–, µ, ‡) are (‚–, ‚µ, ‚‡) = argmax(–,µ,‡)Ln. We can formulate them
by using nonlinear log-likelihood equations. First, the score function associated with the
log-likelihood function is

U =
3

ˆLn

ˆ–
,
ˆLn

ˆµ
,
ˆLn

ˆ‡

4€
.

The associated nonlinear log-likelihood equations are U = (0, 0, 0)€, that is,

n

–
+

nÿ

i=1

log
5
�

3 log(xi) ≠ µ

‡

46
+

nÿ

i=1

log
5
2 ≠ �

3 log(xi) ≠ µ

‡

46
= 0, (14)
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log(xi) ≠ µ

‡2
+ 1

‡
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1

log(xi)≠µ
‡
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‡
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„
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‡
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and

≠ n
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‡
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2 ≠ �
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log(xi)≠µ
‡

2 = 0. (16)
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Solving the nonlinear Equations (14), (15) and (16) synergistically, one can obtain the ML
estimates. For known µ and ‡, the ML estimate of – is given by

‚– = ≠ n

qn
i=1

log
Ë
�

1
log(xi)≠µ

‡

2È
+

qn
i=1

log
Ë
2 ≠ �

1
log(xi)≠µ

‡

2È .

The asymptotic confidence intervals (CIs) for the parameters –, µ and ‡ are now executed.
On taking the second partial derivatives of Equations (14), (15) and (16) taken at the ML
estimates, the observed Hessian matrix of the TLLN distribution can be obtained, and it is
given by

‚H =

Q

ccccccccccca

ˆ
2Ln

ˆ–2

ˆ
2Ln

ˆ–ˆµ

ˆ
2Ln

ˆ–ˆ‡

ˆ
2Ln

ˆµˆ–

ˆ
2Ln

ˆµ2

ˆ
2Ln

ˆµˆ‡

ˆ
2Ln

ˆ‡ˆ–

ˆ
2Ln

ˆ‡ˆµ

ˆ
2Ln

ˆ‡2

R

dddddddddddb

-----------------
(–,µ,‡)=(‚–,‚µ,‚‡)

.

Now, the observed Fisher’s information matrix ‚J is obtained as ‚J = ≠ ‚H. The inverse of this
matrix provides the variance-covariance matrix of the ML estimators, which can be written
as

‚� = ‚J≠1 =

Q

ca

‚�11
‚�12

‚�13

‚�21
‚�22

‚�23

‚�31
‚�32

‚�33

R

db ,

and ‚�ij = ‚�ji for i ”= j = 1, 2, 3. The asymptotically normal distribution of the ML
estimators has been thoroughly established. The random version of ‚� = (‚–, ‚µ, ‚‡) follows
the multivariate normal distribution N3(�, ‚�), where � = (–, µ, ‡). Thus, we obtain 100 ◊
(1 ≠ ”)% asymptotic CIs of the parameters using the following formulae:

I– =
5

‚– û ‚”/2

Ò
‚�11

6
, Iµ =

5
‚µ û ‚”/2

Ò
‚�22

6
, I‡ =

5
‚‡ û ‚”/2

Ò
‚�33

6
,

where ‚” is the upper ”th percentile of the standard normal distribution. Next, we perform
the Bayesian analysis for the TLLN model parameters. To do so, each parameter must have
a prior distribution. We employ two types of priors for this: the half-Cauchy (HC) and
the classical normal (N) priors. The PDF of the HC distribution with scale parameter a is
defined as

fHC(x) = 2a

fi(x2 + a2) , x > 0, a > 0. (17)

The HC distribution is known to have no mean or variance. Meanwhile, its mode is equal to
0. Since the PDF of the HC distribution is virtually flat but not totally flat at scale value
equals 25, which verges on acquiring adequate information for the numerical approximation
algorithm to continue looking at the target posterior distribution, the HC distribution with
scale parameter equals 25 is recommended as a non-informative prior. According to Gelman
and Hill (2006), the uniform distribution, or whether more information is required, is a
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superior alternative to the HC distribution. As a result, for the parameters – and ‡, the
HC distribution with a scale parameter equaling 25 was chosen as a non-informative prior
distribution in this study. Thus, we set the prior distributions of the parameters to be

