CHILEAN

JOURNAL OF

STATISTICS

Edited by Victor Leiva and Carolina Marchant

A free open-access journal indexed by

EMERGING Web of
SOURCES 1
CITATION Science

Group

ISI WEB OF SCIENCE)
S

" L
e
]
s
L —:@J,

Scopus

ELSEVIER
Volume 13 Number 1 Published by the
April 2022 Chilean Statistical Society

ISSN: 0718-7912 (print) SOCH E il

ISSN: 0718-7920 (online) SOCIEDAD CHILENA DE ESTADISTICA



A1MS

The Chilean Journal of Statistics (ChJS) is an official publication of the Chilean Statistical Society (www.soche.cl).
The ChJS takes the place of Revista de la Sociedad Chilena de Estadistica, which was published from 1984 to 2000.

The ChJS covers a broad range of topics in statistics, as well as in artificial intelligence, big data, data science,
and machine learning, focused mainly on research articles. However, review, survey, and teaching papers, as well as
material for statistical discussion, could be also published exceptionally. Each paper published in the ChJS must
consider, in addition to its theoretical and/or methodological novelty, simulations for validating its novel theoretical
and/or methodological proposal, as well as an illustration/application with real data.

The ChJS editorial board plans to publish one volume per year, with two issues in each volume. On some occasions,
certain events or topics may be published in one or more special issues prepared by a guest editor.

EDITORS-IN-CHIEF

Victor Leiva Pontificia Universidad Catdlica de Valparaiso, Chile
Carolina Marchant Universidad Catdlica del Maule, Chile

EDITORS

Héctor Allende Cid Pontificia Universidad Catdlica de Valparaiso, Chile
Danilo Alvares Pontificia Universidad Catélica de Chile

Robert G. Aykkroyd University of Leeds, UK

Narayanaswamy Balakrishnan = McMaster University, Canada

Michelli Barros Universidade Federal de Campina Grande, Brazil
Carmen Batanero Universidad de Granada, Spain

Marcelo Bourguignon Universidade Federal do Rio Grande do Norte, Brazil
Marcia Branco Universidade de Sao Paulo, Brazil

Luis M. Castro Pontificia Universidad Catdlica de Chile

George Christakos San Diego State University, US

Enrico Colosimo Universidade Federal de Minas Gerais, Brazil
Gauss Cordeiro Universidade Federal de Pernambuco, Brazil
Francisco Cribari-Neto Universidade Federal de Pernambuco, Brazil
Francisco Cysneiros Universidade Federal de Pernambuco, Brazil
Maério de Castro Universidade de Sao Paulo, Sao Carlos, Brazil
Raul Fierro Universidad de Valparaiso, Chile

Jorge Figueroa-Zuaniga Universidad de Concepcién, Chile

Isabel Fraga Universidade de Lisboa, Portugal

Manuel Galea Pontificia Universidad Catdlica de Chile

Diego Gallardo Universidad de Atacama, Chile

Christian Genest McGil University, Canada

Marc G. Genton King Abdullah University of Science and Technology, Saudi Arabia
Viviana Giampaoli Universidade de Sao Paulo, Brazil

Patricia Giménez Universidad Nacional de Mar del Plata, Argentina
Hector Gémez Universidad de Antofagasta, Chile

Yolanda Gémez Universidad de Atacama, Chile

Emilio Gémez-Déniz Universidad de Las Palmas de Gran Canaria, Spain
Eduardo Gutiérrez-Pena Universidad Nacional Auténoma de Mexico
Nikolai Kolev Universidade de Sao Paulo, Brazil

Eduardo Lalla University of Twente, Netherlands

Shuangzhe Liu University of Canberra, Australia

Jesus Lépez-Fidalgo Universidad de Navarra, Spain

Liliana Lépez-Kleine Universidad Nacional de Colombia

Rosangela H. Loschi Universidade Federal de Minas Gerais, Brazil
Esam Mahdi Qatar University, Qatar

Manuel Mendoza Instituto Tecnolégico Auténomo de Mexico
Orietta Nicolis Universidad Andrés Bello, Chile

Ana B. Nieto Universidad de Salamanca, Spain

Teresa Oliveira Universidade Aberta, Portugal

Felipe Osorio Universidad Técnica Federico Santa Maria, Chile
Carlos D. Paulino Instituto Superior Técnico, Portugal

