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Editorial Paper

Chilean Journal of Statistics: An open-access,

indexed, and free forum for statistical

publications from worldwide

V́ıctor Leiva1 and Carolina Marchant2

1School of Industrial Engineering, Pontificia Universidad Católica de Valparáıso, Valparáıso, Chile
2Faculty of Basic Sciences, Universidad Católica del Maule, Talca, Chile

The second issue of the twelfth volume of the Chilean Journal of Statistics (ChJS) was
published on 31 December 2021. The ChJS has more than a decade of life in its current
version published in English and almost four decades from its origins. We have published
four issues in times of trial due to the COVID-19 pandemic, which has been very relevant
for statistics because its use has permitted di↵erent governments to establish regulations
stopping its spread.
The scientific and editorial production of this volume would not have been achieved

without the valuable contributions of many people. We are pleased to inform the inter-
national community that outstanding researchers have honored us by publishing their
interesting work in our journal. We also thank all the anonymous reviewers who have con-
tributed to maintaining ChJS’ high-quality standards. Furthermore, we feel obliged and
pleased to thank our prestigious editorial board listed in bluehttp://soche.cl/chjs/
board.html. Of course, we must also thank the President and the Board of Directors of
the Chilean Statistics Society (listed in bluehttps://soche.cl/quienes-somos) and the
entire Chilean statistical community for placing on us, the Editors-In-Chief of the ChJS,
their confidence in our work.
The second issue of the twelfth volume of the ChJS comprises six articles as follows:

(i) Our first paper is based on some properties of the bimodal normal distribution and its
bivariate version, which was authored by Roberto Vila, Helton Saulo, and Jamer Roldan
from Brazil and Peru.

(ii) In the second paper, nonparametric relative error regression for functional time series
data under random censorship was proposed by Omar Fetitah, Mohammed K. Attouch,
Salah Khardani, and Ali Righi from Algeria and Tunisia.

(iii) The third paper is authored by Esra Polat from Turkey and it is based on a robust
Hotelling control chart using adaptive reweighted minimum covariance determinant es-
timator.

(iv) Based on a Lomax regression model with varying precision, Moizés da S. Melo, Láıs H.
Loose, and Jhonnata B. de Carvalho, from Brazil, formulated the model, estimated its
parameters, proposed model diagnostics, and applied their results to real-world data.

(v) The fifth paper is authored by Magaly S. Moraga, Germán Ibacache-Pulgar, and Orietta
Nicolis, from Chile and Italy, which proposes an elliptical thin-plate spline partially
varying-coe�cient model and its numerical application.

(vi) In the sixth paper, Bernardo B. de Andrade, Raul Y. Matsushita, Pushpa N. Rathie,
Luan Ozelim, and Sandro B. de Oliveira, from Brazil, postulated a weighted Poisson
distribution and its associated regression model.
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As the Chilean Statistics Society, we are proud because we continue to provide, by
means of the ChJS, an open-access forum, publishing high-quality works free of any article
processing charges (APC). In addition, we are indexed to the Elsevier Scopus and Clarivate
ISI WoS systems. We are very motivated because, during 2021, we received 68 submissions
from di↵erent countries.
Finally, we would like the international statistical and data-science communities, our

editorial board, and our collaborators to champion the ChJS as a twelve-year, international,
free of charges, and open-access forum, with fair and high-quality reviews. We encourage
the international scientific community to submit their works to the ChJS.

Vı́ctor Leiva and Carolina Marchant
Editors-in-Chief
Chilean Journal of Statistics
bluehttp://soche.cl/chjs
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On some properties of the bimodal normal

distribution and its bivariate version
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1Department of Statistics, Universidade de Braśılia, Braśılia, Brazil
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Abstract

In this work, we derive some novel properties of the bimodal normal distribution. Some of
its mathematical properties are examined. We provide a formal proof for the bimodality,
present a stochastic representation, and assess identifiability. We also provide a closed
formula for the moments of the bimodal normal distribution. We then discuss the max-
imum likelihood estimates as well as the existence of these estimates, and also some
asymptotic properties of the estimator of the parameter that controls the bimodality. A
bivariate version of the bimodal normal distribution is derived and some characteristics
such as covariance and correlation are analyzed. We study stationarity and ergodicity
and a triangular array central limit theorem. Finally, a Monte Carlo study is carried
out for evaluating the performance of the maximum likelihood estimators empirically.

Keywords: Bimodality · Bivariate distribution · Central limit theorem · Ergodicity
· Identifiability · Maximum likelihood method · Stationarity.

Mathematics Subject Classification: Primary 60E99 · Secondary 62E99.

1. Introduction

Bimodal distributions play an important role in the applied statistical literature; see, for
example, Eugene et al. (2002), Hassan and El-Bassiouni (2016), and Alizadeh et al. (2017).
The use of mixture-free bimodal distributions is very important as often real-world data are
better modeled by these models, and in general, mixtures of distributions may su�er from
identifiability problems in the parameter estimation; see Vila et al. (2020).

Recently, Gómez-Déniz et al. (2021) introduced a family of continuous distributions ap-
propriate to describe the behavior of bimodal data. This family can accommodate any
symmetric distribution and includes the bimodal normal (BN) as a special case. Bivariate
distributions are of interest; see, for example, Saulo et al. (2020).

In this work, we derive some novel properties of the BN distribution. Particularly, in
Section 2, we describe some preliminary properties, including the behavior of the density
and hazard functions, median, moment generating function, mean, variance, among others.
In Section 3, we obtain some results on the bimodality property of the BN distribution,

úCorresponding author. Email: rovig161@gmail.com

ISSN: 0718-7912 (print)/ISSN 0718-7920 (online)
c• Chilean Statistical Society – Sociedad Chilena de Estad́ıstica
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and the stochastic representation and moments are derived in Section 4. Also, in this sec-
tion, we study some aspects of identifiability. In Section 5, we discuss maximum likelihood
(ML) estimation, existence of the ML estimates, and some asymptotic properties of the ML
estimators. A bivariate version of the BN distribution is derived and some characteristics
such as covariance and correlation are analyzed in Section 6. In Section 7, the concepts of
stationarity and ergodicity of a BN random process are studied. Ergodicity is an important
ingredient to study functions of the distributional characteristics of the process when we
have one realization of it. We find out that the BN random process is non-stationary. This
result allows us to study, in Section 8, the triangular array central limit theorem, which is
of vital importance in statistics. All theoretical results in this paper are new in the litera-
ture. In Section 9, we carry out Monte Carlo simulations. Finally, in Section 10, we discuss
conclusions.

2. Preliminary properties

The random variable X follows a BN distribution if its probability density function (PDF)
is given by

f–,’(x) =
Ô

2fi sech(’–)„(–)„(x)cosh[–(x ≠ ’)], x œ , (1)

where ’ œ and – œ are shape and location parameters, respectively, „ is the standard
normal PDF, and sech(z) = 1/cosh(z), with cosh(z) = [exp(z)+exp(≠z)]/2. The parameter
’ presented in Equation (1) controls the skewness and the parameter – is related to the
bimodality; see Gómez-Déniz et al. (2021).

In this work, we derive some novel properties of a special case of Equation (1), more
specifically when ’ = 0. Then, we say that a real-valued random variable X has a BN
distribution with parameter vector parameter ◊ = (µ, ‡, –)€, with µ œ , ‡ > 0, and
– œ , denoted by X ≥ BN(◊), if its PDF is expressed as

f(x; ◊) = 1
Ô

2fi‡2
exp

5
≠

1
2

3
x ≠ µ

‡

42
≠

–
2

2

6
cosh

5
–

3
x ≠ µ

‡

46
, x œ , (2)

where µ is a location parameter, ‡ is a scale parameter, and – is a parameter that controls the
unimodality or bimodality of the distribution. When – approaches zero (that is, |–| Æ 1) the
distribution becomes unimodal and when – grows (that is, |–| > 1) the bimodality becomes
more accentuated. When – = 0, we have the known normal distribution. For more details,
see Theorem 3.1.

Let X ≥ BN(◊) with PDF f(x; ◊) given in Equation (2). Then, the behavior of f(x; ◊)
with x æ 0 or x æ ±Œ is stated as

lim
xæ0

f(x; ◊) =
Ô

2fi „µ,‡2(0)„(–) cosh
1

–µ

‡

2
and lim

xæ±Œ
f(x; ◊) = 0, (3)

where „µ,‡2(x) is the PDF of the normal distribution with mean µ and variance ‡
2, and

then we denote it by „(x) instead of „0,1(x).
Observe that the cumulative distribution function (CDF) of X ≥ BN(◊) is given by

F (x; ◊) = 1
4

5
2 + erf

3
x ≠ µ ≠ –‡

‡
Ô

2

4
+ erf

3
x ≠ µ + –‡

‡
Ô

2

46
, (4)
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where erf(x) = 2
s x

0 exp(≠t
2) dt/

Ô
fi is the error function. Note that lim–æ0 F (x; 0, 1, –) =

(1/2)[1 + erf(x/
Ô

2)] = �(x), with � being the CDF of the standard normal distribution.
The CDF presented in Equation (4) is a special case of the bimodal skewed symmetric

distribution of Hassan and El-Bassiouni (2016).
The hazard function h(x; ◊) = f(x; ◊)/[1≠F (x; ◊)] has the following behavior when x æ 0

or x æ ±Œ: limxæ≠Œ h(x; ◊) = 0, limxæ+Œ h(x; ◊) = +Œ and

lim
xæ0

h(x; ◊) = 4
Ô

2fi „µ,‡2(0)„(–) cosh(–µ/‡)
2 ≠ erf

1
≠µ≠–‡

‡
Ô

2

2
≠ erf

1
≠µ+–‡

‡
Ô

2

2 .

From the above limits, it can be concluded that the hazard function is non-decreasing.
A routine calculation shows that, if X ≥ BN(◊), then:
(P.1) (PDF) The random variable Z = (X ≠ µ)/‡, where µ œ and ‡ > 0, has PDF

given by f(z; 0, 1, –) = (1/
Ô

2fi) exp[≠(z2 + –
2)/2] cosh(–z), for z œ , that is,

Z ≥ BN(0, 1, –);
(P.2) If f is a Borel measurable function then

[f((X ≠ µ)/‡)] = exp(≠–
2
/2) �[f(Z) cosh(–Z)],

where Z ≥ N(0, 1) and � denotes the expectation with respect to distribution
function �;

(P.3) (Symmetry) f(µ ≠ x; ◊) = f(µ + x; ◊) for all real numbers x;
(P.4) (Median) The median m satisfies that

erf[(m ≠ µ ≠ –‡)/(‡
Ô

2)] = erf[(≠m + µ ≠ –‡)/(‡
Ô

2)], so that m = µ;

(P.5) (Moment generating function) MX(t) = exp
!
µt + ‡

2
t
2
/2

"
cosh(–‡t), t œ ;

(P.6) (Characteristic function) „X(t) = exp(iµt ≠ ‡
2
t
2
/2) cosh(i–‡t), for t œ ;

(P.7) (Mean) (X) = µ;
(P.8) (Variance) Var(X) = ‡

2(1 + –
2);

(P.9) (Skewness) v = 0, that is, the distribution is approximately symmetrical;
(P.10) (Kurtosis) Ÿ = –

2(–2 + 6) + 3;
(P.11) (Mean absolute deviation) MAD = [2„(–) + –erf(–/

Ô
2)]‡;

(P.12) (Shannon entropy) SE = log(
Ô

2fi‡2) + 2–
2 + 1/2 ≠ exp(≠–

2
/2)[exp(2–

2) + 1]/2.

3. Unimodality and bimodality of the BN distribution

In this section, we provide unimodal and bimodal features of the BN distribution.

Theorem 3.1 The PDF of the BN distribution given in Equation (2) is unimodal when
|–| Æ 1 and is bimodal when |–| > 1.

Proof Let us suppose that – ”= 0 because for the case – = 0 the unimodality is well known.
The derivative of f(x; ◊) with respect to x is given by

f
Õ(x; ◊) = f(x; ◊)

‡

;
– tanh

5
–

3
x ≠ µ

‡

46
≠

3
x ≠ µ

‡

4<
.
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Then, f
Õ(x; ◊) = 0 if and only if

tanh
5
–

3
x ≠ µ

‡

46
= x ≠ µ

–‡
. (5)

Let g(x; ◊) = tanh[–(x ≠ µ)/‡] ≠ (x ≠ µ)/(–‡). Note that, for all – ”= 0, x = µ is a root
of g(x; ◊). We divide the proof in the following two steps:

(i) First step: proving unimodality. Note that, g
Õ(x; ◊) = (1/‡){–sech2[–(x≠µ)/‡]≠1/–} < 0

on (≠Œ, +Œ) when 0 < – Æ 1, and g
Õ(x; ◊) > 0 on (≠Œ, +Œ) when ≠1 Æ – < 0,

because sech2(x) Æ 1. Since the function g(x; ◊) has opposite signs at the extremes of the
interval (that is, limxæ≠Œ g(x; ◊) = +Œ, limxæ+Œ g(x; ◊) = ≠Œ when 0 < – Æ 1, and
limxæ≠Œ g(x; ◊) = ≠Œ, limxæ+Œ g(x; ◊) = +Œ when ≠1 Æ – < 0) and it is monotonic,
it will have a single zero at x = µ. Then, since limxæ±Œ f(x; ◊) (3)= 0, the unimodality of
the BN distribution with PDF stated in Equation (2) is guaranteed.

(ii) Second step: proving bimodality. Without loss of generality, now we assume that – > 1
because the other case – < ≠1 is verified using similar arguments. For this case, note
that g(x; ◊) > 0 when x Æ µ ≠ ‡– and g(x; ◊) < 0 when x Ø µ + ‡–. Then, there is no
root of g(x; ◊) outside of the interval (µ≠‡–, µ+‡–). Using Intermediate value theorem,
g(µ≠‡–; ◊) = 1≠tanh(–2) > 0, Á

≠ = limxæµ≠ g(x; ◊) < 0, and Á
+ = limxæµ+ g(x; ◊) > 0,

g(–; ◊) = tanh(–2) ≠ 1 < 0. Thus, there are c1 œ (µ ≠ ‡–, Á
≠) and c3 œ (Á+

, µ + ‡–):
g(ci; ◊) = 0 for i = 1, 3. Now, we prove uniqueness of root on (µ≠‡–, Á

≠). Indeed, assume
that g(x; ◊) has two solutions g(a; ◊) = g(b; ◊) = 0, µ ≠ ‡– < a < b < Á

≠, then according
to the Rolle theorem there is c

ú
œ (a, b): g

Õ(cú; ◊) = 0. But g
Õ(x; ◊) = (1/‡)[–sech2(–x) ≠

1/–] < 0 on (µ ≠ ‡–, Á
≠) with – > 1, and has no solutions, contradiction. Therefore,

g(x; ◊) has exactly one real solution on (µ ≠ ‡–, Á
≠). Similarly, it is verified that on

(Á+
, µ + ‡–), g(x; ◊) has exactly one real solution. Thus, for – > 1, g(x; ◊) has exactly

three real roots, denoted by x1, x2, x3, such that x1 < x2 = µ < x3. Therefore, since
limxæ±Œ f(x; ◊) (3)= 0, the bimodality of the BN distribution expressed in (2) follows. ⌅

Remark 1 The modes of the BN distribution belong to the interval (µ ≠ ‡–, µ + ‡–). By
symmetry, there is ” = ”(‡, –) œ (0, ‡–) so that x1 = µ ≠ ” and x3 = µ + ”. Moreover,
when |–| > 1 and |x| is su�ciently large, the modes of the BN distribution are given by
x1 ¥ µ ≠ ‡– and x3 ¥ µ + ‡–, because limxæ±Œ tanh[–(x ≠ µ)/‡] = ±1.

Corollary 3.2 The modal point x0 = x0(◊) is a non-decreasing function of µ whenever
|–| Æ 1.

Proof By Equation (5), a modal point x0 of the BN distribution satisfies

x0 = –‡ tanh
5
–

3
x0 ≠ µ

‡

46
+ µ. (6)

Di�erentiating x0 with respect to µ, we obtain

ˆx0
ˆµ

= 1 ≠ –
2sech2

5
–

3
x0 ≠ µ

‡

46
Ø 0,

whenever |–| Æ 1. Hence, x0 is a non-decreasing function of µ. ⌅
Corollary 3.3 The modal point x0 = x0(◊) is a non-decreasing function of ‡ (respectively
of –) whenever x0 Ø µ and a non-increasing function of ‡ (respectively of –) whenever
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x0 < µ.

Proof Di�erentiating x0 in Equation (6) with respect to ‡ and –, we get

ˆx0
ˆ‡

= –tanh
5
–

3
x0 ≠ µ

‡

46
≠ –

2
3

x0 ≠ µ

‡

4
sech2

5
–

3
x0 ≠ µ

‡

46

and

ˆx0
ˆ‡

= ‡

;
tanh

5
–

3
x0 ≠ µ

‡

46
+ –

3
x0 ≠ µ

‡

4
sech2

5
–

3
x0 ≠ µ

‡

46<
.

From the above equations, it follows that ˆx0/ˆ‡ Ø 0 (respectively ˆx0/ˆ– Ø 0) whenever
x0 Ø µ and ˆx0/ˆ‡ < 0 (respectively ˆx0/ˆ– < 0) whenever x0 < µ. ⌅

4. Stochastic representation, moments, and identifiability

In this section, we provide the stochastic representation, moments, and identifiability of the
BN distribution.

Proposition 4.1 Suppose Zµ,‡2 has a normal distribution with expected value µ and
variance ‡

2. Let W have the Bernoulli distribution, so that W = –‡ or W = ≠–‡, each
with probability 1/2, and assume W is independent of Zµ,‡2 . If X = Zµ,‡2 + W then
X ≥ BN(◊). Conversely, if X ≥ BN(◊), then X = Zµ,‡2 + W .

Proof By law of total probability and by independence, we get

(X Æ x) = (Zµ,‡2 + –‡ Æ x) (W = –‡) + (Zµ,‡2 ≠ –‡ Æ x) (W = ≠–‡)

= (Zµ,‡2 + –‡ Æ x) 1
2 + (Zµ,‡2 ≠ –‡ Æ x) 1

2

= �
3

x ≠ µ ≠ –‡

‡

4 1
2 + �

3
x ≠ µ + –‡

‡

4 1
2 .

By using the identity �(x) = (1/2)[1 + erf(x/
Ô

2)], the above expression is equal to

1
4

5
2 + erf

3
x ≠ µ ≠ –‡

‡
Ô

2

4
+ erf

3
x ≠ µ + –‡

‡
Ô

2

46
(4)= F (x; ◊), x œ .

Then, we have completed the proof. ⌅
Proposition 4.2 Let X ≥ BN(◊). Then,

(Xn) =

Y
]

[

‡n2 n≠2
2

�( n+1
2 )

Ô
fi

#
1F1

!
≠ n

2 , 1
2 ; ≠ {µ+–‡}2

2‡2

"
+1F1

!
≠ n

2 , 1
2 ; ≠ {µ≠–‡}2

2‡2

"$
, n even,

‡n≠12 n≠1
2

�( n
2 +1)
Ô

fi

#
(µ + –‡)1F1

! 1≠n
2 , 3

2 ; ≠ {µ+–‡}2

2‡2

"
+ (µ ≠ –‡)1F1

! 1≠n
2 , 3

2 ; ≠ {µ≠–‡}2

2‡2

"$
, n odd,

where 1F1(a, b; x) = [�(b)/�(a)]
qŒ

k=0[�(a + k)/�(b + k)](xk
/k!) is the Kummer confluent

hypergeometric function; see Winkelbauer (2014).
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Proof By Proposition 4.1, we have

(Xn) = 1
2

#
�µ+–‡,‡2 (Xn) + �µ≠–‡,‡2 (Xn)

$
,

where �µ+–‡,‡2 denotes the expectation with respect to distribution function �µ+–‡,‡2 . By
combining the above equality with the following known identity (Winkelbauer, 2014), for
Y ≥ N(µ, ‡

2),

(Y n) =

Y
_]

_[

‡
n2n/2 �( n+1

2 )Ô
fi 1F1

!
≠

n
2 ,

1
2 ; ≠

µ2

2‡2
"
, n even,

µ‡
n≠12(n+1)/2 �( n

2 +1)Ô
fi 1F1

!1≠n
2 ,

3
2 ; ≠

µ2

2‡2
"
, n odd,

the proof follows. ⌅
Proposition 4.3 Let X ≥ BN(◊). Then,

53
X ≠ µ


Var(X)

4n 6
=

Y
__]

__[

1
(1+–2)n/2

ÿ

0ÆkÆn
k even

!n
k

"
–

n≠k2≠ k
2 k!

(k/2)! , n even,

0, n odd.

Proof By using Proposition 4.1 and that Var(X) = ‡
2(1 + –

2), we get

53
X ≠ µ


Var(X)

4n 6
= 1

2(1 + –2)n/2

I

�µ+–‡,‡2

53
X ≠ µ

‡

4n 6
+ �µ≠–‡,‡2

53
X ≠ µ

‡

4n 6J

,

where �µ+–‡,‡2 denotes the expectation with respect to distribution function �µ+–‡,‡2 .
Taking the changes of variable z = (x ≠ µ)/‡ and dz = dx/‡, and a binomial expansion,
we have

53
X ≠ µ


Var(X)

4n 6
= 1

2(1 + –2)n/2
)

�
#
(Z + –)n $

+ �
#
(Z ≠ –)n $*

= 1
2(1 + –2)n/2

nÿ

k=0

A
n

k

B
#
1 + (≠1)n≠k$

–
n≠k

�(Zk). (7)

A simple observation shows that, when n is even,

1
2(1 + –2)n/2

nÿ

k=0

A
n

k

B
#
1 + (≠1)n≠k$

–
n≠k

�(Zk) = 1
(1 + –2)n/2

ÿ

0ÆkÆn
k even

A
n

k

B

–
n≠k

�(Zk),

(8)

and, when n is odd,

1
2(1 + –2)n/2

nÿ

k=0

A
n

k

B
#
1 + (≠1)n≠k$

–
n≠k

�(Zk) = 1
(1 + –2)n/2

ÿ

0ÆkÆn
k odd

A
n

k

B

–
n≠k

�(Zk).

(9)
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Thus, by combining the known identities, �(Zk) = 0 for k odd, and

�(Zk) = 2≠ k
2

k!
(k/2)! ,

for k even, considering Equations (7), (8) and (9), the proof follows. ⌅
As a consequence of Proposition 4.1, we know that the BN PDF f(x; ◊) given in Equation

(2), with parameter vector ◊ = (µ, ‡, –)€, can be written as a finite mixture of two normal
distributions with di�erent location parameters, that is, given by

f(x; ◊) = 1
2

#
„µ+–‡,‡2(x) + „µ≠–‡,‡2(x)

$
. (10)

Let N be the family of normal distributions stated as

N =
;

F : F (x; µ, ‡) =
⁄ x

≠Œ
„µ,‡2(y) dy, µ œ , ‡ > 0, x œ

<
.

In addition, let HN be the class of all finite mixtures of N . It is well-known that the class
HN is identifiable; see Teicher (1963). The following result proves the identifiability of the
BN distribution.

Proposition 4.4 The mapping ◊ ‘≠æ f(x; ◊), for all x œ , is one-to-one.

Proof Let us suppose that f(x; ◊) = f(x; ◊Õ) for all x œ . Thus, by Equation (10), we
have that

1
2

#
„µ+–‡,‡2(x) + „µ≠–‡,‡2(x)

$
= 1

2
#
„µÕ+–Õ‡Õ,‡Õ2(x) + „µÕ≠–Õ‡Õ,‡Õ2(x)

$
.

Since HN is identifiable, we have µ ± –‡ = µ
Õ
± –

Õ
‡

Õ and ‡
2 = ‡

Õ2. From where immediately
follows that µ = µ

Õ, ‡ = ‡
Õ and – = –

Õ. Therefore, ◊ = ◊Õ, and the identifiability of
distribution follows. ⌅

5. Asymptotic properties

Let X be a random variable with BN distribution that depends on a parameter vector
◊ = (µ, ‡, –)€, with ◊ being an open subset of 3, where distinct values of ◊ yield distinct
distributions for X (see Section 4). Let X = (X1, . . . , Xn)€ be a random sample of X.
Then, the log-likelihood function for ◊ is given by

l(◊; X) Ã ≠n log(‡) ≠
n–

2

2 ≠
1
2

nÿ

i=1

3
Xi ≠ µ

‡

42
+

nÿ

i=1
log

;
cosh

5
–

3
Xi ≠ µ

‡

46<
.
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A simple computation shows that

ˆl(◊; X)
ˆµ

= n

‡

3
X ≠ µ

‡

4
≠

–

‡

nÿ

i=1
tanh

5
–

3
Xi ≠ µ

‡

46
, (11)

ˆl(◊; X)
ˆ‡

= ≠
n

‡
+ 1

‡

nÿ

i=1

3
Xi ≠ µ

‡

42
≠

–

‡

nÿ

i=1

3
Xi ≠ µ

‡

4
tanh

5
–

3
Xi ≠ µ

‡

46
, (12)

ˆl(◊; X)
ˆ–

= ≠–n +
nÿ

i=1

3
Xi ≠ µ

‡

4
tanh

5
–

3
Xi ≠ µ

‡

46
. (13)

The log-likelihood equations for the estimators ‚µ, ‚‡, ‚– are given by

‚µ = X ≠
‚–
n

nÿ

i=1
tanh

5
‚–

3
Xi ≠ ‚µ

‚‡

46
,

‚‡2 = 1
(1 + ‚–2)n

nÿ

i=1
(Xi ≠ ‚µ)2

,

‚– = 1
n

nÿ

i=1

3
Xi ≠ ‚µ

‚‡

4
tanh

5
‚–

3
Xi ≠ ‚µ

‚‡

46
.

In the following two propositions, we study the existence of the ML estimator when two
parameters are assumed to be known.

Proposition 5.1 If the parameters ‡ and – are known, then Equation (11) has at least
one root on the interval (≠Œ, +Œ).

Proof One can readily verify that limµæûŒ ˆl(◊; X)/ˆµ = ±Œ. Hence, by Intermediate
value theorem, there exists at least one solution on the interval (≠Œ, +Œ). ⌅
Proposition 5.2 If the parameters µ and ‡ are known, then Equation (13) has at least
one root on the interval (≠Œ, +Œ).

Proof Since lim–æûŒ ˆl(◊; X)/ˆ– = ±Œ, the proof follows the same reasoning as the
proofs of Proposition 5.1. ⌅

Now, we calculate the expectation of the score defined by Equations (11), (12) and(13)
when n = 1. Indeed, by using the partial derivatives in Equations (11)-(13), with n = 1,
and the fact that x ‘≠æ x cosh(–x) and x ‘≠æ sinh(–x) are odd functions, we obtain

5
ˆ log{f(X; ◊)}

ˆµ

6
= n

‡

3
X ≠ µ

‡

4
≠

–

‡

;
tanh

5
–

3
X ≠ µ

‡

46<

= exp
3

≠
–

2

2

4 ;
n

‡
�

#
Z cosh(–Z)

$
≠

–

‡
�

#
sinh(–Z)

$<
= 0,

where in the second line, the changes of variables z = (x≠µ)/‡, dz = dx/‡ were considered.
Analogously, since �

#
Z

2 cosh(–Z)
$

= (–2 + 1) exp
!
–

2
/2

"
and �

#
Z sinh(–Z)

$
=
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– exp
!
–

2
/2

"
, we get

5
ˆ log {f(X; ◊)}

ˆ‡

6
= ≠

1
‡

+ 1
‡

53
X ≠ µ

‡

42 6
≠

–

‡

;3
X ≠ µ

‡

4
tanh

5
–

3
X ≠ µ

‡

46<

= ≠
1
‡

+ 1
‡

exp
3

≠
–

2

2

4
�

#
Z

2 cosh(–Z)
$

≠
–

‡
exp

3
≠

–
2

2

4
�

#
Z sinh(–Z)

$

= 0

and let

5
ˆ log {f(X; ◊)}

ˆ–

6
=

;3
X ≠ µ

‡

4
tanh

5
–

3
X ≠ µ

‡

46<
≠ –

= exp
3

≠
–

2

2

4
�

#
Z sinh(–Z)

$
≠ – = 0. (14)

In what remains of this section, for the sake of simplicity of presentation, we will assume that
µ and ‡ are known parameters and – is unknown. We are interested in knowing the large
sample properties of ML estimator ‚– of the parameter – that generates uni- or bimodality
in the BN distribution. We emphasize that similar results can be studied for µ and ‡ when
the other parameters are known. Since

ˆ
2
f(x; ◊)
ˆ–2 =

5
–

2 +
3

x ≠ µ

‡

42
≠ 1

6
f(x; ◊) ≠ 2–

3
x ≠ µ

‡

4
tanh

5
–

3
x ≠ µ

‡

46
f(x; ◊),

�
#
Z

2 cosh(–Z)
$

= (–2 + 1) exp
!
–

2
/2

"
and �

#
Z sinh(–Z)

$
= – exp

!
–

2
/2

"
, for Z ≥

N(0, 1), we have

⁄ +Œ

≠Œ

ˆ
2
f(x; ◊)
ˆ–2 dx =

5
–

2 +
3

X ≠ µ

‡

42
≠ 1

6
≠2–

;3
X ≠ µ

‡

4
tanh

5
–

3
X ≠ µ

‡

46<

= –
2 + exp

3
≠

–
2

2

4
�

#
Z

2 cosh(–Z)
$

≠ 1 ≠ 2– exp
3

≠
–

2

2

4
�

#
Z sinh(–Z)

$

= 0, (15)

where in the second line, the changes of variables z = (x ≠ µ)/‡ and dz = dx/‡ were
considered. In addition,

ˆ
2 log {f(x; ◊)}

ˆ–2 =
3

x ≠ µ

‡

42
sech2

5
–

3
x ≠ µ

‡

46
≠ 1. (16)
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Then, by Equations (15) and (16), the Fisher information may also be written as

I(–) =
5

ˆ log {f(X; ◊)}
ˆ–

62
= ≠

5
ˆ

2 log {f(X; ◊)}
ˆ–2

6
+

⁄ +Œ

≠Œ

ˆ
2
f(x; ◊)
ˆ–2 dx

=1 ≠

;3
X ≠ µ

‡

42
sech2

5
–

3
X ≠ µ

‡

46<

=1 ≠ exp
3

≠
–

2

2

4
�

#
Z

2sech(–Z)
$
. (17)

Theorem 5.3 Let us suppose that µ and ‡ are known parameters and – unknown, and
� = {– œ : |–| > 0} be the parameter space. Then, with probability approaching one, as
n æ +Œ, the log-likelihood equation ˆl(◊; X)/ˆ– = 0 has a consistent solution, denoted
by ‚–.

Proof Since ˆ log{f(x; ◊)}/ˆ–, ˆ
2 log{f(x; ◊)}/ˆ–

2, ˆ
3 log{f(x; ◊)}/ˆ–

3] exist for all – œ

� and every x, by Cramér (1946) it is su�cient to prove that:
(i) [ˆ log{f(X; ◊)}/ˆ–] = 0 for all – œ �;
(ii) ≠Œ < [ˆ2 log{f(X; ◊)}/ˆ–

2] < 0 for all – œ �;
(iii) There exists a function H(x) such that for all – œ �, l|ˆ

3 log{f(x; ◊)}/ˆ–
3
| < H(x)

and [H(X)] < Œ.
In what follows we show the validity of items (i), (ii) and (iii) above. By Equa-
tion (14), the statement of item (i) follows. In order to verify item (ii), note that
exp

!
≠–

2
/2

"
�

#
Z

2sech(–Z)
$

Æ �(Z2) = 1 for all – œ �. Moreover, the two sides
are equal if and only if – = 0. Since – œ � (that is, – ”= 0), it follows that
exp

!
≠ –

2
/2

"
�

#
Z

2sech(–Z)
$

< 1. Hence,

≠1 Æ

5
ˆ

2 log {f(X; ◊)}
ˆ–2

6
(17)= exp

3
≠

–
2

2

4
�

#
Z

2sech(–Z)
$

≠ 1 < 0. (18)

Then, item (ii) is valid. Thus, since |sech2(–x)| Æ 1 and |tanh(–x)| Æ 1,

----
ˆ

3 log {f(x; ◊)}
ˆ–3

---- =
-----2

3
X ≠ µ

‡

43
sech2

5
–

3
X ≠ µ

‡

46
tanh

5
–

3
X ≠ µ

‡

46-----

Æ 2
----

3
x ≠ µ

‡

4----
3

= H(x), (19)

with [H(X)] < Œ. Therefore, we have completed the proof. ⌅
The following result supports the intuitive appeal of the ML estimator (Bahadur, 1971).

Proposition 5.4 Under hypothesis of Theorem 5.3, we have that

lim
næ+Œ

⁄

n {y œ
n : exp[l(◊Õ; y)] > exp[l(◊; y)]}(x) exp[l(◊Õ; x)] dx = 1,

for any ◊ = (µ, ‡, –)€, ◊Õ = (µ, ‡, –
Õ)€

œ � with – ”= –
Õ. Here, A(x) is the indicator

function of a set A having the value 1 for all x in A and the value 0 for all x not in A.
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Proof Since X = (X1, . . . , Xn)€ is a random sample of X ≥ BN(◊), X1, . . . , Xn are inde-
pendent and identically distributed random variables with PDF f(x; ◊), ◊ œ �. Therefore,
as the BN distribution is identifiable (see Section 4), by Bahadur (1971), the proof follows.
⌅

Next, we state a central limit theorem for the ML estimator ‚–, which is important for
studying confidence intervals and hypothesis tests, for example. Note that, under hypothesis
of Theorem 5.3, the following conditions are satisfied:
(A.1) The mapping – ‘≠æ f(x; ◊) is three times continuously di�erentiable on �, ’x œ ;
(A.2) By Equation (14),

s +Œ
≠Œ ˆf(x; ◊)/ˆ– dx = [ˆ log{f(X; ◊)}/ˆ–] = 0 and, by Equa-

tion (15),s +Œ
≠Œ ˆ

2
f(x; ◊)/ˆ–

2 dx = 0;
(A.3) By Equations (17) and (18), 0 < I(–) = 1 ≠

#
X

2sech2(–X)
$

Æ 1, ’– œ �;
(A.4) By Equation (19), there exists a function H(x) such that for all – œ �,

----
ˆ

3 log {f(x; ◊)}
ˆ–3

----< H(x), [H(X)] < Œ;

(A.5) By Theorem 5.3, the log-likelihood equation ˆl(◊; X)/ˆ– = 0 has a consistent so-
lution ‚–.

Since conditions (A.1)-(A.5) are satisfied, by Cramér (1946), we have the following result.

Theorem 5.5 Under hypothesis of Theorem 5.3, it holds that,
Ô

n(‚– ≠ –) converges in
distribution to N(0, 1/I(–)) as n æ +Œ.

