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Diego Gallardo Universidad de Atacama, Chile

Christian Genest McGil University, Canada

Viviana Giampaoli Universidade de São Paulo, Brazil

Marc G. Genton King Abdullah University of Science and Technology, Saudi Arabia
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Abstract

The control charts are the main tools used for monitoring quality characteristic. Usually
the monitored characteristic is the process mean and the most used control charts for
such monitoring are Shewhart X, CUSUM and EWMA, which are based on two as-
sumptions: independence between monitored samples and that the monitored variable
follows a normal distribution. However, deviations from any of these assumptions imply
poor control chart performance. Considering this, the present work proposes a control
chart to monitoring the mean, based on the bootstrap method, for data that follows
a distribution that belongs to the symmetric class of distributions. Simulation studies
are performed for the proposed method, in order to evaluate the in-control and the
out-of-control average run length, to evaluate the behavior of the control limits and to
compare the proposed method with the traditional Shewhart X. The simulation study
indicates that the proposed approach presents better in-control average run length than
the usual Shewhart X. Regarding the power of detection, the proposed method presents
good performance, being comparable to Shewhart X, but with the advantage of a better
in-control average run length. Practical use of the proposed approach is illustrated with
a real example of pH of red wines.

Keywords: Bootstrap · Heavy-tailed distribution · Light-tailed distribution
· Statistical Process control · Symmetric distributions.

Mathematics Subject Classification: 62P30 · 62F99

1. Introduction

Competition in manufacturing industries has been growing around the world to achieve
ever higher quality standards. Naveed et al. (2020) mentioned that the main concern of
the companies is to maintain a positive reputation in the market. The authors also state
that a key aspect to enable this goal is through the quality of the products. In this context,
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statistical process control (SPC) is a powerful set of techniques to meet this end. More
specifically, control charts are the most common tools in SPC used to monitor processes.
The control chart proposed by Shewhart (1931), called the X chart, is the most known and
used SPC technique. The standard assumptions of this technique are: (i) the collections of
independent samples over time, (ii) the monitored control characteristic follows a normal
distribution. This method has the purpose of detecting shifts in the mean of magnitude
greater than 1.5 standard deviation of the mean.
Chakraborti et al. (2008) emphasized the need to ascertain precisely if the monitored

data follow the assumptions of the employed chart. However, in many practical situations,
when verifying whether the data follow the standard assumptions, it is considered that the
data are normally distributed just because they have a symmetrical shape. Schilling and
Nelson (1976), Borror et al. (1999), Calzada and Scariano (2001), and Noorossana et al.
(2011) commented that when the monitored data do not follow a normal distribution, the
usual Shewhart X chart shows low performance in the monitoring, by generating more
false alarms or by not detecting deviations from the true mean with the usual precision
(da Silva et al., 2019).
It is in this context of low performance of the usual charts, under non-normal sym-

metrical distribution (Rezac et al., 2015), that arise alternatives methods to monitoring
symmetrical data. For example, correction factors in quantiles of the distribution or in
the form of control limits of the usual method (Bai and Choi, 1995; Tadikamalla and
Popescu, 2007; Tadikamalla et al., 2008). Other approaches considered to solve the prob-
lem of non-normality are the non-parametric techniques (Haq and Khoo, 2019; Willemain
and Runger, 1996; Chakraborti et al., 2001)), and data transformation (Qiu and Zhang,
2015). There are also alternative procedures based on quantiles of distributions with a
heavier tail than the tail of the normal distribution (Calzada and Scariano, 2001; Tsai
et al., 2005; Zhang et al., 2009) and control charts via intensive computational methods
(Bajgier, 1992; Seppala et al., 1995; Liu and Tang, 1996).
More recently, Ahmed et al. (2019) proposed a technique based on a more comprehensive

class of distribution, known as the long-tailed symmetric (LTS), but in the context of small
and moderate mean deviations. Nonetheless, there is a wider class of distributions, in which
the LTS is a particular case, the symmetrical class of distributions or univariate elliptical
(Berkane and Bentler, 1986; Fang et al., 1990; Rao, 1990).
Considering this scenario, this work has the objective of proposing, via parametric boot-

strap method, a monitoring chart for the process mean for changes greater than 1.5 stan-
dard deviations. The underling feature of the data distribution is the symmetric one.
Besides, we focus on a wide class of symmetrical distribution known as the symmetrical
distribution class. The in-control and out-of-control average run length (ARL0 and ARL1,
respectively) of the proposed method are evaluated through simulations and compared
with the ARL0 and ARL1 of the standard Shewhart X chart in di↵erent scenarios of the
symmetrical class. The practical application of the method is illustrated by monitoring
the pH of red wines. Finally, we argue that having a proposed method that provides a
general framework for any member of the symmetric distribution class, regardless of the
tail weight, leads to a better decision making.
This paper is organized as follows: this introductory section. Section 2 presents briefly the

symmetrical class of distributions. Section 3 presents the proposed approach for monitoring
changes in the process mean in symmetric data. Section 4 presents the Average Run
Length (ARL) performance of the proposed charts under di↵erent combinations of the
model parameters based on simulation studies. Application to a real data set is presented
in Section 5. Final considerations are reported in Section 6.
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2. Symmetrical distribution class

In this section, we presents background on the symmetrical class of distributions.
Let X be a random variable, with X 2 . The distribution of X belongs to the class of

symmetric distributions with location parameter µ 2 and scale parameter � > 0, if its
probability density function is of the form:

f(x;µ,�) =
1p
�
h

✓
(x� µ)2

�

◆
, x 2 ,

for some function h(u) > 0, for u > 0, such that
R1
0

u�
1
2h(u)du = 1. The conditions

imposed on h, guarantee that f(x;µ,�) is, in fact, a probability density function. The
function h is called the density-generating function and it may depend on other parameters
than µ and �, which is the case of the Student-t and power-exponential distributions, for
example.
We denote X ⇠ S(µ,�), if X belongs to the symmetric distributions class of parameters

µ and �. Some examples of distributions that belong to this class are shown in Table 1,
as presented in Medeiros and Ferrari (2017), there are distributions with heavier tails (for
example, Student-t distributions and type II logistic) and lighter tails (for example, power-
exponential distribution with �1 <  < 0 and type I logistic) than the normal distribution.
Moreover, the class of symmetric distributions considers also bimodal distributions such
as the generalized Kotz distribution.
Let us assume that E(X) = µ and Var(X) = ⇠� exist, for some constant ⇠ > 0. Further-

more, if X ⇠ S(µ,�), then a+ bX ⇠ S(a+ bµ, b2�) with a 2 and b 2 � {0}, that is,
the distribution of any linear transformation of a random variable, which its distribution
belongs to the symmetrical class, also belongs to the symmetrical class. Particularly, if
Z = (X � µ)/

p
�, then Z ⇠ S(0, 1) and the probability density function of Z is given by

f(z) = f(z; 0, 1) = h(z2), z 2 ,

where h is the density generating function of X. In order to estimate the parameters of
these models, we adopt the maximum likelihood method. For more details on properties,
demonstrations and theoretical results for the symmetric distribution class (Berkane and
Bentler, 1986; Fang et al., 1990; Rao, 1990).