Fernando Quintana Pontificia Universidad Catdélica de Chile

Nalini Ravishanker University of Connecticut, US

Fabrizio Ruggeri Consiglio Nazionale delle Ricerche, Italy

José M. Sarabia Universidad de Cantabria, Spain

Helton Saulo Universidade de Brasilia, Brazil

Pranab K. Sen University of North Carolina at Chapel Hill, US
Giovani Silva Universidade de Lisboa, Portugal

Prayas Sharma National Rail and Transportation Institute, India
Julio Singer Universidade de Sdo Paulo, Brazil

Milan Stehlik Johannes Kepler University, Austria

Alejandra Tapia Pontificia Universidad Catdlica de Chile

M. Dolores Ugarte Universidad Publica de Navarra, Spain



CHILEAN JOURNAL OF STATISTICS VOLUME 13 — NUMBER 1 — APRIL 2022

CONTENTS

Carolina Marchant and Victor Leiva
Chilean Journal of Statistics: Thirty eight years generating quality knowledge

Maria Duenas and Ramén Giraldo
Multivariate spatial prediction based on Andrews curves and functional
geostatistics

Ernesto San Martin and Eduardo Alarcén-Bustamante
Dissecting Chilean surveys: The case of missing outcomes

Abdeldjalil Slama
A Bayesian detection of structural changes in autoregressive time series
models

Christophe Chesneau, Muhammed Rasheed Irshad,
Damodaran Santhamani Shibu, Soman Latha Nitin, and Radhakumari Maya

On the Topp-Leone log-normal distribution: Properties, modeling, and applications

i astronomical and cancer data

Lucas D. Ribeiro-Reis, Gauss M. Cordeiro, and José J. de Santana e Silvas
The Mc-Donald Chen distribution: A new bimodal distribution with properties
and applications

Emilio Gémez-Déniz, Enrique Calderin-Ojeda, and José Maria Sarabia
The arctan family of distributions: New results with applications

17

47

67

91

113



Chilean Journal of Statistics
Volume 13, Number 1 (April 2022), Pages 3-16
DOLI: 10.32372/ChJS.13-01-01
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curves and functional geostatistics
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Abstract

There are two usual ways for modeling the realizations of multivariate random fields:
Applying kriging individually on each variable or using cokriging, which considers the
spatial cross-dependence between the variables. It has been shown that the second way,
in general, allows a prediction variance reduction. The use of cokriging may be limited
in practice when the number of variables increases because estimating the linear model
of coregionalization (the cross-dependence between the variables) becomes complex.
This work explores ordinary kriging for functional data based on Andrews curves as
an alternative to the classical multivariate approach. Employing a simulation study, we
compare the predictor proposed with kriging and cokriging. The methodology is applied
to an environmental dataset.

Keywords: Andrews curves - Cokriging - Functional data - Geostatistics - Kriging

Mathematics Subject Classification: Primary 60G10 - Secondary 60G25.

1. INTRODUCTION

In many fields of applied science, it is required to simultaneously model data of several vari-
ables. Several statistical tools have been adapted to deal challenging multivariate problems.
Among other areas, regression analysis (Bilodeau and Brenner, 1999), ANOVA (Smith et al.,
1962), longitudinal data (Verbeke et al., 2014), and generalized linear models (Fahrmeir et
al., 1994) have been tailored to this challenge. When the number of characteristics increases,
the modeling becomes more complex. Also, the analysis of multivariate data is a big problem
if there are inherent temporal and spatial dependence structures. One example is the mul-
tivariate spatial statistics (Gelfand et al., 2010), where it is necessary to consider auto and
cross-correlations. The problem is solved using cokriging (assuming stationarity)(Giraldo et
al., 2021). An advantage of this method is that it does not require that the variables are
measured at the same sites. Its use has demonstrated to reduce uncertainty concerning ordi-
nary kriging (spatial prediction of each variable separately). In its simplest form, cokriging
assumes that the joint spatial correlation of the multivariate random field is generated from
combinations of basic spatial covariance models and coregionalization matrices. If there are
p variables, it is then necessary to estimate p(p + 1)/2 variograms (including simple and
cross-variograms). This makes this technique difficult to implement when p increases.
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Andrews curves (Andrews, 1972) are generally utilized in multivariate analysis to detect
outliers (Embrechts et al., 1986), carry out clustering (Moustafa, 2011) and discriminant
analysis. In this work, we propose its usage in multivariate geostatistics (Genton and Kleiber,
2015) as a tool for solving the high dimensionality problem. When the number of variables
increases, it is not easy to estimate the coregionalization model and, therefore, to make
predictions using cokriging. Employing Andrews curves combined with functional geostatis-
tics (Giraldo et al., 2011) can simplify the problem because it only requires to fit a single
variogram model. Once an Andrews curve is predicted on an unsampled site, implicitly all
the variables of the multivariate random field of interest are predicted too.