6. The bivariate BN distribution

We said that a real random vector X = (X1, X2)€ has bivariate BN (BBN) distribution
with parameter vector parameter Â = (µ1, µ2, ‡1, ‡2, –)€, µi œ , ‡i > 0, – œ , denoted
by X ≥ BBN(Â), if its PDF is given by, for each x = (x1, x2)€

œ
2,

f(x; Â) = exp[–2(fl2
≠ 2)/2]

‡1‡2
„

3
x1 ≠ µ1

‡1
,
x2 ≠ µ2

‡2
; fl

4
cosh

5
–

3
x1 ≠ µ1

‡1

4
+ –(1 ≠ fl)

3
x2 ≠ µ2

‡2

46
,

where fl œ (≠1, 1) and

„(z; fl) = 1
2fi


1 ≠ fl2 exp

5
≠

1
2(1 ≠ fl2)

!
z

2
1 ≠ 2flz1z2 + z

2
2
"6

, z = (z1, z2)€
œ

2
,

is the PDF of the standard bivariate normal distribution with correlation coe�cient fl.
A simple algebraic manipulation shows that

⁄ Œ

≠Œ
f(x; Â) dx1 = f(x2; ◊2) and

⁄ Œ

≠Œ
f(x; Â) dx2 = f(x1; ◊1),

where f(xi; ◊i) is the PDF of the BN distribution stated in Equation (2) with parameter
vector ◊i = (µi, ‡i, –)€, for i = 1, 2. Thus, if X = (X1, X2)€

≥ BBN(Â) then X1 ≥ BN(◊1)
and X2 ≥ BN(◊2).
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By using previous results, a laborious algebraic calculation gives

(X1|X2 = x2) = µ1 + fl‡1

3
x2 ≠ µ2

‡2

4
+ (1 ≠ fl

2)‡1tanh
5
–

3
x2 ≠ µ2

‡2

46
,

that is,

(X1|X2) = µ1 + fl‡1

3
X2 ≠ µ2

‡2

4
+ (1 ≠ fl

2)‡1tanh
5
–

3
X2 ≠ µ2

‡2

46
almost sure.

In consequence,

(X1X2) = [X2 (X1|X2)]

= µ1 (X2) + fl‡1

5
X2

3
X2 ≠ µ2

‡2

46
+ (1 ≠ fl

2)‡1

;
X2tanh

5
–

3
X2 ≠ µ2

‡2

46<
.

Since X2 ≥ BN(◊2), we get

(X1X2) = µ1µ2 + fl‡1‡2(1 + –
2) + (1 ≠ fl

2)‡1‡2–.

Hence, as (Xi) = µi and Var(Xi) = ‡
2
i (1 + –

2) (see properties P.7 and P.8 in Section 2),

Cov(X1, X2) = ‡1‡2[fl(1 + –
2) + (1 ≠ fl

2)–]; (20)

fl(X1, X2) = fl(1 + –
2) + (1 ≠ fl

2)–
(1 + –2) .

The covariance matrix is given by

� =

S

U
‡

2
1(1 + –

2) ‡1‡2[fl(1 + –
2) + (1 ≠ fl

2)–]

‡1‡2[fl(1 + –
2) + (1 ≠ fl

2)–] ‡
2
2(1 + –

2)

T

V .

Some immediate observations are the following:

• When – = 0, we have the following known facts corresponding to bivariate normal distri-
bution: Cov(X1, X2) = fl‡1‡2 and fl(X1, X2) = fl.

• When fl = 0, we have Cov(X1, X2) = ‡1‡2– and fl(X1, X2) = –/(1 + –
2).

• When fl = – = 0, X1 and X2 are independent.

7. Stationarity and ergodicity

In this section, we provide stationarity and ergodicity properties of the BN distribution.

Definition 7.1 A process Xt is strict-sense stationary (SSS) if its finite-dimensional dis-
tributions at times t1 < · · · < tn, ’n œ , are the same after any time interval of length
time interval of length t0. Thus, for each n œ and t1 < · · · < tn and (x1, . . . , xn)€

œ
n

we have

(Xt1+t0 Æ x1, . . . , Xtn+t0 Æ xn) = (Xt1 Æ x1, . . . , Xtn Æ xn),
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for any time t0.

We say that a process Xt is a BN random process if Xt ≥ BN(◊t), where ◊t = (µt, ‡t, –)€,
with µt œ , ‡t > 0 and – œ .

Proposition 7.2 The BN random process is not SSS when µt and ‡t are not independent
of time.

Proof If a random process is SSS, then all expected values of functions of the random
process must also be stationary. Since (Xt) = µt and Var(Xt) = ‡

2
t (1+–

2) (see properties
P.7 and P.8 in Section 2) change depend on t, we have that the PDF changes with time.
Then, the non-stationarity of random process follows. ⌅
Definition 7.3 A process Xt is weak-sense stationary (WSS) if:

• (Xt) = µ is independent over time;
• (X2

t ) < Œ;
• CX(t, s) = Cov(Xt, Xs) only depends on the distance between the times considered.

If Xt is a BN random process, it is known that (Xt) = µt, (X2
t ) = ‡

2
t (1 + –

2) + µ
2
t (see

Section 2) and that CX(t, s) (20)= ‡t‡s[fl(1 + –
2) + (1 ≠ fl

2)–]. Then, the next result follows.

Proposition 7.4 The BN random process is not WSS when µt and ‡t are not independent
of time.

Remark 1 In the case that µt and ‡t [or fl = – = 0] are independent of time, it is clear that
the BN process is SSS and WSS.

In many real-life situations, it is not always possible to have many realizations of the ran-
dom process available to estimate a population parameter (for example, the mean, variance
and covariance function of process), as in classical estimation, but rather a single one. In this
case, in order to study the process, we calculate the temporal characteristic of the process.

Definition 7.5 Let Xt be a random process. Then, we define the temporal mean of Xt as

ÈmXÍT = 1
2T

⁄ T

≠T
Xt dt, T > 0.

Definition 7.6 A process Xt with mean µ independent of time is mean ergodic if

lim
T æŒ

Var(ÈmXÍT ) = lim
T æŒ

(ÈmXÍT ≠ µ)2 = 0.

Proposition 7.7 The BN random process with mean µ independent of time is mean
ergodic whenever

lim
T æŒ

1
2T

⁄ T

≠T
‡t dt = 0. (21)

For example, we can take ‡t = exp(≠t
2).

Proof A simple calculus shows that

Var(ÈmXÍT ) = 1
4T 2

⁄ T

≠T

⁄ T

≠T
CX(t, t

Õ) dt
Õdt.
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Since CX(t, s) (20)= ‡t‡tÕ [fl(1 + –
2) + (1 ≠ fl

2)–], it follows that

Var(ÈmXÍT ) = [fl(1 + –
2) + (1 ≠ fl

2)–]
3 1

2T

⁄ T

≠T
‡t dt

42
.

Letting T æ Œ in the above equality, from condition stated in Equation (21), the proof
follows. ⌅

Definition 7.8 A WSS process Xt is covariance-ergodic if

lim
T æŒ

Var
5 1

2T

⁄ T

≠T
(Xt ≠ µ)(Xt+s ≠ µ) dt

6
= 0.

When s = 0 the WSS process is called variance ergodic.

In general, the BN random process Xt is not a WSS process (see Proposition 7.4). Then,
it is clear that Xt is not a covariance ergodic process.

Proposition 7.9 When µt is independent of time and fl = – = 0, the BN process is
variance ergodic whenever

lim
T æŒ

1
4T 2

⁄ T

≠T

⁄ T

≠T
Cov(X2

t , X
2
tÕ) dt

Õdt = lim
T æŒ

1
4T 2

⁄ T

≠T

⁄ T

≠T
Cov(X2

t , XtÕ) dt
Õdt = 0. (22)

Proof When fl = – = 0, CX(t, t
Õ) = 0. A simple calculus shows that

Var
5 1

2T

⁄ T

≠T
(Xt ≠ µ)2 dt

6
= 1

4T 2

⁄ T

≠T

⁄ T

≠T
Cov[(Xt ≠ µ)2

, (XtÕ ≠ u)2] dt
Õdt.

Since CX(t, t
Õ) = 0, the above expression is given by

= 1
4T 2

⁄ T

≠T

⁄ T

≠T

#
Cov(X2

t , X
2
tÕ) ≠ 2µCov(X2

t , XtÕ) ≠ 2µCov(Xt, X
2
tÕ)

$
dt

Õdt.

By using condition stated in Equation (22), the proof follows. ⌅

8. A triangular array central limit theorem

In this section, we provide a triangular array central limit theorem for the BN distribution.

Definition 8.1 Two random variables X and Y are said to be positively quadrant depen-
dent (PQD) if, for all x, y œ ,

G(x, y) = (X > x, Y > y) ≠ (X > x) (Y > y) Ø 0.

It is usual to rewrite G(x, y) using CDFs as

G(x, y) = (X Æ x, Y Æ y) ≠ (X Æ x) (Y Æ y). (23)
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Remark 1 If F is a CDF, for all x, y œ
2 and – œ , then

F (min{x, y} ≠ –) + F (min{x, y} + –) Ø
1
2

#
F (x ≠ –) + F (x + –)

$#
F (y ≠ –) + F (y + –)

$
.

Indeed, without loss of generality, assume that x < y. Thus,

F (min{x, y} ≠ –) + F (min{x, y} + –) = F (x ≠ –) + F (x + –)

Ø
1
2

#
F (x ≠ –) + F (x + –)

$#
F (y ≠ –) + F (y + –)

$
,

because 0 Æ F (y ≠ –) + F (y + –) Æ 2.

By the stochastic representation of Proposition 4.1, if Xj ≥ BN(◊j), there are Zj ≥ N(0, 1)
and Aj ≥ Bernoulli(1/2), with Aj œ {±–}, so that Xj = ‡j(Zj + Aj) + µj . From now on,
in this section, we assume that variables Zj and Aj are independent of j, that is, we have

Xj = ‡j(Z + A) + µj . (24)

Proposition 8.2 The random variables X ≥ BN(◊X) and Y ≥ BN(◊Y ) are PQD, where
◊X = (µX , ‡X , –), µX œ , ‡X > 0 and – œ .

Proof By Equation (24), X = ‡X(Z + A) + µX and Y = ‡Y (Z + A) + µY . Then, we get

(X Æ x, Y Æ y) =
3

Z Æ
x ≠ µX

‡X
≠ A, Z Æ

y ≠ µY

‡Y
≠ A

4

=
3

Z Æ min
Ó

x ≠ µX

‡X
,
y ≠ µY

‡Y

Ô
≠ A

4
= (Z Æ Ïn;t0(A)).

Let ‚ be the expectation over A. By the Fubini theorem, we have

(Z Æ Ïn;t0(A)) = ‚
5
�

3
min

Ó
x ≠ µX

‡X
,
y ≠ µY

‡Y

Ô
≠ A

46

= 1
2

5
�

3
min

Ó
x ≠ µX

‡X
,
y ≠ µY

‡Y

Ô
≠ –

4
+ �

3
min

Ó
x ≠ µX

‡X
,
y ≠ µY

‡Y

Ô
+ –

46
.

Therefore,

(X Æ x, Y Æ y) = 1
2

5
�

3
min

Ó
x ≠ µX

‡X
,
y ≠ µY

‡Y

Ô
≠ –

4
+ �

3
min

Ó
x ≠ µX

‡X
,
y ≠ µY

‡Y

Ô
+ –

46
.

Now, by using the identity erf(x/
Ô

2) = 2�(x) ≠ 1, the CDF stated in Equation (4) of
X ≥ BN(◊X) is written as

(X Æ x) = 1
2

5
�

3
x ≠ µX

‡X
≠ –

4
+ �

3
x ≠ µX

‡X
+ –

46
.
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Hence, by Remark 1, we get

G(x, y) (23)= (X Æ x, Y Æ y) ≠ (X Æ x) (Y Æ y)

= 1
2

5
�

3
min

Ó
x ≠ µX

‡X
,
y ≠ µY

‡Y

Ô
≠ –

4
+ �

3
min

Ó
x ≠ µX

‡X
,
y ≠ µY

‡Y

Ô
+ –

46

≠
1
4

5
�

3
x ≠ µX

‡X
≠ –

4
+ �

3
x ≠ µX

‡X
+ –

465
�

3
y ≠ µY

‡Y
≠ –

4
+ �

3
y ≠ µY

‡Y
+ –

46

Ø 0.

This completes the proof. ⌅

Definition 8.3 We define a sequence of random variables {Xj} to be linearly positive
quadrant dependent (LPQD) if for any disjoint A, B and positive {⁄j},

q
kœA ⁄kXk andq

lœB ⁄lXl are PQD.

A reasoning similar to the proof of Proposition 8.2 gives the following result.

Proposition 8.4 The sequence of random variables {Xj}, with Xj ≥ BN(◊j), is LPQD,
where ◊j = (µj , ‡j , –), µj œ , ‡j > 0 and – œ .

Theorem 8.5 Let Sn =
qMn

j=1[Xn,j ≠ (Xn,j)] where for each n, Xn,j ≥ BN(◊n,j), with
◊n,j = (µn,j , ‡n,j , –), µn,j œ , ‡n,j > 0 and – œ . Suppose there exist c1, c2, c3 œ (0, Œ)
and a sequence ul æ 0 so that, for all n, j, l, we have that

‡
2
n,j Ø c1, ‡

3
n,j Æ c2; (25)

Mnÿ

k=1
‡n,j‡n,k Æ c3; (26)

Mnÿ

k=1
|k≠j|Øl

‡n,j‡n,k Æ ul. (27)

Then,

lim
næŒ

!
[Var(Sn)]≠1/2

Sn Æ x
"

= 1
Ô

2fi

⁄ x

≠Œ
exp(≠x

2
/2) dx, ’x œ .
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Proof Since for each n, {Xn,j} is LPQD (see Proposition 8.4) but not SSS (see Proposition
7.2), by Cox and Grimmett (1984), it is enough to verify that

Var(Xn,j) Ø Âc1, |Xn,j ≠ (Xn,j)|3 Æ Âc2; (28)

Mnÿ

k=1
Cov(Xn,j , Xn,k) Æ Âc3; (29)

Mnÿ

k=1
|k≠j|Øl

Cov(Xn,j , Xn,k) Æ Âul; (30)

where Âul æ 0. Indeed, since, by Equation (25), ‡
2
n,j Ø c1 and Var(Xn,j) = ‡

2
n,j(1 + –

2) (see
property P.8 in Section 2), we have that Var(Xn,j) Ø ‡

2
n,j Ø c1 = Âc1. Moreover, using the

representation in Equation (24) and the condition given in Equation (25), we obtain

|Xn,j ≠ (Xn,j)|3 = ‡
3
n,j |Z + A|

3
Æ 6

Ò
2/fi ‡

3
n,j Æ 5c2 = Âc2,

that is, Equation (28) is satisfied.
Now, since Cov(Xn,j , Xn,k) (20)= ‡n,j‡n,k[fl(1 + –

2) + (1 ≠ fl
2)–], by conditions given in

Equations (26) and (27), the statements in Equations (29) and (30) follow by taking Âc3 =
c3[fl(1 + –

2) + (1 ≠ fl
2)–] and Âul = [fl(1 + –

2) + (1 ≠ fl
2)–]ul, respectively. ⌅

Remark 2 The set of ‡n,k satisfying conditions stated in Equations (25), (26) and (27) is
non-empty. Indeed, let us take Mn = n and ‡n,k = r

≠k, with k Ø 1 and r > 1, for all n.
Immediately, we have ‡n,k > 0 and ‡n,k Æ 1, that is, Equation (25) is valid. Moreover,

nÿ

k=1
‡n,j‡n,k Æ

nÿ

k=1
‡n,k Æ

Œÿ

k=1

1
rk

= 1
r ≠ 1 , r > 1.

Then, Equation (26) is satisfied. Thus, since r
|k≠j|

Æ r
j+k for r > 1, we have ‡n,j‡n,k =

r
≠(j+k)

Æ r
≠|k≠j|

. Therefore,

nÿ

k=1
|k≠j|Øl

‡n,j‡n,k Æ

nÿ

k=1
|k≠j|Øl

1
r|k≠j| Æ

Œÿ

k=1
|k≠j|Øl

1
r|k≠j| =

Œÿ

m=l

1
rm

S

WWU
Œÿ

k=1
|k≠j|=m

1

T

XXV ,

where in the last equality we rearrange the summation terms. Since
# q

k:|k≠j|=m 1
$

is the
number of vertices at the boundary of the one-dimensional ball of radius m centered at j,
there is C > 0 independent of j such that

# q
k:|k≠j|=m 1

$
= C. Hence,

nÿ

k=1
|k≠j|Øl

‡n,j‡n,k Æ C

Œÿ

m=l

1
rm

= ul.

As
qŒ

m=0 r
≠m = r(r ≠ 1)≠1

< Œ, for r > 1, it follows that ul æ 0, when l æ Œ. Then,
Equation (27) follows.
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9. Numerical evaluation

In this section, a Monte Carlo simulation study was carried out to evaluate the performance
of the ML estimators of the BN model; see Section 5. All numerical evaluations were done
in the R software; see R-Team (2020).

The simulation scenario considers sample size n œ {10, 75, 250, 600}, location parameter
µ = 0.5, scale parameter ‡ = 1.0, location parameter – œ {≠2.0, ≠0.5, 0.8, 3.0}, with 1,000
Monte Carlo replications for each combination of above-given parameters and sample size.
The values of the location parameter – have been chosen in order to study the performance
under unimodality and bimodality.

The ML estimation results for the considered BN model are presented in Figures 1-2. The
empirical bias and root mean squared error (RMSE) are reported. A look at the results in
Figures 1-2 allows us to conclude that, as the sample size increases, the empirical bias and
RMSE both decrease, as expected. Moreover, we note that the performance of the estimate
of µ is better when |–| > 1 under bimodality.
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Figure 1. Empirical bias and RMSE from simulated data for the indicated ML estimates of the listed BN model
parameters, n and –.
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Figure 2. Empirical bias and RMSE from simulated data for the indicated ML estimates of the listed BN model
parameters, n and –.

10. Concluding remarks

We have stated novel properties of the bimodal normal distribution and discussed some
mathematical properties, as well as proven its bimodality and identifiability. We have also
analyzed some aspects related to the maximum likelihood estimation and its associated
asymptotic properties. We have derived a bivariate version of the bimodal normal distri-
bution and studied some of its characteristics such as covariance and correlation. We have
considered stationarity and ergodicity as well as a triangular array central limit theorem. Fi-
nally, we have carried out Monte Carlo simulations to evaluate the behavior of the maximum
likelihood estimators.
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A possible limitation of our proposal might be associated with the moments. In this
work, we have only derived the raw moments (moments of positive integer order). It would
be interesting, if possible, to find the real moments. In addition, this work has studied
consistency and a central limit theorem for one of the model parameters (since the others are
known). Note that this parameter generates bimodality. It would be interesting that, using
a more elaborate approach, considering an unknown parameter vector. As further research,
one might explore the multivariate case and then obtain ergodicity and stationarity results.
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Abstract

In this paper, we investigate the asymptotic properties of a nonparametric estimator

of the relative error regression given a dependent functional explanatory variable, in

the case of a scalar censored response. We use the mean squared relative error as a

loss function to construct a nonparametric estimator of the regression operator of these

functional censored data. We establish the almost surely convergence (with rates) and

the asymptotic normality of the proposed estimator. A simulation study and real data

application are performed to lend further support to our theoretical results and to

compare the quality of predictive performances of the relative error regression estimator

than those obtained with standard kernel regression estimates.

Keywords: Almost surely convergence · –-mixing data · Censored data · Functional

data analysis · Mean square relative error · Nonparametric estimation.
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1. Introduction

Functional data analysis is a branch of statistics that has gained popularity in recent years,
either mathematically or in terms of applications. There are numerous practical applications
for this data format, such as continuous phenomena (climatology, economics, linguistics,
medicine, and so on). Since the publication of Ramsay and Dalzell (1991)’s work, numerous
developments have been examined in order to produce theories and methodologies that are
based on functional data (Almanjahie et al., 2020).

The monographs of Ramsay and Silverman (2005) provide an overview of both the theo-
retical and practical elements of functional data analysis, whereas the monographs of Ferraty
and Vieu (2006) provide an overview of nonparametric techniques. Numerous nonparametric
models have been developed. For example, Ferraty and Vieu (2004) established the strong
consistency of the regression function when the explanatory variable is functional and the
response is scalar, and their study extended to non-standard regression problems such as
time series prediction and curve discrimination (Ferratyet al., 2002; Ferraty and Vieu, 2003);
for robust estimation, see also Attouch et al. (2009).
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Masry (2005) establishes the asymptotic normality of the same estimator under an –-
mixing assumption. According to Dabo-Niang (2004), density estimation in a Banach space
was investigated, as well as the density estimation of a di�usion process with respect to the
Wiener measure. Ferraty and Vieu (2006) introduced the kernel type estimation (Azevedo
et al., 2011) of some characteristics of the conditional cumulative distribution function
(CDF) as well as the successive derivatives of the conditional density; the almost complete
convergence (ACC) with rates for the kernel type estimates is established and illustrated by
an application to El Niño data. It is common practice to estimate the regression function by
minimizing the mean-squared loss function. When data contains outliers, this loss function
is predicated on some restrictive constraints, such as the variance of the residual being
equal for all observations. As a result, in order to overcome this limitation, we investigate
an alternate strategy that allows us to create an e�ective predictor even when the data is
influenced by the existence of outliers. As a result, the constraints of classical regression
are addressed in this study by estimating the regression function with respect to the mean
squared relative error (MSRE). The latter is a better indicator of a predictor’s performance
than the usual inaccuracy in the prediction.

The literature on the relative error regression in nonparametric functional data analysis
(NFDA) is still limited. The first consistent results were obtained in by Campbell and Don-
ner (1989), where relative regression was used as a classification tool. Jones et al. (2008)
studied the nonparametric prediction via relative error regression. They investigated the
asymptotic properties of an estimator minimizing the sum of the squared relative errors by
considering both (kernel method and local linear approach). Recently, Mechab and Laksaci
(2016) analyzed this regression model when the observations are weakly dependent. For spa-
tial data, Attouch et al. (2017) proved the almost complete consistency and the asymptotic
normality of this estimator. Fetitah et al. (2020) investigated the relative error in functional
regression under random censorship when data are independent.

Nonparametric analysis of incomplete functional data, on the other hand, has a limited
extensive literature. There are limited works on this issue (for example, Altandji et al.
(2018) estimates the relative error in functional regression under the random left-truncation
model). Carbonez et al. (1995) presented the kernel estimator of classical regression in the
right censorship model, and improved it in Ould-Saïd and Guessoum (2008). To estimate
the conditional quantile when regressors are functional, this approach was later employed
by Horrigue and Ould-Saïd (2014). Additionally, using truncated data, Helal and Ould-Saïd
(2016) used the same model.

In this paper we define and study a new estimator of the regression function when the
interest random variable is subject to random right-censoring and the explanatory variable
is functional. Notice that the main feature of our approach is to develop a prediction model
alternative to the classical regression which is not sensitive to the presence of the outliers.

The paper is organized as follows. In Section 2 we define our parameter of interest and its
corresponding estimators. In Section 3 we give some assumptions and state an almost sure
(AS) consistency and asymptotic normality for the proposed estimator. A simulation study
and real data application are performed in Section 4, whereas the technical details and the
proofs are deferred to Section 4.2.

2. Model

2.1 Background

Let consider that (Yi, Xi), for i = 1 . . . n, is a stationary –≠mixing couples, where Yi is
real-valued and Xi takes values in some functional space F . Assume that IE|Yi| < Œ and
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define the regression functional as

r(x) = IE[Yi|Xi = x], x œ F , ’i œ IN. (1)

The model given in Equation (1) can be written as

Yi = r(Xi) + ‘i, i = 1, . . . , n,

where ‘i is a random variable such that IE[‘i|Xi] = 0 and IE[‘2
i |Xi] = ‡

2(Xi) < +Œ.
Unlike to the multivariate case, there exists various versions of the functional regression

estimate. However, all these versions are based on two common procedures. The first one is
the functional operator which is supposed smooth enough to be locally well approximated
by a polynomial. The second one is the use of the least square error given by

r (x) = arg min
rú

1
IE

Ë
(Y ≠ r

ú (x))2 |X = x

È2
, (2)

as a loss function to determine the estimates of r. In complete data, a typical kernel regression
estimator based on Equation (2) (Ferraty et al., 2007) is given by

rn (x) =
qn

i=1 YiK
!
h

≠1
d(x, Xi)

"
qn

i=1 K (h≠1d(x, Xi))
,

where K is a kernel and (h := hn) is a sequence of bandwidths.
For results on both theoretical and application points of view considering independent or

dependent case, we refer the reader to the studies of Attouch et al. (2017) and Chahad et
al. (2017). Note that Amiri et al. (2014) analyzed the regression function of a real random
variable with functional explanatory variable by using a recursive nonparametric kernel
approach.

In the presence of right random censoring, the problem has been analyzed by Buckley and
James (1979) using parametric methods. For nonparametric approaches, we refer to Amiri
and Khardani (2018) and Stute (1993). Some asymptotic properties were established with
a particular application to the conditional mode and quantile by Chaouch and Khardani
(2015) and Khardani and Thiam (2016). Horrigue and Ould-Saïd (2014) considered a regres-
sion quantile estimation for dependent functional data. Nevertheless, the use of previous loss
function given in Equation (2) as a measure of prediction performance may be not suitable
in some situation. In particular, the presence of outliers can lead to unreasonable results
since all variables have the same weight. Now, to overcome this limitation we propose to
estimate the function r by an alternative loss function.

In the relative regression analysis, r is obtained by minimizing the MSRE, that is, r (x)
is the solution of the optimization problem:

r (x) = arg min
rú

A

IE

C3
Y ≠ r

ú (X)
Y

42
|X = x

DB

.

As mentioned in Jones et al. (2008), where outlier data are present and the response variable
of the model is positive, the MSRE is minimized.

It is clear that this criterion is a more meaningful measure of prediction performance than
the least squares error, in particular when Y > 0, it often is that the ratio of prediction
error to the response level, (Y ≠r(X))/Y , is of prime interest: the expected squared relative
loss, IE[{(Y ≠ r(X))/Y }2|X], which is the MSRE, is minimized (specially in the presence of
outliers). Moreover, the solution of this problem can be expressed by the ratio of first two
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conditional inverse moments of Y given X. As discussed by Park and Stefanski (1998), for
Y > 0

r(x) = IE
#
Y

≠1|X = x
$

IE [Y ≠2|X = x] := g1(x)
g2(x) , (3)

where gl(x) = IE[Y ≠l|X = x], for l = 1, 2, with r being the best MSRE predictor of Y given
X = x.

2.2 Construction of the estimator

To construct our estimator, let us recall that in the case of complete data, a well-known
estimator of the regression function is based on the Nadaraya-Watson weights. Let {Zi =
(Xi, Yi)1ÆiÆn} be n pairs, identically distributed as Z = (X, Y ) and valued in F ◊ IR, where
(F , d) is a semi-metric space (that is, X is a functional random variable (FRV) and d a
semi-metric). Let x be a fixed element of F . For the complete data, see Demongeot et al.
(2016).

It is well known that the kernel estimator of Equation (3) is given by

r̂(x) =

nÿ

i=1
Y

≠1
i K

3
d(x, Xi)

h

4

nÿ

i=1
Y

≠2
i K

3
d(x, Xi)

h

4 := ĝ1(x)
ĝ2(x) ,

where ĝl(x) =
qn

i=1 Y
≠l

i K(d(x, Xi)/h)/(nIE(K(d(x, X1)/h))), for l = 1, 2, with K is an
asymmetrical kernel and h = hn (depending on n) is a strictly positive real. It is a functional
extension of the familiar Nadaraya-Watson estimate. The main change comes from the semi-
metric d which measures the proximity between functional objects.

In the censoring case, instead of observing the lifetimes Y , which has a continuous CDF
F , we observe the censored lifetimes of items under study, that is, assuming that (Ci)1ÆiÆn

is a sequence of independent and identically distributed censoring random variable (RV)
with common unknown continuous CDF G. Then, in the right censorship model, we only
observe the n pairs (Ti, ”i) with Ti = Yi · Ci and ”i = 1{YiÆCi}, for 1 Æ i Æ n, where 1A

denotes the indicator function of the set A.
In what follows, we define the endpoints of F and G by ·F = sup{t: F̄ (t) > 0}, and

·G = sup{t: Ḡ(t) > 0} where F̄ (x) = 1 ≠ F (x) and Ḡ(x) = 1 ≠ G(x). We assume that
·F < Œ and Ḡ(·F ) > 0, (this implies ·F < ·G).

In censorship model, only the (Xi, Ti, ”i)1ÆiÆn are observed. We define Âr(x) as an estimate
of r(x) by

Âr(x) =

nÿ

i=1

”iT
≠1
i

Ḡ(Ti)
K

3
d(x, Xi)

h

4

nÿ

i=1

”iT
≠2
i

Ḡ(Ti)
K

3
d(x, Xi)

h

4 =:
Âg1(x)
Âg2(x) , (4)
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where

Âgl(x) =

nÿ

i=1

”iT
≠l
i

Ḡ(Ti)
K

3
d(x, Xi)

h

4

nIE
1
K

1
d(x,X1)

h

22 , l = 1, 2.

In practice, G is unknown. We use the Kaplan-Meier estimator (Deheuvels and Einmahl,
2000) of Ḡ given by

Ḡn(t) =
I rn

i=1
1
1 ≠ 1≠”(i)

n≠i+1

21{T(i)Æt}
, if t Æ T(n),

0, otherwise,

where T(1) Æ · · · Æ T(n) are the order statistics of (Ti)1ÆiÆn and ”(i) is the concomitant of
T(i). Therefore, the estimator of r (Fetitah et al., 2020) is stated as

Ârn(x) =

nÿ

i=1

”iT
≠1
i

Ḡn(Ti)
K

3
d(x, Xi)

h

4

nÿ

i=1

”iT
≠2
i

Ḡn(Ti)
K

3
d(x, Xi)

h

4 :=
Âg1,n(x)
Âg2,n(x) , (5)

where

Âgl,n(x) =

nÿ

i=1

”iT
≠l
i

Ḡn(Ti)
K

3
d(x, Xi)

h

4

nIE
1
K

1
d(x,X1)

h

22 , l = 1, 2.

Remark 2.1 In Equations (4) and (5), the sums are taken for the subscripts i, where
Ḡn(Ti) ”= 0 and Ḡ(Ti) ”= 0. The same convention is followed in the forthcoming formulas.
Note that, under the assumptions on the model, the sets {i, Ḡ(Ti) = 0} and {i, Ḡn(Ti) = 0}
are IP-negligible.

3. Assumptions and main results

3.1 General context

Throughout this paper, x is a fixed element of the functional space F . To formulate our
assumptions, some notations are required. and we denote by Nx a neighborhood of the point
x. Hereafter, when no confusion is possible, we denote by c and c

Õ some strictly positive
generic constants.

Let B(x, h) be the closed ball centered at x with radius h, and consider the CDF of d(x, X)
defined by

Ïx(h) = IP(X œ B(x, h)) = IP(d(x, X) Æ h),

with h being positive and satisfies Ïx(0) = 0 and Ïx(h) æ 0 when h æ 0. Let us consider
the following definition.
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Definition 3.1 Let (Zn)nœIN be a sequence of RVs. Given a positive integer n, set

–(n) = sup
k

sup
)
|IP(A fl B) ≠ IP(A)IP(B)|, A œ Fk

1 (Z) and B œ FŒ
k+n(Z)

*
,

where Fk
i (Z) denotes the ‡≠field generated by {Zj , i Æ j Æ k}. The sequence is said to be

–≠mixing if the mixing coe�cient –(n) æ 0 when n æ Œ.

3.2 Asymptotic consistency

Our main first result is the pointwise almost sure convergence. In order to state this result,
we need some assumptions which are gathered together in order to make our results reading
easier. In what follows, we assume that the following assumptions hold:

(H1) IP(X œ B(x, h)) =: Ïx(h) > 0, for all h > 0.
(H2) For all (x1, x2) œ N 2

x , we have

|gl(x1) ≠ gl(x2)| Æ cd
kl(x1, x2) for an integer kl > 0 and l = 1, 2.

(H3) The kernel K is a bounded and Lipschitzian function on its support (0, 1) and satisfying:

0 < c Æ K(x) Æ c
Õ
< +Œ.

(H4) The bandwidth h satisfies h æ 0, log(n)/(nÏx(h)) æ 0 as n æ Œ.

(H5) The inverse moments of the response variable verify:

for all m Ø 2, IE[Y ≠m|X = x] < cm < Œ.

where cm is positive constant.
(H6)

(i) (Xn, Yn)nØ1 is a sequence of stationary –≠mixing RVs with coe�cient –(n) = O(n≠a),
for some a œ (0, Œ).

(ii) (Cn)nØ1 and (Xn, Yn)nØ1 are independent.
(H7) For all i ”= j, IE[Y ≠1

i Y
≠2

j |(Xi, Xj)] Æ c < Œ, and

0 < sup
i”=j

Ó
IP ((Xi, Xj) œ B(x, h) ◊ B(x, h))

Ô
= O

A
(Ïx(h))(a+1)/a

n1/a

B

.

(H8) There exists ÷ > 0, such that, cn
3≠a
a+1 +÷ Æ Ïx(h) Æ c

Õ
n

1
1≠a , with a > 2.

We are in state to give our main result.
Theorem 3.2 Under Assumptions (H1)-(H8), we have

|Ârn(x) ≠ r(x)| = O
!
h

k1
"

+ O
!
h

k2
"

+ OAS

AÛ
log(n)
nÏx(h)

B

.

3.3 Asymptotic normality

Here, we study of the asymptotic normality of Ârn(x). To do that, we replace assumptions
(H1), (H3) and (H4) respectively by the following hypotheses:
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(N1) The concentration property (H1) holds. Moreover, there exists a function ‰x(.) such that,

for all s œ [0, 1], lim
ræ0

Ïx(sr)
Ïx(r) = ‰x(s).

(N2) For “ œ {1, 2}, the functions �“(x) = IE [g“(X) ≠ g“(x)|d(x, X) = x] are derivable at
zero.

(N3) The kernel function K satisfies (H3) and is a di�erentiable function on ]0, 1[ where its
first derivative function K

Õ is such that: ≠Œ < c < K
Õ(x) < c

Õ
< 0.

(N4) The small ball probability satisfies: nÏx(h) ≠æ Œ.
(N5) For m œ {1, 2, 3, 4}, the functions qm(x) = IE[Ḡ(Y )≠1

Y
≠m|X = x] are continuous in a

neighborhood of x.
Assumption (H1) is the same as that used by Ferraty and Vieu (2006) which is linked

to the functional structure of the functional covariate. Assumptions (H2), (H3) and (H7)
deal with the functional aspect of the covariate and the associated small ball probability
techniques used in this paper. Assumptions (H6) and (H8) specify the model and the rate of
mixing coe�cient. Condition (N5) stands as regularity condition that is useful to establish
the asymptotic properties of the estimators. Assumptions (H3), (H4), (N3) and (N4) concern
the kernel K and the smoothing parameter h and are technical conditions.