3. Proposed approach

In this section, we propose a control chart using a parametric bootstrap method for a class
of symmetric distributions. Our method is based on the work of Bajgier (1992) and Liu
and Tang (1996), who used a non-parametric approach. Here, we make some modifications
to use on a parametric bootstrap, since we are establishing theoretical results. When
the distribution of the data is correctly identified, we generate samples of the suitable
distribution in order to capturing the real nature of the data. As commented in Efron and
Tibshirani (1994) and Davison and Hinkley (1997), when we fit a suitable distribution,
the parametric bootstrap provides better results to estimate the quantiles, in our case the
control limits, than the non-parametric bootstrap.
Before establishing results for the proposed control charts, we need to specify some

notation and quantities such as sample size (m), subsample size (n), the frequency (s)
(assumed here as s = 1), statistic used in the monitoring (in this case, X), and lower and
upper control limits (LCL and UCL). When X > UCL or X < LCL, an action to search
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Table 1. Density-generating function and ⇠ values, for some symmetric distributions.

Distribution h(u), u > 0 ⇠

Normal 1p
2⇡
e�u/2 1

Student-t ⌫⌫/2

B(1/2,⌫/2)(⌫ + u)�
⌫+1
2 , ⌫ > 0 ⌫

⌫�2
, ⌫ > 2

Type I logistic c e
�u

(1+e�u)
2 , c ⇡ 1.4843 0.7957

Type II logistic e
�

p
u

(1+e�
p

u)2
⇡2

3

Kotz r(2N�1)/2

�( 2N�1
2 )

, r > 0, N � 1 2N�1

2r

Power-exponential 1 1

c()e
�
�1

2
u1/(1+)

 
,�1 <   1 21+ �(1,5(1+))

�(
1+
2

)

where � is the gamma functions and c() = �(1 + 1+
2

)21+(1+)/2.

for special causes in the process must be taken. Thus, when the process is in-control, it
is desirable to have few false alarms to reduce the number of unnecessary stops in the
process. In SPC, the usual metric to measure the performance of a control chart is the
ARL until an out-of-control point is detected. When the process is in control, a large ARL0

is desirable. Let us choose ↵, the probability of a type I error such that

↵ = P (X > UCL | µ = µ0) + P (X < LCL | µ = µ0) (1)

with µ0 the value of µ when the process is in-control.
On other hand, if the process is out-of-control, it is desirable that the control chart

signals very soon, that is, a low ARL1. The power of a control chart expressed as 1� � is

P (X > UCL | µ = µ1) + P (X < LCL | µ = µ1), (2)

where µ1 = µ0+ � �/
p
m is the mean when the process is out-of-control, � is the standard

deviation of the characteristic of interest, � is the shift size expressed in units of the
standard deviation of the mean and � is the probability of a type II error. Moreover,

ARL0 =
1

↵

and

ARL1 =
1

1� �
.

Note that from Equations (1) and (2) the control limits can be seen as quantiles of the
distribution of the statistic used to monitor the process that provide a certain probability
(↵ or 1 � �). Thus, by fixing either (↵ or 1 � �) or (ARL0 or ARL1), we get the control
limits as the quantiles of the mean distribution. That said, based on the bootstrap method
for control charts, proposed by Bajgier (1992) and Gandy and Kvaløy (2013), we obtain
the control limits to monitor the process mean according to Algorithm 1.
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Algorithm 1 Control limits to monitor the process mean.
1: Generate a n⇥m observation matrix of the considered symmetrical distribution, where

n is the size of the subsample. Calculate

Xi =
1

n

inX

l=(i�1)n+1

Xl, i = 1, . . . ,m.

2: Using the empirical distribution of X, obtained using the samples of the symmetrical
distribution in Step 1, obtain the quantiles of order ↵/2 and 1 � ↵/2, referred here,
respectively, as bq↵

2
and bq(1�↵

2
).

3: Repeat Step 1 and 2 B times using the quantities

dLCL =
1

B

BX

i=1

bq↵
2
,i and [UCL =

1

B

BX

i=1

bq(1�↵
2
),i

as the control limits.

Algorithm 1, described previously, can be schematically depicted as

Replicate 1 Replicate 2 . . . Replicate B
x1 x1 . . . x1
...

...
...

...
xm xm . . . xm

bq↵
2
,1 bq↵

2
,2 . . . bq↵

2
,B ! dLCL =

1

B

BX

i=1

bq↵
2
,i

bq(1�↵
2
),1 bq(1�↵

2
),2 . . . bq(1�↵

2
),B ! [UCL =

1

B

BX

i=1

bq(1�↵
2
),i.

Since this is a computationally intensive method, in order to obtain the control limits,
we recommend simulated samples of sizes m � 2, 000 and B � 5, 000, aiming to obtain
more accurate results, without possible bootstrap quantile bias. These values of m and B
are suggested based on previous studies; see for more on the suggested values of m and
B in Davison and Hinkley (1997). In practical situations, where the parameters of the
process distribution are most likely unknown, we recommend the following procedure to
estimate the control limits:

(1) Obtain observed values x = (x1, . . . , xk)> (from sample of size k, under statistical
control, of your population of interest) and adjust possible models for the data. Use
the AIC (Akaike information criterion) and BIC (Bayesian information criterion)
for selected model and goodness-of-fit techniques in order to evaluate the chosen
distribution;

(2) If the most suitable model belongs to the symmetric class, use b✓(x), the maximum
likelihood estimate of the parameters of the distribution, identified in Step (1), to
obtain the control limits using Algorithm 1.