µ ≥ N(0, 1000), –, ‡ ≥ HC(25). (18)

Thus, using Equation (18), we obtain the joint posterior PDF as given by

fi(µ, –, ‡|x) Ã Ln ◊ fi(µ) ◊ fi(–) ◊ fi(‡), (19)

where Ln is the likelihood function of the TLLN distribution. From Equation (19), it is
obvious that there is no analytical solution to find out the Bayesian estimates. Thus, we use
a remarkable method of simulation, namely the Metropolis-Hastings (MH) algorithm of the
Markov Chain Monte Carlo (MCMC) method. Upadhyay et al. (2001) provides a thorough
description of the MCMC approach.

8. Bootstrap confidence intervals

In this section, we utilize the parametric bootstrap method to approximate the distribution
of the ML estimators of the TLLN model parameters. Then, we can employ the bootstrap
distribution to estimate each parameter’s CIs for the fitted TLLN distribution. Let ‚� be
the ML estimate of �, where � œ (–, µ, ‡), using a given dataset {x1, x2, . . . , xn}. The
bootstrap is a method to estimate the distribution of the statistic ‚� by getting a random
sample �ú

1
, �ú

2
, . . . , �ú

B for � based on B random samples that are drawn with replacement
from the original data x1, x2, . . . , xn. Thus, the bootstrap sample �ú

1
, �ú

2
, . . . , �ú

B can be used
to construct bootstrap CIs for –, µ and ‡.

Thus, using the following formulae, we calculate the 100 ◊ (1 ≠ ”)% bootstrap CIs for the
parameters:

I– =
Ë

‚– û z”/2
„SE–,boot

È
, Iµ =

Ë
‚µ û z”/2

„SEµ,boot

È
, I‡ =

Ë
‚‡ û z”/2

„SE‡,boot

È
.

where z” denotes the ”th percentile of the bootstrap sample, SE is the standard error, and,
for � œ {–, µ, ‡},

„SE�,boot =

ı̂ııÙ 1
B

Bÿ

b=1

A

�ú
b ≠ 1

B

Bÿ

b=1

�ú
b

B2

.

9. TLLN regression model

In this section, we define a regression model based on the TLLN distribution, called the
TLLN regression model.

To begin, consider a random variable X following the TLLN distribution with PDF given
in Equation (3), as well as the random variable Y defined by Y = log(X). Then, Y has the
following PDF:

fY (y) = 2–

‡
„

3
y ≠ µ

‡

4 5
1 ≠ �

3
y ≠ µ

‡

46 ;
�

3
y ≠ µ

‡

4 5
2 ≠ �

3
y ≠ µ

‡

46<–≠1

,

y œ , µ œ , –, ‡ > 0. (20)



Chilean Journal of Statistics 81

We refer to Equation (20) as the log-Topp-Leone log-normal (log-TLLN) distribution, or
otherwise, the Topp-Leone normal (TLN) distribution, which is given by Sharma (2018). In
this setting, the standardized random variable Z = (Y ≠ µ)/‡ has the PDF given by

fZ(z) = 2–„(z) [1 ≠ �(z)] {�(z) [2 ≠ �(z)]}–≠1
. (21)

Now, linear location-scale regression model linking the response variable yi and the explana-
tory variable vector v

€
i = (vi1, . . . , vip), is obtained as

yi = µi + ‡zi, i = 1, . . . , n, (22)

where zi is the random error component that has the PDF in Equation (21), µi = v€
i · is

the location parameter of yi, where · = (·1, . . . , ·p)€, – and ‡ are unknown parameters.
The location parameter vector µ = (µ1, . . . , µn)€ is represented by a linear model µ = V · ,
where V = (V1, . . . , Vn)€ is a known model matrix. Ultimately, in this study, we propose
the TLLN regression model from Equation (22) and it is given by

xi = e
yi = e

µi+‡zi , i = 1, . . . , n. (23)

Consider a sample (x1, v1), . . . , (xn, vn) of n independent observations. Conventional like-
lihood estimation techniques can be applied here. Now, for the vector of parameters
Â = (· €

, –, ‡)€ from model (23), the total log-likelihood function for right censored has
the form

l(Â) =
nÿ

i=1

”i log [f(xi)] +
nÿ

i=1

(1 ≠ ”i) log [S(xi)] ,

with ”i = 1, if survival (uncensored) and ”i = 0, if not (censored). We recall that, for
i = 1, . . . , n, f(xi) and S(xi) are the PDF and survival function of the TLLN distribution
taken at xi, respectively.