Classical tools for spatial data analysis can be extended to functional data. Particularly
in geostatistics, several alternatives for this purpose have been proposed. Ordinary, residual,
and universal kriging for functional data (Mateu and Giraldo, 2022) are some approaches to
solve the problem of spatial prediction when we have a realization of a functional random
field (when a curve or, in general, a function is recorded at several sites of a region with
spatial continuity). Here we propose an alternative for carrying out spatial prediction in mul-
tivariate geostatistics using ordinary kriging for functional data (Giraldo et al., 2011) based
on Andrews curves. This alternative does not require to estimate a linear coregionalization
model (Wackernagel, 2003), and consequently reducing the complexity of the problem.

The work is organized as follows. Section 2 gives a review on Andrews curves, multivariate
geostatistics, and functional geostatistics. Section 3 presents the methodology proposed. An
illustration with simulated data and an application to real data are shown in Section 4. The
article ends with some conclusions, limitations and ideas for further research in Section 5.

2. BACKGROUND

In this section, we present a short overview about Andrews curves (Andrews, 1972; Moustafa,
2011), multivariate geostatistics (Wackernagel, 2003), and ordinary kriging for functional
data (Giraldo et al., 2011).

2.1 ANDREWS CURVES

A statistical multivariate analysis is considered when we have data of a p-dimensional ran-
dom vector (p > 1). Given a realization of size n of a random vector X = (X1,...,X,)",
we obtain the data matrix

11 12 --- T1p
€21 T22 ... T2p

T = L ] . (2.1)
Tpl Tp2 --- Tnp

The underlying idea of Andrews curves is that each multivariate data point (observation)
can be represented by a curve using a Fourier interpolation function where the coefficients
are the observation's components (Moustafa, 2011). Andrews curves are used as a descriptive
tool for summarizing a multivariate data set as represented in Matrix given in expression
(2.1) or employed to identify atypical values or clustering the individuals (Moustafa, 2011).
These are built as linear combinations of the observations (Andrews, 1972). Specifically, for
all 7, for i = 1,...,n, the i-th Andrews curve is given by

1
z,(t) = —T;1 + Sin(t)xig + COS(t)JZi:g + sin(2t)x¢4 +--, (2.2)

V2r

with ¢ € [—m, 7] . The order of the variables plays an important role in obtaining the curve:
when there are many variables, the last ones have a low contribution to the shape of the
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curve. For this reason, they are usually ordered previously according to the amount of
information that each of them provides. Generally, for this, a principal component analysis
is initially carried out.

2.2 MULTIVARIATE GEOSTATISTICS
This subsection is based on Giraldo et al. (2017). Let {X (s) = (X1(s),...,Xmn(s)) : s € D}
be a multivariate spatial process defined over a domain D C R?. Assume X (s) = u(s)+€(s)
is a stationary process with p(s) the mean vector and €(s) a stationary noise process with
E(e(s)) = 0. We use the following notation: (i) 2v4(si,s;) = V(Xi(s;) — Xq4(s;)), for I,q =
L.o..,myd,5=1,....n; (ii) v} = (vk(51,50); - - -, Yk (Sn, S0)); and (iii)

leq(Sla Sl) o 7lq(317 Sn)
Ly = : i :

7lq(5n7 51) te %q(sna Sn)
The cokriging predictor of the random variable Xj(so) based on the realization X (s;), for

1=1,...,n, is defined as

m

Xi(s0) = D_MX(s1) 4+ DA X (50) = D03 MEX(sy). (2.3)
j=1 j=1 i=1j=1

The predictor given in Equation (2.3) is unbiased if 327" ; ¥, = T and 314 )\fj = 0for j # k,
J =1,...,m. Using the Lagrange method to minimize the mean squared prediction error,
E(Xk(s0) — Xk(0))?, subject to the unbiasedness constraints gives the cokriging system of
equations, which in matrix notation can be expressed by CAF = ¢*, with