For more details on the computationally intensive and resampling procedure, see Davison
and Hinkley (1997).
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4. Chart performance evaluation and comparison

In this section, a detailed simulation study is conducted in order to gain insight into the
detection abilities in the proposed control charts when we compare with the usual Shewhart
charts.
The simulation study considers two distributions, Student-t and power-exponential. The

Student-t distribution is usually used as an alternative to the normal distribution when
the behavior of the data suggests a symmetrical distribution, but with tails heavier than
the normal distribution. Lange et al. (1989) commented that the Student-t model can be
seen as a robust parametric extension of the normal model, since it allows to reduce the
influence of aberrant observations. On top of that, the Student-t allows the adjustment of
the kurtosis of the data distribution through the ⌫ parameter, which represents its degrees
of freedom. For the purpose of evaluating the performance of the proposed chart, values
of ⌫ = {3, 5, 10} and 20 are considered in the simulation study. Additionally, the power-
exponential distribution is also used because its  parameter allows it to have both lighter
and heavier tails than the normal distribution, thus making it a good alternative for non-
normal symmetric data. The simulation study has lighter tail ( = {�0.45,�0.25}) and
heavier tail ( = {0.3, 0.4}) scenarios than the normal distribution.
Furthermore, the scenarios are evaluated considering the following subsample size: n =

{1, 2, 3, 10, 100, 500}. Bearing in mind that the proposed method is compared to the usual
Shewhart chart, and we consider deviations in the mean of � = {0.0,⌥1.5,⌥2.0,⌥3.0}
standard deviations. The analyzes presented below are based on the assessments of the
ARL0, ARL1 and the asymptotic behavior of the control limits, represented by n = 100
and 500. The parameter settings µ and � adopted are intended to simulate several practical
situations such as small (1, 2, 5) and large (100 and 200) values of process mean, in addition
to considering the data dispersion index, which is given by

Id =
Var(X)

E(X)

and represents the variability of the data in relation to the mean. Regarding the dispersion
index, we considered four categories: very underdispersed (Id ⇡ 0.033), moderate underdis-
persed (Id ⇡ 0.67), moderate overdispersed (Id ⇡ 1.67) and very overdispersed (Id ⇡ 3.33).
The target value set for ARL0 is 370.40 samples, which is equivalent to ↵ = 0.0027 (refer-
ence value of the Shewhart X chart).
The computational routines were developed using the R software (R Core Team, 2018)

version 3.6.2 for Windows platform and are available at:

https://github.com/lucasdofs/Control-Chart-Symmetrical.

The Shewhart LCL and UCL considered in the simulation are given by

LCL = µ0 �
�0p
n

and UCL = µ0 +
�0p
n
,

where µ0 and �0 are the in-control mean and in-control standard deviation, respectively.
Algorithm 2 proposes a way for estimating ARL0 and ARL1.

https://github.com/lucasdofs/Control-Chart-Symmetrical
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Algorithm 2 Procedure to estimate ARL0 and ARL1.

1: Generate x(n⇥5000) = (x1, . . . , xn⇥5000)>, a column vector of size n ⇥ 5000 of the
distribution of interest, and calculate

Xi =
1

n

inX

l=(i�1)n+1

Xl, i = 1, . . . , 5000.

2: The control limits are compared with the 5000 sample-shifted mean (shifted factor =
�⇥ �0/

p
n and store the position of the first out of control sample, in which the value

of the sample-shifted mean is higher than UCL or lower than LCL.
3: Steps 1 and 2 are repeated 10000 times independently, and ARL0 or ARL1 is calculated

based on the average of the positions obtained in Step 2.

The diagram below illustrates Algorithm 2:

Replicate 1 Replicate 2 . . . Replicate 10000
x1 + � �0p

n
x1 + � �0p

n
. . . x1 + � �0p

n
...

...
...

...
x5000 + � �0p

n
x5000 + � �0p

n
. . . x5000 + � �0p

n

a1 a2 . . . a10000

Then, we estimate ARL0 and ARL1 by means of

[ARLj =

10000P
i=1

ai

10000
, j = 0, 1,

where ai, for i = 1, . . . , 10000, represents the position of the first sample in which the value
of the sample mean, plus � standard deviations, is higher than UCL or lower than LCL.
Tables 2 to 5 and Tables 6 to 9 present the results of the computational study carried out

for the Student-t and power-exponential distributions, respectively. The estimated results

are expressed in terms of the quantities [ARL0, [ARL1 and the control limits, in addition,

in parentheses are [ARL0, [ARL1 for the usual Shewhart control limits.

Table 2. Control limits, [ARL0 and [ARL1 of the proposed method, considering the Student-t with ⌫ = 3

(in parentheses are the [ARL0 and [ARL1 for the usual Shewhart limits).

0.2cm=5pt

�

Parameters n dLCL [UCL �3.0 �2.0 �1.5 0 1.5 2.0 3.0

µ = 100.00. � = 1.00

1 90.91 109.07 64.95 (4.08) 164.1 (10.72) 228.45 (23.58) 361.92 (72.68) 231.61 (23.52) 163.78 (10.75) 64.99 (4.08)

�2 = 3.00. Id = 0.03

2 94.05 105.95 4.89 (1.56) 49.31 (2.48) 114.55 (7.78) 349.38 (79.85) 110.93 (7.72) 48.71 (2.45) 4.87 (1.07)
3 95.36 104.63 1.31 (1.01) 12.18 (1.48) 49.36 (3.37) 356.23 (85.81) 49.54 (3.30) 11.92 (1.35) 1.31 (1.01)
10 97.78 102.22 1.00 (1.00) 1.02 (1.00) 1.28 (1.00) 360.63 (112.37) 1.28 (1.00) 1.01 (1.00) 1.00 (1.00)
100 99.41 100.58 1.00 (1.00) 1.00 (1.00) 1.03 (1.00) 375.41 (175.90) 1.03 (1.00) 1.00 (1.00) 1.00 (1.00)
500 99.75 100.25 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 372.30 (273.51) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

µ = 9.00. � = 2.00

1 �3.82 21.81 64.37 (2.25) 162.81 (10.67) 226.73 (23.37) 351.00 (75.69) 220.81 (24.18) 158.93 (11.05) 62.39 (2.12)

�2 = 6.00. Id = 0.67

2 0.58 17.40 4.98 (1.06) 49.48 (2.47) 113.92 (7.77) 348.40 (79.97) 112.77 (7.76) 48.99 (2.46) 4.83 (1.07)
3 2.44 15.58 1.32 (1.00) 12.03 (1.48) 49.55 (4.43) 360.44 (85.84) 50.98 (4.43) 12.58 (1.50) 1.32 (1.00)
10 5.85 12.15 1.00 (1.00) 1.01 (1.00) 1.29 (1.00) 351.47 (110.05) 1.28 (1.00) 1.01 (1.00) 1.00 (1.00)
100 8.18 9.82 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 358.47 (188.19) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 8.66 9.34 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 352.07 (228.52) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