10. Bayesian regression method

The Bayesian technique has been shown to be particularly e�ective in analyzing survival
models in many practical circumstances. Hence, in this section, we look at how the Bayesian
approach fits the regression model based on the TLLN distribution when prior pieces of
information about the parameters are taken into account. As a result, we use a simulation
method in this part for Bayesian analysis of this model. Now, to perform a Bayesian analysis,
one should adopt prior distributions for the parameters. Here, as described previously, we
utilize the HC and N priors. The PDF of the HC distribution with a as the scale parameter
is given in Equation (17). Now, we write the right censored likelihood function as

L =
nŸ

i=1

[f(xi)]”i [S(xi)]1≠”i
, (24)

with ”i = 1, if survival (uncensored) and ”i = 0, if not (censored).

µ = V · (25)
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as a linear combination of explanatory variables. Thus, we set the prior distributions of the
parameters to be

·j ≥ N(0, 1000), j = 1, . . . , J, –, ‡ ≥ HC(25). (26)

Now, using Equations (24), (25) and (26), the joint posterior PDF is obtained as

fi(·, –, ‡|x, V ) Ã L(x|V, ·, –, ‡) ◊ fi(·) ◊ fi(–) ◊ fi(‡). (27)

From Equation (27), it is clear that the analytical solution is not possible to find out the
Bayesian estimates. As a result, we employ the simulation approach, specifically the MH
algorithm of the MCMC method.

11. Performance of the estimators using simulations

In this section, we conduct simulation experiments to assess the long-run performance of the
ML estimators of the TLLN model parameters for some finite sample sizes. We simulated
datasets of sizes n = 60, 100, and 250 from the TLLN distribution for the parameter values
– = 0.5, µ = 0.9, ‡ = 0.6 and iterated each sample 500 times. The average bias and MSE
for all replications in the relevant sample sizes are then computed. That is, the analysis
computes the values using the given formulae.

Table 1. Estimates, average bias and MSE values of ML estimators from simulations of the TLLN distri-

bution.

Parameters Sample Size Estimates Bias MSE
– 60 1.7496 1.2496 67.9030

100 1.0114 0.5114 6.3232
250 0.5792 0.0792 0.1677

µ 60 0.8240 -0.0760 0.3754
100 0.8491 -0.0509 0.2180
250 0.8873 -0.0127 0.0504

‡ 60 0.5520 -0.0480 0.1350
100 0.5811 -0.0189 0.0849
250 0.5916 -0.0084 0.0229

• Average bias of the simulated estimates = 1
500

500q
i=1

(‚�i ≠ �),

• Average MSE of the simulated estimates = 1
500

500q
i=1

(‚�i ≠ �)2
,

where ‚�i represents the estimate of � œ {–, µ, ‡} at the ith replication. The results are
reported in Table 1. It can be concluded that the MSEs of all the estimates decrease with
increasing sample size. This shows the consistency of the estimates.

12. Applications and empirical study

This section consists of demonstrating the empirical importance of the TLLN distribution.
We use a real dataset from the area of astronomy to compare the data modeling ability of the
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TLLN distribution with other competitive distributions. We employ the RStudio software
for numerical evaluations of these datasets. The descriptive measures, which include sample
size (n), mean (M), median (Md), variance (Var), skewness (Sk), kurtosis (Ku), minimum
(min) and maximum (max) values of the dataset, are given in Table 2.

Table 2. Descriptive statistics of the astronomical dataset.

Statistic n M Md Var Sk Ku min max
Values 360 14.458 14.54 1.427 -0.395 0.344 10.749 18.052

To show the potential advantage of the TLLN distribution, the following distributions are
considered for comparison.

• The two-parameter LN distribution with PDF

f(x) = 1Ô
2fi‡x

exp
C

≠(log(x) ≠ µ)2

2‡2

D

, x > 0, µ œ , ‡ > 0.