Iy Dy -y 1---0---0

L1 Ty 'y O 1 0

Tyi T Loy 0---0---1| (T Z
17T ... 0" ... 0" 0---0---0| \zZTo*)"

o' 17 o' 0 0 0

i gl
)\’,j Yk
k| AR k| Y
A" = 5 ,C' = 0 )
Ok 1
Om, 0
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where (rl])(nxn)v 1= (17 . )&Xl)’ 0 = (Ov cee 70)?”><1)7 (F)(mxn)x(nxm)) (Z)(nxm)xm7
0* meaA‘ /\k,...,/\k cand Y¥ = (4, ..., 4k )T foralli,j =1,...,m. Cokriging
( ) 15 ngj j 15 nj

could be used for predicting 51multaneously all m variables instead of predicting a variable,
one at a time.

2.3 FUNCTIONAL GEOSTATISTICS

Let {X;(s),t € R,s € D C R?} be a second-order stationary and isotropic functional
random field (Giraldo et al., 2011) whose realizations are functions defined in the real
interval T with X, (s) € Lo(T") the space of square integrable functions. From the stationarity
conditions and taking h = ||s; — s;|| we have

E(Xi(s)) =

V(X ())_Ut

C(Xi(s:1), Xi(s5)) = Cllsi = s;ll;1) = C(h; 1)
sV(Xi(si) = Xo(s5)) = 1(llsi = s5ll: ) = v(hst).

The ordinary kriging predictor of the function on a site sg is defined as (Giraldo et al., 2011)

Xt(SO) = Z )\iXt(s,»), A, ..., A € R (24)
=1

Optimal X in Equation (2.4) that guarantee E(X;(sq)) = X;(so) are obtained by solving the
system

Jry (st = s, 6)dt - [ry (st = sall,t) dE 1Y /A Jr v (lso = s1]],£) dt
Ty (st = sall,t)dt -+ [y ([|sn = sall,£)dt 1 | | An Jr v (IIso = sall, ) dt
1 1 0 v 1
(2.5)

The function v(h) = [ (h,t)dt = (1/2)E([7(Xe(s;) — Xi(s;))?dt) is called the trace-
variogram. A review on its estimation based on the observed data is provided in Giraldo
et al. (2011). Note that v in Equation (2.5) is the Lagrange multiplier used to consider the
unbiasedness constraint.

3. MULTIVARIATE GEOSTATISTICS BASED ON ANDREWS CURVES

We show how ordinary kriging based on Andrews curves is an alternative to perform mul-
tivariate spatial prediction. We assume isotropy and that all variables are recorded in the
same sites.

3.1 FROM MULTIVARIATE TO FUNCTIONAL KRIGING

Let {X(s),s € D C R} be a p-dimensional random field and [X (s), X (s2), ..., X (s,)] " a
sample of the process with
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Suppose we want to predict the random field at a site s9. Employing Andrews curves given
in Equation (2.2), the sample of the multivariate random field can be used to define a sample
of a functional random field of Andrews curves {X,(s),s € D C R%,t € [-7, 7] C R} with
the transformation

Xi(si) = D Xu(si)¢(t), (3.6)
k=1

with ¢ (t) the k-th coefficient of a Fourier series as defined in Equation (2.2). Likewise,
from the multivariate observed sample of the random process [x(s1),z(s2), ..., £(s,)], we
have that

xk(si)gbk(t). (37)

xt(si) =

M=

k=1

Assuming that the curves defined in Equation (3.6) are a sample of a functional random
field, we can use functional geostatistical methods (Giraldo et al., 2011, 2017) for carrying
spatial prediction of all variables. Particularly, using ordinary kriging for functional data
given in Equation (2.4) and taking as input the observed curves in Equation (3.7) we can
predict the Andrews curves on unsampled sites. Note that the coefficients in Equation (2.2)
are known and correspond to the data recorded from the p variables in the n sites s1, ..., sy.

3.2 FUNCTIONAL RANDOM FIELD OF ANDREWS CURVES

Assume the multivariate random field of interest is second order stationary. Consequently,
we have the following properties for the random field of Andrews curves {X;(s),s € D C
Ret € [-7, 7] C R}:

(i)

with p, = E[Xk(s;)] being the mean of the k-th random field.
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|
<
?TM“G

Xk(8)¢k(t)1

1

Il
M@
M*@

Ok(t)du(t)Cov [Xi(s), Xi(s)]

B
Il
—
—~
I
—

I
Mmﬂ,
NE

Gr(t)1(t)Cri(0),

>
I
—
—
Il
—

with Cy;(0) being the covariance between the variables k and .