The fractal or geometric process is a family of infinite dimensional processes for which
the small balls have the property Ïx(t) = IP (Îx ≠ XÎ < t) ≥ cxt

“ , where cx and “ are
positive constants. In this case, setting hn = An

≠a with 0 < a < 1 and 0 < A implies
Ïx(h) = cxAn

≠“a. Thus, (H1), (H4) and (H8) hold when “ < 1/a.

Theorem 3.3 Under Assumptions (H6)-(H8)and (N1)-(N5), we have

3
nÏx(h)
‡2(x)

41/2 1
Ârn(x) ≠ r(x) ≠ hBn(x) ≠ o(h)

2 Dæ N (0, 1), as n æ Œ.

where Dæ denotes convergence in distribution,

Bn(x) =
!
�Õ

1(0) ≠ r(x)�Õ
2(0)

"
—0

—1g2(x)

and

‡
2(x) =

!
q2(x) ≠ 2r(x)q3(x) + r

2(x)q4(x)
"
—2

—2
1

”= 0,

with —0 = K(1) ≠
s 1

0 (sK(s))Õ
‰x(s)ds and —j = K

j(1) ≠
s 1

0 (Kj)Õ(s)‰x(s)ds ”= 0, for j = 1, 2.

Remark 3.4 (Comeback to complete data). In absence of censoring (Ḡ(x) = 1), the asymp-
totic variance becomes

‡
2(x) =

!
a2(x) ≠ 2r(x)a3(x) + r

2(x)a4(x)
"
—2

—2
1

,

where aj(x) = IE[Y ≠j |X = x], which is the result obtained by Demongeot et al. (2016).
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4. Simulation and application

4.1 Simulation study

In this section, we treat a simulation example to show the behaviour of our estimator Ârn(x)
and to compare the sensitivity to outliers of the classical regression defined as the conditional
expectation m(x) = IE[Y |X = x] estimated by

‚m(x) =

nÿ

i=1

”iTi

Ḡn(Ti)
K

1
h

≠1
d (x, Xi)

2

nÿ

i=1
K

1
h

≠1
d (x, Xi)

2 ,

and the relative error estimator Ârn(x) previously defined. To do this, we consider the classical
nonparametric functional regression model stated as

Y = r(X) + ‘,

where the operator r is defined by r(X) = 10/[1 +
s 1

0 X
2(t)dt].

We consider two di�usion processes on the interval [0, 1], Z1(t) = 2 ≠ cos(fitW ) and Z2(t) =
cos(fitW ), and we take X(t) = AZ1(t) + (1 ≠ A)Z2(t), where A is a Bernoulli distributed
RV and W is an –-mixing process generated by the model expressed as

Wi = 1Ô
2

(Wi≠1 + ÷i) , i = 1, . . . , 200,

with ÷i being centered Gaussian distributed RVs with variance 0.5 and independent of ÷i.
We carried out the simulation with n = 200 sample of the curve X. The error variable
‘i ≥ N (0, 0.5). We also, simulate n independent and identically distributed RV Ci, for
i = 1, . . . , n, with law E(⁄) (that is, exponentially distributed with density ⁄e

≠⁄x1{xØ0}).
Simulated data from our model are plotted in Figure 1. To compute our estimator based on
the observed data (Xi, Ti, ”i), for i = 1, . . . , n, where Ti = Yi · Ci and ”i = 1{YiÆCi}.

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
1

2
3

t

X
(t
)

Figure 1. The curves Xi=1,...,100(t), for t œ [0, 1[.
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We choose the quadratic kernel defined by

K(x) = 3
2

1
1 ≠ x

2
2
1(0,1).

In practice, the semi-metric choice is based on the regularity of the curves X which are
under analysis. In our case, we take the semi-metric based on the second derivatives of the
curves X. More precisely, we take

d(Xi, Xj) =
3⁄ 1

0
(X ÕÕ

i (t) ≠ X
ÕÕ
j (t))2dt

41/2
’Xi, Xj œ F ,

where X
ÕÕ denotes the second derivative of the curve X. For the bandwidth, we choose

the automatic selection with a cross validation procedure introduced by (Ferraty and Vieu,
2006, Ch.13).

We split the data generated from the model above into two subsets: a training sample
(Xi, Ti, ”i), for i = 1, . . . , 150, and a test sample (Xj , Tj , ”j), for j = 151, . . . , 200. Then, we
calculate the estimator r̃(Xj) for any j œ {151, . . . , 200}.

The performance of both estimators is described by the mean squared error (MSE) for-
mulated as

MSE = 1
50

200ÿ

j=151
(r(Xj) ≠ r̃(Xj))2

,

where r̃(Xj) means the estimator of both regression models and r(Xj) the response vari-
able. We note that the result of our simulation study is evaluated over 100 independent
replications.

The obtained results are shown in Figure 2 with the censorship rate CR = 20.67%. It is
clear that there is no meaningful di�erence between the two estimation methods: the classical
kernel estimator (CKE) has an MSECKE = 0.2209, whereas the relative error estimator
(REE) has an MSEREE = 0.1579.
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Figure 2. comparison between the CKE and the REE without outliers.

The results of a second illustration are given in Table 1, where from we observe that, in
the presence of outliers (0, 10, 20) with di�erent values of CR = 3%, 30%, 60%), the relative
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error regression performs better than the classical method, even if the MSE of both methods
increases substantially relatively to the number of the perturbed points and censorship rate,
it remains very low in terms of the relative error.

Table 1. MSE of the CKE and REE according to numbers of introduced artificial outliers and di�erent
censorship rate.

Number of artificial outliers æ 0 10 20
CR

¿

3% 0.0921 2856.646 6499.6945
Classical kernel estimator 30% 0.8766 14126.2706 19358.5386

MSECKE 60% 2.8038 32182.8188 56681.7038
3% 0.0551 0.0579 0.0665

Relative error estimator 30% 0.0949 0.1048 0.1258
MSEREE 60% 0.1455 0.1903 0.2712

Our main application of Theorem 3.3 is to build confidence intervals (CIs) for the true
value of r(x) given curve X = x. A plug-in estimate for the asymptotic standard deviation
(nÏx(h)/‡

2(x))1/2 and the bias term hBn(x) + o(h). Precisely, we estimate qm(x) by means
of

Âqm(x) =
qn

i=1 Ki”iḠ
≠2
n (Ti)T ≠m

iqn
i=1 Ki

,

whereas we estimate empirically —1 and —2 by using

—̂1 = 1
nÏx(h)

nÿ

i=1
Ki and —̂2 = 1

nÏx(h)

nÿ

i=1
K

2
i .

Thus, the practical estimator of the normalized deviation is stated as

Â‡n(x) =
A!qn

i=1 K
2
i

" !
Âq2(x) ≠ 2Âr(x)Âq3(x) + Âr2(x)Âq4(x)

"

(
qn

i=1 Ki)2 Âq2
2(x)

B1/2

.

We point out that the function Ïx do not intervene in the calculation of the CI by sim-
plification. Hence, the approximate (1 ≠ ’/2) ◊ 100% CI for r(x), for any x œ F , is given
by

Ë
Ârn(x) ≠ z1≠’/2Â‡n(x), Ârn(x) + z1≠’/2Â‡n(x)

È
,

where z1≠’/2 denotes the (1 ≠ ’/2) ◊ 100th quantile of the standard normal distribution.
In order to compare our CI with that of the classical regression (Ferraty et al., 2007), we

have
Ò

nÏx(h) —1
‡‘(x)

Ô
—2

( ‚m(x) ≠ m(x)) Dæ N (0, 1),

where ‡
2
‘ (x) = IE

#
(Y ≠ m(x))2|X = x

$
and —1, —2 are define previously.
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With simple calculus, we can estimate ‡
2
‘ (x) based on

‚‡2
‘ (x) = ‚fl2(x) ≠ 2 ‚m(x)‚fl1(x) + ‚m2(x),

where

‚fll(x) =
qn

i=1 Ki”iḠ
≠1
n (Ti)T l

iqn
i=1 Ki

, ’ l œ {1, 2}.

Therefore, the approximate (1 ≠ ’/2) ◊ 100% CI for m(x) (the classical regression), for any
x œ F , is formulated as

S

U ‚m(x) ≠ z1≠’/2

Ò
‚—2‚‡‘(x)

‚—1
, ‚m(x) + z1≠’/2

Ò
‚—2‚‡‘(x)

‚—1

T

V

In order to construct confidence bands (for both CKE and REE), we proceed by the following
algorithm:

Step 1 Split our data into randomly chosen subsets: (Xi, Yi)iœI (training set) and (Xj , Yj)jœJ

(test set).
Step 2 Calculate the estimator Ârn(Xi) for all i œ I by using the training sample.
Step 3 For each Xj in the test sample, set i

ú := arg miniœI d(Xj , Xi).
Step 4 For all j œ J , define the confidence bands by means of

[Ârn(Xiú) ≠ z0.975Â‡n(Xiú), Ârn(Xiú) + z0.975Â‡n(Xiú)] ,

where z0.975 t 1.96 is the 97.5% quantile of a standard normal distribution.
Step 5 We present our results by plotting the extremities of the predicted values versus the true

values and the confidence bands.
Figures 3 and 4 shows clearly a good behaviur of our estimator compared to the classical
regression, with censorship rate (CR = 30%) and in the presence of outliers. In these figures,
the solid black curve connects the true values. The dashed blue curves connect the lower
and upper predicted values. The solid red curve connects the crossed points which give the
predicted values.
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Figure 3. Extremities of the predicted values versus the true values and the confidence bands (simulation data
without outliers).
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Figure 4. Extremities of the predicted values versus the true values and the confidence bands (simulation data in
the presence of 10 outliers).

4.2 A real data application

First, we have acquired a large dataset, consisting of number of 8784 records, containing the
hourly energy consumption for the year 2016 (measured in MWh), retrieved from the smart
metering device of a commercial center type of consumer (a large hypermarket). We have
also acquired a dataset containing the historical hourly meteorological data regarding the
temperature (measured in Celsius degrees). These data were recorded by the meteorological
sensors of a specialized institute for the year 2016, consisting in a number of 8784 records;
see Pîrjan et al. (2017) and Mebsout et al. (2020) for more description on this data set.

Now, we are interested in the estimation of interval prediction of peak consumption of
energy. For a fixed day i, let us denote by (Ei(tj))j=1,...,24 the hourly measurements of some
consumption of energy. The peak demand observed for the day i is defined as

Pi = max
j=1,...,24

Ei (tj) .
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Figure 5. Sample of 15 daily temperature curves and the associated energy consumption curves.

It is well known that peak demand is very correlated with temperature measurements.
Figure 5 provides a sample of 15 curves of hourly temperature measures and the associated
electricity consumption curves. We split our sample of 366 days into a learning sample
containing the first 300 days and a testing sample with the last 66 days. From the learning
sample, we selected 30% of days within which we generated the censorship randomly. Figure
6 provides a sample of four censored daily load curves. For those days, we observe the
electricity consumption until a certain time tc œ [1, 24], which corresponds to the time of
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censorship which is plotted in a dashed line in Figure 6. For a censored day, we define the
censored random variable as

Ci = max
j=1,...,tc

Ei (tj) .

Therefore, our sample is formed as follows (Xi, Yi, ”i)i=1,...,300, where ”i = 1 if Yi = Pi and
”i = 0 if Yi = Ci. In order to introduce the outliers in this sample, we randomly multiplies
by 10 some response variable of a number of observations.
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Figure 6. Sample of four censored daily load curves, the dashed line corresponds to the time of censorship tc.

The selection of the bandwidth parameter is an important and basic problem in all kernel
smoothing techniques. Another important point for ensuring a good behavior of the method
is to use a semi-metric that is well adapted to the kind of data we have to deal with. Our
data are based on the m eigen-functions of the empirical covariance operator associated with
the m greatest eigenvalues (Ferraty and Vieu, 2006, Ch. 13). The estimators are obtained
by choosing the optimal bandwidths by L

1 cross-validation method and the kernel K is the
quadratic function defined by K(x) = 3/2

!
1 ≠ x

2"
1[0,1]. The error used is expressed by

MSECKE = 1
66

366ÿ

i=301
(Yi ≠ ‚m(Xi))2 and MSEREE = 1

66

366ÿ

i=301
(Yi ≠ Âr(Xi))2

.

The results are given in Figure 7, where two curves corresponding to the observed values
(black curve) the predicted values (dashed curve green for the classical regression and red for
the relative one) are drawn. Clearly, Figure 7 shows the good behavior of our procedure. We
observe that the relative approach gives better results than the classical regression approach
(MSECKE = 0.0883 and MSEREE = 0.0034).
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Figure 7. Prediction by classical and relative regression.

Now, we give in Table 2 the 90% predictive intervals of the concentrations for the peak
load of the 20 last values in the sample test. This conclusion shows the good performance
of our asymptotic normality.

Table 2. The 90% predictive intervals of the peak demand for the last 20 days.
True Predicted Predictive True Predicted Predictive
value value CI90% value value CI90%
0.851 0.8310 [0.6078, 1.0542] 1.062 1.0017 [0.8279, 1.1756]
0.819 0.8177 [0.7376, 0.8978] 0.796 0.8514 [0.7592, 0.9435]
0.896 0.8307 [0.7697, 0.8918] 1.259 1.0946 [0.9344, 1.2548]
0.877 0.8358 [0.4879, 1.1838] 1.076 1.0545 [0.8648, 1.2441]
0.813 0.8277 [0.4660, 1.1894] 1.152 1.0399 [0.9289, 1.1508]
0.857 0.8501 [0.5713, 1.1289] 0.974 0.8968 [0.7833, 1.0103]
0.862 0.8358 [0.7802, 0.8914] 0.790 0.8444 [0.7913, 0.8974]
0.847 0.8284 [0.3206, 1.3363] 0.823 0.7091 [0.0456, 1.3727]
0.832 0.8568 [0.7976, 0.9160] 0.804 0.7965 [0.6710, 0.9219]
0.859 0.8511 [0.7328, 0.9694] 1.129 1.1054 [0.8670, 1.3437]

Conclusions

In this paper, we have investigated the asymptotic properties of a nonparametric estimator of
the relative error regression given a dependent functional explanatory variable, in the case of
a scalar censored response. We have used the mean squared relative error as a loss function to
construct a nonparametric estimator of the regression operator of these functional censored
data. We have established the almost surely convergence and asymptotic normality of the
proposed estimator. A simulation study and real data application were performed to support
the theoretical results and to compare the quality of predictive performances of the relative
error regression estimator than those obtained with standard kernel regression estimates.
Our proposal provides interesting findings and is a tool that can be helpful to diverse
practitioners. Our proposal has some limitations that open some doors for further research,
which will be considered by the authors in future works.
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Appendix

Proof of Theorem 3.2 From Equation (5), we have

|Ârn(x) ≠ r(x)| Æ 1
|Âg2,n(x)|

Ó
|Âg1,n(x) ≠ Âg1(x)| + |Âg1(x) ≠ IE(Âg1(x))|

+ |IE(Âg1(x)) ≠ g1(x)|
Ô

+ |r(x)|
|Âg2,n(x)|

Ó
|Âg2,n(x) ≠ Âg2(x)|

+ |Âg2(x) ≠ IE(Âg2(x))| + |IE(Âg2(x)) ≠ g2(x)|
Ô

.

Therefore, Theorem 3.2’s result is a consequence of the following intermediate results.
Lemma 4.1 Under hypotheses (H2)-(H5), we have

|Âgl,n(x) ≠ Âgl(x)| = OAS

Q

a

Û
log(log(n))

n

R

b ,

for l œ {1, 2}.

Lemma 4.2 Under hypotheses (H1)-(H3) and (H5), we get

|IE(Âgl(x)) ≠ gl(x)| = O
!
h

kl
"
,

for l œ {1, 2}.

Lemma 4.3 Under hypotheses (H1)-(H4) and (H6)-(H8), we obtain

|Âgl(x) ≠ IE(Âgl(x))| = OACC

AÛ
log(n)
nÏx(h)

B

,

for l œ {1, 2}.

Corollary 4.4 Under the hypotheses of Lemma 4.1 and 4.2, we have that

there exists ” > 0; such that
Œÿ

n=1
IP

1
|Âg2,n(x)| < ”

2
< Œ.

Let denote Ki(x) by K(d(x, Xi)/h).

Proof of Lemma 4.1

The proof is similar to Lemma 3.1 of Fetitah et al. (2020).

Proof of Lemma 4.2

For all l = 1, 2, we get that

|IE(Âgl(x)) ≠ gl(x)| =
-----IE

A
K1(x)

IE(K1(x)) IE
C
IE(1Y1ÆC1 |Y1)Y ≠l

1
Ḡ(Y1)

|X1

DB

≠ gl(x)
-----

= 1
IE(K1(x))

---IE
ÓË

IE(Y ≠l
1 |X1) ≠ gl(x)

È
1B(x,h)(X1)K1(x)

Ô---.
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Then, by the Hölder hypothesis (H2) we obtain that

|gl(X1) ≠ gl(x)| Æ ch
kl .

Thus,

|IE(Âgl(x)) ≠ gl(x)| Æ ch
kl .

Proof of Lemma 4.3

For l = 1, 2 we put

�i(x) = ”iT
≠l
i

Ḡ(Ti)
K

3
d (x, Xi)

h

4
≠ IE

C
”iT

≠l
i

Ḡ(Ti)
K

3
d (x, Xi)

h

4D

.

The use of the Fuk-Nagaev inequality (Rio, 1999, p. 87, 6.19b), which is based on

S
2
n =

nÿ

i=1

nÿ

j=1
|Cov (�i(x), �j(x))|

=
ÿ

i”=j

|Cov (�i(x), �j(x))| + n Var (�1(x)) .

Now, by using (H5), we get

Var (�1(x)) Æ IE

C
”1Y

≠2l
1

Ḡ2(Y1)
K

2
1 (x)

D

+ IE2
C

”1Y
≠l

1
Ḡ(Y1)

K1(x)
D

Æ IE

C

K
2
1 (x)IE

A
IE(1Y1ÆC1 |Y1)Y ≠2l

1
Ḡ2(Y1)

|X1

BD

+IE2
C

K1(x)IE
A
IE(1Y1ÆC1 |Y1)Y ≠l

1
Ḡ(Y1)

|X1

BD

Æ c

Ḡ(·F )
IE

#
K

2
1 (x)IE

!
Y

≠2l
1 |X1

"$
+ IE2#

K1(x)IE
!
Y

≠l
1 |X1

"$

Æ c

Ḡ(·F )
IE

#
K

2
1 (x)

$
+ cÏ

2
x(h)

Æ c
!
Ïx(h) + Ï

2
x(h)

"
.

In addition, for i ”= j, we have

|Cov (�i(x), �j(x))| = |IE (�i(x)�j(x))|
Æ c |IE (Ki(x)Kj(x)) + IE (Ki(x)) IE (Kj(x))| .

Then, following Masry (1986), we define the sets given by E1 = {(i, j), such that 1 Æ |i≠j| Æ
‹n} and E2 = {(i, j) such that ‹n + 1 Æ |i ≠ j| Æ n}, where ‹n æ Œ as n æ Œ. Then, we
can write

q
i”=j |Cov (�i(x), �j(x))| = J1,n + J2,n, where J1,n and J2,n are the sums of the
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covariances over E1 and E2 respectively. Therefore, under (H7), we get

J1,n =
ÿ

E1

|Cov (�i(x), �j(x))| Æ c

ÿ

E1

--IE
!
Ki(x)Kj(x)

"
+ IE

!
K1(x)

"2--

Æ c

ÿ

E1

--IP
!

(Xi, Xj) œ B(x, h) ◊ B(x, h)
"

+ Ïx(h)2--

Æ cn‹nÏx(h)
C3

Ïx(h)
n

4 1
a

+ Ïx(h)
D

.

For the second term, we use the modified Davydov covariance inequality for mixing processes
(Rio, 1999, p.10). Then, we have

’i ”= j, |Cov (�i(x), �j(x))| Æ c–(|i ≠ j|).

Thus, we get by (H6) that

J2,n Æ
ÿ

E2

|Cov (Ki(x), Kj(x))| Æ n
2
‹

≠a
n .

Hence, for ‹n = (Ïx(h)/n)≠1/a, we have
q

i”=j |Cov (�i(x), �j(x))| = O(nÏx(h)).
Consequently, combining previous result, we obtain

S
2
n = O(nÏx(h)). (6)

Using the Fuk-Nagaev inequality, we get, for all l = 1, 2, Á > 0 and r > 1, that

IP
Ë---IE[Âgl(x)] ≠ Âgl(x)

--- > Á

È
= IP

C-----
1

nIE(K1(x))

nÿ

i=1
�i(x)

----- > Á

D

= IP

C-----

nÿ

i=1
�i(x)

----- > ÁnIE(K1(x))
D

Æ c

Y
]

[

A

1 + Á
2
n

2IE(K1(x))2

rS2
n

B≠r/2

+ nr
≠1

3
r

ÁnIE(K1(x))

4a+1
Z
^

\

Æ c(A1 + A2),

where

A1 =
A

1 + Á
2
n

2 (IE [K1(x)])2

rS2
n

B≠r/2

and A2 = nr
≠1

3
r

ÁnIE [K1(x)]

4a+1
.

Therefore, by Equation (6) and putting

Á = Á0

Û
log(n)
nÏx(h) and r = (log(n))2

,

it follow that A2 Æ cn
1≠(a+1)/2

Ïx(h)≠(a+1)/2(log(n))(3a≠1)/2
. Next, using the left side of

(H8), we obtain A2 Æ cn
≠1≠÷(a+1)/2(log(n))(3a≠1)/2

. Hence, it exists some real ‹ > 0 such
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that

A2 Æ cn
≠1≠‹

. (7)

Because of r = (log(n))2, we show that

A1 Æ
A

1 + Á
2
0

log(n)

B≠ (log(n))2
2

= e
≠ (log(n))2

2 log
A

1 + Á
2
0

log(n)

B

.

Using the fact that log(1 + x) = x ≠ x
2
/2 + o(x2), when x æ 0, we get

A1 Æ e
≠

Á2
0 log(n)

2 = n
≠

Á2
0
2 .

The last result allows us to get directly that there exist some Á0 and some ‹
Õ such that

A1 Æ cn
≠1≠‹Õ

. (8)

Therefore, by the results of Equations (8) and (7), we have

ÿ

nØ1
IP

C-----IE[Âgl(x)] ≠ Âgl(x)
----- > Á0

Û
log(n)
nÏx(h)

D

< Œ.

Proof of Corollary 4.4

The proof of this Corollary is analogous to Corollary 2 of Demongeot et al. (2016).

Proof of Theorem 3.3

From Equation (5), we adopt the decomposition stated as

Ârn(x) ≠ r(x) = Ârn(x) ≠ Âr(x) + Âr(x) ≠ r(x) =: I1n(x) + I2n(x)

where

I1n(x) =: Ârn (x) ≠ Âr(x) and I2n(x) =: Âr(x) ≠ r(x).

The proof is derived by showing first that I1n(x) is negligible whereas I2n(x) is asymptotically
normal distributed.

From Lemma 4.1 and Corollary 4.4, we deduce that

I1n(x) IP≠æ 0. (9)

Now, we can write that

I2n(x) = 1
Âg2(x)

Ë
Dn + An

1
IE [Âg2(x)] ≠ Âg2(x)

2È
+ An, (10)
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where

An = 1
IE [Âg2(x)] g2(x)

Ó
IE [Âg1(x)] g2(x) ≠ IE [Âg2(x)] g1(x)

Ô

Dn = 1
g2(x)

Ë
V1n (x) g2(x) ≠ V2n (x) g1(x)

È
,

whith Vln (x) = Âgl(x) ≠ IE [Âgl(x)] , for l = 1, 2.

Then, it follows from Equation (10) that

Âr(x) ≠ r(x) ≠ An = 1
Âg2(x)

Ë
Dn + An

1
IE [Âg2(x)] ≠ Âg2(x)

2È

= : Dn ≠ AnV2n(x)
Âg2(x) .

Consequently, the proof of Theorem 3.3 can be deduced from the convergence in Equation
(9) and the following intermediate results (cf. Lemmas 4.5, 4.6 and 4.7).

Lemma 4.5 Under hypotheses of Theorem 3.3, we have

3
nÏx(h)

g2
2(x)‡2(x)

41/2 1Ë
Âg1(x) ≠ IE [Âg1(x)]

È
g2(x) ≠

Ë
Âg2(x) ≠ IE [Âg2(x)]

È
g1(x)

2 Dæ N (0, 1).

Lemma 4.6 Under hypotheses of Theorem 3.3, we obtain

An = hBn + o(h).

Lemma 4.7 Under hypotheses of Theorem 3.3, we obtain

Âg2(x) IP≠æ g2(x),

and
3

nÏx(h)
g2

2(x)‡2(x)

41/2
An (IE[Âg2(x)] ≠ Âg2(x)) IP≠æ 0.

Proof of Lemma 4.5

It is easy to see that

Ò
nÏx(h)

C1
Âg2(x) ≠ IE [Âg2(x)]

2
g1(x) ≠

1
Âg1(x) ≠ IE [Âg1(x)]

2
g2(x)

È
= 1Ô

n

nÿ

i=1
Li(x),

where

Li(x) :=


Ïx(h)
IE [K1]

I
”i

Ḡ (Ti)
Ki

1
g1(x)T ≠2

i ≠ g2(x)T ≠1
i

2
≠ IE

C
”i

Ḡ (Ti)
Ki

1
g1(x)T ≠2

i ≠ g2(x)T ≠1
i

2DJ

.

The proof of this lemma is based on the central limit theorem of Doukhan et al. (1994).
We have then to consider the asymptotic behavior of the variance term and the following
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assumption

⁄ 1

0
–

≠1(u) (QL1(u))2 du < +Œ,

where QL1 is the upper tail quantile function defined by

QL1(u) = inf {t Ø 0 : IP (L1 > t) Æ u}

and –
≠1(u) =

q
nœIN 1u<–n . Clearly,

Var
3 1Ô

n

nÿ

i=1
Li(x)

4
= nÏx(h) Var

A
g1(x)

nIE [K1]

nÿ

i=1

”i

Ḡ (Ti)
KiT

≠2
i ≠ g2(x)

nIE [K1]

nÿ

i=1

”i

Ḡ (Ti)
KiT

≠1
i

B

= nÏx(h)
1

Var [Âg1(x)] g
2
2(x) + Var [Âg2(x)] g

2
1(x)

≠2g1(x)g2(x) Cov [Âg1(x), Âg2(x)]
2
.

By definition of Âgl(x) for l = 1; 2, we have

nÏx(h) Var [Âgl(x)] = Ïx(h)
(IE [K1])2 Var

C
”1

Ḡ (T1)
K1T

≠l
1

D

+ Ïx(h)
n (IE [K1])2

nÿ

i=1

nÿ

j=1
|i≠j|>0

Cov
C

”i

Ḡ (Ti)
KiT

≠l
i ,

”j

Ḡ (Tj)
KjT

≠l
j

D

= Ïx(h)
(IE [K1])2 J1,1 + Ïx(h)

n (IE [K1])2 J2,n

where

J1,1 = Var
C

”1
Ḡ (T1)

K1T
≠l
1

D

,

J2,n =
nÿ

i=1

nÿ

j=1
|i≠j|>0

Cov
C

”i

Ḡ (Ti)
KiT

≠l
i ,

”j

Ḡ (Tj)
KjT

≠l
j

D

.

By conditioning on the random variable X1, by the same ideas in the proof of lemma 4.2,
Lemma 4 in Ferraty et al. (2007) and by using hypotheses (H5), (N1) and (N4), we get

IE

S

U
A

”1Y
≠l

1
Ḡ(Y1)

B2

K
2
1 (x)

T

V = IE

C

K
2
1 (x)IE

A
IE(1Y1ÆC1 |Y1)Y ≠2l

1
Ḡ2(Y1)

|X1

BD

=
C

IE

A
Y

≠2l
1

Ḡ(Y1)
|X1 = x

B

+ o(1)
D

IE
Ë
K

2
1 (x)

È

= Ïx(h)IE
C

Y
≠2l

1
Ḡ(Y1)

|X1 = x

D 3
K

2(1) ≠
⁄ 1

0

1
K

2(s)
2Õ

‰x(u)du

4
+ o(Ïx(h))
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and

IE

A
”1

Ḡ(Y1)
Y

≠l
1 K1

B

= O(Ïx(h)).

Thus:

Var
C

”1
Ḡ(T1)

T
≠l
1 K1

D

= Ïx(h)IE
Ë
Ḡ

≠1(Y1)Y ≠2l
1 |X1 = x

È 3
K

2(1) ≠
⁄ 1

0

1
K

2(s)
2Õ

‰x(u)du

4

+O

1
Ï

2
x(h)

2
.

We obtain

Ïx(h)
(IE [K1])2 J1,1 æ q2l(x)—2

—2
1

. (11)

Let us turn to J2,n, for this we use the technique of Masry (1986). We define the same sets
E1 and E2 in the proof of Lemma 4.3. Let J

1
2,n and J

2
2,n be the sums of covariances over E1

and E2 respectively. On the one hand, we have

J
1
2,n =

ÿ

E1

-----Cov
C

”i

Ḡ (Ti)
KiT

≠l
i ,

”j

Ḡ (Tj)
KjT

≠l
j

D----- Æ C

ÿ

E1

|IE [KiKj ] ≠ IE [Ki] IE [Kj ]| .

Because of the assumptions of Lemma 4.3 we can write

J
1
2,n Æ cn‹nÏx(h)

A3
Ïx(h)

n

4 1
a

+ Ïx(h)
B

.

Hence, for the summation over E2, we use the Davydov-Rio inequality (Rio, 1999, p. 87),
for mixing processes. This leads, for all i ”= j, to

|Cov (Ki, Kj)| Æ c–(|i ≠ j|),

Therefore,
ÿ

E2

|Cov (Ki, Kj)| Æ n
2
‹

≠a
n .

The choice ‹n = 1/[Ïx(h) log(n)], motivated by the upper bound in (H8), permits to get

nÿ

i”=j

Cov (Ki, Kj) = o (nÏx(h)) ,

then

Ïx(h)
n (IE [K1])2 J2,n = o(1) as n ≠æ Œ. (12)
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Thanks to Equations (11) and (12), we have

nÏx(h) Var (Âgl(x)) ≠æ —2q2l(x)
—2

1
as n ≠æ Œ. (13)

Concerning the covariance term, we follow the same steps as for the variance given in
Equation (13) then we get:

nÏx(h) Cov (Âg1(x), Âg2(x)) ≠æ —2q3(x)
—2

1
as n ≠æ Œ. (14)

Let us now prove the claimed result. Clearly, the function QL1 is nonincreasing, then

Œÿ

n=1

⁄ –n

0
[QL1(u)]2 du Æ

Œÿ

n=1
–nQ

2
L1(0).

By hypotheses (H1), (H3) and (H5) we can write

c
1


Ïx(h)

Æ |L1| Æ c
Õ 1


Ïx(h)
.

Then,

QL1(0) Æ c
Õ 1


Ïx(h)
.

Therefore, we have

Œÿ

n=1

⁄ –n

0
[QL1(u)]2 du Æ

Œÿ

n=1
–n (Ïx(h))≠1

.

It follows from (H7) and (H8) that

Œÿ

n=1

⁄ –n

0
[QL1(u)]2 du < Œ. (15)

From Equations (13), (14) and by noting

‡
2(x) =

1
q2(x) ≠ 2r(x)q3(x) + r

2(x)q4(x)
2
—2

—2
1

,

we conclude that

Var
A

1Ô
n

nÿ

i=1
Li(x)

B

≠æ ‡
2(x) as n ≠æ Œ. (16)

Now, the lemma can be easily deduced from Equations (15), (16) and the central limit
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theorem of Doukhan et al. (1994) as

1
Ò

ng2
2‡2(x)

nÿ

i=1
Li(x) =

3
nÏx(h)

g2
2(x)‡2(x)

41/2

◊
1Ë

Âg1(x) ≠ IE [Âg1(x)]
È
g2(x) ≠

Ë
Âg2(x) ≠ IE [Âg2(x)]

È
g1(x)

2 Dæ N (0, 1).

Proof of Lemma 4.6

As in Ferraty et al. (2007) we show that:

IE[Ârn(x)] = IE [Âg1(x)]
IE [Âg2(x)] + O

3 1
nÏx(h)

4
.

So, it su�ces to evaluate IE[Âgl(x)] for l œ {1, 2}, we obtain

IE [Âg1(x)] = 1
IE [K1] IE

1
K1(x)IE

Ë
Y

≠l
1 |X1

È 2

= 1
IE [K1]

1
gl(x)E [K1] + E

Ë
K1E

1
gl (X1) ≠ gl(x)|d (X1, x)

2È2

= gl(x) +
E

Ë
K1

1
�l (d (X1, x))

2È

IE [K1]

= gl(x) +
s 1

0 K(t)�l(ht)dIPd(x,X)/h(t)
s 1

0 K(t)dIPd(x,X)/h(t)
.

By using the first-order Taylor expansion for �l around 0, where �l(0) = 0, we have

E [Âgl(x)] = gl(x) + h�Õ
l(0)

Cs 1
0 tK(t)dIPd(x,X)/h(t)
s 1

0 K(t)dIPd(x,X)/h(t)

D

+ o(h).

According to Lemma 2 of Ferraty et al. (2007) we get, under (N1)
s 1

0 tK(t)dIPd(x,X)/h(t)
s 1

0 K(t)dIPd(x,X)/h(t)
≠æ —0

—1
and

⁄ 1

0
K(t)dIPd(x,X)/h(t) ≠æ —1.

Consequently

E [Âgl(x)] = gl(x) + h�Õ
l(0)—0

—1
+ o(h)

then we deduce that:

An = IE [Âg1(x)]
IE [Âg2(x)] ≠ r(x) = hBn + o(h).

Proof of Lemma 4.7

The same idea in the proof of Lemma 3.6 of Fetitah et al. (2020).
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Abstract

The classical Hotelling T 2
control chart using classical mean and covariance estimators

is not e�cient in case of outliers existence in data. To overcome this issue, robust mean

and covariance estimators are used in literature. Hence, a robust Hotelling T 2
control

chart is proposed based on the adaptive reweighted minimum covariance determinant

estimator which is a good option to the classical multivariate T 2
chart in case of outliers

presence. The new proposed chart’s performance is evaluated by false alarm rates and

probability of detection/percentage of outliers detection, later a comparison is made

with the performance of the classical Hotelling T 2
chart and the chart obtained using

the minimum covariance determinant estimator. Simulation and real data application

results are indicated that proposed control chart has better performance in comparison

to robust control chart based on the minimum covariance determinant especially in terms

of false alarm rates and it performs better than classical chart in terms of probability

of detection.