• The exponentiated LN (ELN) distribution with PDF

f(x) = –

x‡
„

3 log(x) ≠ µ

‡

4 5
�

3 log(x) ≠ µ

‡

46–≠1

, x > 0, µ œ , –, ‡ > 0.

• The generalized half-normal (GHN) distribution (see Cooray and Ananda, 2008) with
PDF

f(x) =
Ú

2
fi

3
–

x

4 3
x

‡

4–

exp
I

≠1
2

3
x

‡

4
2–

J

, x, –, ‡ > 0.

• The exponentiated exponential distribution (EED) with PDF

f(x) = –‡
!
1 ≠ e

≠‡x"–≠1
e

≠‡x
, x, –, ‡ > 0.

• The new generalized Lindley distribution (NGLD) (see Elbatal et al., 2013) with PDF

f(x) = e
≠µx

1 + µ

A
µ

–+1
x

–≠1

�(–) + µ
‡
x

‡≠1

�(‡)

B

, x > 0, –, µ, ‡ > 0,

where �(–) denotes the standard gamma function.
• The gamma distribution.
For the numerical optimization, we maximize the log-likelihood function to find the ML
estimates. For fixing a lower and upper bound for each parameter, the numerical opti-
mization technique L-BFGS-B in fitdistrplus package of R is used. For more infor-
mation and detailed examples of this package, one should go through the link https:
//CRAN.R-project.org/package=fitdistrplus.

The following statistical tools are utilized in order to compare the competitive models
with the proposed models: negative log-likelihood (≠ log(L)), Kolmogorov-Smirnov (KS),
Cramér-von Mises (W ú), Anderson-Darling (Aú) statistics, Akaike information criterion
(AIC) and Bayesian information criterion (BIC) values.

We also investigate the empirical HRF for the astronomical dataset using the idea of
a total time on test (TTT) plot. It is a graphical representation being used to distinguish

https://CRAN.R-project.org/package=fitdistrplus
https://CRAN.R-project.org/package=fitdistrplus
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between several types of aging as displayed in the HRF shapes. On the mathematical aspect,
the TTT plot is drawn by plotting

T

3
i

n

4
=

iq
r=1

xr:n + (n ≠ i)xi:n

nq
r=1

xr:n

.

against i/n, where i = 1, . . . , n and x1:n, x2:n, . . . , xn,n are the order statistics of the sample.
We also present other important graphs, which consist of the empirical CDF and quantile-
quantile (Q-Q) plots for the dataset. We utilize the magnitudes of the near-infrared K-band
distribution of 360 globular cluster luminosities in Messier 31 (M31), our nearby Andromeda
Galaxy, as an astronomical dataset. The data are from Nantais et al. (2006), and the samples
are described in detail in Appendix C.3 of Feigelson and Babu (2012), as well as in the
R package astrodatR. Note that, the K-band is an atmospheric transmission window in
infrared astronomy, referring to an area of the infrared spectrum where atmospheric gases
absorb relatively little terrestrial heat radiation. Furthermore, globular clusters are densely
packed groups of 104 to 106 ancient stars packed into a dense, roughly spherical shape that
is structurally unique from the general population of stars. Astronomers can use them to
determine the age of the universe or to locate the Galactic Center by studying them. The
TTT plot in Figure 4 indicates that this dataset has an increasing HRF shape, which is also
a characteristic of the TLLN model.
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Figure 4. The TTT plot of astronomical dataset.

Next, we present results for the univariate dataset.
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Table 3. Astronomical dataset: ML estimates and GOF statistics results.

Model ML estimate -log(L) AIC BIC KS W
ú

A
ú

TLLN ‚– = 0.2694 571.7256 1149.451 1161.110 0.0621 0.2083 1.2120
‚µ = 2.7796
‚‡ = 0.0601

LN ‚µ = 2.6677 582.5224 1169.045 1176.817 0.0774 0.5396 3.2814
‚‡ = 0.0847

ELN ‚– = 0.1070 573.2549 1152.510 1164.168 0.0657 0.2517 1.4640
‚µ = 2.7826
‚‡ = 0.0371