(iii)

C{Xt(si),Xt(sj)} = C(h,t

[
Q
M’E S~—

Xi(si)or(t) k(55)Pr(1)

I\Mw

b
Il
—

|
Mw
M=

Or(t) i (t)C [Xi(s:), Xi(s5)]

=~
I
—
—~
Il
—

I
M*@
Mv

Pr()du()Cra(llsi — s5l1)

£
Il
—
—~
Il
MR

I
M’B
M=

Gr(t)1(t)Cra(h).

=~
I
—
—~
Il
R

Note that the functional covariance depends only on the distance between sites s; and s;.
3.3 SPATIAL PREDICTION OF ANDREWS CURVES

Let X¢(s;), for i = 1,...,n, be the sample of a functional random field of Andrews curves.
Then the ordinary kriging predictor of an Andrews curve on a site sq is given by

Sp) = Z)‘ZX s

31 ¢k

i Xk (5:)Pr(t) (3.8)

I M*@ 1 M:

i

In Equation (3.8), each term > ; A\;Xk(s;) is an scalar corresponding to the predictor
Xk(80). This is an unbiased and minimum variance predictor if Ay, ..., A, are such that

/%v (Xils0) = Xu(s0)) dit,

is minimum subject to > ;- A; = 1.
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3.4 RELATIONSHIP BETWEEN THE TRACE-VARIOGRAM FUNCTION AND UNIVARIATE
VARIOGRAMS

Note that
2

/t<Xt(8i> — Xi(s5) ) /(Zp: k(8:)pr(t) zp: 1 (55) o (t ) dt

:/tlz (Xk(si)—Xk(Sj))m(t)] di

k=1

with T' = [—n, |. In matrix notation, we get

[ it = Xyt = [[(X () = X(55) T 0(0)] at
= [(X(s) = X (5T (20T (X(5) = X(5) e
= (X(s) = X(5)" [ (2(080)7) dt (X (5) = X (s,)
= (X(s0) = X ()" W (X(s1) = X (s))

with W being the matrix of inner products of ®(¢). Taking into account that ®(t) is an
orthonormal basis, we have that W = I,,. Thus, we reach

v(h) = %E [Z (Xk(si) — Xk(sj))Q] :
k=1

Under second order stationarity, we have that

(k) = 3B [(Xelsi) = Xuls)?]. (39

From Equation (3.9), the trace-variogram can be expressed as

= E[i Xk Xk SJ)) ‘|
k=1

p

= 2 Y B[(Xelss) — Xels)))]

k=1

= > wlh). (3.10)
k=1

Therefore, the theoretical trace-variogram corresponds to the sum of the univariate semivar-
iograms associated to the variables used to define the Andrews curves. This sum can be mod-
eled with a single model once the empirical trace-variogram has been calculated. To carry out
the spatial prediction we need to estimate the trace-variogram function [ (||s; — s;||) dt,
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for all i = 1,...,n. The corresponding estimator is given by
N 1
Ah) = s oL (X(si) = X(s5) " W (X (s0) = X (55)),
2IN( &7

where N (h) is the number of pairs (s;, s;) such that h = ||s; — s;|| and |N(h)| is the number
of sites separated by a distance h. Hence, the moment estimator of the trace-variogram
function is stated as

(h) =

P

Z Z (Xi(si) — Xi(s;))°. (3.11)
N k=1

From Equation (3.10), the total prediction variance can be defined as

Z/\z'YHSZ_SOH = ZAZ% + 1,
i=1 k=1

and its estimation is formulated by

n

5%(s0) = Z)\ﬁ(HSi — o) + 1

_bf@ N ()

i=1

Z Z (xk — T s])>2) + 4.

i,JEN(h) k=1

4. NUMERICAL APPLICATIONS

This section initially compares kriging, cokriging and functional kriging using a small simu-
lated dataset. Posteriorly, an application to a real dataset is presented. The computational
routines were developed using the R software (R, 2022) version 4.1.3 for Windows platform.