Keywords: Hotelling T 2 · Minimum covariance determinant · Multivariate control

chart · Robust estimator · Statistical quality control.
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1. Introduction

In manufacturing process, multiple quality characteristics of a product are generally ob-
served. Hence, multivariate control charts may be a suitable tool to observe the process.
The Hotelling T

2 chart is the most commonly known one because it’s application is easy, it
is flexible, it is sensitive to little process modifications and the software for it’s application is
available. The Hotelling T

2 uses the classical mean and covariance matrix, is reactive to the
outlier. Because in case of more quality characteristics are considered, the risk of multiple
outliers existence is getting higher. In case of outliers existence, the classical control chart’s
performance decreases. Because of the masking e�ect, the classical method is not e�ective
for multiple outliers case (Alfaro and Ortega, 2009). The masking e�ect in the monitoring
process occurs as a result of the outlier, which cannot be detected by the control chart. To
overcome the problem that arises, several robust methods have been proposed for reducing
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the e�ect of multiple outliers by substituting the existing estimators with the more robust
ones. Furthermore, the performance of Hotelling T

2 control chart, in detecting the shift
of mean vector, is increasing when the robust covariance matrix estimator is implemented
(Williams et al., 2006; Ahsan et al., 2019).

Similar to control charts observing variability in a process, its structure arises from Phase
I, Phase II (Alt, 1985), as well called retrospective and prospective analysis, in order of. The
significant point of Phase I is the analysis of historical data for determining if the process
is under control or not by estimation of the in-control parameters and control limits of
the process. However, in case of Phase II, the focus is to monitor on-line data for rapidly
finding shifts of process from the estimated in-control parameter values in Phase I. Outliers
in Phase I may cause the increment of control limits and decrease of power for the detection
of process changes in Phase II. Hence, Phase II analysis achievement based on a success in
Phase I analysis in the estimation of in-control mean, variance and covariance parameters.

Ordinal Hotelling T
2 chart is a safe method when the underlying process data really has

the normal distribution. In contrast to this, in case of outliers presence in data it is not a safe
method for detecting out of control points properly. Because classical mean and covariance
estimators in the original formulae cannot resist the outliers. Thereby, the classical Hotelling
T

2
Õs chart ability for monitoring future process data is debatable. One of the way of getting

rid of this issue is using control chart which is robust in case of outliers existence.
Up to now, many robustified versions of the Hotelling T

2 control chart have been pro-
posed by utilizing from robust estimators. Abu-Shawiesh and Abdullah (2001) estimated
the mean vector using Hodges-Lehmann and the variance-covariance matrix using Shamos-
Bickel-Lehman. Vargas (2003) and Jensen et al. (2007) presented robust control charts using
minimum covariance determinant (MCD) and minimum volume ellipsoid (MVE) estimators.
They detected and omitted the outliers in Phase I data and later compute the traditional
estimators using the remained clean observations in case of Phase II data. Although in this
method, the breakdown point and calculation of the estimators become more significant,
however, statistical e�ciency does not become as critical as the extremely robust estimators
change place with by classical estimators in Phase II case. When MVE and MCD are used
in Phase I, they recognized some problems, such as T

2 obtained by using MVE performed
badly under large sample size. However, T

2 obtained by using MCD requires more sample
size if a lot of outlying observations is skeptical to guarantee that MCD estimator loses its
ability especially in case of monitoring with higher dimensions (p) and it does not break-
down. Alfaro and Ortega (2008) introduced robust Hotelling T

2 control charts by changing
the arithmetic mean with trimmed one and sample covariance with sample trimmed covari-
ance. Chenouri et al. (2009) presented a robust chart based on reweighted MCD (RMCD)
estimator that it is not overly a�ected by outlying observations and has better e�ciency
than MCD. The di�erence of their method from Vargas (2003) and Jensen et al. (2007)
that they use RMCD estimators instead of traditional estimators in establishing Hotelling
T

2 chart for Phase II data set. Alfaro and Ortega (2009) compared the performance of
Hotelling T

2 control charts using robust MVE, trimmed, MCD and RMCD estimators. The
result of this study was that the recommendation of the use of T

2 charts obtained by using
RMCD and trimmed estimator in case of not many outlying observations in the production
process since these two methods are able to control false alarm rates (FAR).

In the producing of products that concentrates mostly on determining the outlying ob-
servations compared to the false alarms, that is, a point outside the control limits for an
in-control process (Da Silva et al, 2019), T

2 obtained by using MCD may be taken into
consideration as the best option. Because Hotelling T

2 control charts based on MCD has a
better performance in terms of probability of detection (POD). In theory, if the POD gets
higher, the chart could also control the overall FAR – (Jensen et al., 2007). In spite of this,
the results in Alfaro and Ortega (2009) revealed a discordance between the capability of
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robust control chart in controlling the overall FAR and POD in case of specific situations.
Yañez et al. (2010) constructed the T

2 control chart by using the biweight S estimators for
mean and covariance estimators. Their chart outperformed the T

2 chart based on MVE for
a small number of observations. Yahaya et al. (2011) presented the minimum variance vector
(MVV) estimator in T

2 chart in order to observe the Phase II data. Overall, the robust con-
trol chart gave a quick detection in out-of-control status and at the same time, capable for
controlling the overall FARs nevertheless as the p is increased. The only disadvantage was
a large upper control limits (UCLs) in comparison to the classical T

2 chart. An improved
version of the MVV chart was further suggested by Ali et al. (2013) to obtain desired UCLs
whilst still it performs well in terms of FAR and POD. This was achieved by making the
MVV estimators consistent at normal distribution as well as unbiased for finite samples. Ali
et al. (2014) investigated the performance of reweighted version of MVV (RMVV) in con-
structing the Hotelling T

2 chart. Yahaya et al. (2019) introduced three robust Hotelling T
2

control charts using trimmed estimators. The modified Mahalanobis distance with median
used as the location measure and one of the scale estimators MADn, Sn (mean absolute
average) or Tn as the scale measure. As a consequence of these alternatives, three dissimilar
trimmed estimators are introduced. The findings of their study revealed that their three
control charts performance is moderate in terms of false alarms and magnificently for POD,
outperform the classical control chart in any case of conditions. In case of outliers existence
or samples deviation from normality, all of the studies revealed that the robust control charts
surpass the classical Hotelling T

2 control chart.
In this study, following the robust Hotelling T

2 control chart literature, a robust Hotelling
T

2 control chart is introduced that uses a robust adaptive reweighted minimum covariance
determinant (ARWMCD) estimator. The new control chart’s performance is evaluated by
FARs and POD by doing a simulation and a real data application. Moreover, the perfor-
mance of the new method is compared with robust control chart using MCD estimator and
the classical chart.

The rest of the paper is organized as follows. Section 2 reviews the ARWMCD estimator.
In Section 3, we present the new proposed Hotelling T

2 control chart. Section 4 contains
a simulation study where the performance of the new robust Hotelling T

2 chart using AR-
WMCD estimator is compared to classical Hotelling T

2 chart and the robust Hotelling T
2

chart using MCD. In Section 5, we illustrate the performance of the new proposed robust
Hotelling T

2 chart based on ARWMCD on the real data that is given in Ali et al. (2013).
Finally, Section 6 collects some conclusions about the present study.

2. Adaptive reweighted minimum covariance determinant estimator

In addition to maximum robustness against to outliers, robust multivariate estimators must
also propose a sensible e�ciency for the normal distribution and a controllable asymptotic
distribution. Nevertheless, MCD and MVE estimators do not satisfy that condition. Gervini
(2003) expressed that considering the both of being robust and e�cient, the best way uti-
lizing a two-stage process. Rousseeuw and Van Zomeren (1990) also expressed that in this
process, first of all, a tremendously robust nevertheless maybe not e�cient estimator is
calculated and it is used for observing outlying observations and calculating the sample
location and covariance of the good data. This process comprises of omitting sample points
whose Mahalanobis distances go beyond a certainly fixed threshold value. As beginning es-
timator for that processes, Rousseeuw and Van Driessen (1999) suggested an algorithm for
computing MCD estimator, which does not ensure that the precise estimator is obtained,
it is quicker and more precise than formerly obtained algorithms also for highly bigger data
(n ∫ p). The advantage of the 1/

Ô
n convergence rate, in addition to this truth, could in-

dicate that the MCD technique uses the FAST-MCD algorithm is the best preference when
compared to MVE for beginning estimator of a two-step process (Gervini, 2003).
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MCD is investigating for those h observations for which the determinant of the tradi-
tional covariance matrix is minimum. Therefore, the MCD estimators are the location and
covariance matrix of that h observations. The computation of MCD estimation is hard.
The application of MCD estimator on data sets could merely be in case of the number of
observations exceeds the number of variables (n > p). Because in case of p > n then also
p > h, and often the covariance matrix of any h observations is going to be singular, tends
to zero determinant. Henceforth, each subset of h observations would tend to the minimum
feasible determinant, resulting in a non-unique solution (Filzmoser et al., 2009). FAST-MCD
algorithm can handle with larger sizes of sample such as tens of thousands. This algorithm
obtains precise solution for small sizes of data and it is quicker and more precise than for-
merly proposed algorithms, yet for extremely big data sets. Since it is e�cient and fast in
calculation, Rousseeuw and Van Driessen (1999) proposed of using FAST-MCD algorithm
for estimating mean and covariance. Since the raw MCD estimators of mean and covari-
ance are reweighted for improving the finite sample e�ciency, named as reweighted MCD
(RMCD) estimators (Hubert and Vanden-Branden, 2003). Since it is very popular algorithm
for robust literature, a brief information about FAST-MCD is given. Any interested reader
could find for detailed information in Rousseeuw and Van Driessen (1999). The algorithms
steps for p dimensional vector xi, for i = 1, . . . , n, as follows.
Step 1: The MCD estimates could withstand (n ≠ h) outlying observations, therefore h (or
equally the fraction – = h/n) specifies the robustness of the estimator. (1≠–) measures the
fraction of outliers the algorithm should resist. Any value between 0.5 and 1 may be specified
(default = 0.75). In FAST-MCD algorithm by taking [(n+p+1)/2] as the accepted value of
h, highly resist against outliers. Nevertheless, any integer h in the interval [(n + p + 1)/2] Æ
h < n could be used by researcher. In case of a huge fraction of outliers is assumed in data
set, thereby, h must be selected as h = [0.5n]. Also, if it is correct that the data includes not
much than 25% of outliers that is often the condition, a better balance between statistical
e�ciency and breakdown value is captured by choosing h = [0.75n] (Rousseeuw and Van
Driessen, 1999). In this study, we have also used the default value of h = [0.75n].
Step 2: From here on h < n and p Ø 2. If n is small (say, n < 600) then:

• Repeat (say) 500 times:
X Construct an initial h-subset H1 using method given in Rousseeuw and Van Driessen

(1999), that is, starting from a random (p + 1)-subset.
X Carry out two C-steps described in Rousseeuw and Van Driessen (1999).

• For the 10 results with lowest det( ‚⌃3):
X Conduct C-steps until convergence

• Report the solution (‚µ, ‚⌃) with lowest det( ‚⌃).

Step 3: If n is larger (say, n Ø 600), then:

• Construct up to five disjoint random subsets of size nsub according to given in Rousseeuw
and Van Driessen (1999) (say, subsets of size nsub = 300).

• Inside each subset, repeat 500/5=100 times:
X Construct an initial subset H1 of size hsub = [nsub(h/n)].
X Carry out two C-steps, using nsub and hsub.
X Keep the 10 best results (‚µsub, ‚⌃sub).

• Pool the subsets, yielding the merged set (say, of size nmerged = 1500).
• In the merged set, repeat for each of the 50 solutions (‚µsub, ‚⌃sub):
X Conduct two C-steps, using nmerged and hmerged = [nmerged(h/n)].
X Keep the 10 best results (‚µmerged, ‚⌃merged).



Chilean Journal of Statistics 175

• In the full data set, repeat for the mfull best results:
X Take several C-steps, using n and h.
X Keep the best final result (‚µfull,

‚⌃full).
Here, mfull and the number of C-steps (preferably, until convergence) depend on how large
the data set is (Rousseeuw and Van Driessen, 1999; Polat and Gunay, 2019). This algorithm
is called as FAST-MCD. It is a�ne equivariant: when the data are translated or subjected to
a linear transformation, the resulting (‚µfull,

‚⌃full) transforms accordingly. For convenience,
the computer program contains two more steps (Rousseeuw and Van Driessen, 1999).
Step 4: In order to obtain consistency when the data come from a multivariate normal
distribution, ‚µMCD = ‚µfull and ‚⌃MCD = (medi d

2

(‚µfull,‚⌃full)
(i)/‰

2

p,0.5) ‚⌃full are placed.

Step 5: One-step reweighted estimates could be obtained by reweighting each observation
as

wi =
I

1, if (xi ≠ ‚µMCD)€ ‚⌃≠1

MCD
(xi ≠ ‚µMCD) Æ ‰

2

p,0.975
,

0, otherwise.

Therefore, using the weights wi, the RMCD estimators are calculated as

‚µRMCD =
qn

i=1
wixiqn

i=1
wi

and ‚⌃RMCD =
qn

i=1
wi(xi ≠ ‚µRMCD)(xi ≠ ‚µRMCD)€

qn
i=1

wi
.

If it is desirable that the estimator to be robust and e�cient, a two-step process is suggested
as a best preference. Gervini (2003) suggested basically enhancement above Rousseeuw and
Van Zomeren (1990) that a reweighted one-stage estimator using adaptive threshold values.
This adaptive reweighting system can keep the outlier robustness of the starting estimator
in bias and breakdown, at the same time, reach 100% e�ciency for the normal distribution.
For the first time, Gervini and Yohai (2002) suggested this type of adaptive reweighting for
the linear regression model. This conception is widened by Gervini (2003) that he suggested
an adaptive technique for multivariate mean and covariance estimation.

Since x1, . . . , xn is a sample of under consideration in Rp and beginning robust estimators
of mean and covariance are ‚µ0n, ‚⌃0n (in our study, they are obtained by MCD estimator
using FAST-MCD algorithm) then the Mahalanobis distances are stated as (Gervini, 2003;
Polat and Gunay, 2019).

di := d

1
xi, ‚µ0n, ‚⌃0n

2
=

Ó
(xi ≠ ‚µ0n)€ ‚⌃≠1

0n (xi ≠ ‚µ0n)
Ô

1/2

.

Under normality assumption, d
2

i nearly have a ‰
2

p distribution and logically, being suspicious
about data points with d

2

i Ø ‰
2

p,0.975
as an outlier. Rousseeuw and Van Zomeren (1990)

suggested to omit those outlying data points and calculated the sample mean and covari-
ance matrix of left of the data set. Hence, by this method, they obtained new estimators
(‚µ1n, ‚⌃1n); see Gervini (2003).

Gervini (2003) expressed that MCD estimators can be taken under consideration as the
beginning robust estimators of mean and covariance in the adaptive reweighted procedure
because the MCD technique computed using FAST-MCD algorithm is developed as a good
option instead of MVE. Therefore, similar as in Polat and Gunay (2019), adaptive reweighted
technique including the MCD estimators (‚µMCD, ‚⌃MCD) is used as beginning robust estima-
tors of mean and covariance (‚µ0n = ‚µMCD, ‚⌃0n = ‚⌃MCD). This technique had been named
as ARWMCD and robust estimators, denoted as ‚µARWMCD, ‚⌃ARWMCD.
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This reweighting stage rises up the beginning estimators e�ciency and also keeps its
robustness mostly. The threshold ‰

2

p,0.975
is a subjective value. Although they show a normal

distribution, in case of big data sets noticeable number of data points must to be omitted
out of analysis. For this issue, it is found that the best option constructing an adaptive
threshold values, which gets higher related to n in case of the data are uncontaminated,
however, stays bounded in case of outliers presence in the sample. The procedure of this
method is as in follows. Note that the expression stated as

Gn(u) = 1
n

nÿ

i=1

I

1
d

2

1
xi, ‚µMCD, ‚⌃MCD

2
Æ u

2
,

where Gp(u) is the ‰
2

p distribution function, shows the experimental distribution of the
squared Mahalanobis distances (Gervini, 2003; Polat and Gunay, 2019).

The approximation of Gn to Gp is assumed in case of the sample has normal distribution.
Hence, comparing the tails of Gn with the tails of Gp is a technique of detection for outliers.
In case of ÷ = ‰

2

p,1≠– for a fixed small –, for example – = 0.025, we have (Gervini, 2003;
Polat and Gunay, 2019)

–n = sup
uØ÷

{Gp(u) ≠ Gn(u)}+
, (1)

where {·}+ denotes the positive part. Note that –n could be considered as an outlier measure-
ment in the sample. It only allows positive di�erences in Equation (1) because a negative
di�erence does not show existence of outliers. If d

2

(i) shows the ith order statistic of the
squared Mahalanobis distances and i0 = max{i: d

2

(i) < ÷}, then Equation (1) comes down
to as (Gervini, 2003; Polat and Gunay, 2019)

–n = max
i>i0

;
Gp

1
d

2

(i)

2
≠ i ≠ 1

n

<
+

.

Those data points giving the largest Â–nnÊ distances are taken under consideration as out-
lying points and omitted in the reweighting stage, with ÂaÊ showing the largest integer that
is Æ a. The cut-o� value is given by

cn = G
≠1

n (1 ≠ –n),

where G
≠1

n (u) = min{s: Gn(s) Ø u}, cn = d
2

(in)
, with in = n ≠ Â–nnÊ and that in > i0 as a

outcome of the description of –n. Therefore, cn > ÷. To describe the reweighted estimator,
weights are stated as (Gervini and Yohai, 2002; Polat and Gunay, 2019)

wi,n = w

Q

a
d

2

1
xi, ‚µMCD, ‚⌃MCD

2

cn

R

b. (2)

The weight function defined as w: [0, Œ) æ [0, 1] is non-increasing, with w(u) = 0 when
u œ [1, Œ) and w(u) > 0 when u œ [0, 1), w(0) = 1. The simplest choice among those
functions satisfying it is the hard-rejection function w(u) = I(u < 1), which is the one most
commonly used in practice.
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Once the weights in Equation (2) are calculated, the one-stage reweighted
(‚µARWMCD, ‚⌃ARWMCD) are given as

‚µARWMD =
qn

i=1
wi,nxiqn

i=1
wi,n

(3)

and

‚⌃ARWMCD =
qn

i=1
win(xi ≠ ‚µARWMCD)(xi ≠ ‚µARWMCD)€

qn
i=1

wi,n
. (4)

3. The new proposed Hotelling T
2

control chart

The p dimensional random sample of n observations of prior data in case of Phase I is shown
by xi = {x1, . . . , xn}, where xi are supposed to be independent and have a multivariate
normal distribution with covariance matrix ⌃ and mean vector µ. In case of µ and ⌃
are not known then the estimation of them utilizing an in-control data set is needed. The
procedure of describing the in-control data set from xi is mentioned as Phase I action. Using
preliminary data set, x and S are computed. These estimates are used to compute T

2

(i) for
i = 1, . . . , n based on

T
2

(i) = (xi ≠ x̄)S≠1(xi ≠ x̄)€
,

To obtain an in-control data set, describe outliers utilizing UCL established on the beta
distribution given by

UCL1 ≥
C

(n ≠ 1)2

n

D

B(–, p
2 , n≠p≠1

2 ),

where B(–, p/2, (n ≠ p ≠ 1)/2) is the 100 ◊ (1 ≠ –)% quantile of the beta distribution with
p/2 and (n ≠ p ≠ 1)/2 degrees of freedom, whereas – is the overall FAR.

The sample points where T
2

(i) > UCL1 are omitted that since they are outliers. The clean
data set that the outlying observations are omitted (nc) is then used for computing the new
estimations, xN and SN . These estimations are used for computing T

2

(g)
statistic for Phase

II observation, where xg /œ xi, such that

T
2

(g)
= (xg ≠ xN )S≠1

N (xg ≠ xN )€
.

By using the desired values of –, p and nc, compute the LCL and UCL using the F distri-
bution as

UCL ≥
5

p(nc + 1)(nc ≠ 1)
nc(nc ≠ p)

6
F(–,p,nc≠p) and LCL = 0,

where F(–,p,nc≠p) is the 100(1≠–)% quantile of the F distribution with p and n≠p degrees of
freedom and – is the overall FAR. Nevertheless, this classical procedure is merely e�ective in
excluding very unusual outlying observations and observing large shift in the mean vector
in small sample sizes, however, it is not successful for detecting more moderate outlying
observations specifically when number of variables inflated (Vargas, 2003; Jensen et al.,
2007; Chenouri et al., 2009). To overcome this issue of the process, in this study, ARWMCD
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estimator is used in Phase I data of xi. As it is known that ARWMCD gives robust estimators
of covariance and mean, those are used as in-control estimators in Phase II, where the Phase
II observations are xg = {xn+1, xn+2, . . . }, xg /œ xi.

The procedure for new robust chart is as follows. First, from the Phase I data set, xi,
the ARWMCD location vector and covariance matrix estimators xARWMCD(‚µARWMCD) and
SARWMCD( ‚⌃ARWMCD) are obtained as in Equations (3) and (4). Then, a robust Hotelling
T

2 (T 2

ARWMCD(g)
) for Phase II data, xg, is defined based on these ARWMCD estimates

(obtained from Phase I data) as

T
2

ARWMCD(g)
= (xg ≠ xARWMCD)S≠1

ARWMCD
(xg ≠ xARWMCD)€

. (5)

The UCL, FAR and POD calculations are explained under Section 4 in detail.

4. Simulation study

Robust estimators are used in place of the traditional mean and covariance in T
2 chart, which

causes the replacing of distributional properties of the classical T
2 control chart (Williams et

al., 2006). As the sampling distribution of the suggested Hotelling T
2 chart T

2

ARWMCD
is not

known, the UCL is estimated with simulation. Moreover, as the distribution of T
2

ARWMCD

is not known, simulations were done for estimating the quantiles of the T
2

ARWMCD
, for few

combines of dimensions and sample sizes as shown in Table 1. Even, the finite sample
distribution of the MCD estimators is still questionable, thus, the distribution of T

2

MCD
is

also unknown (Vargas, 2003; Jensen et al., 2007; Chenouri et al., 2009; Alfaro and Ortega,
2009). Therefore, quantile is also used in estimating the distribution of T

2

MCD
obtained via

Monte Carlo method.
First of all, data sets are originated from the standard multivariate normal distribution

Np(0, Ip). Then, robust estimators are computed from this distribution. Next, a new ad-
ditional sample point from the standard multivariate normal distribution is generated and
robust Hotelling T

2 statistic for this new sample point is computed. This process is repeated
5000 times and the 95th percentile of the 5000 robust Hotelling T

2 statistics considered as
the UCL. For assessing the performance of T

2

ARWMCD
by comparison with classical T

2

0
and

robust T
2

MCD
control charts, several conditions are generated by changing number of dimen-

sions (p), observations (n) and percentage of outliers (Á) and a variety of mean shifts values
(µ1) as shown in Table 1.

Table 1. The Simulation settings

Variables Values
Number of quality characteristics (p) 2, 5, 10

Proportion of contamination (Á) 0.1, 0.2
Mean shift (µ1) 0 (no shift), 3, 5
Group size (n) 50, 100, 200

To estimate the 95% quantile of T
2

ARWMCD(g)
firstly, for a Phase I case with a sample

size n and dimension p, K = 5000 samples of size n from a standard multivariate nor-
mal distribution Np(0, Ip) are generated. For di�erent sample sizes n, the ARWMCD mean
vector and covariance matrix estimates are computed, µARWMCD(k) and SARWMCD(k), for
k = 1, . . . , K. Additionally, for each data set, a new observation Xg,k is randomly gen-
erated that it is handled as a Phase II sample point from Np(0, Ip) and the correspond-
ing T

2

ARWMCD(g,k)
values are computed as given by Equation (5). The simulated values as
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T
2

ARWMCD(g,1)
, . . . , T

2

ARWMCD(g,K)
are used to obtain the empirical distribution function of

T
2

ARWMCD(g)
. Then, T

2

ARWMCD(g,K)
values are sorted in ascending order and the UCL is the

95th quantile of the 5000 statistics. The UCL values for classical and MCD control charts
are also estimated by using this technique.

4.1 Performance evaluation

The classical and two Robust Hotelling T
2 charts success is evaluated in terms of the FAR

and POD for Phase II data. Hence, for Phase II sample points, 1000 new datasets were
simulated from the standard normal distribution Np(0, Ip) of various sample sizes (n) and
dimensions (p) as shown in Table 1. For deciding the FAR and POD, a Phase II sample
point is randomly generated with in-control and out of control parameters respectively from
Phase I and the robust Hotelling T

2 statistics are calculated. FAR is calculated using a new
sample point from the in-control distribution, however, the POD is computed with a new
sample point generated from the out-of-control distribution. The FAR or POD is predicted
as the percentages of statistic values which are over the control limits of 1000 repetitions.
In case of Phase I, several conditions of data sets are simulated by changing the number of
observations, dimensions and proportions of contamination. By mixing normal distributions
similar as in Alfaro and Ortega (2009), a contaminated model stated as

(1 ≠ Á)Np(µ0,⌃0) + ÁNp(µ1,⌃1) (6)

is used for investigating the e�ect of outliers on the charts success. Here, Á is the percentage
of outlying observations, µ0 and ⌃0 are the in-control parameters, however, µ1 and ⌃1

are the out-of-control parameters. Contamination with shift in the mean, however, not any
changes in covariance is assumed, henceforth, the covariance matrix ⌃0 and ⌃1 in Equation
(6) are p dimensional identity matrices (Ip). Four variables are changed to investigate the
strengths and the weaknesses of the classical and robust Hotelling T

2 charts namely number
of quality characteristics (p), proportion of contamination (Á), mean shift (µ1) and sample
size (n). The proportions of outliers as 0.1 or 0.2 and also the clean data set is taken under
consideration. As for the POD a modification which is based on the shift in the mean vector
µ1 is a vector of size with value of 0 (in case of not any di�erence), 3 or 5 (in case of good
leverage points) are considered. The setting values for the variables are listed in Table 1
following Alfaro and Ortega (2008), Vargas (2003) and Mohammadi et al. (2011). Changes
on the mean shifts and proportions of outlying observations produce 5 dissimilar kinds of
contaminated distributions stated as:

• Np(0, Ip) – ideal case (clean data set);
• (0.9)Np(0, Ip) + (0.1)Np(3, Ip) – slight contamination;
• (0.8)Np(0, Ip) + (0.2)Np(3, Ip) – medium contamination;
• (0.9)Np(0, Ip) + (0.1)Np(5, Ip) – medium contamination;
• (0.8)Np(0, Ip) + (0.2)Np(5, Ip) – excessive contamination.
Later, in Phase II, the data are simulated from multivariate normal distribution Np(µ1, Ip),
where µ1 shows the shift in the mean vector such as the case in Phase I (that is, 0, 3,
and 5). Then, the new control chart T

2

ARWMCD
is compared with robust Hotelling T

2 chart
based on MCD (T 2

MCD) and the classical Hotelling T
2 control chart. For the classical chart

T
2

0
, the method, which is without cleaning the outlying observations as stated in Alfaro and

Ortega (2009), is considered. The programs and simulations were done using MATLAB. The
FAST-MCD algorithm code named as mcdcov could be found in MATLAB LIBRA Toolbox
(Verboven and Hubert, 2005). The features of computer used for simulation is Intel(R)
Core(TM) i5-8250U CPU @ 1.60 GHz 1.80 Ghz.
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4.2 Simulation results

Here, the results of performance of the classical T
2

0
and robust T

2

MCD
, T

2

ARWMCD
charts are

presented in terms of FARs and POD at – = 0.05 in Tables 2 and 3.
4.2.1 False alarm rates

The success of a chart cannot only be evaluated by its capability in diagnosing outliers,
however, also in controlling the FAR, which is the probability of out-of-control signal in case
of a process is under control. In case of the process instability, the value gets larger because
of increment in variability. Expanded FAR could cause unrequired process regulations and
loss of confidence in the control chart as an observing instrument (Chang and Bai, 2004).
Therefore, a technique that could control the FAR to the wished level is essential. The
Bradley liberal criterion of robustness is used for evaluating the robustness of the control
charts. According to this criterion, a control chart is evaluated as robust in case of its empir-
ical FAR is within the robust interval between 0.5– and 1.5– (Bradley, 1978). Henceforth,
as the nominal value is accepted as – = 0.05, the control chart is taken under consideration
as robust if its FAR is within robust interval, 0.025 to 0.075. In Table 2, the FAR values
lying within the robustness interval are bolded. A control chart, which is considered as best,
the one has the ability of controlling the FARs within robust interval and also gives the
closest FAR to nominal value, 0.05 (Jamaluddin et al., 2018). For every condition, the FARs
given in Table 2 are presented in an ascending number of dimensions such as p = 2, 5 and
10, with – = 0.05. The sample sizes are given in the first column of this table, in second
column the proportions of outliers and in third column non-centrality values are provided.

Table 2. FAR values (%) of the three control charts in case of – = 0.05.

p = 2 p = 5 p = 10

n Á µ1 T 2
0 T 2

MCD T 2
ARWMCD T 2

0 T 2
MCD T 2

ARWMCD T 2
0 T 2

MCD T 2
ARWMCD

50 0 0 5.6 5.8 5.5 5.5 6.0 5.5 5.7 4.9 5.2
0.1 3 2.1 2.2 3.6 2.8 1.3 3.0 4.1 1.9 2.2

5 1.6 2.3 3.8 2.6 1.4 3.1 4.0 1.8 2.0
0.2 3 2.1 0.8 2.2 2.8 0.5 1.8 4.3 1.9 2.2

5 1.9 0.6 3.1 2.7 0.2 1.6 4.2 0.8 1.1
100 0 0 4.7 4.5 4.2 5.0 3.3 4.2 5.1 4.3 5.3

0.1 3 1.9 2.0 3.5 2.7 1.3 3.3 3.3 2.3 4.0
5 1.5 2.0 3.8 2.7 1.4 3.2 3.3 2.2 3.8

0.2 3 2.0 0.5 2.3 2.8 0.2 3.1 3.1 0.8 3.4
5 1.5 0.4 3.3 2.7 0.2 3.1 3.2 0.5 3.2

200 0 0 6.3 5.7 6.0 4.2 4.1 4.4 5.0 5.6 5.5
0.1 3 2.3 3.1 4.9 2.5 2.1 3.4 3.8 2.3 4.1

5 1.9 3.1 5.6 2.4 2.0 3.4 3.5 2.1 4.0
0.2 3 2.1 0.5 3.1 2.7 0.1 3.8 3.7 0.2 3.4

5 1.9 0.2 5.2 2.7 0.1 3.9 3.6 0.2 3.3

Table 2 shows robust T
2

MCD
and T

2

ARWMCD
charts that perform as good as the traditional

chart in controlling FAR under ideal condition (Á = 0,µ1 = 0), regardless of the sample sizes
n, outliers proportions Á and variable sizes p. However, the rates for all charts decrease when
contamination exists with some results below the Bradley limit.

If p = 2, it is clear in Table 2 all results on FARs demonstrate that the T
2

ARWMCD
control

chart has better performance than the T
2

0
and T

2

MCD
control charts. The T

2

ARWMCD
control

chart has the capability in controlling FARs for nearly whole of the circumstances explored
which is about 86% (13 out of 15) of the circumstances in comparison to T

2

0
and T

2

MCD

control charts, which are only e�ective for 20% (3 out of 15) and 33% (5 out of 15) of the
circumstances, respectively. The T

2

MCD
control chart is a�ected bad with high proportion of

outlying observations, Á = 20% for both moderate and high process mean shifts, that they
are confirmed by the proportions of false alarm far below the significance value, – = 0.05.
Henceforth, T

2

ARWMCD
control chart performs superior to the traditional chart T

2

0
and robust

control chart T
2

MCD
for bivariate case. In case of the dimensions raised to multivariate data,

p = 5, the FARs for traditional chart
!
T

2

0

"
improved. In contrast, the FARs for T

2

MCD
chart
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worsen with values as small as 0.001. In case of p = 5, the T
2

ARWMCD
control chart is still

maintains its good performance that it is still e�ective for 86 % (13 out of 15) of conditions
as compared to the T

2

MCD
control chart which is merely e�ective for 20 % (3 out of 15) of

the conditions. The results of the FARs for the multivariate case of p = 10 shows that the
T

2

ARWMCD
control chart has still a good performance in controlling FARs as it is e�ective

for 73% (11 out of 15) of conditions. Nevertheless, the performance of T
2

ARWMCD
control

chart diminishes in case of multivariate data in comparison with to bivariate data, where it
capable in controlling FARs for only 11 simulated conditions as compared to 13 simulated
conditions. An interesting result for T

2

0
, it is e�ective 93% (14 out of 15) of conditions for

p = 5 and 100% (all of 15) of conditions for p = 10. T
2

MCD
control chart which is still merely

e�ective for 20% (3 out of 15) of the conditions that means T
2

MCD
chart performs badly in

controlling FAR in all cases.

4.2.2 Probability detection of outliers

The performance in terms of POD is recorded in Table 3. The results are also presented as
graphs for a better visual and comparison, the values in Table 3 are translated into Figures
1, 2 and 3 based on the values of p. For each case, the performance of the control chart is
considered as better in detecting changes in case of the probabilities value is nearer to 1.

Table 3. Percentage of detecting outliers at – = 0.05.

p = 2 p = 5 p = 10

n Á µ1 T 2
0 T 2

MCD T 2
ARWMCD T 2

0 T 2
MCD T 2

ARWMCD T 2
0 T 2

MCD T 2
ARWMCD

50 0 0 5.6 5.8 5.5 5.5 6 5.5 5.7 4.9 5.2
0.1 3 49.8 88.2 91.7 37.8 98.6 99.8 25 100 100

5 74.8 100 100 46.4 100 100 26.7 100 100
0.2 3 17.6 69.3 75.4 12.5 95.1 98.1 11 55.2 58.7

5 17.2 100 100 11.8 100 100 10.9 84.2 85.0
100 0 0 4.7 4.5 4.2 5 3.3 4.2 5.1 4.3 5.3

0.1 3 49.6 90.3 92.3 38.8 99.8 100 28.1 100 100
5 76.9 100 100 46.5 100 100 29.4 100 100

0.2 3 16.4 72.8 73.0 10.5 98.6 99.9 10.2 84.4 84.9
5 15.7 100 100 10.1 100 100 10.2 95 94.9

200 0 0 6.3 5.7 6.0 4.20 4.1 4.4 5 5.6 5.5
0.1 3 57.1 93.5 94.6 45.5 100 100 36.7 100 100

5 84.6 100 100 54.6 100 100 39.7 100 100
0.2 3 20.1 80.3 79.7 12.3 99.5 100 11.6 98.6 98.6

5 21.2 100 100 12.6 100 100 12.2 99.9 99.9

Once the values of p and n increased, that could be obviously seen in Figures 2 and 3, the
line representing T

2

ARWMCD
consistently at the top location in the plots with the probability

value of almost 1 and overlapping with T
2

MCD
line under most of the situations. Overall,

the robust T
2

ARWMCD
and T

2

MCD
control charts steadily succeeded in high probability in

diagnosing outlying observations. It is obvious that the line represents traditional T
2

0
charts

is always at the lowest, producing a very large space between the other two lines (T 2

ARWMCD

and T
2

MCD
). Across Figures 1-3, it is observed that for all of the conditions, the robust

charts outperform the traditional chart by a large di�erence. The robust T
2

ARWMCD
chart

under most conditions achieved the 100% detection with the lowest rate of 58.7% while the
lowest rate for the robust T

2

MCD
chart is 55.2% and for traditional chart is 10.1%. Across

di�erent dimensions (p), there is no clear pattern of changes in performance among the
charts. Generally, the robust charts as well as traditional chart show decrease in POD when
Á increases, however, especially in case of the shift is µ1 = 5 and dimensions p = 2 or
p = 5, POD values do not di�er than the value of 100% for robust charts. The shift in
mean (µ1) shows positive e�ect on the POD performances of two robust charts regardless of
the proportion of contamination (Á). However, for the traditional chart, positive e�ect only
occurs when Á = 0.1. Moreover, the increase in sample sizes (n) brings some positive e�ect
on the POD values for all the charts in some of the conditions.
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Figure 1. Percentages detection of outliers at p = 2.