µ = 2.00. � = 1.00

1 �7.08 11.04 65.10 (2.02) 161.00 (11.04) 224.12 (23.95) 349.92 (72.56) 226.8 (23.83) 160.31 (10.86) 63.45 (1.98)

�2 = 3.00. Id = 1.50

2 �3.94 7.95 4.88 (1.04) 49.01 (2.46) 113.9 (7.76) 349.15 (79.81) 113.53 (7.53) 48.74 (2.47) 4.92 (1.00)
3 �2.64 6.64 1.31 (1.01) 12.18 (1.37) 49.65 (3.32) 354.25 (84.79) 49.65 (3.31) 12.18 (1.37) 1.31 (1.00)
10 �0.23 4.23 1.00 (1.00) 1.01 (1.00) 1.27 (1.00) 358.13 (110.50) 1.30 (1.00) 1.01 (1.00) 1.00 (1.00)
100 1.42 2.58 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 361.87 (178.28) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 1.76 2.24 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 365.46 (271.31) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

µ = 3.00. � = 3.00

1 �12.72 18.70 64.45 (2.01) 162.61 (10.57) 226.07 (24.34) 354.34 (71.58) 224.67 (23.21) 161.73 (10.74) 63.65 (1.98)

�2 = 9.00. Id = 3.00

2 �7.28 13.29 4.88 (1.00) 49.05(3.21) 113.15(8.12) 354.46 (79.59) 112.42 (7.98) 48.27 (2.59) 4.93 (1.08)
3 �5.04 11.04 1.32 (1.00) 12.23 (1.24) 49.34 (4.02) 358.24 (84.78) 49.85 (3.31) 12.54 (1.12) 1.32 (1.02)
10 �0.86 6.87 1.00 (1.00) 1.01 (1.00) 1.30 (1.00) 352.81 (108.88) 1.30 (1.00) 1.02 (1.00) 1.00 (1.00)
100 2.00 4.00 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 368.31 (191.45) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 2.66 3.44 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 372.63 (262.68) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
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Table 3. Control limits, [ARL0 and [ARL1 of the proposed method, considering the Student-t with ⌫ = 5

(in parentheses are the [ARL0 and [ARL1 for the usual Shewhart limits).

�

Parameters n dLCL [UCL �3.0 �2.0 �1.5 0 1.5 2.0 3.0

µ = 100.00. � = 2.00

1 92.31 107.69 11.22 (2.03) 55.72 (7.13) 112.49 (17.93) 352.56 (87.86) 112.53 (17.71) 54.76 (7.87) 10.98 (1.97)

�2 = 3.33. Id = 0.03

2 95.07 104.93 1.48 (1.00) 7.15 (1.08) 23.83 (5.97) 352.57 (108.37) 23.90 (6.01) 7.13 (2.10) 1.47 (1.00)
3 96.17 103.83 1.06 (1.01) 2.38 (1.44) 7.42 (3.23) 348.02 (125.75) 7.37 (3.44) 2.32 (1.92) 1.05 (1.00)
10 98.12 101.88 1.07 (1.00) 1.00 (1.00) 1.00 (1.00) 349.26 (199.15) 1.07 (1.00) 1.00 (1.00) 1.00 (1.00)
100 99.45 100.55 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 342.54 (342.54) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 99.75 100.25 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 364.02 (364.02) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

µ = 5.00. � = 2.00

1 �2.67 12.68 11.05(2.00) 54.23 (7.98) 108.10 (17.77) 339.16 (85.71) 108.00 (17.83) 54.50 (7.93) 10.98 (2.02)

�2 = 3.33. Id = 0.67

2 0.07 9.93 1.46 (1.02) 7.10 (2.35) 23.98 (5.99) 344.71 (126.00) 23.82 (6.02) 7.18 (2.49) 1.44 (1.01)
3 1.69 8.83 1.06 (1.00) 2.31 (1.00) 7.49 (3.18) 352.36 (125.04) 7.39 (3.00) 2.33 (1.00) 1.06 (1.00)
10 3.12 6.88 1.07 (1.00) 1.00 (1.00) 1.00 (1.00) 342.91 (193.58) 1.06 (1.00) 1.00 (1.00) 1.00 (1.00)
100 4.45 5.55 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 341.06 (341.44) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 4.75 5.25 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 363.70 (363.70) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

µ = 2.00. � = 2.00

1 �5.69 9.68 11.41 (2.03) 55.49 (7.95) 110.58 (17.58) 350.81 (84.80) 109.42 (17.05) 55.32 (7.76) 11.29 (1.99)

�2 = 3.33. Id = 1.67

2 �2.93 6.93 1.47 (1.01) 7.18 (2.37) 24.03 (5.98) 342.45 (108.11) 24.07 (5.96) 7.17 (2.34) 1.45 (1.02)
3 �1.83 5.83 1.07 (1.00) 2.37 (1.44) 7.43 (2.99) 353.08 (125.57) 7.51 (3.04) 2.32 (1.43) 1.06 (1.00)
10 0.12 3.88 1.07 (1.00) 1.00 (1.00) 1.00 (1.00) 344.14 (195.11) 1.07 (1.00) 1.00 (1.00) 1.00 (1.00)
100 1.45 2.55 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 342.59 (342.65) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 1.75 2.25 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 364.85 (364.85) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

µ = 1.00. � = 2.00

1 �6.68 8.69 11.21 (2.00) 54.34 (7.98) 111.25 (17.82) 354.89 (86.91) 112.53 (17.86) 55.20 (7.99) 10.98 (2.00)

�2 = 3.33. Id = 3.33

2 �3.93 5.93 1.21 (1.10) 3.82 (2.35) 11.45 (5.94) 342.45 (108.01) 23.73 (6.05) 7.07 (2.40) 1.47 (1.11)
3 �2.83 4.83 1.06 (1.00) 2.37 (1.45) 7.52 (3.12) 353.08 (125.33) 7.53 (2.87) 2.42 (2.00) 1.06 (1.00)
10 �0.87 2.87 1.07 (1.00) 1.00 (1.00) 1.00 (1.00) 350.42 (201.52) 1.07 (1.01) 1.00 (1.00) 1.00 (1.00)
100 0.45 1.55 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 346.90 (346.90) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 0.75 1.25 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 363.02 (363.02) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

Table 4. Control limits, [ARL0 and [ARL1 of the proposed method, considering the Student-t with ⌫ = 10

(in parentheses are the [ARL0 and [ARL1 for the usual Shewhart limits).