4.1 SIMULATED DATA

Suppose we have data of a stationary bivariate Gaussian random field {X(s) =
(X1(s), Xa(s)) = s € [0,1] x [0,1]} with means p1(s) = 2 and po(s) = 90 and spatial
dependence defined by the following variogram models:

vx,(h) = 0.3071(h) + 0.2672(h)
Vx5 (h) = 1171 () + Tlya(h)
Yx1x5 (h) = 1.271(R) + 3.872(h),

with 41 (h) = (1 — exp((—h/0.7)) and y2(h) = (1.5(h/0.95) — 0.5(1/0.95)%). In both models,
the parameter ¢ is relatively high (¢ = 0.7 for the exponential model and ¢ = 0.95 in the case
of the spherical model), which is an indicator of high spatial simple and cross correlation.
Note that ¢ is the parameter that defines the spatial correlation. The values assigned to this
parameter correspond respectively to 70% and 95% of the maximum distance between sites
of the simulation region.
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Table 1. Four simulated data sets of a bivariate Gaussian random field defined on the square [0, 1] x [0, 1].

s Coordinates Xi(s) Xaf(s)
si (1.00,0.22) 151  80.83

sy (0.00,0.33) 288  80.49
s3  (0.67,0.00) 294 102.29
si (0.22,078) 1.84  79.22

The corresponding covariance matrix is given by

[0.56 0.07 0.27 0.08 5.00 0.29 2.22 0.31
0.070.56 0.12 0.22 0.29 5.00 0.66 1.68
0.270.12 0.56 0.08 2.22 0.66 5.00 0.35
0.08 0.22 0.08 0.56 0.31 1.68 0.35 5.00
5.00 0.29 2.22 0.31 82.00 2.61 34.96 2.81
0.29 5.00 0.66 1.68 2.61 82.00 8.38 25.78
2.22 0.66 5.00 0.35 34.96 8.38 82.00 3.40
10.31 1.68 0.35 5.00 2.81 25.78 3.40 82.00 |

Assume that we want to predict the variables X (sg) and Xs(so), so = (0.22,0.00), using
four observations of the process; see Table 1. Based on the covariance matrix and employing
univariate ordinary Kriging, ordinary Cokriging, and Functional Kriging predictions are
obtained for X7 (sg) and Xs(so).

Table 2. Predictions using the three methods. 6% correspond to the total prediction variance (sum of the
prediction variances).

Method )Aﬁ (s0) )22(50) 3%
Kriging 2.199 93.708 68.269
Cokriging 2.707 93.602 68.163

Functional kriging ~ 2.819 93.789 68.278

Table 2 shows that we obtain reasonable predictions with the three methods (values
around the means p1(s) and pa(s) of the processes) with variances of the predictions that
only differ slightly. A more intensive simulation study was conducted posteriorly. Considering
the same spatial dependence structure defined above by vx, (h), vx,(h), and vx,x,(h), a
realization of size 100 of the bivariate process was generated. A cross-validation analysis
was carried out with these data, that is, each simulated datum was partially deleted and
predicted based on the remaining 99 observations through the three methods (Kriging,
Cokriging, and Functional Kriging). We do not present the results in detail. The means of
the prediction errors were in all cases (three methods) close to zero and the means prediction
variances were also very similar (around 11.71). A detailed review of the results can be seen
in Duenas (2017). Here, we consider only two processes to show that even when the number
of variables is small the methodology based on functional kriging can be applied. If the
number of processes increases, there is more significant differences between the methods,
but cokriging also is more complex. In these cases, the approach based on functional kriging
may be more appropriate.

4.2 REAL DATA

The lagoon-estuarine system Ciénaga Grande de Santa Marta (CGSM) located at the north
coast of Colombia (Figure 1) is of interest for its ecological and hydrological characteristics
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and its richness in fish, mollusks, and crustaceans (Rodriguez-Rodriguez et al., 2021). Mon-
itoring its physicochemical and biological conditions is essential due to its environmental
and economic impact on the region.

Caribbean sea Cienaga

Barranquilla

CGSM

Figure 1. The lagoon-estuarine ecosystem Ciénaga Grande de Santa Marta (CGSM) is located at the north coast of
Colombia between the cities of Barranquilla and Ciénaga. A narrow, continuous sandbar borders the entire CGSM
complex to the north. Source: Google Maps 2021.