Figure 2. Percentages detection of outliers at p = 5.
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Figure 3. Percentages detection of outliers at p = 10.

5. Real data analysis

The proposed robust control chart T
2

ARWMCD
is applied on real data given by Asian Compos-

ites Manufacturing Sdn. Bhd. (ACM) that includes in the production of advanced composite
panels for the aircraft industry. ACM produces flat and contoured primary (Aileron Skins,
Spoilers and Spars) and secondary (Flat Panels, Leading Edges and MISC: Components)
structure composite bond assemblies and subassemblies for aerospace industries (Ali et al.,
2013). For demonstrating the Hotelling T

2, the company that the part of the production of
advanced for the aircraft industry has supplied the data on spoilers has shown in Table 4.
The data set is used before in both Yahaya et al. (2011) and Ali et al. (2013) studies. Spoilers
are critical instruments in an airplane which of them function is increasing lifts when the
airplane is flying. The products are used in civilian, defense and space applications, which
could not compromise any mistakes, albeit a minor one. Therefore, careful monitoring is
needed to confirm that none of variation appears in the process. Any small error can risk a
human life. A sample of 47 products (n = 47) that comprises of a few features like as trim
edge (X1), trim edge spar (X2), and drill hole (X3) was provided to Yahaya et al. (2011) by
the firm. Note that 21 products were gathered in 2009, however, the rest had been gathered
in 2010. Hence, they used the 2009 products data as Phase I historical data and they had
taken under consideration the products from 2010 as future data. Hence, following these
two studies, this data set is used in this study. The historical and future data are given in
Tables 4 and 6, respectively. The products comprise of 3 quality variables (dimensions) as
mentioned before known as trim edge, trim edge spar, and drill hole. The location vector
(x) and scatter matrix (S) estimations are given in Table 5. The calculations of the UCLs
for – = 0.05 based on the estimates are given in the last column of Table 5. The values
of the T

2 statistics based on the classic, MCD and ARWMCD estimators are shown in the
last three columns of Table 6. The graphical representations of the related control charts
are shown in Figure 4.
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Table 4. Historical data set (Phase I)

Product Trim edge (X1) Trim edge spar (X2) Drill hole (X3)
1 ≠0.0011 0.0003 0.0128
2 0.0011 0.0021 0.0246
3 0.0252 0.0308 0.0378
4 ≠0.0017 0.0109 0.0177
5 ≠0.0005 ≠0.0010 0.0106
6 0.0016 ≠0.0059 0.0128
7 0.0004 0.0001 0.0062
8 0.0078 0.0003 0.0159
9 0.0076 0.0089 0.0097
10 0.0020 0.0005 0.0071
11 0.0108 0.0011 0.0092
12 0.0039 0.0034 0.0425
13 0.0060 ≠0.0033 0.0160
14 0.0066 0.0100 0.0056
15 0.0045 ≠0.0067 0.0147
16 0.0110 ≠0.0207 0.0337
17 0.0047 0.0059 0.0065
18 0.0077 0.0003 0.0191
19 0.0015 0.0123 0.0124
20 0.0011 0.0038 0.0104
21 0.0056 0.0065 0.0063

Table 5. The location vector, covariance matrix and UCL estimations for real data

Types of control chart Location vector (x) Covariance matrix (S) UCL

T 2
0 [0.00504 0.00284 0.01579]

C
0.000040 0.000200 0.000030

0.000020 0.000090 0.000010

0.000030 0.000010 0.000110

D
11.035

T 2
MCD [0.00414 0.00207 0.01096]

C
0.000022 0.000005 0.000004

0.000005 0.000053 ≠0.000019

0.000004 -0.000019 0.000030

D
12.5435

T 2
ARWMCD [0.00414 0.00207 0.01096]

C
0.000012 0.000003 0.000002

0.000003 0.000028 ≠0.000010

0.000002 -0.000010 0.000016

D
13.0304

Table 6. The Hotelling T 2
values for the future (Phase II) data

Product Trim edge Trim edge spar Drill hole T 2
0 T 2

MCD T 2
ARWMCD

1 0.0041 0.0087 0.0129 0.5582 1.76591 3.32673

2 0.0047 0.0109 0.0124 0.90026 2.46944 4.65208

3 0.0031 0.0057 0.0096 0.49916 0.34367 0.64743

4 0.0035 -0.0020 0.0101 0.54633 0.54563 1.02789

5 0.004 -0.0028 0.0125 0.45922 0.45797 0.86276

6 0.0031 0.0008 0.0061 0.90130 1.25274 2.35998

7 -0.0019 0.0101 0.0112 3.09329 4.44043 8.36515

8 0.0009 0.0039 0.0082 0.80608 0.68370 1.28799

9 -0.0052 0.0090 0.0203 7.36021 14.97663 28.2139

10 -0.0008 0.0110 0.0184 3.61976 9.74168 18.3520

11 -0.0021 0.0139 0.0170 5.38392 11.87166 22.3645

12 -0.0017 0.0092 0.0061 2.73870 2.97882 5.61168

13 -0.0010 0.0133 0.0138 3.80577 7.40398 13.9481

14 -0.003 0.0002 0.0053 2.05480 3.30863 6.23300

15 0.0016 0.0134 0.0151 2.50731 6.80538 12.8204

16 0.0027 0.0086 0.0070 1.19755 1.06789 2.01176

17 0.0004 0.0086 0.0087 1.57979 1.75966 3.31495

18 -0.0036 0.0136 0.0129 5.79103 9.28168 17.4854

19 -0.0028 0.0003 0.0078 1.83044 2.41775 4.55471

20 0.0120 0.0123 0.0768 38.1397 214.923 404.885

21 -0.0015 0.0004 0.0115 1.26507 1.54862 2.9174

22 0.0009 0.0232 0.0202 8.41812 24.6552 46.4468

23 -0.0035 0.0088 0.0107 3.75884 4.87934 9.19198

24 0.0016 0.0061 0.0066 1.06020 0.93200 1.75576

25 -0.0228 -0.0466 0.0231 42.8447 68.63065 129.290

26 0.0037 -0.0038 0.0147 0.4831 0.77959 1.46863
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The comparisons of T
2 values in Table 6 with the related control limits in Table 5, it is

seen that T
2

MCD
signals observations {9, 20, 22, 25} as out-of-control, the T

2

ARWMCD
signals

observations {9, 10, 11, 13, 18, 20, 22, 25} as out-of-control, however, T
2

0
only signals 20 and

25 as out-of-control observations and it cannot signal other observations. The result for T
2

0

is not surprising as the analysis on the POD for simulated data revealed that T
2

0
is not as

e�ective as the other two robust charts in diagnosing outliers. For a clearer visualization on
the performance of the control charts in diagnosing out or control observations, graphical
representation of the three control charts are shown in Figure 4.

Figure 4. Hotelling T 2
control charts for real data.

6. Conclusion

In this study, an alternative to the classical Hotelling T
2 chart was proposed using a ro-

bust mean and covariance estimator called as adaptive reweighted minimum covariance
determinant. The performance of proposed robust T

2

ARWMCD
chart was compared with the

robust Hotelling T
2 chart using minimum covariance determinant (T 2

MCD
) and the classical

Hotelling T
2 chart (T 2

0
) in terms of false alarm rates and probability of detection.

Simulation results showed that both the robust Hotelling T
2 charts, T

2

MCD
and T

2

ARWMCD
,

provided the best performances in term of probability of detection when p = 2, p = 5 or
p = 10. In terms of false alarms, the best performance was detected by the robust T

2

ARWMCD

chart when p = 2 and T
2

0
chart when p = 5 and p = 10. Furthermore, the T

2

ARWMCD
chart

was the second one for these dimensions. Alfaro and Ortega (2009) revealed a confusing
result between the probability of detection and the overall false alarm rates such that, for
both T

2

0
and T

2

MCD
control charts when the probability of detection values increased, the

false alarm rates inflated away from the nominal value. This situation was also observed in
this study. Even though the classical T

2

0
control chart performed goodly in terms of false

alarm rates, particularly when the number of dimensions is getting larger. However, it fails
to achieve good probability of detection. In contrast to the T

2

0
chart, the robust Hotelling

T
2

MCD
control chart performed perfectly in diagnosing outliers, despite that it fails badly in

controlling false alarm rates. Nevertheless, the proposed T
2

ARWMCD
chart performed so well

both in terms of diagnosing outliers and in controlling false alarm rates.
Real data analysis results showed that the proposed robust T

2

ARWMCD
control chart showed

best performance in terms of diagnosing outliers and the T
2

MCD
control chart was the second

one. Nonetheless, the classical T
2

0
control chart failed to detect most of the outliers. The

real data application results showed consistency with the simulation results.
The overall findings reported that the performance of the robust T

2

ARWMCD
control chart

in controlling false alarm rates was very good. However, the robust T
2

MCD
control charts

performance in terms of controlling false alarm rates was not good. Nevertheless, both of
these two robust charts were superior to the classical chart in detecting outliers regardless
of the conditions imposed in this study. The traditional chart T

2

0
performed moderately in
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lower dimension, but better in higher dimensions in controlling false alarm. In contrast, it
reported inability to detect outliers. Overall, the proposed T

2

ARWMCD
control chart showed

the best performance since this control chart produced good values for both false alarm
rates and probability of detection.
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Abstract

In this paper, we propose a new regression model with varying precision based on the
Lomax distribution with regression structures for both the mean and precision param-
eters. The structures contain unknown parameters, regressors, and a link function. We
discuss methods for parameter estimation, hypothesis testing and diagnostic analysis,
along with their asymptotic properties. We also provide the expressions for the score
vector as well as for the observed and Fisher information matrices. We conduct a Monte
Carlo simulation study to investigate the behavior of the estimators and evaluate their
finite sample performance. Finally, we present and discuss an empirical application to
illustrate the usefulness of the proposed model.

Keywords: Asymmetrical data · Maximum likelihood method · Monte Carlo
simulation · Positive data · Reparametrization.

Mathematics Subject Classification: Primary 62J99 · Secondary 62F10.

1. Introduction

The Lomax distribution, also known as the Pareto type II model, belongs to the class of
distributions with decreasing failure rate and was first introduced by Lomax (1954) for
modeling business failure data. In the literature, the Lomax distribution has been applied
in several fields. For example, Harris (1968) used this distribution for queue problems,
Atkinson and Harrison (1978) used it for modeling business failure data, Holland et al.
(2006) used it for modeling the distribution of the sizes of computer files on a server,
Corbellini et al. (2007) used the Lomax distribution to model firm size distribution, and
Chandra and Khan (2013) used it to determine the optimal time for level changes for stress
plans in censored samples.
In the context of regression analysis, Beirlant and Goegebeur (2003) presented a regres-

sion model for random variables following a Lomax distribution, in which an exponential
transformation is used to relate the response variable with covariates. Stasinopoulos and
Rigby (2007) developed the package gamlss available in the software R (R Development
Core Team, 2021), in which we can model the parameters using a regression structure and

⇤
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link functions. This package is an innovative proposal that makes it possible to consider
regression structures in a wide range of probability distributions. In the approach pre-
sented by Stasinopoulos and Rigby (2007), a regression structure using a link function can
be considered for modeling each of the distribution parameters. However, the modeling is
not performed in terms of the mean of the distribution. This fact can make the interpreta-
tion of the parameters di�cult, thus limiting the use of the model in practice. A possible
approach to interpretation in terms of the mean is to use the invariance property of the
estimators. This result can be applied when using some link functions such logarithmic
(Das et al., 2010) or the square root. However, this is not possible when using the inverse
link function.
When working with regression models for continuous positive variables, one possibility

for modeling is to use transformations of the response variable. The most commonly trans-
formation is the logarithmic. For example, Fernández and De Andrade (2020) proposed
a log-erf-Frechet regression model and Vigas et al. (2017) proposed a regression model
in the location-scale form based on the Poisson-Weibull distribution. In both approaches,
the logarithm of the variable of interest is modeled. Nonetheless modeling the mean is the
most common approach in regression models (McCullagh and Nelder, 1989; Ferrari and
Cribari-Neto, 2004; Fonseca et al., 2016; Palm et al., 2019). Regression models are usually
proposed with a focus on constant dispersion or precision parameter. Some extensions for
modeling parameters related to the variance of the distribution have been considered in
the literature. Among them, we highlight the proposal for modeling the dispersion or pre-
cision, such as in generalized linear models (Smyth, 1989) and in the beta regression model
(Simas et al., 2010). In more recent proposals, models that address the modeling of the two
characteristics, mean and variance, have been introduced in seminal proposals. For exam-
ple, Santos-Neto et al. (2016) proposed a reparameterized Birnbaum-Saunders regression
model with varying precision and Bourguignon and Gallardo (2020) developed the repa-
rameterized inverse gamma regression model with varying precision. In the context of the
modal regression, Bourguignon et al. (2020) presented a parametric modal regression with
varying precision where the response variable is gamma distributed. Additionally, Altun
(2021) introduced a new Lomax regression model, in which the response’s mean and shape
parameter (↵) are modeled by regression structures through the link functions. Recently,
Bourguignon and Nascimento (2020) presented a Bayesian approach that considers a new
parametrization that is indexed by mean and precision parameters, in which the response
variable is a generalized Pareto distribution. The main advantage of this reparametriza-
tion is that it allows the mean and precision parameters to be modeled directly, allowing
the construction of simple and interpretable models, such as in the context of generalized
linear models (McCullagh and Nelder, 1989).
Based on the above discussion, this work has the objective of using the maximum

likelihood (ML) approach to make inferences in the regression model with the same
reparametrization used in Bourguignon and Nascimento (2020). The methods presented
in this article di↵ers from the described in Bourguignon and Nascimento (2020) in one
main aspect; the approach to estimate parameters of the models. While Bourguignon and
Nascimento (2020) used the Bayesian approach, we presented the ML inference approach.
Additionally, in our proposal, the parametric support of the precision parameter is di↵er-
ent from the one used by Bourguignon and Nascimento (2020), in this sense, other link
functions are suggested and used for precision modeling. In this paper, the estimation of
the parameters is performed using the ML method. We obtain analytical expressions for
the score vector and Fisher information matrix, and also propose diagnostic measures and
tools for model selection. We emphasize that obtaining the Fisher information matrix is
possible due to the simplicity of the Lomax probability density function. Such expressions
are impossible and/or very costly to obtain in some more complex distributions.
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This paper is organized as follows. In Section 2, we present the Lomax distribution, the
proposed reparameterization, reparametrized Lomax regression model, and log-likelihood
function of the model. In Section 3, we present methods for the estimation and infer-
ences, such as the score vector, the observed and Fisher information matrix, procedures
for obtaining confidence intervals and hypothesis tests, additionally we introduce some
diagnostic measures to check the goodness-of-fit of the proposed model. Monte Carlo sim-
ulation results are presented and discussed in Section 4. We also present and discuss an
application. Finally, the conclusions and final remarks are presented in Section 5.

2. Proposed Model

In this section, we introduce the two-parameter Lomax distribution and its main charac-
teristics such as mean, variance, cumulative distribution function, and quantile function.
Furthermore, we present the reparametrization in terms of mean and precision parameters,
the regression structures for modeling the mean and precision, as well as the log-likelihood
function.

2.1 The Lomax distribution

Let Y be a random variable with Lomax distribution. Its probability density function is
given by

f(y;↵,�) =
↵�↵

(y + �)(↵+1)
, y > 0, (1)

where ↵ > 0 is the shape parameter and � > 0 is the scale parameter. The mean and
variance of Y are stated, respectively, by E(Y ) = �/(↵� 1), for ↵ > 1, and Var(Y ) =
↵�2/((↵� 1)2(↵� 2)), for ↵ > 2. The cumulative distribution function corresponding to
Equation (1) is expressed by

F (y;�,↵) = 1�
⇣
1 +

y

�

⌘�↵
.

2.2 A reparametrized Lomax distribution

In regression analysis, it is typically more useful and common to model the mean response,
as it makes the model parameters easily interpretable. In order to obtain a regression
structure for the mean of Y , we consider a new parameterization, which is obtained by
taking µ = �/(↵ � 1) and � = (↵ � 2)/↵ in Equation (1), that is, � = µ(↵ � 1) and
↵ = 2/(1� �). The mean-parametrized Lomax distribution with mean µ and precision �
is characterized by the probability density function expressed as

f(y;µ,�) =

2

1��

h
µ
⇣

2

1�� � 1
⌘i 2

1��

h
y + µ

⇣
2

1�� � 1
⌘i 2

1��
+1

, y > 0, µ > 0, 0 < � < 1. (2)

The mean and variance are given, respectively, by

E(Y ) = µ and Var(Y ) =
µ2

�
.
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The new cumulative distribution function is stated as

F (y;µ,�) = 1�


1 +

y(1� �)

µ (1 + �)

�� 2
1��

. (3)

2.3 The reparametrized Lomax regression model

Let Y1, . . . , Yn be independent random variables, where each Yt, t = 1, . . . , n, follows the
probability density function stated in Equation (2) with mean µt and precision �t. The
regression structures for the mean and precision of Yt are formulated, respectively, by

⌘1t = g1(µt) = x
>
t � and ⌘2t = g2(�t) = z

>
t �, (4)

where � = (�0,�1, . . . ,�r)> 2 Rr+1 and � = (�0, �1, . . . , �q)> 2 Rq+1 are vectors of
unknown regression parameters assumed to be functionally independent (r + q + 2 < n),
xt = (1, xt1, . . . , xtr)> and zt = (1, zt1, . . . , ztq)> are explanatory variables vectors, ⌘1t and
⌘2t are the mean and precision linear predictors, respectively, and g1 and g2 are twice-
di↵erentiable one-to-one monotonic functions called link functions, where g1: R+

! R and
g2: (0, 1) ! R.
The proposed Lomax regression model is defined by Equations (2) and (4). Due to

the restriction µt > 0, the most common link function and that satisfies the conditions
stated for g1 is the logarithm, g1(µt) = log(µt), because it provides non-negative values
for µt = g�1

1
(⌘t) = exp(⌘t) regardless the values assigned to ⌘t, is twice-di↵erentiable

one-to-one monotonic funcion. Other link functions are usual, but they do not satisfy
all the conditions stated for g1, they are the square root, g1(µt) =

p
µt, and inverse,

g1(µt) = 1/µt (with special attention to the positivity of the estimates). For the restriction
0 < �t < 1, we can use the logit g2(�t) = log [�t/(1� �t)], probit g2(�t) = ��1(�t),
where � is the cumulative distribution function of a standard normal random variable,
complementary log-log g2(�t) = log [� log(1� �t)], and log-log g2(�t) = � log [� log(�t)]
link functions (Ferrari and Cribari-Neto, 2004; Simas et al., 2010). For more details and a
detailed discussion about link functions, see Atkinson (1985, Ch. 7) and McCullagh and
Nelder (1989).

2.4 Likelihood function

Let Y1, . . . , Yn be a sample from the proposed Lomax regression model, y1, . . . , yn its
observations, and ✓ = (�>,�>)> the corresponding regression parameter vector. The
corresponding log-likelihood function for ✓ is given by

`(✓) =
nX

t=1

`t(µt,�t), (5)

where

`t(µt,�t) = log(2)� log(1� �t) +
2

1� �t
log


µt

✓
2

1� �t
� 1

◆�

�

✓
2

1� �t
+ 1

◆
log


yt + µt

✓
1 + �t

1� �t

◆�
. (6)
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3. Estimation and inference

In this section, we present details for performing point and interval estimation, and hy-
pothesis testing. Initially, we present the score vector, the observed information matrix
and Fisher information matrix, next present a test statistic to test hypotheses of interest
and the formula for obtaining confidence intervals.

3.1 Score vector

Taking first derivatives of the log-likelihood function with respect to each element of ✓, we
obtain the score vector U(✓) = (U�(✓)>,U�(✓)>)> given by

U�i
(✓) =

@`(✓)

@�i
=

nX

t=1

@`t(µt,�t)

@µt

dµt

d⌘1t

@⌘1t
@�i

,

U�i(✓) =
@`(✓)

@�i
=

nX

t=1

@`t(µt,�t)

@�t

d�t

d⌘2t

@⌘2t
@�i

.

From Equation (6), the derivative of `t(µt,�t) with respect to µt is defined by

@`t(µt,�t)

@µt
=

2

µt(1� �t)
�

(3� �t)(1 + �t)

(1� �t)2 [yt + ct]
:= bt, (7)

where ct = µt(1+�t)/(1��t). Note that ⌘1t = g1(µt), then dµt/d⌘1t = 1/g0
1
(µt), where g0

is the first derivative of function g. We also have that @⌘1t/@�i = xti. Therefore, it follows
that

U�i
(✓) =

nX

t=1

bt
1

g0
1
(µt)

xti, i = 0, 1, . . . , r,

where xt0 = 1. By taking derivative in Equation (6) with respect to �t, we define
@`t(µt,�t)/@�t := at, it follows that

at =


1

1� �t
+

2 log(ct)

(1� �t)2
�

2 log(yt + ct)

(1� �t)2
+

4

(1 + �t)(1� �t)2
�

2µt(3� �t)

(1� �t)3(yt + ct)

�
. (8)

For �i, we have that d�t/d⌘2t = 1/g0
2
(�t) and @⌘2t/@�i = zti. Therefore, we obtain

U�i(✓) =
nX

t=1

at
1

g0
2
(�t)

zti, i = 0, 1, . . . , q,

where zt0 = 1. The score vector can be expressed in matrix form as U�(✓) = X
>
Mb

and U�(✓) = Z
>Ma, where X is an n ⇥ r matrix with the t-th row given by xt, Z

is an n ⇥ q matrix with t-th row given by zij , b = (b1, . . . , bn)
>, a = (a1, . . . , an)

>,
M = diag {1/g0

1
(µ1), . . . , 1/g01(µn)}, and M = diag {1/g0

2
(�1), . . . , 1/g02(�n)}.

The ML estimators b� and b� of the parameters � and � are obtained by solving the
nonlinear system of equations expressed as U�(✓) = 0 and U�(✓) = 0. Since the above
system does not have analytical solution, the use of nonlinear optimization algorithms
is required. In this work, we apply the Nelder-Mead simplex method (Nelder and Mead,
1965).
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3.2 Observed information matrix

Taking second order derivatives of Equation (5) with respect to each element of ✓, we have

@2`(✓)

@�i@�j
=

nX

t=1

@

@�i


@`t(µt,�t)

@µt

dµt

d⌘1t

@⌘1t
@�j

�

=
nX

t=1


@2`t(µt,�t)

@µ2
t

dµt

d⌘1t
+

@`t(µt,�t)

@µt

@

@µt

✓
dµt

d⌘1t

◆�
dµt

d⌘1t
xtjxti,

@2`(✓)

@�i@�j
=

nX

t=1

@

@�j


@`t(µt,�t)

@µt

dµt

d⌘1t

@⌘1t
@�i

�
=

nX

t=1


@2`t(µt,�t)

@µt@�t

d�t

d⌘2t
ztj

�
dµt

d⌘t
xti,

@2`(✓)

@�i@�j
=

nX

t=1

@

@�i


@`t(µt,�t)

@�t

d�t

d⌘2t

@⌘2t
@�j

�

=
nX

t=1


@2`t(µt,�t)
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d�t
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+

@`t(µt,�t)

@�t

@

@�t

✓
d�t

d⌘2t

◆�
d�t

d⌘2t
ztjzti.

In addition, from Equation (7), we have

@2`t(µt,�t)

@µ2
t

=
@

@µt


2

µt(1� �t)
�

(3� �t)(1 + �t)

(1� �t)2 [yt + ct]

�

= �
2
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t (1� �t)

+
(3� �t)(1 + �t)2

(1� �t)3 (yt + ct)
2
:= wt,
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@�t
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:= rt.

And from Equation (8), we have
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@�2
t

=
@

@�t


1

1� �t
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4
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Notice also that

@

@µt

✓
dµt

d⌘1t

◆
= �

g00(µ1t)

[g0(µ1t)]2
:= mt and

@

@�t

✓
d�t

d⌘2t

◆
= �

g00(�2t)

[g0(�2t)]2
:= ot,

where g00 is the second derivative of function g.
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LetH = diag {h1, . . . , hn} with ht = [wt/g0(µ1t) + btmt] /g0(µ1t),R = (r1, . . . , rn)>, and
P = (p1, . . . , pn)> with pt = [st/g0(�2t) + atot] /g0(�2t). The joint observed information
matrix for ✓ is given by

J(✓) =

✓
J(�,�) J(�,�)

J(�,�) J(�,�)

◆
,

where J(�,�) = �X
>
HX, J(�,�) = J

>
(�,�) = �X

>
MRMZ, and J(�,�) = Z

>
PZ.

3.3 Information matrix, confidence intervals and hypothesis testing

Before presenting to the important quantities of this subsection, we need some useful
results used in obtaining of the Fisher information matrix provided by Lemma below.

Lemma 1: Let Yt be a random variable that follows a Lomax distribution with probability
density function given in Equation (2). Then,

E
⇣ 1

Yt + µt (2/(1� �t � 1))

⌘
=

2(1� �t)

µt(1 + �t)(3� �t)
,
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2

µ2
t (1 + �t)2(2� �t)

,

E (log (Yt + µt (2/(1� �t � 1)))) = log

✓
µt(1 + �t)
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◆
+

1� �t

2
.

Proof: Let f be the probability density function of Yt. Then,

E

0

@ 1
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� 1
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2

1��t
+1+k

⌘dyt,

where k > 0. Making the variable change xt = yt + µt(2/(1� �t � 1)), then the above
equation becomes

E

✓
1

Yt + µt (2/(1� �t � 1))

◆k

=
2(1� �t)k

µk
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. ⌅

The Fisher information matrix is obtained by taking the expected value of the second
order derivatives of the log-likelihood function, that is, K(✓) = E[J(✓)]. Since

E

✓
@`(µt,�t)

@µt

◆
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2
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2
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= 0,
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the expected value of the derivatives in Section 3.2 are given by

E

✓
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Observe that taking the expected value in Equations (7) and (8), and substituting the
results from this lemma, we have
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Let V = diag {v1, . . . , vn}, D = (d1, . . . , dn)
>, and Q = diag {q1, . . . , qn}. The Fisher

information matrix for ✓ is given by

K(✓) =

✓
K(�,�) K(�,�)

K(�,�) K(�,�)

◆
,

where K(�,�) = �X
>
V M

2
X, K(�,�) = K

>
(�,�) = �X

>
MDMZ, and K(�,�) =

�X
>
QM2

X. Note that the parameters � and � are not orthogonal.
Under usual regularity conditions, the ML estimators b✓ of ✓ are asymptotically con-

sistent, having approximately normal distribution with mean vector ✓ and variance-
covariance matrix K(✓)�1 in large samples (Pawitan, 2001), that is,

✓ b�
b�

◆
⇠ Nr+q+2

✓✓
�

�

◆
,K(✓)�1

◆
, (9)

where Nr+q+2 denotes the (r + q + 2)-dimensional normal distribution and b� and b� the
ML estimators of � and �, respectively.
Test statistics for hypothesis testing and confidence intervals can be obtained using the

asymptotic result presented in Equation (9). Suppose the interest is to test the following
hypotheses H0: ✓i = ✓0i versus H1 : ✓i 6= ✓0i , where ✓0i is a specified value for the unknown
parameter ✓i. A useful statistic to test these hypotheses is the signed square root of the
Wald statistic, given by Z = (b✓i � ✓0i )/

p

kii, where kii is the i-th diagonal element of

K(b✓)�1. This statistic is particularly convenient to test individual parameters (Pawitan,
2001). Under H0 and for large n, Z has a standard normal distribution. It is also possible
to perform more general hypothesis testing inference using the likelihood ratio, Wald, and
score statistics.
We can also use the result presented in Equation (9) to construct asymptotic confidence

intervals for each parameter ✓i. An approximate 100(1� ↵)% confidence interval for ✓i is

defined as (b✓i � z1�↵/2

p

kii; b✓i + z1�↵/2

p

kii), where �(z1�↵/2) = 1� ↵/2.

3.4 Diagnostic measures

In this subsection we suggest criteria for selecting the Lomax regression model and some
diagnostic measures for examining the goodness-of-fit of the proposed model. For model
selection, we consider the Akaike Information Criterion (AIC) (Akaike, 1974) and Bayesian

Information Criterion (BIC) (Schwarz, 1978) given, respectively, by AIC = �2`(b✓)+2(q+

r + 2) and BIC = �2`(b✓) + log(n)(q + r + 2).
For validating the proposed model, we perform residual analysis using the randomized

quantile residuals (Dunn and Smyth, 1996), defined as r(q)t = ��1(F (yt; bµt, b�t)), where

F (yt; bµt, b�t) is the cumulative distribution function stated in Equation (3). If the model is
correctly specified, these residuals should be independent and normally distributed, with
zero mean and unit variance.

4. Numerical results

In this section, we provide the simulation study in order to evaluate the performance of
the ML estimators of the proposed model under di↵erent sample sizes. Also, we present
and discuss an empirical application to illustrate the proposed framework.
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4.1 Simulation study

We conduct a Monte Carlo simulation study to evaluate the finite sample performance
of the likelihood inference for the proposed Lomax regression model. We used 10,000
Monte Carlo replications and considered five sample sizes n 2 {50, 100, 200, 500, 1000}.
Performance measures for ML estimator evaluation are the mean, bias, relative bias (RB),
standard deviation (SD), and root mean square error (RMSE).
We considered two scenarios with the following true parameter values: (i) Scenario 1: ✓ =

(�0,�1,�2, �0, �1) = (�3.0, 2.2, 1.5, 0.5,�0.3) and (ii) Scenario 2: ✓ = (�0,�1,�2, �0, �1) =
(0.5, 1.3,�0.7, 0.3, �0.5). In both scenarios, the covariates were generated independently
from a standard uniform distribution, U(0, 1), and kept constant during all Monte Carlo
replications. We considered the logarithmic and probit link functions for the mean and
precision submodels, respectively. This scenario considers the link functions that provided
the best fit in the application.
All simulations were performed using the R software. The maximization was obtained

considering the optim function, available in R, using the Nelder-Mead method with first
analytical derivatives; see Nelder and Mead (1965) for more details. As the iterative op-
timization algorithm requires a set of initial values for the parameters to be optimized,
we suggest to use the following empirical approach to determine these values. The initial
values �

(0) for � are obtained by the least squares estimates of � from the following lin-
ear regression model: log(yt) = x

>
t �, while the starting values �(0) for � are obtained by

�
(0) = (y2/S2

y)1
>
q+1

, where y and S2
y denote the sample mean and variance, respectively,

and 1q+1 denotes an (q+1)-dimensional vector of 10s. We have tested the others methods,
however, in our study, the Nelder-Mead method provided more robust estimates.
The simulation results are shown in Tables 1 and 2. Based on the results presented, we

can verify the good performance of the ML estimators of the Lomax regression model.
We observe that the bias and RMSE of the ML estimators of � tend toward zero as the
sample size increases, indicating the consistency property of the ML estimator. For the
vector �, the ML estimators are biased in small samples, but the bias decreases as the
sample size increases. This suggests that some procedure for inferential improvements can
be considered to reduce the problem of biased ML estimator in small samples. We also
highlight that this behavior of the ML estimators in precision modeling is recurrent in the
literature (Bourguignon and Nascimento, 2020; Simas et al., 2010).

4.2 Empirical application

We illustrate the proposed model using dataset obtained from the United Nations Devel-
opment Programme (available at http://hdr.undp.org/en/data). The response variable
is the carbon dioxide emissions per capita (DEC, measured in tonnes) in 123 countries,
including the autonomous territory of Hong-Kong and the United Kingdom collected in
2016. The covariates associated with this response variable are: forest area (FAR, measured
in % of total land area), concentration index of exports (CIN, ranging from 0% to 100%,
with a larger value denoting a higher concentration of exports), employment in agricul-
ture (EAG, measured in % of total employment), and human development index (HDI).
Some summary statistics of the response variable are given in Table 3. Figure 1 shows the
dispersion plots between the response variable and covariates. After some adjustments, we
consider only the set of regressors statistically significant at the level of 10% in the Lomax
regression model. The HDI covariate was not significant for the mean submodel. Also, the
FAR, CIN, and EAG covariates were not significant for the precision submodel. We use the
observed information matrix obtained numerically using the optim function of R software
because it provided lower variance estimates than the Fisher information matrix.

http://hdr.undp.org/en/data
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Table 1. Monte Carlo simulation results for likelihood inference, evaluation of point estimation, for the
Lomax regression model - Scenario 1 - g1(µt) = log(µt), g2(�t) = ��1(�t), �0 = �3.0, �1 = 2.2, �2 = 1.5,
�0 = 0.5 and �1 = �0.3.

n Estimator Mean Bias RB SD RMSE

50 b�0 �3.030 �0.030 0.010 0.556 0.557
b�1 2.210 0.010 0.004 0.736 0.736
b�2 1.480 �0.020 �0.013 0.714 0.714
b�0 2.161 1.661 3.322 9.454 9.599
b�1 �0.704 �0.404 1.347 55.585 55.586

100 b�0 �3.013 �0.013 0.004 0.357 0.358
b�1 2.198 �0.002 �0.001 0.434 0.434
b�2 1.508 0.008 0.005 0.502 0.502
b�0 1.235 0.735 1.471 6.504 6.546
b�1 �0.171 0.129 �0.431 13.708 13.709

200 b�0 �3.008 �0.008 0.003 0.240 0.240
b�1 2.202 0.002 0.001 0.314 0.314
b�2 1.499 �0.001 �0.001 0.292 0.292
b�0 0.805 0.305 0.610 2.413 2.432
b�1 �0.214 0.086 �0.286 4.165 4.166

500 b�0 �3.002 �0.002 0.001 0.135 0.135
b�1 2.199 �0.001 0.000 0.179 0.179
b�2 1.500 0.000 0.000 0.179 0.179
b�0 0.641 0.141 0.281 0.777 0.789
b�1 �0.368 �0.068 0.225 1.318 1.319

1000 b�1 �3.001 �0.001 0.000 0.099 0.099
b�2 2.199 �0.001 0.000 0.130 0.130
b�3 1.501 0.001 0.001 0.129 0.129
b�0 0.552 0.052 0.104 0.468 0.471
b�1 �0.312 �0.012 0.039 0.786 0.786

Table 2. Monte Carlo simulation results for likelihood inference, evaluation of point estimation, for the
Lomax regression model - Scenario 2 - g1(µt) = log(µt), g2(�t) = ��1(�t), �0 = 0.5, �1 = 1.3, �2 = �0.7,
�0 = 0.3 and �1 = �0.5.

n Estimator Mean Bias RB SD RMSE

50 b�0 0.443 �0.057 �0.114 0.578 0.581
b�1 1.310 0.010 0.008 0.673 0.673
b�2 �0.684 0.016 �0.023 0.613 0.614
b�0 1.163 0.863 2.878 16.240 16.263
b�1 �1.372 �0.872 1.744 34.205 34.216

100 b�0 0.493 �0.007 �0.014 0.332 0.332
b�1 1.294 �0.006 �0.005 0.434 0.434
b�2 �0.705 �0.005 0.008 0.442 0.442
b�0 0.669 0.369 1.232 6.398 6.408
b�1 �0.774 �0.274 0.547 14.265 14.268

200 b�0 0.498 �0.002 �0.004 0.200 0.200
b�1 1.298 �0.002 �0.001 0.263 0.263
b�2 �0.702 �0.002 0.003 0.271 0.271
b�0 0.523 0.223 0.744 2.101 2.113
b�1 �0.732 �0.232 0.465 3.488 3.496

500 b�0 0.498 �0.002 �0.004 0.152 0.152
b�1 1.298 �0.002 �0.002 0.196 0.196
b�2 �0.699 0.001 �0.001 0.194 0.194
b�0 0.410 0.110 0.365 0.694 0.702
b�1 �0.612 �0.112 0.223 1.234 1.239

1000 b�0 0.499 �0.001 �0.001 0.105 0.105
b�1 1.297 �0.003 �0.002 0.133 0.133
b�2 �0.699 0.001 �0.001 0.138 0.138
b�0 0.344 0.044 0.148 0.397 0.400
b�1 �0.524 �0.024 0.048 0.687 0.687
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Table 3. Summary statistics of carbon dioxide emissions.