�

Parameters n dLCL [UCL �3.0 �2.0 �1.5 0 1.5 2.0 3.0

µ = 40.00. � = 1.00

1 36.08 43.91 3.88 (2.03) 16.22 (6.93) 41.07 (16.02) 349.80 (137.94) 40.03 (17.02) 15.69 (6.83) 3.38 (2.00)

�2 = 1.25. Id = 0.03

2 37.41 42.59 1.98 (1.00) 3.13 (2.33) 8.44 (5.56) 344.73 (185.14) 8.51 (5.60) 3.09 (2.33) 1.20 (1.00)
3 37.94 42.06 1.02 (1.00) 1.63 (1.12) 3.65 (2.94) 348.76 (211.11) 3.73 (2.93) 1.65 (1.21) 1.02 (1.00)
10 38.92 41.08 1.00 (1.00) 1.00 (1.00) 1.05 (1.00) 368.43 (309.80) 1.05 (1.00) 1.00 (1.00) 1.00 (1.00)
100 39.66 40.33 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 360.57 (360.57) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 39.95 40.15 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 368.60 (368.60) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

µ = 2.00. � = 1.00

1 �1.91 5.92 3.39 (2.01) 16.02 (5.84) 40.76 (16.05) 350.40 (137.34) 40.56 (16.05) 16.05 (5.85) 3.41 (1.98)

�2 = 1.25. Id = 0.63

2 �0.60 4.59 1.19 (1.02) 3.14 (2.36) 8.67 (5.57) 353.52 (183.05) 8.68 (5.53) 3.13 (2.32) 1.19 (1.00)
3 �0.06 4.06 1.02 (1.00) 1.66 (1.43) 3.73 (2.94) 347.79 (209.95) 3.74 (2.97) 1.64 (1.49) 1.02 (1.00)
10 0.92 3.08 1.00 (1.00) 1.00 (1.00) 1.05 (1.00) 362.89 (308.87) 1.05 (1.00) 1.00 (1.00) 1.00 (1.00)
100 1.66 2.33 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 359.04 (359.04) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 1.85 2.15 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 372.82 (372.82) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

µ = 3.00. � = 4.00

1 �4.68 10.80 3.38 (2.08) 15.69 (6.88) 40.23 (17.23) 350.53 (138.37) 40.46 (16.98) 16.15 (6.22) 3.42 (2.42)

�2 = 5.00. Id = 1.67

2 �2.19 8.19 1.19 (1.02) 3.16 (1.98) 8.64 (5.45) 353.80 (183.80) 8.58 (5.39) 3.12 (2.43) 1.19 (1.03)
3 �1.12 7.12 1.02 (1.00) 1.62 (1.00) 3.69 (2.81) 349.12 (215.11) 3.69 (2.90) 1.63 (1.00) 1.02 (1.00)
10 0.84 5.16 1.00 (1.00) 1.00 (1.00) 1.05 (1.00) 348.58 (302.91) 1.05 (1.00) 1.00 (1.00) 1.00 (1.00)
100 2.33 3.67 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 379.51 (379.51) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 2.70 3.30 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 362.18 (362.18) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

µ = 2.00. � = 5.00

1 �6.76 10.76 3.46 (2.04) 16.28 (6.11) 41.22 (17.07) 351.44 (135.79) 40.95 (16.97) 16.02 (5.94) 3.49 (1.99)

�2 = 6.25. Id = 3.13

2 �3.80 7.81 1.19 (1.00) 3.22 (1.98) 8.60 (5.21) 351.04 (185.96) 8.60 (4.99) 3.17 (1.49) 1.18 (1.00)
3 �2.61 6.60 1.03 (1.00) 1.65 (1.02) 3.71 (2.38) 340.71 (211.32) 3.65 (2.61) 1.63 (1.02) 1.03 (1.01)
10 �0.41 4.41 1.00 (1.00) 1.00 (1.00) 1.05 (1.00) 354.67 (303.27) 1.05 (1.00) 1.00 (1.00) 1.00 (1.00)
100 1.25 2.75 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 379.97 (379.98) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 1.67 2.33 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 345.63 (345.63) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

For both distributions considered, as n increases, the control limits get closer to the true
value of the mean (process under control), regardless of the ⌫ parameter, for the Student-t
distribution, and the  parameter for the power-exponential distribution. Furthermore,
as expected, for the Student-t distribution, when n and ⌫ increase, the sample mean
distribution approaches a normal distribution. Thus, the control limits by the proposed
method tend to approach the Shewhart’s usual control limits. This behavior is also seen
for the power-exponential distribution when n increases and  approaches 0. This fact is
noticeable when we observe the proximity of the ARL0 values and considering the control
limits using the proposed method and the usual Shewhart method. Moreover, the observed
behavior of the proposed control limits occurs independently of the process dispersion
index, thus showing the robustness in relation to this index.
Based on the ARL0 for heavy-tailed data distribution, see Tables 2 to 5 and Tables 8

and 9, regardless of the scenario, the proposed method presents ARL0 around 340 to 380



Chilean Journal of Statistics 45

Table 5. Control limits, [ARL0 and [ARL1 of the proposed method, considering the Student-t with ⌫ = 20

(in parentheses are the [ARL0 and [ARL1 for the usual Shewhart limits).

�

Parameters n dLCL [UCL �3.0 �2.0 �1.5 0 1.5 2.0 3.0

µ = 100.00. � = 3.00

1 94.12 105.88 2.47 (2.00) 9.35 (6.49) 23.63 (15.54) 370.34 (205.13) 23.33 (15.48) 9.33 (6.54) 2.43 (2.00)

�2 = 3.33. Id = 0.03

2 95.99 104.01 1.15 (1.12) 2.59 (2.30) 6.31 (5.30) 338.44 (255.64) 6.22 (5.39) 2.59 (2.34) 1.14 (1.12)
3 96.77 103.23 1.00 (1.00) 1.10 (1.02) 1.48 (1.13) 350.19 (293.38) 3.13 (1.10) 1.15 (1.01) 1.01 (1.00)
10 98.27 101.73 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 340.78 (336.88) 1.04 (1.00) 1.00 (1.00) 1.00 (1.00)
100 99.45 100.55 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 363.70 (363.70) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 99.75 100.25 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 368.64 (368.64) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

µ = 5.00. � = 3.00

1 �0.87 10.87 2.43 (2.02) 9.21 (6.56) 23.22 (15.63) 345.35 (205.13) 23.60 (15.49) 9.33 (6.60) 2.43 (2.00)