GHN ‚µ = 9.8248 592.761 1189.522 1197.294 0.0753 0.6212 4.1150
‚‡ = 15.2179

EXPPL ‚– = 1.8821 605.6499 1217.300 1228.958 0.1096 1.2230 7.3301
‚µ = 136.4388
‚‡ = 0.0491

EED ‚– = 44847.58 624.776 1253.552 1261.324 0.1293 1.7963 10.8203
‚‡ = 0.7740

NGLD ‚– = 137.9676 579.4283 1164.857 1176.515 0.0754 0.4665 2.8083
‚µ = 9.5441
‚‡ = 138.2696

Gamma ‚– = 142.2090 579.3487 1162.697 1170.470 0.0722 0.4406 2.7088
‚‡ = 9.8355

Table 3 displays the ML estimates and goodness-of-fit (GOF) statistics of the distributions
corresponding to the astronomical dataset. The TLLN distribution’s GOF statistics values
are smaller than those of the other compared distributions. The empirical CDF and Q-
Q plots for the dataset are given in Figure 5. The proposed distribution gives acceptable
shaped curves for those empirical and fitted functions. As a result, we conclude that the
TLLN distribution is superior to the other compared distributions for the astronomical
dataset.
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Figure 5. Empirical plots on the astronomical dataset.
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Now, the Hessian matrix corresponding to the astronomical dataset is obtained as

„H =

Q

a
4960.117 21162.32 ≠35812.03
13376.538 57566.52 ≠72436.86

≠35812.031 ≠72436.86 296223.69

R

b ,

and the corresponding estimated variance-covariance matrix is

‚� =

Q

a
0.0105 ≠0.0012 9.72 ◊ 10≠04

≠0.0012 0.0002 ≠1.07 ◊ 10≠04

0.0009 ≠0.0001 9.49 ◊ 10≠05

R

b .

Table 4 provides the 95% asymptotic CIs for the TLLN model parameters.

Table 4. The 95% asymptotic CIs of the TLLN model parameters based on the astronomical dataset.

Parameter Lower Upper
– 0.0685 0.4703
µ 2.7543 2.8049
‡ 0.0410 0.0792

Here, we focus on estimating the parameters of the TLLN distribution using the Bayesian
procedure based on the above-discussed univariate astronomical dataset. In the context
of Bayesian estimation, the analysis is performed using the MH algorithm of the MCMC
method with 1000 iterations. For comparing Bayes estimates with the ML estimates, both of
them for the TLLN model parameters for the real dataset are given in Table 5. The numerical
computations for Bayesian estimation are done using the LaplacesDemon package of the R
software, which provides a comprehensive environment for Bayesian inference. For more
detailed information and examples regarding this package, one should go through the link
https://cran.r-project.org/package=LaplacesDemon.

Table 5. ML and Bayes estimates of the TLLN model parameters on the astronomical dataset.

Parameter ML Bayes
– 0.2694 0.2811
µ 2.7796 2.7791
‡ 0.0601 0.0602

Using the previously discussed astronomical dataset, we construct the 95% bootstrap
for the parameters –, µ, and ‡ using the computed ML estimates. Based on the TLLN
distribution, we simulate 1001 samples of the same size as the real dataset, with true values
of the parameters chosen as the ML estimate of the respective parameters. For each sample
obtained, we compute the ML estimates ‚–ú

b , ‚µú
b and ‚‡ú

b , for b œ {1, . . . , 1001}. Table 6
displays the median and 95% bootstrap CI for the parameters –, µ and ‡ of the dataset.
Examining the joint distribution of the bootstrapped values in a matrix of scatter plots to
assess the potential structural correlation among the parameters is also noteworthy. Figure 6
displays the matrix scatterplots of the bootstrapped values of the TLLN model parameters,
which depict the joint uncertainty distribution of the fitted parameters.

https://cran.r-project.org/package=LaplacesDemon
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Table 6. The median and 95% bootstrap CI for the TLLN model parameters on the astronomical dataset.

Parameter Median Bootstrap CI
– 0.2695 (0.0878, 0.6941)
µ 2.7792 (2.7415, 2.8087)
‡ 0.0609 (0.0373, 0.0881)
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Figure 6. Matrix scatter plot on bootstrapped values of the TLLN model parameters due to the astronomical

dataset.

We also utilize the likelihood ratio (LR) test for comparing the TLLN distribution, which
has an additional parameter – with the LN and ELN distributions based on the above-
discussed univariate astronomical dataset. The LR statistic for comparing the nested models
H0: LN and H0: ELN against H1: TLLN is given by

LR = ≠2 log
3 likelihood under the null hypothesis

likelihood in the whole parameter space

4
.