Min 1st Quantile Median Mean 3rd Quantile Max Variance

0.100 1.400 3.400 4.953 6.500 29.800 27.597

After testing di↵erent combinations of link functions, the link functions that provided the
best fit were the logarithm and probit link functions for the mean and precision submodels,
respectively, resulting in the regression structures stated as

log(µt) = �1FARt + �2CINt + �3EAGt and ��1 (�t) = �1HDIt, t = 1, 2, . . . , 123.
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Figure 1. Plot for DEC versus FAR, CIN, EAG and HDI with corresponding smooth curves.

We compare the fitted Lomax regression model with the reparametrized gamma, repa-
rameterized Weibull, and normal linear regression models using the gamlss package
(Stasinopoulos and Rigby, 2007) in R. Some information about the regression structure
of these models is summarized in Table 4.

Table 4. Regression structures for the gamma, Weibull, and normal models, with µ and �2 representing
the mean and variance of the distribution, respectively.

Distribution Reparametrization Link function

gamma(✓1, ✓2)
µ = ✓1✓2 g1(µ) = log(µ)
� = ✓2

p
✓1 g2(�) = log(�)

Weibull(✓1, ✓2)
µ = ✓1�(1 + 1/✓2) g1(µ) = log(µ)
� = ✓2 g2(�) = log(�)

normal(✓1, ✓22)
µ = ✓1 g1(µ) = µ
� = ✓2 g2(�) = log(�)

Table 5 presents the parameter estimates, corresponding standard errors (SE), p-values
associated with hypothesis testing based on the Wald square root statistic, and model
selection criteria for the four fitted regression models. For comparison purposes, we fitted
the reparametrized gamma, reparameterized Weibull, and normal linear regression mod-
els considering the same covariates. The two information criteria evaluated indicate that
the Lomax regression model presented a better fit when compared to the other models.
Considering the nature of the response variable, the Gamma and Weibull distributions
are usual models for modeling continuous and positive data and that compete with the
Lomax distribution, as their densities can assume a decreasing format. This is confirmed
by the observed values of AIC and BIC. The normal model is one of the best known and
most widely used in practice, but it is suitable for data with the supported in reals, and its
probability density function does not assume a decreasing format. The values of AIC and
BIC confirm that the normal model is not a competing model of the proposal presented
here.



Chilean Journal of Statistics 201

Table 5. Fit regression models for carbon emissions data.

Model E↵ect Parameter Estimate (SE) p-value AIC BIC

Lomax
FAR �1 0.0305 (0.0036) < 0.01

650.94 662.19CIN �2 0.0466 (0.0045) < 0.01
EAG �3 �0.0424 (0.0048) < 0.01
HDI �1 0.0174 (0.0090) 0.0530

Gamma
FAR �1 0.0304 (0.0036) < 0.01

652.01 663.26CIN �2 0.0468 (0.0044) < 0.01
EAG �3 �0.0427 (0.0047) < 0.01
HDI �1 0.0002 (0.0007) 0.7658

Weibull
FAR �1 0.0304 (0.0036) < 0.01

651.97 663.22CIN �2 0.0467 (0.0044) < 0.01
EAG �3 �0.0427 (0.0047) < 0.01
HDI �1 �0.0003 (0.0008) 0.7251

Normal
FAR �1 0.0509 (0.0163) < 0.01

742.36 753.60CIN �2 0.0959 (0.0189) < 0.01
EAG �2 �0.0724 (0.0172) < 0.01
HDI �1 0.0211 (0.0008) < 0.01

Figure 2 presents the half-normal plots with simulated envelopes for the randomized
quantile residuals based on 100 replicates for the considered models. From these plots, we
note that, except for the normal regression model (Figure 2 (d)), almost all observations
appear inside the envelope bands, indicating a good fit of the regression models to the
the carbon dioxide emissions per capita (Atkinson, 1981). Figure 3 presents the residuals
against the index and estimated probability density function of the residuals in a non-
parametric way against the normal standard probability density function. As expected,
the residuals seems to be oscillating around zero with constant variance and approximately
normally distributed.
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Figure 2. Half-normal plot of residuals for the fitted models in this study.
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Figure 3. Residual plots for the proposed Lomax regression model.
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The interpretation of the estimated parameters of the Lomax regression model are as
follows:

(i) For each 1% that on forest area increases, the mean of the carbon dioxide increases by

3.10% (e
b�1 = 1.0310).

(ii) For each 1% that on concentration index of exports increases, the mean of the carbon

dioxide increases by 4.77% (e
b�2 = 1.0477).

(iii) For each 1% that the employment in agriculture increases, the mean of the carbon

dioxide decreases by 4.15% (e
b�3 = 0.9585).

(iv) The coe�cient of �1 is 0.0174, so when the HDI increases, the precision increases.

5. Conclusion

In this paper, we proposed a frequentist approach for the mean-parameterized Lomax re-
gression model with varying precision. The main advantage of this reparametrization is its
ability to model the mean directly. This makes the interpretation of the regression coe�-
cients easier in terms of the expectation of the response variable and the proposed model
more comparable with other models in the class of generalized linear models. The estima-
tion of the regression model parameters is based on the maximum likelihood approach. We
provided closed-form expressions for the score vector, observed information matrix, and
Fisher information matrix. Through Monte Carlo simulations, we evaluated the asymptotic
properties of maximum likelihood estimators. The simulation results showed that these es-
timators present a good performance. Finally, we illustrated the practical applicability of
the proposed framework through an empirical application.

Supplementary materials

The computational routine implemented in R is available online at https://gist.github.
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Abstract

In this work, we study the thin-plate spline partially varying-coe�cient models with
elliptical contoured errors in order to allow distributions with heavier and lighter tails
than the normal ones, such as logistic, Pearson VII, power exponential, and Student-t,
to be considered. We develop an estimation process for the parameters of the model
based on the doubly penalized likelihood function and using smoothing splines. In ad-
dition, an explicit conditional solution for the double penalized maximum likelihood
estimators is derived to obtain closed expressions for the variance-covariance matrix of
the estimators, e↵ective degrees of freedom of the smooth functions and surfaces, and
hat matrix associated with the model. To show the proposed methodology, we analyze
the Boston housing data utilizing-plate spline partially varying-coe�cient model with
normal and Student-t errors. This analysis suggests that the proposed model is helpful
when we want to describe the e↵ect of some covariates that vary smoothly as a function
of other covariates, geographic referencing, and data with heavy-tailed indications.

Keywords: Maximum doubly penalized likelihood estimates · Partially
varying-coe�cient models · Robust estimates · Thin-plate spline models
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1. Introduction

Partially varying-coe�cient models have received much attention in various research areas,
due to its flexibility to explore the dynamic features which may exist the data and its easy
interpretation. In the others words, this class of models allows to model the coe�cients
of the explanatory variables (or covariates) as smooth functions of other variables. These
models are often used in research related to longitudinal, clustered, spatial and hierarchical
sampling schemes, and are a natural alternative to the additive model introduced by
Breiman and Friedman (1985); see also Hastie and Tibshirani (1993), Fan and Zhang
(2008) and Park et al. (2015).
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Another aspect in the statistical literature, that has been developed in recent years, refers
to the regression models under elliptical errors. These models suggest to replace the nor-
mal distribution by the elliptical one when the observations distributions are characterized
by light-and heavy-tails. Savalli et al. (2006) proposed the elliptical linear mixed models,
where the marginal model is also elliptical. Russo et al. (2009) extended the class given by
Savalli et al. (2006) replacing linear fixed e↵ects by a nonlinear fixed e↵ect, creating the
elliptical nonlinear mixed models, for which estimation procedures and diagnostic methods
are developed. Galea and Vilca (2010) studied some hypothesis tests for the equality of
variances and means in the context of univariate elliptical correlated data, with applica-
tions to portfolios data. Marciano et al. (2016) studied the calibration models for repeated
measures considering a univariate elliptical distribution and developed a simulation study
to evaluate the properties of the estimators. Ibacache-Pulgar and Paula (2011) presented a
study on the existence and uniqueness of the maximum penalized likelihood estimate un-
der the partially linear model with Student-t random error, Ibacache-Pulgar et al. (2012)
developed influence diagnostics for elliptical semiparametric mixed models, where it is as-
sumed that the non-parametric component is of type cubic spline, and Ibacache-Pulgar
et al. (2013) studied semiparametric additive model under symmetric distributions. Re-
cently, Ibacache-Pulgar and Reyes (2018) studied the elliptical partially varying-coe�cient
models and developed the technique of local influence to evaluate the sensitivity of the
maximum penalized likelihood estimates.
In this paper, we extend the partially varying-coe�cient model proposed by Ibacache-

Pulgar and Reyes (2018) incorporating a component in its regression structure that allows
us to model the e↵ect of observations in two-dimensional space, such as, for example, coor-
dinates. This structure is called thin-plate spline partially varying-coe�cient model under
elliptical errors. This model emerges as a powerful tool in statistical modeling because of
its flexibility to model explanatory variables e↵ects that can contribute parametric way
and explanatory variables e↵ects in which the coe�cients are allowed to vary as smooth
functions of other variables. Moreover, this class of models incorporate thin-plate spline
(TPS) smoother, a spline-based technique which can be considered the natural general-
ization of cubic spline to any number of dimensions and almost any order of wiggliness
penalty. The TPS smoother was initially introduced by Duchon (1975) and was later con-
sidered by many authors in the context of nonparametric and generalized linear models;
see, Green and Silverman (1994) and Wood (2006) and the references therein. Since the
TPS involves the estimation of many parameters (especially when the dimension is higher
than one), Wood (2003) proposed a low rank smoother that use an approximate thin plate
spline model based on the transformation and truncation of the basis that arises from the
solution of the thin plate spline smoothing problem. The main advantage to include TSP
in our model is that it allows to consider the e↵ect of the geographical locations on the
response variable.
This article is organized as follows. In Section 2, we formally introduce the thin-plate

spline partially varying-coe�cient model under elliptical distributions. Section 3 considers
the problem of estimating the parameters and an application to a set of real data is
considered in Section 4. Finally, in Section 5, we present some final conclusions derived
from this study.

2. The thin-plate spline partially varying-coefficients model

In this section, we introduce the thin-plate spline partially varying-coe�cient model (TP-
SPVCM) under elliptical distributions. In addition, we introduce the doubly penalized
likelihood function where the penalty term combines a L2[a, b] penalty for each smooth
varying-coe�cient function with a second L2[Ed] penalty for the smooth surface. Thus, we
estimate the parameters and inference in the elliptical TPSPVCM.
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2.1 Model specification

The study of varying-coe�cients models (VCMs) does not necessarily arise from perform-
ing a mathematical extension of a particular class of models, but rather from the need
to attend to real problems in areas as economics, finance, epidemiology, medical science,
ecology, and environment. The TPSPVCM under study is given by

yij = z
>
ij↵+

sX

k=1

x(k)ij �k(rkij
) + `

>
i g + "ij , i = 1, . . . , n, j = 1, . . . ,mi, (1)

where yij denotes the jth measure associated with the ith cluster at point rkij
, zij is

(p⇥ 1) vector of explanatory variable values, ↵ is a (p⇥ 1) fixed parameter vector, �k, for
k = 1, . . . , s, are unknown smooth arbitrary functions of rk, associated with the covariates
x(k)ij , `i is an (n⇥1) vector with one in the ith position and zeros at the remaining positions,

g = (g(t1), . . . , g(tn))>, g is a smooth surface that depends of the vector ti 2 R2, and "ij
is a random error. Note that in this class of models the coe�cients are allowed to vary as
smooth functions of other variables.
To write the model given in Equation (1) in a matrix form, first consider the one-to-one

linear transformation of the vector g suggested by Green and Silverman (1994) stated as

g =

0

B@
g(t1)
...

g(tn)

1

CA = E� + T
>
a,

where a and � are vectors with components ai and �i, E is an (n⇥ n) matrix defined by
Eij = 1/(16⇡kti � tjk2 log(kti � tjk2)), with Eii = 0 for each i, and T is a (3⇥ n) matrix
given by

T =

✓
1 1 . . . 1
t1 t2 . . . tn

◆
.

Thus, the model model given in Equation (1) takes the form

yi = eZie↵+
sX

k=1

fNki�k + eEi� + "i, i = 1, . . . , n, j = 1, . . . ,mi, (2)

where yi is a (mi ⇥ 1) random vector of observed responses from the ith cluster, eZi =
(Zi

eT i) is an (mi⇥ (p+2)) design matrix, Zi is an (mi⇥ p) design matrix with rows z>
ij ,

eT i = F iT
> is an (mi⇥2) matrix, F i is an (mi⇥n) matrix with an (mi⇥1) vector of ones

in the ith column and zeros in the remanning positions, e↵> = (↵>,a>), fNki = X
(k)
i Nki,

X
(k)
i = diag1jmi

�
x(k)ij

�
, Nki is an (mi ⇥ rk) incidence matrix with the (j, l)th element

equal to the indicator I(rkij
= r0kl

), for j = 1, . . . ,mi, where r0kl
, for l = 1, . . . , rk, denotes

the distinct and ordered values of the explanatory variable rkij
, �k = ( k1

, . . . , rk)
>

is an (rk ⇥ 1) vector of parameters with  kl
= �k(r0kl

), for l = 1, . . . , rk, eEi = F iE and

"i = ("i1, . . . , "mi)
> is an (mi⇥1) vector of within-cluster errors. A compact way of writing

model given in Equation (2) is formulated as

y = eZ e↵+fN1�1 + · · ·+fN s�s + eE� + ", (3)

where y = (y>
1
, . . . ,y>

n )
>, eZ, fNk, eE and " similarly.
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2.2 Doubly penalized likelihood function

Consider the model given by Equation (2) and assume that "i ⇠ Elmi

�
0,⌃i

�
, with ⌃i =

⌃i(⌧ ) being a positive-definite matrix, with ⌧ = (⌧1, . . . , ⌧d)>. Thus, yi ⇠ Elmi

�
µi,⌃i

�
,

with µi = eZie↵+
Ps

k=1
fNki�k + eEi�, and density function stated as

f(yi) = |⌃i|�1/2 h(ui), i = 1, . . . , n, (4)

where ui = "
>
i ⌃

�1

i "i is the Mahalanobis distance, "i = yi � µi, and h is a function of
R ! [0,1] known as the density generator function (Fang et al., 1990). Then, the log-
likelihood function of the model given in Equation (4) for ✓ = (e↵>,�>

1
, . . . ,�>

s , �
>, ⌧>)>

is given by

L(✓) =
nX

i=1

Li(✓),

where Li(✓) = �(1/2) log(|⌃i|) + log(h(ui)) represents the individual contribution of the
ith observation. Since the functions �k belong to the infinite dimensional space and are
considered parameters with respect to the expected value of yi, some restricted subspace
should be defined for the nonparametric functions to ensure identifiability of the parameters
associated with model. Therefore, we assume that the functions �k (which are absolutely
continuous) belong to the Sobolev function space stated as

W(ı)
2

= {�k: �k,�
(1)

k , . . . ,�(ı�1)

k ,�(ı)k 2 L2[ak, bk]} .

In addition, we assume that g belong to the functions space whose partial derivatives
of total order m are in Hilbert space L2[Ed] of square integrable functions on Euclidean
d-space. Incorporating a penalty function over each function �k and g, we have that the
penalized log-likelihood function can be expressed as (Ibacache-Pulgar et al., 2013)

Lp(✓,�1, . . . ,�s,�g) = L(✓) +
sX

k=1

�⇤kJ(�k) + �⇤gJ
d
m(g), (5)

where J(�k) denotes the penalty functional over �k, Jd
m(g) is a penalty functional mea-

suring the wiggliness of g, and �⇤k = �⇤(�k) and �⇤g(�g) are constants that depends on the
smoothing parameters �k � 0 and �g � 0, respectively. In this paper, we consider as a
measure of the curvature of �k functions the squared norm expressed as

J(�k) = k�kk2 =
Z bk

ak

[�(ı)k (rk)]
2drk,

where �(ı)k (rk) = dı�(rk)/drkı, r0kl
2 [ak, bk], and

Jd
m(g) =

X

�1+···+�d=m

m!

�1! · · · �d!

Z
+1

�1
. . .

Z
+1

�1

✓
@mg

@t↵1

1
. . . @t↵d

d

◆2 dY

j=1

dtj .

It is important mention that for ı = 2, the estimation of �k leads to a natural cubic
spline with knots at the points r0kl

, for l = 1, . . . , rk. In addition, for d = 2,m = 2 and
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g = g(t1, t2), that is,

J(g) =

Z Z

R2

( 
@2g

@t2
1

!2

+ 2

 
@2g

@t1@t2

!2

+

 
@2g

@t2
2

!2)
dt1dt2,

the estimation of g leads to a natural thin-plate spline. According to Green and Silverman
(1994), we may express the penalty functional as

J(�k) = �
>
k Kk�k, J(g) = �

>
E�,

where Kk is an (qk ⇥ qk) non-negative definite smoothing matrix associated with the kth
explanatory variable that depends only on the knots. Then, if we consider �⇤k = ��k/2 and
�⇤g = ��g/2, the penalized log-likelihood function given in Equation (5) can be expressed
as

Lp(✓,�) = L(✓)�
sX

k=1

�k
2
�
>
k Kk�k �

�g
2
�
>
E�, (6)

where � = (�1, . . . ,�s,�g)> denotes an ((s+ 1)⇥ 1) vector of smoothing parameters that
controls the tradeo↵ between goodness of fit and the smoothness estimated functions. Note
that the first term in the right-hand side of Equation (6) measures the goodness of fit while
the second and third terms penalizes the roughness of each �k and g with a fixed parameter
�k and �g, respectively. It should be noted that the choice of such parameters is crucial
in the estimation process, since they controls the tradeo↵ between goodness of fit and the
smoothness (regularity) estimated function. A more extensive discussion on the methods
of selecting such parameters is presented later.

3. Parameters estimation

The estimation problem in the context of TPSPVCM under elliptical distributions has not
been discussed in the literature. However, several authors have considered this problem
for some specific cases. For example, in the context of varying-coe�cient model, Cai et al.
(2000) estimated the coe�cient functions based on local polynomial regression technique
and proposed a method that involves solving hundreds of local likelihood equations through
a one-one-step Newton-Raphson. Chiang et al. (2001) derived a componentwise smoothing
spline procedure for the estimation of coe�cient curves in a varying-coe�cient model with
repeatedly measured dependent variables; see also Eubank et al. (2004). Krafty et al. (2008)
developed an estimation procedure of the coe�cient functions when the within-subject
covariance is unknown considering the criterion of iterative reweighted least squares. Wang
et al. (2009) proposed an estimation method based on local ranks which is more e�cient
and robust compared to other methods such as local linear least squares method. Liu and
Li (2015) estimated the coe�cient curves in a varying-coe�cient model for longitudinal
data by using local polynomial smoothing method and showed that the resulting estimator
is asymptotically more e�cient than the ones which ignore the within-subject correlation
structure. In this paper we propose to estimate the model parameters based on the work
proposed by Ibacache-Pulgar and Reyes (2018), which consider to estimate the coe�cient
curves based on penalized likelihood criterion and smoothing spline.
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3.1 Estimation of e↵,�1, . . . ,�s, �

To estimate the parameters e↵,�1, . . . ,�s, � and ⌧ we propose to maximize the double
penalized log-likelihood function assuming � fixed, that is,

max
e↵,�1,...,�s,�,⌧

Lp(✓,�) = max
e↵,�1,...,�s,�,⌧

Lp(e↵,�1, . . . ,�s, �, ⌧ ,�).

This procedure can be solved using the Fisher scoring algorithm (Ibacache-Pulgar and
Reyes, 2018) stated as
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, (7)

where �0 = e↵, fN0 = eZ, ⌘(u) = µ+W
⇤�1

W v(y � µ)
��
✓(u) and S

(u)
k = Sk

��
✓(u) , with

S
(u)
k =

8
><

>:

(fN
>
0 W

⇤fN 0)�1fN
>
0 W

⇤
��
✓(u) , k = 0,

(fN
>
k W

⇤fNk + �kKk)�1fN
>
k W

⇤, k = 1, . . . , s,

and

S
(u)
� = (eE

>
W

⇤ eE + �g eE)�1 eE
>
W

⇤,

where W
⇤ and W v are defined in the appendix. Then, the back-fitting (Gauss-Seidel)

iterations that are used to solve the system stated in Equation (7) take the form

�
(u+1)

k = S
(u)
k

✓
⌘
(u) �

sX

l=0,l 6=k

fN l�
(u)
l � eE�

(u)

◆
, k = 0, 1, . . . , s, (8)

�
(u+1) = S

(u)
�

✓
⌘
(u) �

sX

l=0

fN l�
(u)
l

◆
. (9)

From the convergence of the iterative process given in Equation (8), we obtain the maxi-
mum double penalized likelihood estimator (MDPLE) of �k and �, which leads to a natural
cubic spline estimate for �k (k = 1, . . . , s).
It is important to note that in the iterative process above the parameter estimates

depend on the smoothing matrices Sk and S�, the modified variable ⌘ and the partial
residuals; see Equation 8. In addition, the weights vi have an influence on the estimates
of �k, for k = 0, 1, . . . , s, and �. In particular, it can be shown that for the Student-t and

power exponential distributions, for example, the current weight v(r)i =vi
��
✓(r) is inversely

proportional to the Mahalanobis distance between the observed value yi and its current

predicted value µ
(r)
i =µi

��
✓(r) , so that outlying observations tend to have small weights in

the estimation process.
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3.2 Estimation of ⌧

Regarding the MDPLE of ⌧ , this can be obtained using the Fisher scoring algorithm
formulated as

⌧
(u+1) = ⌧

(u) � E

(
@2Lp(✓,�)

@⌧@⌧>

)�1

@Lp(✓,�)

@⌧

���
✓(u)

. (10)

An iterative process to solve Equations (8) and (10) simultaneously is described in the
appendix.

3.3 Estimation of the surface

In Section 2, we represent the surface g as a linear combination of the coe�cient vectors �
and a. Considering the MDPLEs obtained through the iterative process described above,
that is, b� and ba, we have that the MDPLE, bg, can be obtained as

bg = Eb� + T
>ba. (11)

Consequently, the estimator of the surface g is a natural thin-plate spline. Details of the
conditions that guarantee this result are given, for example, in Green and Silverman (1994).

3.4 A conditional explicit solution

Note that �|, for | = 0, 1, . . . , s, and � can be estimated through the solutions to the set
of normal equations (Buja et al., 1989; Opsomer and Ruppert, 1999) derived from double
penalized log-likelihood function. Indeed, taking partial derivatives of Equation (6) with
respect to the parameter �0,�1, . . . ,�s, � and to equating zero, we obtain

Z
>
W v " = 0,

eTW v " = 0,

fN
>
1 W v "� �1K1�1 = 0,

...

fN
>
s W v "� �1Ks�s = 0,

eEW v "� �gE� = 0.

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

(12)

From Equation (12) it is possible, at least conceptually, to derive an explicit expression for

the estimates b�| (| = 0, 1, . . . , s) and � under some assumptions. For simplicity of notation
consider �s+1 = �, Ss+1 = S� and p0 = p+ 2, and assume �, W v and W

⇤ fixed, we can
write the estimating equation system given in Equation (12) as

0

BBBBBB@

Ip0 S0
fN1 . . . S0

fN s S0
eE

S1
fN0 Ir1 . . . S1

fN s S1
eE

...
...

. . .
...

...

Ss
fN0 Ss

fN1 . . . Irs Ss
eE

Ss+1
fN0 Ss+1

fN1 . . . Ss+1
fN s In

1

CCCCCCA

0

BBBBB@

�0

�1

...
�s

�s+1

1

CCCCCA
=

0

BBBBB@

S0

S1

...
Ss

Ss+1

1

CCCCCA
y .



212 Moraga et al.

In practice, this system of equations is solved iteratively through a backfitting algorithm,
and its backfitting estimators converge to the solution (Buja et al., 1989) stated as
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if the inverse ofM exists. Consequently, the backfitting estimator for b�| (| = 0, 1, . . . , s+1)
can be obtained directly as (Opsomer and Ruppert, 1999)

b�| = H|y, | = 0, 1, . . . , s+ 1, (13)

where H| = E|M
�1

S is the smoother matrix obtained when fitting by smoothing spline
the |th explanatory variable only, with E| being a partitioned matrix given by

E| =

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

⇣
I(p0⇥p0)0(p0⇥r1) . . .0(p0⇥rs)0(p0⇥n)

⌘
, | = 0,

⇣
0(r1⇥p0)I(r1⇥r1) . . .0(r1⇥rs)0(r1⇥n)

⌘
, | = 1,

...
...⇣

0(rs⇥p0)0(rs⇥r1) . . . I(rs⇥rs)I(rs⇥n)

⌘
, | = s,

⇣
0(n⇥p0)0(n⇥r1) . . . I(n⇥rs)I(n⇥n)

⌘
, | = s+ 1 .

The direct calculation of the MDPLEs from Equation (13) is rarely used in practice,

because the backfitting algorithm is more e�cient for obtaining b�|; it does not require
high-dimensional matrices and their inverses. However, the above expressions can be useful
if we wish to study some theoretical properties of the MDPLEs and carry out a diagnostic
analysis based on the hat matrix associated with the model fit. Some closed expressions
for the estimators in the context of the semiparametric additive models can be found, for
example, in Ibacache-Pulgar et al. (2013).

3.5 Estimation of the standard errors

We consider in this section the problem of how to derive the variance-covariance ma-
trix of the MDPLE ✓. According to Segal et al. (1994), the variance estimates for the
MDPLEs developed by Wahba (1983) and Silverman (1985), under the Bayesian context,
correspond to the inverse of the observed information matrix obtained by treating the pe-
nalized likelihood as a usual likelihood. Therefore, if we obtain the MDPLE of ✓ through
the Fisher scoring algorithm, it is reasonable to derive the variance-covariance matrix by
using the inverse of the penalized Fisher information matrix. Thus, the asymptotic vari-
ance–covariance matrix of b✓ can be obtained from the inverse of the expected information
matrix Ip defined in the appendix, that is,

dCovasymptotic(b✓) ⇡ I
�1
p (b✓). (14)
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By using variance-covariance matrix given in Equation (14) we can construct an approx-
imate pointwise standard error band (SEB) for �k that allows us to assess how accurate

the estimator c�k at di↵erent locations within the range of interest. For example, we can
consider the approximate pointwise SEB given by

SEBapprox(�k(r
0

kl
)) = b�k(r0kl

)± 2
q
dVar(b�k(r0kl

)) ,

where Var(b�k(rkl
)) is the lth principal diagonal element of the matrix given in Equation

(14), for l = 1, . . . , rk.
Note from Equations (13) and (11) that it is possible to obtain the covariance matrix

for �| (| = 0, . . . , s+ 1) and bg, respectively. Indeed,

dCov(b�|) = H|
\Cov(y)H>

|

and

dCov(bg) = Hg
\Cov(y)H>

g ,

whereHg = EHs+1+T
>
H

0, withHs+1 defined above andH
0 denoting the block of matrix

H0 corresponding to vector a, Cov(y) = blockdiag1in

�
⇠i⌃i

�
and ⇠i > 0 is a quantity

that may be obtained from the derivatives of the characteristic function associated with
elliptical distributions (Fang et al., 1990).

3.6 Effective degrees of freedom

In general, in the literature concerning semiparametric models there are di↵erent defini-
tions for the degrees of freedom (DF), depending on the context in which they are used.
Here, the DF associated with the smooth varying-coe�cient functions is defined as (Hastie
and Tibshirani, 1990)

DF(�k) = tr
�fNkSk

 

= tr
n
fN

>
k W

⇤fNk

⇣
fN

>
k W

⇤fNk + �kKk

⌘�1o
.

In practice, it is desirable to have an approximation to this quantity. Let QNk
=

fN
>
k W

⇤fNk and Q�k
= �kKk. Since W

⇤ > 0 and rank(fN
>
k )  rk, then QfNk

� 0. There-

fore, there exists a matrix Q
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fNk

� 0 such that QfNk
= Q

1/2
fNk

Q
1/2
fNk

. Thus, we can write

tr
�fNkSk

 
= tr

�eSk

 
as (Eilers and Marx, 1996)

tr
�eSk

 
=

rkX

j=1

1

1 + �k`j
,

where `j , for j = 1, . . . , rk, are the eigenvalues of the matrix Q
�1/2
fNk

Q�k
Q

�1/2
fNk

, for k =

1, . . . , s. Analogously to the selection of DFs associated with smooth varying-coe�cient
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functions, the DFs associated with smooth surface is given by

DF(�g) = tr
�eES�

 

= tr
n
eE
⇣
eE
>
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⇤ eE + �g eE
⌘�1 eE

>
W

⇤
o
.

Thus, considering Q eE = eE
>
W

⇤ eE and Q�g
= �gE, and since W

⇤ > 0 and rank(eE
>
) 

n, then Q eE � 0. Therefore, there exists a matrix Q
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eE

� 0 such that Q eE = Q
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eE
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.

Thus, we can write tr
�eES�
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�eS�

 
as
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1
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,

where `j , for j = 1, . . . , n, are the eigenvalues of the matrixQ
�1/2
eE

Q�g
Q

�1/2
eE

. It is important

to note that both DF(�k) and DF(�g) are inversely proportional to �k and �g, respectively.
Alternatively, we can consider the backfitting estimators defined in Equation (13) and thus
calculate the DFs associated with the smooth varying-coe�cient functions as

DF(�|) = tr
�
H|

 
, | = 1, . . . , s,

with H| defined above. Similarly, the DFs associated with the smooth surface can be

calculated from the representation bg = Eb� + T
>ba = Hgy, whit Hg = EHs+1 + T

>
H

0,
Hs+1, H0 and y defined in the previous sections. Thus, the DFs are given by

DF(�g) = tr
�
Hg

 
.

3.7 Selecting an appropriate model

Under the elliptical TPSPVCM, we have a total of 2 + p + d + DF(�) parameters to be
estimated, with DF(�) = DF(�g) +

Ps
k=1

DF(�k) denoting approximately the number of
e↵ective parameters involved in modeling of the smooth varying-coe�cient functions and
surface. In this case, the Akaike information criterion (AIC) (Akaike, 1973) or the Bayesian
information criterion (BIC) (Schwarz et al., 1978) can be used for selecting an appropriate
model. The idea is to minimize the function

AIC(�) = �2Lp(b✓,�) + 2
h
2 + p+ d+DF(�)

i
,

where Lp(b✓,�) denotes the penalized log-likelihood function available at b✓ for a fixed �. It
is important to mention that AIC is based on information theory and is useful for selecting
an appropriate model given data with adequate sample size. An alternative version of the
AIC, denoted by AICc, was proposed by Hurvich et al. (1998) in the context of paramet-
ric linear regression and autoregressive time series. Recently, Relvas (2016) adapted this
criterion for the partially linear model with first-order autoregressive symmetric errors.
Considering such proposals, we propose the AICc as an alternative for the selection of
models under the elliptical TPSPVCM, which is given by

AICc(�) = log

(
k
q
dW v(y � by) k2

n

)
+

2
h
tr(\H(�)) + 1

i

n� tr(\H(�))� 2
+ 1,
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where by = \H(�)y and \H(�) corresponds to the smoother matrix, which is equivalent
to the hat matrix defined in the class of parametric regression models. If we consider the
matrix representation given in Equation (3) of our model and the backfitting estimators

given in Equation (13), it is possible to obtain a closed expression for the matrix \H(�).
Indeed, assuming that �, W ⇤ and W v are fixed, we have that

H(�) =
s+1X

|=0

eH|, (15)

with eH| = N |H|. Note that the principal diagonal elements of H(�) obtained in the last
iteration of the iterative process, denoted here by hii(�), are called leverage points and
play an important role in the construction of diagnostic techniques.

3.8 Smoothing parameters

The determination of the parameters �k and �g is a crucial part in the estimation process
and di↵erent choice methods are available in the literature. For example, it is usual to
consider the cross-validation method or the generalized cross-validation method (Craven
and Wahba, 1978). Following Relvas (2016), an alternative to select smoothing parameters
under the elliptical TPSPVCM is to consider a generalized cross-validation method defined
by

GCV(�) =
k
q
dW v(y � by) k2

[1� n�1tr(\H(�))]
.

In this case, � should be obtained by minimizing GCV(�) for a grid of � values. Alter-
natively, these parameters may be selected by applying the AIC. In particular, we can
consider the AIC(�) or AICc(�) criteria defined in the previous section, and use the e↵ec-
tive DFs involved in nonparametric modeling to select appropriate smoothing parameters
(Ibacache-Pulgar et al., 2013).