�2 = 3.33. Id = 0.67

2 0.99 10.10 1.15 (1.12) 2.60 (3.25) 6.32 (5.37) 350.44 (260.74) 6.21 (5.44) 2.55 (2.30) 1.15 (1.12)
3 3.27 7.73 1.02 (1.02) 1.48 (1.09) 3.04 (2.95) 352.36 (284.71) 3.39 (2.93) 2.33 (1.46) 1.06 (1.02)
10 3.27 7.73 1.05 (1.00) 1.00 (1.00) 1.00 (1.00) 341.78 (338.52) 1.03 (1.00) 1.00 (1.00) 1.00 (1.00)
100 4.45 5.55 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 363.48 (368.48) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 4.75 5.25 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 370.81 (370.81) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

µ = 2.00. � = 3.00

1 �3.87 7.87 2.43 (1.99) 9.30 (6.59) 23.22 (15.41) 349.33 (206.78) 23.35 (15.47) 9.19 (6.61) 2.42 (2.03)

�2 = 3.33. Id = 1.67

2 �2.00 6.00 1.14 (1.08) 2.55 (2.36) 6.29 (5.41) 342.47 (257.90) 6.25 (5.40) 2.56 (2.33) 1.14 (1.02)
3 �1.23 5.23 1.02 (1.01) 1.52 (1.46) 3.17 (2.93) 345.04 (285.07) 3.15 (2.95) 1.52 (1.47) 1.01 (1.00)
10 0.27 3.73 1.03 (1.00) 1.00 (1.00) 1.00 (1.00) 347.54 (343.02) 1.04 (1.00) 1.00 (1.00) 1.00 (1.00)
100 1.45 2.55 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 347.78 (347.65) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 1.75 2.25 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 370.84 (370.84) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

µ = 1.00. � = 3.00

1 �4.87 6.87 2.43 (2.00) 9.29 (6.74)) 23.19 (15.76) 344.41 (205.14) 23.23 (15.17) 9.25 (6.58) 2.49 (2.00)

�2 = 3.33. Id = 3.33

2 �3.00 5.00 1.14 (1.00) 2.58 (2.34) 6.31 (5.32) 342.45 (259.21) 6.33 (5.44) 2.56 (2.38) 1.14 (1.01)
3 �2.23 4.23 1.02 (1.00) 1.52 (1.34) 3.18 (2.83) 345.04 (285.07) 3.15 (2.90) 1.52 (1.39) 1.01 (1.00)
10 �0.73 2.73 1.05 (1.00) 1.00 (1.00) 1.00 (1.00) 347.54 (343.02) 1.04 (1.00) 1.00 (1.00) 1.00 (1.00)
100 0.45 1.55 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 371.68 (371.68) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 0.75 1.25 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 370.84 (370.84) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

Table 6. Control limits, [ARL0 and [ARL1 of the proposed method, considering the power-exponential with

 = �0.45 (in parentheses are the [ARL0 and [ARL1 for the usual Shewhart limits).

�

Parameters n dLCL [UCL �3.0 �2.0 �1.5 0 1.5 2.0 3.0

µ = 50.00. � = 3.00

1 47.03 52.97 1.43 (1.97) 2.69 (5.42) 4.72 (14.95) 331.28 (2453.04) 4.83 (14.94) 2.75 (5.53) 1.47 (2.09)

�2 = 1.52. Id = 0.03

2 47.68 52.32 1.06 (1.13) 1.79 (2.31) 3.32 (4.98) 334.62 (1674.89) 3.30 (5.05) 1.76 (2.29) 1.06 (1.12)
3 48.02 51.98 1.00 (1.01) 1.34 (1.48) 2.35 (2.93) 347.29 (978.20) 2.30 (2.87) 1.34 (1.49) 1.00 (1.01)
10 48.86 51.14 1.00 (1.00) 1.00 (1.00) 1.03 (1.04) 357.29 (475.48) 1.04 (1.04) 1.00 (1.00) 1.00 (1.00)
100 49.63 50.37 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 362.80 (429.02) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 49.83 50.17 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 371.77 (371.77) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

µ = 3.00. � = 4.00

1 �0.43 6.43 1.43 (1.98) 2.70 (5.44) 4.74 (15.15) 338.91 (2353.73) 4.76 (14.82) 2.69 (5.50) 1.45 (2.01)

�2 = 2.03. Id = 0.67

2 0.32 5.68 1.06 (1.13) 1.77 (2.30) 3.29 (4.96) 342.17 (1629.00) 3.47 (5.09) 1.77 (2.30) 1.06 (1.13)
3 0.72 5.28 1.01 (1.01) 1.34 (1.48) 2.33 (2.84) 342.95 (975.43) 2.27 (2.86) 1.33 (1.50) 1.01 (1.01)
10 1.68 4.32 1.00 (1.00) 1.00 (1.00) 1.03 (1.05) 366.09 (463.89) 1.04 (1.04) 1.00 (1.00) 1.00 (1.00)
100 2.58 3.43 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 360.78 (360.78) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 2.81 3.19 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 372.59 (372.59) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

µ = 1.00. � = 3.00

1 �1.97 3.97 1.43 (2.00) 2.74 (5.42) 4.71 (14.83) 348.63 (2510.84) 4.84 (14.76) 2.79 (5.55) 1.45 (2.04)

�2 = 1.52. Id = 1.52

2 �1.32 3.32 1.07 (1.13) 1.80 (2.30) 3.29 (4.97) 353.29 (961.80) 3.28 (5.03) 1.77 (2.27) 1.06 (1.12)
3 �0.98 2.89 1.00 (1.01) 1.36 (1.50) 2.32 (2.89) 353.29 (961.80) 2.27 (2.86) 1.34 (1.48) 1.00 (1.01)
10 �0.14 2.14 1.00 (1.00) 1.00 (1.00) 1.04 (1.03) 358.79 (474.93) 1.03 (1.05) 1.00 (1.00) 1.00 (1.00)
100 0.46 1.54 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 425.74 (425.74) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 0.75 1.25 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 365.57 (365.57) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

µ = 1.00. � = 6.00

1 �3.20 5.20 1.45 (2.01) 2.75 (5.53) 4.89 (14.85) 357.02 (2453.02) 4.79 (14.76) 2.71 (5.48) 1.46 (2.00)