This work shows how to use functional kriging based on Andrews curves to jointly predict
the spatial distribution of some of these variables. Specifically, we analyze data of six vari-
ables (salinity, dissolved oxygen (mg Oz/L), temperature (°C), chlorophyll-a (ug/1), total
suspended solids (mg/1), and depth (cm)) collected in 95 sampling sites of the system. The
spatial distribution of these variables according to the quartiles of the recorded values is
shown in Figure 2. These plots suggest that is reasonable assuming stationarity, because
there is not a defined spatial trend in any case. There are three alternatives for doing pre-
diction in this case. We can apply ordinary kriging (without considering the dependency
between the variables), ordinary cokriging which require the estimation of a LMC (a com-
plex procedure in this scenario because we must to take into account data of six random
processes simultaneously), or ordinary kriging based on Andrews curves. Below, we show
the results considering this last option. We also do a comparison with the results obtained
using ordinary kriging.

In Table 3, we report the variation coefficients calculated with the 95 observations from
each one of the six variables considered in the study. These values are ordered from highest
to lowest. Following Andrews (1972), we employ this order to define the coefficients z;; from
Equation (2.2) of the Andrews curves for the dataset of interest (top panel of Figure 3). We
note that the curves have a similar behavior. Only two curves have a different pattern (see
curves with the lowest values for ¢ € (0,1.7)). These correspond to places in the north of
the Ciénaga that have different conditions of salinity and depth.

Using Equation (3.11), we calculate the empirical trace-variogram function (white circles
in bottom panel of Figure 3). An exponential semivariogram model with (E = 6460m y
52 = 19224.08 was fitted to this scatterplot (red curve in bottom panel of Figure 3). The
value of gg indicates that the Andrews curves are correlated up to a distance of about 6.4 km.
Using this model, we can estimate the weights \;, for i = 1,...,95 in Equation (3.8) and
predict the six variables on unsampled sites of the region utilizing functional kriging based
on Andres curves. To evaluate the performance of the predictor we do a cross-validation
analysis comparing the results with the ones obtained with ordinary kriging. In Table 4
we show the sum of squares of prediction errors for each one of the six variables based on
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divided according to the quartiles.
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variables considered. The values are, in each case,

Table 3. Coeflicients of variation calculated with data recorded in 95 sites of the lagoon-estuarine system

Ciénaga Grande de Santa Marta.

Variable

Coefficient of variation (%)

Oxygen

Depth
Chlorophyll
Suspended solids
Salinity
Temperature

36.5
24.5
23.8
19.3
17.1

7.2
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Figure 3. Andrews curve calculated for each one of 95 sites of the lagoon-estuarine system Ciénaga Grande de
Santa Marta, based on the values of six physicochemical variables (top); and variogram model (red line) fitted to
the empirical trace-variogram function (bottom).

the two approaches considered. In general the results look similar. To test for significant
differences we use Wilcoxon tests based on the cross-validation residuals. These indicate
that the method based on functional kriging using Andrews curves is better than ordinary
kriging in the case of the variables depth and suspended solids. In the other cases there are
not significant differences between the two strategies.

Table 4. Sum of squares errors of cross-validation (using the data of 95 sites) obtained by functional
kriging based on Andrews curves and ordinary univariate kriging.

Functional kriging Univariate kriging

Oxygen 218.8 216.9

Depth 12.3 125
Chlorophyll 46335.9 46457.2
Suspended solids 169397.1 170136.2
Salinity 223.2 229.9

Temperature 46.9 46.4
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5. CONCLUSIONS, LIMITATIONS, AND FUTURE RESEARCH

In the paper, we have proposed the predictor ordinary kriging for functional data (Giraldo
et al., 2011) based on Andrews curves (Andrews, 1972) as a method for making spatial pre-
diction in multivariate geostatistics (Smith et al., 1962). The results based on a simulation
study and an analysis of real-world data have indicated that this strategy has a good per-
formance. Obviously, if the geostatistical analysis is carried out with two or three variables,
it is more convenient to use cokriging, since the prediction variance is reduced. However,
when the number of variables increases, this option is limited and the proposed technique
emerges as a very appropriate alternative, because it only requires the estimation of just
one variogram and does not have the limitations of the linear coregionalization model.

The proposed methodology could be adapted to the case of optimal sampling (Bohorquez
et al., 2016), regression, and analysis of variance of multivariate spatial data. Other research
alternatives are the extension to the case of non-stationary processes and the treatment of
outliers (Borssoi et al., 2011).
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