3.9 Residual Analysis

We propose a standardized residual which can be used to detect error distribution mis-
specification as well as the presence of outlying observations. It follows from Equation (15)
that the residuals vector is the di↵erence between the observed data vector and estimated
mean vector, that is,

br = y � by =
⇥
I �H(�)

⇤
y . (16)

Since that H(�) is not a projection operator, this is, H2(�) 6= H(�), we have that the
approximate variance of the residual vector is given by

Varapprox(br) =
⇥
I �H(�)

⇤
Cov(y)

⇥
I �H(�)

⇤>
,
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where Cov(y)=blockdiag1in

�
⇠i⌃i

�
. Then, we have that the lth standardized residual

takes the form

brl =
d
>
l

⇥
I �H(�)

⇤
y

q
d
>
l
dVarapprox(br)dl

,

where dVarapprox(br)=Varapprox(br)
��
b✓, whit dl denoting an (M ⇥ 1) vector with 1 at the lth

position and 0 elsewhere, for l = 1, . . . ,M . Further details on the analysis of residuals in
the semiparametric context can be found, for example, in Ibacache-Pulgar et al. (2013).

4. Application

In this section, we illustrate the applicability of the TPSPVCM through an application
based on a set of real data. For comparative purposes, we consider random errors whose
distribution belongs to the symmetric class; specifically, the normal and Student-t distri-
butions.

4.1 Data description

In our application, we consider the house prices of Boston area reported by Harrison and
Rubinfeld (1978) and analyzed by many authors; see, for example, Belsley et al. (1980),
Ibacache-Pulgar et al. (2013) and, more recently, Ibacache-Pulgar and Reyes (2018). This
data set contains a sample of 506 observations collected by the U.S Census Service con-
cerning housing in the area of Boston. The variable LMV (logarithm of the median house
price in USD 1000) is related with 14 explanatory variables, 6 of them are defined from
census track and the remaining variables are defined for clusters. For simplicity, we con-
sider four explanatory variables: LSTAT (logarithm of the proportion of the population
that is lower status, ROOM (average number of rooms per dwelling), CRIM (per capita
crime rate by town), TAX (full-value property-tax rate per USD 10000), and the geo-
graphical coordinates expressed in longitude and latitude. Similar to what observed by
Ibacache-Pulgar and Reyes (2018), we see in Figure 1(a) that the relationship between
LMV and the explanatory variable TAX is linear, whereas the relationship between LMV
and LSTAT appear in nonlinear ways (Figure 1(b)). Also, Figures 1(c) and 1(d) suggests
that the explanatory variables ROOM and CRIM might be interacting with the variable
LSTAT in nonlinear fashion. Figure 2 represents the spatial distribution of the LMV vari-
able. From Figure 2 (right) we note that the lowest prices are concentrated between the
latitudes 42.2 and 42.25 and longitudes between -71.0 and -71.1, while the highest prices
are in the north part of the town. It is important to point out that Ibacache-Pulgar and
Reyes (2018) analyzes this same set of variables using a partially varying-coe�cient model
but without considering the e↵ect of the geographic coordinates associated with each of the
households surveyed. We believe that including the e↵ect of geographical coordinates can
improve the fit of the model considered by Ibacache-Pulgar and Reyes (2018) in predictive
terms, precision of the estimates and goodness of fit.

4.2 Fitting the models

Considering the analysis described above, we suggest the application of a partially varying-
coe�cient model that including the spatial variability. Specifically, we assume the following
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Figure 1. Three-dimensional graphics for house prices data. CONS denote an auxiliar variable defined as an (n⇥1)

ones vector.
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Figure 2. (Left) Google map of the Boston province. Red circles indicate the spatial distribution of the house prices

data. (Right) Distributions of the LMV respect the longitude and the latitude.

thin-plate spline partially varying-coe�cient model:

yi = ↵0 + ↵1 zi+�1(ri)x
(1)

i +�2(ri)x
(2)

i +g(ti) + "i, i = 1, . . . , 506, (17)

where yi denotes the value of LMV in USD 1000, zi the value of TAX, x(1)i the value of

CRIM, x(2)i the value of ROOM, ↵ = (↵0,↵1)> the parameters vector associated with
parametric component, ri the value of LSTAT from the ith experimental unit, �k, for
k = 1, 2, are unknown smooth functions, g is a smooth surface that depends of the vector
of coordinates ti = (t1i , t2i) 2 R2, and "i are independent random errors that follow a
symmetric distribution whit location parameter 0, scale parameter � and density generator
function h. We compare in the sequel the fits based on normal and Student-t random errors.
The DFs (⌫) for the Student-t model was selected by the AIC, that is, by defining a grid
of values for ⌫ and choosing the one that minimize the AIC. Figure 3 shows the graph of
AIC values for di↵erent DFs. We can see that this criterion is minimized for a value of
⌫ = 4.
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The MDPLE estimates, estimated standard errors and the corresponding AIC for the
model of Equation (17) under normal and Student-t distributions are presented in Table 1.
Comparing these results, we may notice a similarity between the estimates b↵ under both
models, but the standard error for b↵1 appears to be smaller under the Student-t model.
Also, it can be seen that the scale parameters are di↵erent for the two fitted models, but
the estimates are not comparable since they are on di↵erent scales. Additionally, we may
notice that the AIC value under the Student-t model is smaller than the one under the
normal model, indicating that the models with longer-than-normal tails seem to better fit
the data, a fact that is also confirmed through the theoretical quantile versus empirical
quantile (QQ) plots presented in Figure 4.

Table 1. Maximum penalized likelihood estimates, estimated standard errors (SE) and AIC values under
normal and Student-t (⌫ = 4) models fitted to house prices data.

Normal Student-t
Estimate SE Estimate SE

↵1 3.0668 0.1145 3.0637 0.0964
↵2 -0.0003 0.0001 -0.0002 0.0001
� 0.0344 0.0022 0.0172 0.0372

AIC -218.76 -274.65
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Figure 4. QQ plots fitted to house prices data: normal (a) and Student-t models with ⌫ = 4 DFs (b).
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The standarized residual plot provide in Figure 5 is used to verify if there are outlying
observations. In this case, the presence of some outlying observations for both models is
clearly observed. Figure 6 displays the graphics of the LMV versus the fitted LMV from
the two models. Although these plots indicate suitable fits for both models.
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Figure 5. Index plots of standardized residuals to house prices data: normal (a) and Student-t models with ⌫ = 4

DFs (b).
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Figure 6. Scatter plots LMV versus fitted LMV to house prices data: normal (a) and Student-t models with ⌫ = 4

DFs (b).

The estimated coe�cients functions �1 and �2 are computed using the smoothing pa-
rameters obtained by the method described in Subsection 3.8. Figures 7 and 8 show the
estimated coe�cient functions under both models and their corresponding approximate
standard error band (dashed curves). The figures suggest that the coe�cient curves vary
with the explanatory variable LSTAT. In addition, it can be seen that the functions esti-
mated under the normal model have a higher smoothness compared to those obtained from
the Student-t model. It is important to remember that in this work we have incorporated
the spatial variability of the data in the modeling process. Comparing with the results
obtained by Ibacache-Pulgar and Reyes (2018), we can notice that the TPSPVCM model
significantly improves the quality of the adjustment compared with the PVCM model. For
example, for normal TPSPVCM model, the AIC value is �218.7586, while that for nor-
mal PVCM model the AIC value is �139.4998. Analogously, under Student-t TPSPVCM
model with four DFs, the AIC value is �274.6546, while that under Student-t PVCM
model with five DFs, the AIC value is �188.3909. In addition, we can notice that for
the normal model, the estimated functions di↵er significantly, while under the Student-t
model, they retain the same tendency but with a greater degree of smoothness.
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Figure 7. Plots of estimated coe�cient function �1 for the house prices data and its approximate pointwise standard

error bands denoted by the dashed lines: Normal (a) and Student-t with ⌫ = 4 DFs (b) models.
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Figure 8. Plots of estimated coe�cient function �2 for the house prices data and its approximate pointwise standard

error bands denoted by the dashed lines: Normal (a) and Student-t with ⌫ = 4 DFs (b).

4.3 Robustness aspects of the MDPLEs

It is important to note that for univariate Student-t distribution the current weight

v(u)i = (⌫ + 1)/(⌫ + u(u)i ), with u(u)i = (yi�µ(u)
i )2/�(u), is inversely proportional to the

distance between the observed value yi and its current predicted value µ(u)
i , so that outly-

ing observations tend to have small weights in the estimation process. Therefore, we may
expected that the MDPLEs from the Student-t TPSPVCMs are less sensitive to outlying
observations than the MDPLEs from normal models. Figure 9 shows the plot between
the standardized residual defined in Equation (16) and estimated weights under Student-t
model. We can be seen that observation #411 has a very small residual and a high esti-
mated weight, but its removal from the data set did no generate significant changes in the
estimation of the parameters. For this reason the summary of the fit without this observa-
tion is omitted. Finally, it is important to note that the iterative process under Student-t
model generates a reduction in the weights associated with the observations detected as
discrepant. Hence such estimators present some characteristics of robustness similar to the
associated with the weight function described by Huber (1981).
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Figure 9. Plot of the standardized residual and estimated weights for the house prices data under Student-t model.

5. Concluding remarks

The elliptical thin-plate spline partially varying-coe�cient models proposed in this paper
have special characteristics compared to other types of models existing in the literature.
Specifically, these models allow describing the mean of the data in those cases in which
there are explanatory variables that are related to the response variable through a re-
gression structure that depends on a parametric component (usual linear predictor), a
non-parametric component (explanatory variables e↵ects in which the coe�cients are al-
lowed to vary as smooth functions of other variables) and a spatial component (thin-plate
spline). In addition, the distributional assumption established on random errors allows us
to model datasets in which the assumption of normality is not appropriate. We derive a
reweighed iterative process for obtaining the maximum doubly penalized likelihood esti-
mators based on the Score Fisher and back-fitting methods. Closed-form expressions are
obtained for the penalized observed and expected information matrices, and expressions
for the standard errors of the maximum doubly penalized likelihood estimators are also
available. We propose a way to estimate the smoothing parameters based on generalized
cross-validation and a method for the selection of models by using the AIC. A real dataset
previously analyzed under normal errors is reanalyzed under Student-t errors by includ-
ing a smoothing surface for the spatial variability. By comparing the AIC values of the
two models, the Student-t showed the better fitting. Thus, we can recommend Student-t
thin-plate spline partially varying-coe�cient models as an option to fit datasets with in-
dications of heavy tails. The computational implementation of all our results was carried
out in MATLAB software, and the codes can be requested from the authors to the email
german.ibacache@uv.cl.

Appendix

Here, we show the score function, the observed information matrix and the expected in-
formation matrix for the elliptical TPSPCVM base on the doubly penalized log-likelihood
function given in Equation (6).

Penalized score function

Let W v = blockdiag1in

�
viW i

�
, with W i = ⌃�1

i , vi = �2⇣h(ui), ⇣h(ui) =

d log h(ui)/dui, ⌃⇤
i = ⌃�1

i @⌃i/@`, ⌥ = blockdiag1in

�
⌥i

�
, with ⌥i =

mailto:german.ibacache@uv.cl
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vi⌃
�1

i (@⌃i/@`)⌃
�1

i . Assuming that Equation (6) is regular with respect to all elements of
✓, we have that the penalized score function of ✓ under elliptical TPSPVCM is given by

Up(✓) =
@Lp(✓,�)
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Penalized observed information matrix

For simplicity, let  i = 2 1i +  2i,  ⇤
i =  1i +  2i and  ⇤⇤

i =  1i + 2 2i, with
 1i = v
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i . In addition, let  = diag1in
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i . The Lp (p⇤ ⇥ p⇤) Hessian matrix under
elliptical TPSPVCM is defined as
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Penalized expected information matrix
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Following Lange et al. (1989), we have that the (j⇤, `⇤)-element of the matrix Ip for ith
cluster, with respect to the parameters ✓⇤j⇤ and ✓⇤`⇤ , can be obtained as
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After some algebraic manipulations we find that the Ip(✓) matrix have a block-diagonal
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Joint iterative process

Since parameters (e↵, �1, . . ., �s, �) and ⌧ are orthogonal, the estimation process is sim-
plified, so the we can consider the simultaneous estimation of (e↵, �1, . . ., �s, �) and
⌧ through process of two independent stages. Specifically, the solution of the estimating
equation system given in Equation (7) to obtain the MDPLE of ✓ may be attained by
iterating between a weighted back-fitting algorithm with weight matrix W

⇤ and a Fisher
score algorithm to obtain maximum likelihood estimation of the parameter ⌧ , which is
equivalent to the following iterative process:

(i) Initialize:

(a) Fitting a TPSPVCM under normal errors to get �(0)

| (| = 0, 1, . . . , s) and �0.
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(c) From the current value ✓
(0) = (�(0)

>

0
,�(0)

>

1
, . . . ,�(0)

>

s , �0, ⌧ (0))> obtaining

⌃(0)

i = ⌃i

��
✓(0) , W

⇤(0)

, v(0)i = vi
��
✓(0) and W

(0)

v = blockdiag1in

�
v(0)i W

(0)

i

�
,

with W
(0)

i = ⌃
(0)�1

i . Then, we obtain

⌘
(0) = µ

(0) +W
⇤(0)�1

W
(0)

v (y � µ
(0)),

S
(0)

0
= (fN

>
0 W

⇤(0)fN0)
�1fN

>
0 W

⇤(0)

,

S
(0)

k = (fN
>
k W

⇤(0)fNk + �kKk)
�1fN

>
k W

⇤(0)

, k = 1, . . . , s,

S
(0)

� = (eE
>
W

⇤(0) eE + �g eE)�1 eE
>
W

⇤(0)

.



Chilean Journal of Statistics 225

(ii) Step 1: Iterate repeatedly by cycling between the equations stated as
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(Hastie and Tibshirani, 1990).
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by using

⌧
(u+1) = ⌧

(u) � E

(
@2Lp(✓,�)

@⌧@⌧>

)�1

@Lp(✓,�)

@⌧

���
✓(u)

.

(iv) Iterating between steps (ii) and (iii) by replacing �
(0)

| , for | = 0, 1, . . . , s, �(0) and

⌧
(0) by �

(u+1)

| , �(u+1) and ⌧
(u+1), respectively, until convergence.
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Abstract

Count data emerge naturally within the biomedical and economic sciences, in engi-
neering and in industrial applications. The benchmark Poisson distribution is seldom
an appropriate statistical model for counts but none of the more flexible distributions
available are universally accepted as an alternative. Among such flexible models, the
class of weighted Poisson distributions has recently been studied in theoretical inves-
tigations but their application is still incipient. This article investigates a particular
weighted Poisson model, providing the associated statistical tools for analyzing count
data. We make comparisons with other flexible models using public available datasets.
For the weighted Poisson model under investigation, we have developed estimation by
maximum likelihood and method of moments, random number generation, visual tools
for univariate analysis and finally, regression modeling. Results indicate that weighted
Poisson distributions are very flexible and capable of modeling count responses in dif-
ferent scenarios.

Keywords: Generalized linear models · Overdispersion · Quasi-likelihood · Touchard
· Underdispersion

Mathematics Subject Classification: Primary MSC 62J12 · Secondary MSC
62Fxx

1. Introduction

The Poisson model is the default for analyzing statistically independent counts, such as
number of insurance claims and days of hospitalization, and it should provide an adequate
fit when data come from a population with mean equal to the variance (equidispersion).
However, count data often exhibit over or underdispersion and several distributions have
been proposed for modeling counts. The most documented alternatives to the Poisson distri-
bution are the quasi-Poisson (QP) model, the negative binomial (NB) and, to a lesser extent,
the generalized Poisson (GP) (Cameron and Trivedi, 1998; Hilbe, 2014). Less popular mod-
els include the Poisson-inverse Gaussian, the compound Poisson, the hyper Poisson, the
Poisson-Lindley, the Conway-Maxwell-Poisson (CMP) and the weighted Poisson (WP); see
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Matsushita et al. (2018) and references therein. More complex models include the Poisson-
Goncharov (Denuit, 1997), the Hinde-Demétrio family by Kokonendji et al. (2004) and a
four-parameter extension of the CMP by Chakraborty and Imoto (2016). It is a long, yet
incomplete, list and no single model dominates all others since there are multiple interre-
lated criteria for judging a given model. One might consider, in his own order of importance:
(i) the model’s ability to address varying levels in both directions of dispersion; (ii) math-
ematical and computational tractability; (iii) whether the model generalizes the Poisson;
(iv) if the model arises naturally in some observable process like natural phenomena or in
connection with a stochastic process of broad applicability; (v) if the model is a member of
the exponential family (EF); (vi) availability of estimation and visualization tools for data
analysis; (vii) availability of associated regression tools and interpretability of coe�cients;
(viii) applicability in a specific field (say, actuarial modeling of claim counts or econometric
modeling of health insurance, etc.) and (ix) applicability across many disciplines.

Theoretical aspects of WP distributions, covering much of (i)–(v), have been studied by
several authors (del Castillo and Pérez-Casany, 1998; del Castillo and Pérez-Casany, 2005;
Kokonendji et al., 2008; Matsushita et al., 2018). However, the statistical toolbox for WP
models still lacks several important tools. This paper focuses on a particular WP model
which we call the Touchard model introduced by del Castillo and Pérez-Casany (1998).
Ho et al. (ress) present simulation showing the e�ect of misspecifying the model (Poisson
instead of Touchard) in the context of control charts.

In Section 2 we describe the methodological background of WP distributions including
the Touchard. New results for the Touchard model are given in the Appendix A-D. Section
3 develops tools for univariate estimation, inference and visualization. Finally, regression
modeling is addressed in Section 4 where we develop estimation, inference and diagnostic
tools similar to those in generalized linear models (GLMs). Section 5 concludes the paper.

All computations and graphics presented here were done in the R system and all the
required code will be included in the next release of the publicly available package (Andrade
and Oliveira, 2019) which, so far, only deals with fixed a.

2. Weighted Poisson models

Weighted distributions date back to Fisher (1934) and have been used to adjust a given
benchmark model relative to the way the data are ascertained (Rao, 1985). The adjusted
distribution is used to model observational data recorded without a suitable sampling frame
including situations such as size-biased sampling, damage models, nonresponse and visibility
bias (Patil and Rao, 1978). Under idealized conditions, an observed value y would be a
realization of a benchmark random variable Y ú. (For instance, one can think that the number
of insurance claims would be Poisson distributed if there were no hunger for bonus (deliberate
non-reporting of accidents to save bonus on next premium), if all drivers were insured (no
selection bias), if all (insured) drivers were subjected to the same routes and same driving
distances, etc. However, not only policies are not randomly drawn with a proper sampling
frame but also the conditions just listed are not met. The result is a distribution of claims
biased towards 0 and 1.) However, the benchmark may need to be adjusted so that its
support is reweighted according to the belief that when the event Y = y is realized, the
probability of ascertaining it is w(y). Thus, the realization y is, in fact, from a weighted
version Y with probability density function f(y) = w(y)fú(y)/· , where fú is the benchmark
density and · is the normalization constant.

When modeling counts, the benchmark density is often Poisson, fú(y) = e
≠⁄⁄y/y!, leading

to the general class of WP distributions which we denote by WP(⁄; w(y)). The model WP(⁄;
y) is known as the size-biased Poisson model and its distribution is simply 1 + Poi(⁄).
Another important model is WP(⁄; (y!)‹), for ‹ > 0, which is the CMP distribution.
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We also note that important models such as the NB and the GP are not members of
the WP(⁄; w(y)) class. Interestingly, the NB distribution is a Poisson-Gamma mixture, in
which the parameter space of the Poisson is weighted, rather than its support.

A family within the WP(⁄; w(y)) class is obtained with w(y) = exp[”t(y)], where t
is a convex function and ” œ R provides overdispersion (” < 0), Poissoness (” = 0) or
underdispersion (” > 0). We denote this family by WP(⁄, ”; t). Kokonendji et al. (2008)
showed, among other theoretical aspects, that such WP models are pointwise dual in the
sense that the entire range of ” is guaranteed to account for either over or underdispersion
of the same magnitude.

An important member in the WP(⁄, ”; t(y)) family is the one with t(y) = log(y + a), for
a Ø 0 (del Castillo and Pérez-Casany, 1998). Also, del Castillo and Pérez-Casany (2005)
fitted this model (with fixed a = 7) to the counts of car accidents in a year among 9461
drivers. We have fitted the WP(⁄, ”; log(y + a)) model to di�erent datasets and results
indicate that it is a strong competitor for both under and overdispersed cases; see Table 2.

2.1 The Touchard distribution redefined

The WP(⁄, ”; log(y +1)) model has been recently studied by Matsushita et al. (2018) where
the choice of a = 1 was inspired by the Touchard polynomials, rather than by weighting
schemes. Those authors have labeled it the Touchard distribution, which we redefine. Note
that del Castillo and Pérez-Casany (1998) denoted the WP(⁄, ”; log(y+a)) model by WPDa,
since a is a fixed tuning parameter. The resulting two-parameter model is more tractable
both mathematically and computationally but it is not justifiable for actual data analysis
across di�erent disciplines. In order to distinguish the WPDa model from the general case,
which allows for choices of w(y) other than (y +a)”, and also to avoid confusion with the use
of weights (in the context of regression), we hereafter call the WP(⁄, ”; log(y + a)) model
the Touchard model and denote Y ≥ Tou(⁄, ”, a). Its probability density function is given
by

f(y, ⁄, ”, a) = ⁄y(y + a)”

y!·(⁄, ”, a) , y = 0, 1, . . . , (1)

with a, ⁄ > 0 and ” œ R. Note that if ” ”= 0 then a = 0 can be considered, in which case
P(Y = 0) = 0. We do not consider this case here.

Numerical evaluation of the normalization constant ·(⁄, ”, a) can be done by truncation
of its defining sum. The number of terms required to reach a given precision depends on the
parameter values. Even though 50 terms su�ce in most cases (Matsushita et al., 2018, Table
1), · can be computed with a pre-specified relative precision, without fixing the truncation
point, using a recursive expression similar to the formula given in (10) of Matsushita et al.
(2018); see also Appendix A.

The values of a and ” jointly determine the shape of the distribution. With ” < 0, the
smaller a is, the more the distribution is inflated at zero and the resulting model becomes
an alternative to zero-inflated and hurdle models. Larger values of a provide milder zero
inflation for given ”. With ” > 0, the smaller a is, the more the distribution is deflated
at zero relative to the Poisson. Larger values of a descrease the zero deflation, making the
distribution closer to Poisson. Figure 1 illustrates these facts for some selected values of the
parameters.
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From now on, we define ·j(⁄, ”, a) = ·(⁄, ” + j, a)/·(⁄, ”, a). Statistical moments mk =
E(Y k) are given by (del Castillo and Pérez-Casany, 1998)

mk =
kÿ

j=0

A
k

j

B

(≠1)k≠j·j(⁄, ”, a), (2)

yielding the mean given by

µ = ·1(⁄, ”, a) ≠ a, (3)

and the variance stated as

‡2 = ·2(⁄, ”, a) ≠ · 2
1 (⁄, ”, a). (4)

Touchard quantiles may be calculated with an initial approximation based on the Cornish-
Fisher expansion (using up to m3) followed by a search in the appropriate direction as
implemented in Andrade and Oliveira (2019).
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Figure 1. Examples of WP (Touchard) probabilities with ⁄ = 1, ” = ±3 and a = 0.5, 1, 5 and 10. Circles represent
Poisson probabilities with ⁄ = 1.

Exact (or approximate) results for the variance as a function of the mean are given in
Table 1 for four models of interest besides the Touchard: the two usual benchmarks, QP
and NB, and the CMP and GP which are well documented in the literature and which have
been implemented for data analysis in the R system, including regression. The QP, NB and
GP exhibit polynomial relations between their means and variances with linear, quadratic
and cubic relations, respectively. As opposed to these models, the di�erence between the
mean and the variance in the Touchard and in the CMP models are constant for large
enough µ. Figure 2 illustrates the mean-variance relation for the Touchard model with
di�erent parameter values. The larger |”|, the further away the curve (µ, ‡2) is from the 45¶

diagonal (equidispersion). Larger values of a bring the curve closer to the diagonal and it
also decreases the initial curvature. The curvature is a lot more sensible to the value of a
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and the magnitude of ” in the overdispersed cases (” < 0). Therefore, it must be noted that
even though the mean and variance are not explicit parameters, the Touchard model can
be implicitly reparametrized by the mean and the variance (del Castillo and Pérez-Casany,
2005).

Table 1. Mean-variance relations for selected models.
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Figure 2. Variance as a function of the mean for Touchard models with arbitrary parameter values. Dotted line on
diagonal represents the Poisson ‡2 = µ.

3. Estimation, testing and visualization

Here, we describe estimation and testing for the Touchard parameters via maximum likeli-
hood (ML) method of moment method (MM). Conditions for consistency and normal-based
large-sample inference require the support to be independent of the parameters, identifia-
bility and bounds on third derivatives (Lehmann and Casella, 1998, Sec. 6.5). We provide a
proof of identifiability in Appendix B. With a fixed, the Touchard distribution is a member
of the two-dimensional EF with su�cient statistics Y and Z = log(Y + a) and natural
parameters log(⁄) and ”. For instance, we already know that ˆ3 log(f(y))/(ˆ⁄2ˆ”) must be
bounded by some M(Y ) with finite expectation. Therefore, we only need to check third-
order derivatives of the log-likelihood involving a. These derivates involve (finite) moments
of Y , Z and (Y + a)≠k, for k Æ 3, and therefore satisfy the necessary conditions.
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3.1 Maximum likelihood estimation

Given a random sample (Y1, . . . , Yn) with observations (y1, . . . , yn), the ML estimates ‚⁄, ‚”
and ‚a must satisfy the conditions stated as

Y
__]

__[

µ(‚⁄, ‚”, ‚a) ≠ ȳ = 0,

Ÿ(‚⁄, ‚”, ‚a) ≠ z̄ = 0,

◊1(‚⁄, ‚”, ‚a) ≠ w̄1 = 0,

where Ÿ(⁄, ”, a) © E(Z), Wj = (Y + a)≠j and ◊j(⁄, ”, a) © E(Wj).
Using results from Appendix C, it can be shown that the expected Fisher information is

given by

I(⁄, ”, a) = n

Q

cccca

‡2

⁄2
Cov(Y, Z)

⁄

” Cov(Y, W1)
⁄

Var(Z) ” Cov(Z, W1)

”2 Var(W1) + ”(W2 ≠ ◊2)

R

ddddb
.

Standard errors (SEs) of ML estimators are computed from the diagonal of I≠1(‚⁄, ‚”, ‚a) or
from the inverse of observed Fisher information which is often produced by (Newton-type)
numerical maximization routines.

3.2 Method of moments

Based on the expression given in Equation (2), the moment conditions for the MM estimators
are expressed as

Y
__]

__[

µ(‚⁄, ‚”, ‚a) ≠ ȳ = 0,

m2(‚⁄, ‚”, ‚a) ≠ 1
n

q
y2

i = 0,

m3(‚⁄, ‚”, ‚a) ≠ 1
n

q
y3

i = 0.

SEs are obtained from the diagonal of a sandwich estimate of the asymptotic variance,
n ‚G€„V ≠1 ‚G≠1, where ‚G is a consistent estimator of the expected value of the gradient
associated with the moment conditions and „V consistently estimates the associated expected
Hessian (Cameron and Trivedi, 1998, Sec. 2.8.4).

3.3 Score test

A score test for H0: ” = 0 is based on fitting the Poisson model, which is the distribution
under the null hypothesis. Define ‹(⁄, ”, a) © Var(Z) and fl(⁄, ”, a) © Corr(Y, Z). Evaluation
under H0, in which case ‚⁄ = ȳ and ” = 0, is represented by a subscript zero (0). The resulting
test statistic is stated as

S = n(z̄ ≠ Ÿ0)2

‹0(1 ≠ fl2
0) , (5)

which is asymptotically ‰2(1) distributed under H0. We do not provide an explicit proof
since this is a special case of the general result derived at the end of Section 4.1.
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3.4 Visualization

Basic visualization of an observed versus a theoretical (or fitted) distribution of counts can
be readily achieved by barplots or, preferably, in the form of a rootogram. The rootogram
can be adapted to regression settings as seen in Section 4.3. Another visualization aimed at
assessing the goodness of fit is the Touchardness plot which compares deviations between
observed data and the Touchard model. These two plots are now described.

A clever visualization tool for count data is the Tukey hanging rootogram. It is a variation
of the histogram with the vertical axis showing the square root of the frequencies to de-
emphasize outlying values and right skewness (common for count data). The usual bars
“hang” from the fitted values so that the discrepancies are visualized against a straight
line (the axis) rather than against a curve. The bars are drawn from

Ô
‚y to

Ô
‚y ≠ Ô

y. A
generalization of the rootogram for regression is shown in Figure 4 (right) for counts of crab
satellites predicted by color and weight.

Hoaglin and Tukey (2009) devised a goodness-of-fit plot for count data based on the
count metameter. The key idea is to compare the observed frequency of count y, denoted
hereafter by ny, with the expected frequency from a given model. Assuming a Tou(⁄, ”, a)
model and n data points, the count metameter, Ï(ny), is obtained through the equation
ny = nf(y, ⁄, ”, a) which yields the expression given by

Ï(ny) © log
3

y!ny

n(y + a)”

4
= ≠ log[·(⁄, ”, a)] + log(⁄)y. (6)

Deviations between the observed counts and the theoretical model are assessed by examining
the relation Ï(ny) ◊ y. If the points (Ï(ny), y) follow a straight line with exp(slope) close
to ‚⁄, we have indication that the Touchard model is appropriate. In practice, ” is fixed at
‚” in order to compute Ï(ny) and the intercept and slope are obtained by least squares. In
addition, Hoaglin and Tukey (2009) proposed an approximate confidence interval for the
logarithm of the theoretical frequency. Figure 3 shows the Touchardness plot for data on
counts of crab satellites, indicating an adequate fit.

We can obtain starting values (⁄0, ”0, a0) for numerical procedures associated with ML
and MM based on Equation (6). Consider a in a grid, say a œ {0.1, 0.5, 1, 1.5, . . . , amax},
where amax is arbitrarily defined. One idea is to fit the linear model stated as

log
3

y!ny

n

4
= —0 + —1y + —2 log(y + a)

and set ⁄0 = exp(‚—1), ”0 = ‚—2 and a0 yielding the fit with the smallest sum of squared
errors. Alternatively, one may re-interpret the model given in Equation (6) as a Poisson
log-linear model with log(n/y!) as o�set,

log(ny) = —0 + —1y + —2 log(y + a) + log(n/y!),

and again set ⁄0 = exp(‚—1), ”0 = ‚—2 and a0 yielding the fit with the smallest deviance.

3.5 Illustration with selected datasets

Next, we illustrate the Touchard model and associated tools with univariate, public available,
data of actuarial end economic interest. We consider the five models listed in Table 1.
Except for the NB, the other models handle both under and overdispersion. The QP and
the Touchard models are pointwise dual (in the sense that the entire range of ” accounts
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for either over or underdispersion of the same magnitude) whereas the CMP is pointwise
dual only in the region 0 < ‹ < 2 (Kokonendji et al., 2008). The QP, CMP and NB are
members of the EF (thus enjoying the desirable asymptotic results for ML estimation),
though only the QP is in the one-dimensional EF with dispersion. The support of the GP
distribution depends on the parameter – and it violates standard conditions for consistency
and asymptotic normality of ML estimators (Cameron and Trivedi, 1998).

We have fitted di�erent count models, including the Touchard one, to 14 publicly avail-
able datasets. The datasets were not selected with any particular criteria other than being
publicly available and having been used by the authors for class illustrations, mostly for
audiences from Actuarial Sciences and Economics. Most cases exhibit high inflation of zeros
( ‚f0 > 0.80), dispersion index d = S2/ȳ greater than one and large sample size.

Eight datasets refer to the number of tra�c accidents in a year in di�erent locations
labeled by country name and year such as Zaire74, Belgium58, etc. Some have become
benchmarks in the actuarial literature (Denuit, 1997). Typical of such data, the relative
frequency of zeros is very high.

The CrabSat dataset features the highest level of overdispersion for the response among
the cases studied with d close to 3. The counts are from well-known data on the number of
satellites (male crabs gathered around the female attempting to fertilize her eggs) appearing
in several textbooks (Agresti, 2013).

MedVisits consists of over 5000 counts of doctor visits in the past two weeks for a single-
adult (Australian Health Survey 1977-78) and has been analyzed by several authors (see, for
example, Cameron and Trivedi (1998) and references therein) in the study of health service
utilization and health insurance choice. The sample variance is about twice the sample mean
(d = 2.1). Zeros and ones correspond to 95% of the observations. These data are also used
in Section 4.1 in the context of regression modeling.

The dataset Strikes records the number of outbreaks of strikes in the UK, in a 4-week
period, during 1948-59 for the coal mining industry.

Shells brings the number of accidents in the manufacture of high-explosive shells in a
British military factory at the time of World War I.

The dataset Bids contains the number of takeover bids received by 126 U.S. firms that
were targets of tender o�ers, over a 52-week period following the initial bid.

AZCardio contains close to 2000 observations from the 1991 Arizona cardiovascular patient
files. The counts refer to the length (days beyond the day of admission) of hospital stay
(restricted to less than 9 days) for cardiovascular patients.

Table 2 summarizes the results from fitting five statistical models to the 14 datasets
previously described. the Akaike information criterion (AIC) is reported along with data
summaries. Qualitatively, similar results were obtained using the ‰2 metric (not shown)
instead of the AIC. The Touchard model yields is among the best models all cases with the
exception of Bids for which convergence was not achieved; these data seem to be well fit by
the Poisson model, meaning that a three-parameter distribution is unnecessary.

In Section 4.1, we revisit the CrabSat data for a regression illustration. We thus provide
more detail regarding its univariate mode fit. Parameter estimates under the Touchard
model from ML and MM methods are shown in Table 3 and visualization of model fit by
ML is depicted in Figure 3 showing an adequate fit. As expected, both the score and the
likelihood ratio tests (not shown) strongly reject ” = 0. The AIC values for di�erent models
are: 746 (Touchard), 771 (NB), 774 (CMP) and 782 (GP). The results place the Touchard as
the primary candidate for modeling these data. We must note that some di�erences in AIC
values are small for di�erent models and that mere minimization of a given information
criterion is not by itself a deal breaker in model selection. Several other points may be
assessed including study domain knowledge and substantive interpretability of models. We
remind the reader of the criteria (i)–(ix) listed in the Introduction. The main point to be



Chilean Journal of Statistics 237

taken here is that this superficial examination of the applicability of the Touchard model
across datasets from di�erent domains strongly indicates that the Touchard model (and
weighted Poisson models in general) are an important addition to the toolbox of count data
models. Recall that the Touchard can address both under- and over-dispersion.

Table 2. Data summaries and AIC with selected count models fitted by ML to 14 datasets.