�2 = 3.04. Id = 3.04

2 �2.28 4.28 1.07 (1.14) 1.78 (2.31) 3.30 (5.02) 338.52 (1653.62) 3.81 (5.05) 1.79 (2.32) 1.06 (1.13)
3 �1.79 3.79 1.00 (1.00) 1.33 (1.33) 2.34 (2.33) 342.48 (990.77) 2.31 (2.88) 1.32 (1.48) 1.00 (1.00)
10 �0.61 2.61 1.00 (1.00) 1.00 (1.00) 1.04 (1.05) 347.92 (450.07) 1.05 (1.04) 1.00 (1.00) 1.00 (1.00)
100 0.48 1.52 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 393.67 (393.67) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 0.77 1.23 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 365.62 (365.62) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

samples. Considering subsample sizes n = {1, 2, 3} (most used in practical situations) the
proposed method presents ARL0 closer to 370.40 (target value) than the usual Shewhart
method (see column � = 0 of Tables 2 to 5 and Tables 8 and 9). This behavior occurs
independently of the dispersion index, showing the flexibility of the method for di↵erent
situations. Considering the power of detection of the proposed method, for heavy-tailed
distributions, some patterns are observed for all scenarios, they are: (i) for a fixed deviation
�, as n increases, the ARL1 decreases, approaching one sample; (ii) for a fixed subsample
size n, as � increases, ARL1 decreases, also approaching one sample.
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Table 7. Control limits, [ARL0 and [ARL1 of the proposed method, considering the power-exponential with

 = �0.25 (in parentheses are the [ARL0 and [ARL1 for the usual Shewhart limits).

�

Parameters n dLCL [UCL �3.0 �2.0 �1.5 0 1.5 2.0 3.0

µ = 20.00. � = 1.00

1 17.82 22.18 1.63 (2.04) 3.73 (5.83) 7.78 (14.85) 353.72 (1475.83) 7.61 (14.66) 3.68 (5.62) 1.61 (1.98)

�2 = 0.67. Id = 0.03

2 18.38 21.62 1.09 (1.13) 1.96 (2.30) 4.01 (5.11) 348.92 (785.06) 3.88 (5.00) 1.96 (2.28) 1.08 (1.12)
3 18.65 21.35 1.00 (1.00) 1.37 (1.05) 2.56 (2.92) 354.29 (583.45) 2.51 (2.86) 1.37 (1.47) 1.00 (1.00)
10 19.24 20.76 1.00 (1.00) 1.00 (1.00) 1.03 (1.04) 361.93 (414.45) 1.04 (1.04) 1.00 (1.00) 1.00 (1.00)
100 19.76 20.24 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 373.80 (373.80) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 19.89 20.11 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 370.77 (370.77) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

µ = 1.00. � = 1.00

1 �1.18 3.18 1.61 (2.01) 3.73 (5.87) 7.74 (14.62) 356.99 (1468.41) 7.75 (14.84) 3.75 (5.85) 1.60 (1.99)

�2 = 0.67. Id = 0.67

2 �0.62 2.62 1.08 (1.13) 1.97 (2.30) 3.93 (5.04) 356.25 (783.09) 4.00 (5.11) 1.97 (2.30) 1.09 (1.26)
3 �0.34 2.35 1.01 (1.01) 1.38 (1.48) 2.52 (2.84) 352.44 (580.43) 2.53 (2.86) 1.39 (1.50) 1.00 (1.01)
10 0.24 0.76 1.00 (1.00) 1.00 (1.00) 1.03 (1.04) 362.04 (413.75) 1.05 (1.04) 1.00 (1.00) 1.00 (1.00)
100 0.76 0.24 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 377.50 (377.50) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 0.89 1.11 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 373.80 (373.80) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

µ = 2.00. � = 5.00

1 �2.87 6.87 1.62 (2.01) 3.72 (5.89) 7.72 (14.82) 347.26 (1474.67) 7.62 (14.95) 3.68 (5.90) 1.61 (2.03)

�2 = 3.34. Id = 1.67

2 �1.62 5.62 1.08 (1.12) 1.94 (2.30) 3.85 (5.04) 343.57 (765.80) 3.94 (5.11) 1.98 (2.34) 1.08 (1.29)
3 �1.02 5.02 1.01 (1.01) 1.39 (1.48) 2.52 (2.52) 352.94 (588.16) 2.54 (2.91) 1.39 (1.49) 1.00 (1.00)
10 0.30 3.70 1.00 (1.00) 1.00 (1.00) 1.04 (1.05) 346.49 (414.75) 1.04 (1.05) 1.00 (1.00) 1.00 (1.00)
100 0.46 2.54 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 353.19 (353.19) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 1.75 2.25 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 374.40 (374.40) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

µ = 1.00. � = 3.00

1 �3.87 5.87 1.61 (2.00) 3.64 (5.75) 7.55 (14.84) 344.61 (1447.16) 7.61 (14.76) 3.69 (5.80) 1.60 (2.00)

�2 = 3.34. Id = 3.34

2 �2.62 4.62 1.08 (1.12) 1.95 (2.34) 3.92 (5.17) 342.42 (774.74) 3.98 (5.08) 1.98 (2.94) 1.09 (1.12)
3 �2.02 4.02 1.00 (1.00) 1.38 (1.49) 2.50 (2.88) 350.27 (589.64) 2.51 (2.91) 1.38 (1.50) 1.00 (1.00)
10 �0.70 2.70 1.00 (1.00) 1.00 (1.00) 1.04 (1.05) 353.87 (422.70) 1.03 (1.04) 1.00 (1.00) 1.00 (1.00)
100 1.46 2.54 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 347.99 (347.99) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 0.75 1.25 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 365.62 (365.62) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

Table 8. Control limits, [ARL0 and [ARL1 of the proposed method, considering the power-exponential with

 = 0.30 (in parentheses are the [ARL0 and [ARL1 for the usual Shewhart limits).

�

Parameters n dLCL [UCL �3.0 �2.0 �1.5 0 1.5 2.0 3.0

µ = 100.00. � = 2.00

1 93.77 106.23 2.84 (1.99) 11.75 (6.99) 27.49 (15.43) 342.60 (156.80) 27.98 (15.35) 11.64 (6.99) 2.85 (2.00)

�2 = 3.48. Id = 0.03

2 95.80 104.20 1.16 (1.00) 2.79 (2.31) 7.24 (5.57) 339.54 (211.36) 7.26 (5.63) 2.82 (2.33) 1.16 (1.00)
3 96.63 103.37 1.02 (1.00) 1.57 (1.10) 3.37 (1.85) 345.02 (243.33) 2.94 (1.98) 1.46 (1.10) 1.04 (1.00)
10 98.21 101.78 1.00 (1.00) 1.00 (1.00) 1.05 (1.00) 341.86 (328.73) 1.04 (1.01) 1.00 (1.00) 1.00 (1.00)
100 99.44 100.56 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 379.83 (379.83) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 99.75 100.25 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 368.01 (368.01) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