It is well-known that the random version of this statistic asymptotically follows a chi-square
distribution with d degrees of freedom, d being equal to the number of additional parameters
in the TLLN model. By using this result and standard statistical tables, we can obtain
critical values for the LR test statistics for the given astronomical dataset. Table 7 includes
the LR statistics and corresponding p-values for both the datasets. Given the values of test
statistics and their associated p-values, we reject the null hypothesis for the above-discussed
astronomical dataset and conclude that the TLLN distribution provides a significantly better
representation than the LN and ELN distributions.

Table 7. Likelihood ratio statistics and their p-values on the astronomy dataset.

LR p-value
TLLN versus LN 21.594 3.37 ◊ 10≠06

TLLN versus ELN 3.0586 2.2 ◊ 10≠16

Now, we use a real, censored dataset based on the prognosis for women with breast cancer.
Breast cancer is one of the most common forms of cancer in women. This lifetime dataset
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was carried out at the Middlesex Hospital, and documented in Leathem and Brooks (1987)
and discussed by Collett (2015) which refers to the survival time in months of women who
had received a simple or radical mastectomy to treat a tumor of Grade II, III or IV, between
January 1969 and December 1971.

Table 8 summarizes the TLLN regression model as a result of the censored dataset, in-
cluding estimates of all parameters, negative log-likelihood (≠l(Â)) and value of AIC. Here,
we utilize the optim function of the R software for the numerical evaluations.

Table 8. Summaries for the TLLN regression model from the breast cancer dataset.

Parameter ·0 ·1 – ‡ ≠l(Â) AIC
Estimates 0.6372 -1.2392 40.3536 4.3415 154.2923 316.5846

Table 9 represents the summary of 1000 times iterated simulated results, due to the
censored dataset using the MH algorithm of the MCMC method, which includes the poste-
rior mean, standard deviation (SD), Monte Carlo standard error (MCSE), e�ective sample
size due to autocorrelation (ESS), 95% CI and the posterior median. Next, we use the
LaplacesDemon package of R for the numerical evaluations.

Table 9. Summaries for the TLLN Bayesian regression model from the breast cancer dataset.

Parameter Mean SD MCSE ESS 95% CI Median
·0 2.9068 0.6033 0.2791 9.3047 (1.7993, 3.8864) 3.0101
·1 -1.1779 0.5730 0.1699 17.7204 (-1.9877, -0.2168) -1.2055
– 11.4851 2.6373 1.1827 9.2548 (7.8012, 16.7872) 11.3755
‡ 3.8347 0.6524 0.2513 8.6492 (2.7314, 5.3484) 3.6765

13. Conclusions, limitations, and future research

We suggest a new distribution, which is a generalized version of the log-normal distribution,
mainly to investigate data in the field of astronomy in this research, but it can also be
used to match cancer datasets in biological aspects. We call it the Topp-Leone log-normal
distribution. We explore several of its mathematical and statistical aspects. On the theoret-
ical aspect, we provide specific expressions for the moments, quantile function, and various
reliability measures. The di�erent shapes of the hazard rate function are discussed. In terms
of inference, the model parameters are estimated by using Bayesian estimation and the
method of maximum likelihood, and also, the observed information matrix is presented.
Furthermore, we adopt the parametric bootstrap technique to obtain confidence intervals
for the model parameters. More importantly, we introduce a parametric regression model
and a Bayesian regression method based on the new distribution. The usefulness of our
methodology is illustrated by two applications of real datasets, one related to the astro-
nomical study and the other to censored cancer data, using goodness-of-fit tests. The novel
model consistently outperforms previous models in the literature in terms of fitting. We
anticipate that the proposed model will find a larger range of applications in the model-
ing of positive real-world datasets, including not only astronomy but also biology, physics,
engineering, survival analysis, hydrology, economics, and other fields.

The possible limitations of the proposed distribution include the impossibility of modeling
phenomena with possible negative values or presenting a bimodal nature. The construction
of quantile regression models and bivariate variants of the TLLN distribution are two further
possible directions for this research. Additional significant improvements and investigations
are required for this study, which we will put into future research.
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