AIC by model
Dataset n ymax d ‚f0 Poisson NB Tou CMP GP
CrabSat 173 15 2.9 0.36 990 771 746 774 782
MedVisits 5,190 9 2.1 0.80 7,968 7,176 7,125 7,320 7,156
Shells 647 5 1.5 0.69 1,236 1,189 1,189 1,189 1,189
AZCardio 1,982 7 1.5 0.07 9,055 8,796 8,726 8,753 8,807
Zaire74 4,000 5 1.4 0.93 2,494 2,372 2,371 2,419 2,371
Belgium58 9,461 7 1.4 0.83 10,983 10,700 10,691 10,713 10,696
Switz61 119,853 6 1.2 0.88 109,225 109,234 109,226 109,235 109,230
Bids 126 10 1.2 0.07 405 406 NA 407 406
NewYork93 365 8 1.2 0.06 1,450 1,449 1,461 1,449 1,449
Belgium75 106,974 4 1.1 0.91 72,379 72,212 72,213 72,213 72,212
Belgium93 63,299 4 1.1 0.90 44,303 44,133 44,130 44,134 44,131
Belgium94 131,182 4 1.1 0.90 90,453 90,163 90,162 90,164 90,162
Germany60 23,589 6 1.1 0.87 20,598 20,451 20,449 20,451 20,450
Strikes 156 4 0.7 0.29 386 388 381 380 382

Table 3. Estimates (with SEs) from fitting the Tou(⁄, ”, a) model to the counts in the CrabSat dataset.

Method
ML MM

⁄ 8.0 (1.2) 11.4 (3.3)
” -2.7 (0.83) -5.6 (2.6)
a 0.4 (0.22) 1.3 (0.80)
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Figure 3. Goodness-of-fit (Touchardness) plots with the CrabSat dataset: circles are the observed count metameters;
filled points show the CIs centers.
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4. Regression modeling

As mentioned in the Introduction, there are several probabilistic models for count data
but most have had limited applicability. Models for which regression tools are not readily
available will not be considered by most data analysts. In this section we develop regression
tools for the Touchard model, including ML estimation, large-sample inference, prediction,
visualization and basic diagnostic tools.

Regression for count data is typically based on either the Poisson or the NB models. The
(quasi) Poisson model with a dispersion parameter Ï œ R, QP(µ, Ï), with expectation µ and
variance Ïµ can accommodate under/overdispersed data. QP regression is a GLM with a
vast literature on estimation, inference and diagnostics. In the NB(µ, –) model, the variance
is a quadratic function of the mean, µ + –µ2, – Ø 0, which can handle overdispersed data.
The GP(µ, –) distribution is another model which can be explicitly parametrized in terms
of its mean and an extra parameter with the variance being a cubic function of µ. The
QP model is a member of the one-dimensional EF with dispersion but neither the NB nor
the GP is a member of the EF. The Touchard distribution is in three-dimensional EF but
cannot be formulated in terms of the one-dimensional EF with dispersion. We recall that
mean-variance relations for these models are reported in Table 1.

The first question posed by any WP regression model is the choice of parametrization
for the systematic component. Given observed responses Yi ≥ Tou(⁄i, ”, a) and a vector of
predictors xi œ R

p, for i = 1, . . . , n, we can postulate that either. (We restrict our attention
to the default log link but other links for count data could be considered.) Then, we have

log(⁄i) = x€
i ↵, (7)

or

log(µi) = x€
i �. (8)

We call the model given in Equation (7) is a direct regression model, which is computa-
tionally more convenient. This is the strategy adopted by Sellers and Shmueli (2010) in the
context of the CMP regression model. In the GLM-type model given by Equation (8), ⁄i

must be treated as an implicit function of µi, ” and a which implies a computational cost
related to solving Equation (3) for ⁄ at every evaluation of the likelihood. We propose a
quasi-likelihood approach to deal with the usual practice of linking the mean response to a
linear predictor as in Equation (8) in the context of Touchard regression.

4.1 Direct regression model

In this section we assume that ⁄ is a function of the linear predictor xi↵, as in Equation (7).
The model log-likelihood for independent data points is given by ¸(↵, ”, a) =

q
i ¸i, where

¸i = yix
€
i ↵ + ” log(yi + a) ≠ log

Ë
·(exp(x€

i ↵), ”, a)
È

≠ log(yi!).

Recall that we have defined zi = log(yi + a), w1i = (yi + a)≠1 and w2i = (yi + a)≠2. We also
define Ÿi = E(Zi), “i = Cov(Yi, Zi), ◊ji = E(Wji) and ‹i = Var(Zi). Denoting by Xn◊p the
model matrix with i-th row x€

i , the observed responses by the n-dimensional vector y with
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µ = E(y) and V = diag(‡2
i ), we can write the score vector as

s(↵, ”, a) =

Q

ccca

X€(y ≠ µ)
q

i(zi ≠ Ÿi)

”
q

i(w1i ≠ ◊1i)

R

dddb (9)

and the Fisher information matrix is formulated as

F (↵, ”, a) = ≠

Q

ccca

X€V X X€� X€TX
q

i ‹i
q

i[” Cov(Zi, W1i) ≠ (◊1i ≠ W1i)]

”2 q
i Var(W1i) + ”[

q
i(W2i ≠ ◊2i)]

R

dddb

where T = diag(ti) with ti = 1 ≠ ·1(⁄i, ”, a)·≠1(⁄i, ”, a). The usual inference based on the
ML estimates uses asymptotic normality with

‰Var
1

‚↵, ‚”, ‚a
2

= ‚F≠1.

The e�ect of the coe�cients on the mean response is expressed as

ˆµi

ˆxij
= ‡2

i –j . (10)

Therefore, the marginal e�ect of –j on µi is a�ected by the variability associated with the
corresponding observation. Thus, over- or under-dispersion play a role that did not exist in
the canonical Poisson model for which ˆµi/ˆxij = µi–j .

It is possible to obtain a score test for Poissoness. Calculations are facilitated by the fact
that residuals and regressors are orthogonal, that is, X€(y ≠ µ) = 0, when the score given
in Equation (9) is zero. The score test allows us to test the null H0: ” = 0 without having
to first fit the Touchard model.

Let ↵0 be the coe�cient estimates from H0 (canonical Poisson GLM). We use the same
notation as in Section 3.3, where the subscript 0 indicates evaluation under H0. Here, �0 =
exp(X↵0) and the score vector given by Equation (9) becomes

s0 = (0, . . . , 0, K0),

where K0 =
q

i[zi ≠ Ÿi,0]. By partitioning F0 and writing its inverse (Graybill, 1983, Ch. 8),
we have F ≠1

0,22 = (F0,22 ≠ F0,21F
≠1
0,11F0,12)≠1 and, after some algebra, the score statistic

S = s€
0 F

≠1
0 s0 reduces to

S = K2
0

F ≠1
0,22

= K2
0

V0 ≠ �€
0 X(X€V0X)≠1X€�0

,

where V0 =
q

i ‹i,0. The special case with no covariates was given by Equation (5). The
asymptotic distribution of S under H0 is ‰2(1) given regularity conditions warranted by the
EF.
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4.2 Quasi-Poisson GLM with Touchard variance

As mentioned before, a regression model based on Equation (8) is computationally more
demanding since ⁄i must be treated as an implicit function of µi, ” and a. Derivative
calculations become a lot more involved. However, the coe�cients in the usual (log-mean)
parametrization are more easily interpreted since, as opposed to Equation (10), we have
that

ˆµi

ˆxij
= µi—j ,

so that —j can be interpreted as a semi-elasticity, the proportionate change in the mean
when xj changes by one unit, all else constant.

A solution is available by the well established quasi-likelihood approach. The QP(µ, Ï)
regression estimates, ‚�, are robust to distributional assumptions in the sense that the Poisson
model is used simply to motivate the estimating equations, and that ‚� is consistent as long
as the link function and linear predictor are correctly specified (Agresti, 2015, Ch. 8). The
choice of v(µ, Ï) = Ïµ corresponds to assuming an EF with dispersion but other forms
of conditional variance may also be entertained (Cameron and Trivedi, 1998, Ch. 3) such
as with the Touchard variance v(µ, ”, a) given by Equation (4). We denote this model by
QPT(µ, ”, a). The estimated regression coe�cients are simply those from a Poisson GLM,
‚�, whereas the other parameters are estimated by the MM, obtained by numerically solving
the system in (”, a) stated as

Y
____]

____[

nÿ

i=1
v(‚µi, ”, a) =

nÿ

i=1
(yi ≠ ‚µi)2,

nÿ

i=1
Ÿ(‚µi, ”, a) =

nÿ

i=1
zi.

If the variance is believed to be correctly specified (in which case ‚� is asymptotically e�cient
among estimators that are locally linear in y) then

‰Var( ‚�) = n

n ≠ p
(X€ „MX)≠1(X€„V X)(X€ „MX)≠1,

where „M is diagonal with typical element ‚µi and „V is diagonal with typical element
v(‚µi, ‚”, ‚a).

4.3 Diagnostics

This section develops standard diagnostic tools to assess the fit of a Touchard regression
model including an adaptation of the rootogram. We denote the predicted mean by ‚µ.
In the case of Equation (7), then ‚µi = exp(x€

i
‚�). In the case of Equation (8), we have

‚µi = ·1(‚⁄i, ‚”, ‚a) ≠ ‚a with ‚⁄i = exp(x€
i ‚↵). For the predicted ⁄ we develop the following

notation: we write ⁄ = �(µ, ”, a) for ⁄ satisfying Equation (3) with given values of µ, ” and
a. The most intuitive residual measure in regression models is the Pearson residual given by

ri = yi ≠ ‚µi

‚‡i
.
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Pearson residuals may be visualized by a Q-Q normal plot of standardized ri with a simulated
envelope (Atkinson, 1985).

We use the usual definition of deviance in GLMs, D(y;µ) = 2(˜̧≠ ‚̧), to define an ap-
proximate measure of deviance where we consider ” and a fixed (at estimated values). Here,
‚̧ denotes the maximized log-likelihood and ˜̧ is the saturated log-likelihood. Saturation is
achieved by setting µi = yi since ˆ¸i/ˆµi = 0 … (yi ≠ µi)/‡2

i = 0. As a result, deviance
residuals, di, are defined by the signed square root of the components of D(y;µ) =

qn
1 d2

i ,
as

di =

Y
_]

_[
sign(yi ≠ ‚µi)

Ú
2
Ë
yi log

1
⁄̃i

‚⁄i

2
≠ log

1
·̃i

‚·i

2È
, yi > 0,

sign(yi ≠ ‚µi)


2[log(‚·i) ≠ ” log(‚a)], yi = 0,

where ⁄̃i = �(yi, ‚”, ‚a) and ‚⁄i is either exp(x€
i ‚↵) or �(exp(x€

i
‚�), ‚”, ‚a).

Observations with a large absolute value of either ri or di are viewed as discrepant. De-
tectable patterns in the plot of residuals against the estimated linear predictor are indicative
of misspecification.

Another diagnostic measure is the generalized leverage defined as the diagonal of
Ln◊n(✓) = ˆ ‚y/ˆy€. The actual computation of L is based on first derivatives of the mean
vector, µ̇✓, and second derivatives of the likelihood, ¨̧

✓✓ and ¨̧
✓y, with

L = µ̇✓(≠¨̧
✓✓)≠1 ¨̧

✓y,

evaluated at ‚✓ = ( ‚↵, ‚”, ‚a) or ( ‚�, ‚”, ‚a) (Wei et al., 1998).
In the regression based on Equation (7), the computation of L yields the expression stated

as

L =
1
V X � ⌘

2
F≠1

Q

cca

X€

a€
1

a€
2

R

ddb,

where the vector ⌘ has i-th component ” Cov(Yi, W1i), a1 has i-th component 1/(yi + a)
and a2 has i-th component ≠”/(yi + a)2. In the GLM-type model based on Equation (8),
the computation of L yields the usual projection matrix of a Poisson GLM with the weights
adjusted for the Touchard variance, that is, we get

L = W≠1/2X(X>WX)≠1X€W≠1/2.

where Wn◊n is diagonal with typical element µ2
i /‡2

i .
With the diagonal of L and the Pearson residuals, one can compute the approximate Cook

distance given by

Ci = Liir2
i

p(1 ≠ Lii)2 ,

to measure the squared distance between ‚↵ (or ‚�) and the same estimate without i-th
observation (Cook and Weisberg, 1982).

The extension of the rootogram (Section 3.4) to regression models has been proposed by
Kleiber and Zeileis (2016) as a complement to residual diagnostics in order to visualize im-
portant features of count data such as dispersion, skewness, zero inflation and multimodality,
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vis a vis fitted models.
Given regression estimates ‚↵ (or ‚�), ‚” and ‚a, one obtains ‚⁄1, . . . , ‚⁄n and the expected

frequency of count y stated as

Ey =
nÿ

i=1
f(y, ‚⁄i, ‚”, ‚a), j = 0, 1, . . .

A rootogram can now be drawn with bars from


Ey ≠ Ô
ny up to


Ey, to visually assess

the goodness of fit provided by the Touchard regression model. Discrepancies between the
observed frequencies ny and the Ey are visualized against a straight line; Figure 4 (right).

4.4 Example: Crab satellites

As an illustration, we fit the Touchard regression models along with other count regression
models to the well-known data on the number of satellites (male crabs gathered around
the female attempting to fertilize her eggs). For predicting the number of satellites y, we
consider weight (kg) and color (with two categories, light and dark (baseline)). Therefore,
the linear predictor is formulated as —0 + —1weight + —2color.

Table 4. Estimation results (with SEs) from di�erent models fitted by ML to the CrabSat dataset (n = 173,

n0 = 62, k = 2, ymax = 15).

log(µ) = linear predictor log(⁄) = linear predictor
QP QPT NB GP Tou CMP

intercept -0.49 -0.49 -0.93 -1.11 1.34 -0.58
(0.32) (0.29) (0.40) (0.48) (0.22) (0.08)

weight 0.54 0.54 0.71 0.63 0.21 0.13
(0.12) (0.11) (0.16) (0.20) (0.05) (0.04)

color 0.27 0.27 0.29 0.37 0.09 0.10
(0.18) (0.18) (0.20) (0.06) (0.06) (0.06)

dispersion ‚Ï = 3.15 ‚” = ≠3.99 ‚– = 0.96 ‚– = 0.34 ‚” = ≠2.05 ‚‹ = 0.08
‚a = 0.83 ‚a = 0.25

AIC 738ú 725† 754 719 758 747
SSRraw 1,522 1,522 1,692 1,882 1,480 3,773
SSRpear 536 175 155 166 185 11,258
SSRdev 553 214 197 NA 215 602

‚n0 40 56 50 45 63 42
AMEwei 1.6 1.6 2.1 2.4 1.7 0.4
IRRwei 1.7 1.7 2.0 1.9 NA NA

(*)

Approximate QP(µ, Ï) log-likelihood (Nelder and Pregibon, 1987).
(†) Touchard log-likelihood evaluated at QPT estimates.

NA = not available.

Estimation results are shown in Table 4. The estimated coe�cients from the Touchard
GLM-type regression are very close to those from QP. The value of a was chosen to yield
the highest likelihood. The two Touchard models yield similar results with significant im-
provement over the GP and CMP as seen by di�erent sums of residuals, log-likelihood and
estimated number of zeros. The Touchard models yield closer estimates of the proportion
of zeros than the other models considered. The Touchard regression models provide the
estimates (56 and 63) closest to n0 = 62 among the models considered. The sum of de-
viance residuals for the NB model is the lowest despite the higher likelihood achieved by
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the Touchard models. The sums of residuals estimated by the CMP is much higher than
those predicted by the other models which probably explains the huge values for the raw
and Pearson residuals. Rootograms are shown in Figure 4 indicating some misfitting for the
Touchard but noticeable improvement over the fit provided by the NB regression model.

All models agree qualitatively in terms of lack of marginal significance of color and a
considerable e�ect of weight. However, di�erent models give di�erent e�ect sizes for weight.
Marginal e�ects in count regression are often reported either as the average marginal e�ect
(AME) or as the relative change in the conditional mean (incidence rate ratio - IRR). For
istance, the AME associated with the predictor weight is given by

AMEwei = 1
n

nÿ

i=1

ˆµi

ˆxi1
,

where x1 © weight. The AMEwei for models based on log(µi) is simply (1/n)
q

i ‚µi
‚—1. There-

fore the AMEs for the GLM-type models are 1.59 (QP and QPT), 2.12 (NB) and 2.42 (GP).
For both the direct Touchard model and the CMP model, which are based on log(⁄i), we
have Var(Y ) = ˆµ/ˆ log(⁄). Thus, AMEwei = (1/n)

q
i ‚‡2

i ‚–1 and which amounts to 1.73
(Touchard) and 0.36 (CMP). Taking a unit change in weight as the variation of interest,
the marginal e�ect in terms of IRR is stated as

IRRwei = E(y|weight + 1, color)
E(y|weight, color) .

For the GLM-type models, we have IRRwei = exp(—1) with values of 1.72 (QP and QPT),
1.65 (Tou), 2.03 (NB) and 1.88 (GP). For the direct models based on log(⁄) the IRR does
not reduce to a simple expression, varying across observations and values of color. Sellers
and Shmueli (2010) suggest dividing the CMP coe�cients by ‚‹ as a crude approximation for
comparison with Poisson coe�cients. For the coe�cient of weight this yields 0.13/0.08 =
1.63 which is much higher than the Poisson estimate of 0.54.

Estimated marginal e�ects are thus higher under the NB and GP models and strikingly
lower under the CMP model.
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Figure 4. Rootgram associated with NB regression model (left) and Touchard GLM-type model (right) with CrabSat
dataset.
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5. Concluding remarks

We have provided several tools for analyzing count data with a flexible weighted Pois-
son distribution (Touchard) including regression modeling. We have concluded that the
Touchard is a viable and flexible alternative to model over or underdispersed count data.
Data analyses presented here and in Matsushita et al. (2018) show that the Touchard is
a competitive alternative to traditional models within the exponential family. The statis-
tical tools developed here are based on classical methods including maximum likelihood,
method of moments and quasi-likelihood. In terms of tractability, elegance and numerical
implementation, the Touchard model is more flexible than the negative binomial and the
Conway-Maxwell-Poisson, besides many other count models for which similar tools are not
yet available. A major advantage of using the weighted Poisson with (⁄, ”; log(y +a)) model
is that one does not need to switch between highly di�erent models for di�erent datasets.

Regression modeling has been presented in terms of two variants and in the form of
quasi-Poisson estimation with the Touchard variance. Direct modeling of log(⁄) in terms
of a linear predictor has been developed. When mean prediction and interpretability are
wanted, regression based on log(µ) is available in the form of a GLM-type model. The
QPT methodology overcomes the computational burden associated with the GLM-type
model and is a viable choice for large datasets and when directly modeling is either too
slow computationally or the related maximization is unstable. Future work may investigate
quantile-based regression and modeling of ” in terms of covariates. Bayesian modeling based
on the Touchard model is also open for research.

Appendix A. Further results on the normalizing constant

Before providing new results, we state, for mere completion, the following result proved by
del Castillo and Pérez-Casany (1998).

Theorem A.1 The series ·(⁄, ”, a) =
qy

i=0
#
⁄y(y + a)”

$
/y! converges for ⁄, a > 0 and

” œ R.

We now provide asymptotic expressions for · and for the first two moments of Y ≥
Tou(⁄, ”, a).

Theorem A.2 To first-order, the following approximations hold:

· ¥ exp(⁄)(⁄ + a)”,

µ ¥ ⁄ + ⁄”

⁄ + a
, (A1)

and

‡2 ¥ ⁄
3

1 + a”

(⁄ + a)2

4
. (A2)

Proof The first approximation may be obtained by replacing (y + a)” by (⁄ + a)” + (⁄ +
a)”≠1(y ≠ ⁄) + o(|(y ≠ ⁄|) into the series defining ·(⁄, ”, a). Alternatively, it is easy to see
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that · = exp(⁄)E(Y ú + a)”, where Y ú ≥ Poi(⁄). Therefore, by the Delta method, we have

· ¥ exp(⁄)[E(Y ú) + a]”

= exp(⁄)(⁄ + a)”,

Using the above approximation for · and the fact that µ = (⁄/·)(ˆ·/ˆ⁄) (see Appendix
C) we obtain the approximation stated in Equation (A1) for µ. Since ‡2 = ⁄(ˆµ/ˆ⁄), we
obtain approximation stated in Equation (A2) for ‡2. ⌅

We observe that: (i) the above approximations are exact for ” = 0 and ” = 1; (ii) they
are better the larger ⁄ is relative to |”| and the larger a is; (iii) for large ⁄, µ æ ⁄ + ” and
‡2 æ µ ≠ ”; see Figure 2.

Having a compact notation for · in terms of other special functions is of interest to study
further properties and analytical characteristics. This has been explored, for example, by
Castellares and Lemonte (2019), were a previous diverging series was re-derived in terms of
the integro-exponential function to provide a correct converging result for the moments of
the generalized Gompertz distribution. The following theorem provides a representation of
· in terms of the generalized hypergeometric function.

Theorem A.3 The function ·(⁄, ”, a) can be represented in terms of the I generalized
hypergeometric function as

·(⁄, ”, a) = I1,1
1,2

5
≠⁄

----
(≠a, 1, ”)

(0, 1, 1), (1 ≠ a, 1, ”)

6
, (A3)

in which the I-function (Rathie, 1997) is defined as an contour complex integral which
contain powers of Gamma functions in their integrands by

Im,n
p,q

5
z

----
(a1, –1, A1), . . . , (an, –n, An), (an+1, –n+1, An+1), . . . , (ap, –p, Ap)
(b1, —1, B1), . . . , (bm, —m, Bm), (bm+1, —m+1, Bm+1), . . . , (bq, —q, Bq)

6

= 1
2fii

⁄

L

mŸ

j=1
�Bj (bj ≠ —js)

nŸ

j=1
�Aj (1 ≠ aj + –js)

qŸ

j=m+1
�Bj (1 ≠ bj + —js)

pŸ

j=n+1
�Aj (aj ≠ –js)

zs
ds, (A4)

in which –j , Aj , —j and Bj are assumed to be positive quantities and all the aj and bj

are complex such that no singularity of �Bj (bj ≠ —js) coincides with any singularities of
�Aj (1 ≠ aj + –js). In general, these singularities are not poles.

There are three di�erent contours L of integration stated as:

• L goes from from ‡ ≠ iŒ to ‡ + iŒ (‡ real) such that all the sigularities of �Bj (bj ≠ —js),
j = 1, . . . , m lie to the right of L and all the singularities of �Aj (1 ≠ aj + –js), for
j = 1, . . . , n, lie to the left of L.

• L is a loop beginning and ending at +Œ and encircling all the singularities of �Bj (bj ≠
—js), for j = 1, . . . , m, once in the clock-wise direction, but none of the singularities of
�Aj (1 ≠ aj + –js), j = 1, . . . , n.

• L is a loop beginning and ending at ≠Œ and encircling all the singularities of �Aj (1≠aj +
–js), for j = 1, . . . , n, once in the anti-clockwise direction, but none of the singularities
of �Bj (bj ≠ —js), for j = 1, . . . , m.

Proof Let one consider the I-function on the right-hand side of Equation (A3) and its
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contour integral representation given by Equation (A4) as

I1,1
1,2

5
≠⁄

----
(≠a, 1, ”)

(0, 1, 1), (1 ≠ a, 1, ”)

6
= 1

2fii

⁄

L

�(≠s)�”(1 + a + s)
�”(a + s) (≠⁄)s

ds

Since none of the singularities of �”(1 + a + s) coincide with the poles of �(≠s), the simple
application of the residue theorem (Springer, 1979) to the poles of the latter imply that

I1,1
1,2

5
≠⁄

----
(≠a, 1, ”)

(0, 1, 1), (1 ≠ a, 1, ”)

6
=

Œÿ

r=0
lim
sær

(≠s + r)�(≠s)�”(1 + a + s)
�”(a + s) (≠⁄)s

=
Œÿ

r=0

�”(1 + a + r)(≠⁄)r

�”(a + r)r!(≠1)r

=
Œÿ

r=0

(a + r)”⁄r

r! ,

as desired. ⌅

Appendix B. Identifiability

By definition (Lehmann and Casella, 1998, Sec. 1.5), for a given statistical model P =
{P’ : ’ œ Z}, where Z denotes the parameter space, we say P is identifiable if

P’1 = P’2 =∆ ’1 = ’2 ’’1, ’2 œ Z.

With a fixed, the two-parameter Tou(⁄, ”, a) model is clearly identifiable since the statistics
Y and log(Y + a) are linearly independent (Lehmann and Casella, 1998, Sec. 1.5). A more
general result with all parameters free is developed next. We begin by defining ’ = (⁄, ”, a)
and f’(y) in place of Equation (1). Thus, we define

P =
I

f’(y) = ⁄y(y + a)”

y!·(⁄, ”, a) : ⁄, a > 0, ” œ R

J

.

In order to prove identifiability, we must set f’1(y) = f’2(y), ’y. However, we can avoid
·(⁄, ”, a) by working instead with

f’1(y + 1)
f’1(y) = f’2(y + 1)

f’2(y) ,

which reduces to

⁄1
(y + 1)

3
y + 1 + a1

y + a1

4”1

= ⁄2
(y + 1)

3
y + 1 + a2

y + a2

4”2

.

In order to compare both sides of Equation (B), let us consider the series representation of
the function h(”, a, x) = ((x + a)/(x + 1 + a))”, which is can be seen as the product of the
functions ha(”, a, x) = (x + a)” and hb(”, a, x) = (x + 1 + a)≠”. Thus, the MacLaurin Series
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of h(”, a, x) in terms of x is obtained as

h(”, a, x) =
Œÿ

n=0

xn

n!
ˆn

ˆxn
(ha(”, a, x)hb(”, a, x))

----
x=0

. (B1)

The generalized Leibiniz rule states that

ˆn

ˆxn
ha(”, a, x)hb(”, a, x) =

nÿ

y=0

n!
(n ≠ y)!k!

ˆn≠y

ˆxn≠y
ha(”, a, x) ˆy

ˆxk
hb(”, a, x). (B2)

The derivatives on the right hand side of Equation (B2) are quite simple and result in

ˆn≠y

ˆxn≠y
ha(”, a, x) = �(” + 1)

�(” ≠ n + y + 1)(x + a)”≠n+y (B3)

and

ˆy

ˆxy
hb(”, a, x) = (≠1)y �(” + y)

�(”) (x + 1 + a)≠”≠y. (B4)

By combining Equations (B2)), (B3) and (B4), after some algebra we arrive at

ˆn

ˆxn
ha(”, a, x)hb(”, a, x) =

�(” + 1)(x + a)”≠n(x + 1 + a)≠”

�(” ≠ n + 1)

nÿ

y=0

A
n

y

B(≠1)k�(” + y)�(” ≠ n + 1)
1

x+a
x+a+1

2y

�(”)�(” ≠ n + y + 1) . (B5)

By definition, the right hand side of Equation (B5) may be expressed in terms of the hy-
pergeometric function 2F1 and by means of Equation (B1), we obtain

h(”, a, x) =
Œÿ

n=0

�(” + 1)a”≠n(1 + a)≠”

n!�(” ≠ n + 1) 2F1

3
≠n, ”; 1 ≠ n + ”; a

a + 1

4
xn. (B6)

By applying the ratio test to the series, we get

R = x(a)≠1(” ≠ n)
(n + 1)

2F1
1
≠n ≠ 1, ”; ≠n + ”; a

1+a

2

2F1
1
≠n, ”; 1 ≠ n + ”; a

1+a

2 . (B7)

In general, the hypergeometric function in Equation (B7)) vanishes for finite n and, in the
limiting case, the continued fraction representation for the ratio of hypergeometric functions
given by

2F1(a + 1, b; c + 1; z)
2F1(a, b; c; z) =

1

1 +
(a≠c)b
c(c+1)z

1 +
(b≠c≠1)(a+1)

(c+1)(c+2) z

1 + . . .

(B8)
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can be used. By noticing that whenever (a ≠ c ≠ j)(b + j), ’j œ {0, 1, 2, . . . } is in the
numerator of the ratio which multiplies z in Equation (B8), this ratio vanishes to 0 as
n æ Œ, we get

R ≠≠≠æ
næŒ

≠x

(a) .

Thus, Equation (B6) is valid for x < a. To account for other values of x, we can define

g(”, a, x̃) =
3 1 + ax̃

1 + (1 + a)x̃

4”

,

where x̃ = 1/x and back to Equation (B) by following a similar procedure as above, the
series representation for g(”, a, x̃) can be obtained as

g(”, a, x≠1) =
Œÿ

n=0

�(” + 1)(1 + a)n

n!�(” ≠ n + 1) 2F1

3
≠n, ”; 1 ≠ n + ”; a

a + 1

4
x≠n. (B9)

Equation (B9) is valid for x > a + 1 and it remains to be addressed the case a < x < 1 + a.
For real values of a, since x is a positive integer in our case, the only possible value for x
which falls into this interval is x = ÁaË. This special case is treated in the last paragraph.
Now, without loss of generality, let a1 Æ a2. From Equation (B), we conclude that the
identifiability problem reduces to the expression given by

Y
_______]

_______[

⁄1h(”2, a2, y) = ⁄2h(”1, a1, y), for 0 Æ y < a1,

⁄1h(”2, a2, y) = B1, for a1 Æ y < min(a1 + 1, a2),
B2 = B3, for min(a1 + 1, a2) < y < max(a1 + 1, a2),
B4 = ⁄1g(”1, a1, 1/y), for max(a1 + 1, a2) < y < a2 + 1,

⁄1g(”1, a1, 1/y) = ⁄2g(”2, a2, 1/y), for y > a2 + 1,

(B10)

where the functions Bi, i = 1, 2, 3, 4, depend on the max and min functions applications. For
instance, if min(1 + a1, a2) = 1 + a1 then B1 = ⁄2((Áa1Ë + a1)/(1 + (Áa1Ë + a1)))”. Regarding
the first expression in Equation (B10), by performing a term-by-term matching procedure,
the first three terms of the series in Equation (B6) indicate that

(i) ⁄1a”2
2 (1 + a2)≠”2 = ⁄2a”1

1 (1 + a1)≠”1 ,
(ii) ⁄1”2a”2≠1

2 (1 + a2)≠”2≠1 = ⁄2”1a”1≠1
1 (1 + a1)≠”1≠1,

((iii) ⁄1
2 ”2a”2≠2

2 (1 + a2)≠”2≠2(≠1 + ”2 ≠ 2a2) =
⁄2
2 ”1a”1≠2

1 (1 + a1)≠”1≠2(≠1 + ”1 ≠ 2a1).

(B11)

The quotients (ii)/(i) and (iii)/(ii) imply

(iv) ”1
a1(1+a1) = ”2

a2(1+a2) ,

(v) ≠1+”1≠2a1
2a1(1+a1) = ≠1+”2≠2a2

2a2(1+a2) .
(B12)

By solving the system in Equation (B12), the two possible solutions for a1 are a1 = a2 or
a1 = ≠(1 + a2)(1 + 2a2)≠1. Obviously, since ai Ø 0, for i = 1, 2, the only possible solution
is a1 = a2.

By using such solution back on (iv) of Equation (B12), ”1 = ”2. Thus, (i) of Equation
(B11) implies that ⁄1 = ⁄2.
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Now, for the last expression of Equation (B10), the term-by-term series comparison pro-
vides

(vi) ⁄1 = ⁄2,
(vii) ⁄1”1 = ⁄2”2,
(viii) ⁄1

2 ”1(≠1 + ”1 ≠ 2a1) = ⁄2
2 ”2(≠1 + ”2 ≠ 2a2).

The system solution is quite straightforward, implying that: ⁄1 = ⁄2, ”1 = ”2 and a1 = a2.
The remaining cases to be discussed are the other equations which have not been addressed
yet in Equation (B10). Let S denote the support of the probability density function of
the Touchard distribution. So far, it has been shown that the function is identifiable over
S \ {[a1, a2 + 1)}. In order to prove the identifiability over the whole support, it is su�cient
to check if the conditions found for S \ {[a1, a2 + 1)} also work when y œ [a1, a2 + 1). This
easily follows by noticing that the identifiability of a probability density function boils down
to a system of equations. Therefore, all the equations must be simultaneously satisfied in
order to exist a solution. Thus, it has been shown that for [f’1(y) = f’2(y)], ’y =∆ ’1 = ’2,
which proves identifiability when all three parameters are free.

Appendix C. Useful Derivatives

The following expressions were used to obtain several formulas involving derivatives pre-
sented in the article. Recall that we have defined Z = log(Y +a), W1 = (Y +a)≠1, µ = E(Y ),
Ÿ = E(Z), ‡2 = Var(Y ), ‹ = Var(Z) and “ = Cov(Y, Z). We also define Ÿ2 = E[Z2] and
Ÿ3 = E[Y Z]. We start with first and second derivatives of ·(⁄, ”) given by

ˆ·

ˆ⁄
= ·µ

⁄
; ˆ·

ˆ”
= ·Ÿ; ˆ·

ˆa
= ·(⁄, ”≠1, a); ˆ2·

ˆ⁄2 = · [m2 ≠ µ]
⁄2 ; ˆ2·

ˆ”2 = ·Ÿ2 and ˆ2·

ˆ⁄ˆ”
= ·Ÿ3

⁄
.

Next, we list some partial derivatives of the expectations µ(⁄, ”) and Ÿ(⁄, ”) stated as

ˆµ

ˆ⁄
= ‡2

⁄
; ˆµ

ˆ”
= “; ˆµ

ˆa
= ” Cov(Y, W1), ˆŸ

ˆ⁄
= “

⁄
,
ˆŸ

ˆ”
= ‹.

Appendix D. Random number generation (RNG) by the inverse

transformation

In order to generate y from Y ≥ Tou(⁄, ”, a), we take F (y) =
qy

x=0 f(x) and Y =
min{y: F (y ≠ 1) < U Æ F (y), U ≥ Unif(0, 1)}. We note that the RNG can avoid
costly computation of cumulative probabilities and factorial terms by using the ratio
c(y) = f(y)/f(y ≠ 1).

Pseudo-code for the proposed RNG is shown in Algorithm D and it is implemented for
the R system (Andrade and Oliveira, 2019).

The expected number of iterations in the while loop in Algorithm D is 1 + E(Y ) which,
according to results from previous section, is approximately 1 + ⁄[1 + ”/(⁄ + a)] or simply
1 + ⁄ + ” for ⁄ ∫ ”. The generation time increases with ⁄ and ” with ” being a stronger
factor than ⁄ (Table D1). The value of a is of least importance for running time. Generation
of highly overdispersed data is faster. E�cient generators use multiple schemes taking into
consideration the parameter values (Fishman, 2013) and this is still open for research in the
context of Touchard RNG.
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Pseudo-code for Touchard RNG.
Input: p0 = ·(⁄, ”, a)≠1.
Output: Y ≥ Tou(⁄, ”, a).
Define: pk := f(k; ⁄, ”, a) and c(k) := pk

pk≠1
, k = 1, 2, . . ..

initialization
p Ω p0; q Ω p0; k Ω 0
U ≥ Unif(0, 1)

While: U > q
k Ω k + 1
p Ω p · c(k)
q Ω q + p

Return: Y = k

Table D1. Time to generate 10
4

values using Algorithm D (in plain C) for di�erent combinations of

parameter values with a = 1. Times reported in 1/1000 seconds (Intel Pentium dual core i5 1200MHz

running Linux Debian).

”

-10 -5 -1 1 5 10

⁄

0.5 2 1 2 2 10 15
2 2 1 2 3 19 27

10 1 9 8 10 54 66
20 1 55 15 18 92 109
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