µ = 5.00. � = 2.00

1 �1.23 11.23 2.86 (2.00) 11.42 (7.04) 27.82 (15.48) 344.63 (159.19) 27.85 (15.68) 11.73 (7.02) 2.87 (1.98)

�2 = 3.48. Id = 0.69

2 0.80 9.20 1.16 (1.00) 2.81 (2.01) 7.13 (4.88) 345.25 (213.12) 7.33 (4.65) 2.84 (1.66) 1.17 (1.00)
3 1.64 8.36 1.03 (1.00) 1.56 (1.00) 3.41 (2.01) 337.44 (245.43) 3.37 (1.98) 1.56 (1.02) 1.02 (1.00)
10 3.22 6.78 1.00 (1.00) 1.00 (1.00) 1.05 (1.00) 331.18 (317.76) 1.04 (1.00) 1.00 (1.00) 1.00 (1.00)
100 4.43 5.57 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 360.24 (360.24) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 4.75 5.25 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 373.15 (373.15) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

µ = 1.00. � = 1.00

1 �3.41 5.41 2.85 (2.00) 11.78 (6.21) 28.40 (15.38) 340.78 (154.31) 28.40 (16.98) 11.79 (6.82) 2.90 (1.99)

�2 = 1.74. Id = 1.74

2 �1.97 3.97 1.16 (1.00) 2.76 (2.33) 7.22 (5.49) 343.14 (210.14) 7.16 (4.44) 2.82 (2.01) 1.16 (1.0 0)
3 �1.38 3.38 1.02 (1.00) 1.56 (1.12) 3.40 (2.88) 345.69 (245.38) 3.31 (2.53) 1.56 (1.24) 1.02 (1.00)
10 �0.26 3.38 1.00 (1.00) 1.00 (1.00) 1.04 (1.00) 336.31 (317.73) 1.04 (1.00) 1.00 (1.00) 1.00 (1.00)
100 0.61 1.39 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 365.30 (365.30) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 0.75 1.25 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 370.69 (370.69) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

µ = 1.00. � = 2.00

1 �5.23 7.23 2.84 (2.01) 11.85 (6.33) 28.50 (16.22) 341.77 (156.24) 27.70 (15.99) 11.64 (7.01) 2.86 (2.12)

�2 = 3.48. Id = 3.48

2 �3.20 5.20 1.16 (1.00) 2.82 (1.87) 7.23 (3.34) 342.88 (212.48) 7.30 (3.88) 2.81 (1.97) 1.16 (1.00)
3 �2.36 4.37 1.02 (1.00) 1.57 (1.21) 3.43 (1.87) 346.42 (249.51) 3.43 (2.01) 1.56 (1.21) 1.02 (1.00)
10 �0.79 2.78 1.00 (1.00) 1.00 (1.00) 1.04 (1.00) 345.99 (319.95) 1.04 (1.00) 1.00 (1.00) 1.00 (1.00)
100 0.61 1.39 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 361.58 (362.00) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 0.75 1.25 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 363.47 (363.47) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

For the Student-t distribution in the most extreme scenarios (⌫ = 3 and 5; see Tables
2 and 3), due to the behavior of the distribution, using the subsample size n = 1 does
not prove to be the most recommended in these situations. However, when n = 2 the
ARL0 reduces considerably (about 50% or more), mainly when � = 3. In view of this,
in situations where the data distribution have very heavy tails, we recommend the use of
n � 3, as these subsample sizes have excellent ARL0, closer to the target value 370.40 than
the usual Shewhart method. Regarding the heavy-tailed power-exponential distribution
(Tables 8 and 9), the method shows excellent detection power, compatible with the usual
Shewhart chart. Still on ARL1, for the power-exponential distribution with 0 <  < 1, it
takes, on average, 30 samples to detect a shift of 1.5 standard deviations in the process
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Table 9. Control limits, [ARL0 and [ARL1 of the proposed method, considering the power-exponential with

 = 0.40 (in parentheses are the [ARL0 and [ARL1 for the usual Shewhart limits).

�

Parameters n dLCL [UCL �3.0 �2.0 �1.5 0 1.5 2.0 3.0

µ = 200.00. � = 3.00

1 192.27 208.74 3.38 (2.09) 14.31 (8.01) 33.75 (15.95) 343.75 (128.71) 34.42 (16.01) 14.33 (7.87) 3.29 (1.99)

�2 = 6.38. Id = 0.03

2 194.19 205.81 1.18 (1.00) 3.06 (2.04) 8.11 (5.98) 339.18 (183.49) 8.24 (5.78) 3.09 (2.09) 1.19 (1.00)
3 195.37 204.65 1.02 (1.00) 1.61 (1.21) 3.62 (2.44) 350.76 (220.57) 3.58 (2.68) 1.60 (1.10) 1.02 (1.00)
10 197.57 202.43 1.00 (1.00) 1.00 (1.00) 1.05 (1.00) 341.72 (301.71) 1.04 (1.00) 1.00 (1.00) 1.00 (1.00)
100 199.25 200.75 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 363.53 (363.53) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 199.66 200.34 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 369.43 (369.43) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

µ = 6.00. � = 2.00

1 �1.13 13.13 3.38 (1.89) 14.49 (7.55) 34.42 (15.92) 352.32 (131.78) 33.83 (15.09) 14.32 (7.82) 3.67 (2.41)

�2 = 4.25. Id = 0.69

2 1.25 10.74 1.18 (1.00) 3.03 (1.89) 8.18 (5.87) 344.72 (186.21) 8.28 (5.91) 3.03 (2.01) 1.18 (1.00)
3 2.22 9.78 1.07 (1.00) 1.63 (1.12) 3.69 (2.56) 344.36 (217.27) 3.61 (2.57) 1.60 (1.10) 1.02 (1.00)
10 4.02 7.98 1.00 (1.00) 1.00 (1.00) 1.04 (1.00) 338.18 (299.91) 1.04 (1.00) 1.00 (1.00) 1.00 (1.00)
100 5.38 6.61 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 365.11 (365.11) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 5.72 6.28 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 369.66 (369.66) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

µ = 4.00. � = 3.00

1 �4.73 12.73 3.40 (2.02) 14.33 (7.20) 33.99 (15.50) 344.13 (128.67) 33.75 (16.01) 14.29 (7.92) 3.39 (2.11)

�2 = 6.38. Id = 1.60

2 �1.81 9.81 1.17 (1.00) 3.05 (2.15) 8.23 (6.21) 340.18 (184.24) 8.17 (6.64) 3.08 (2.65) 1.18 (1.00)
3 �0.63 8.63 1.02 (1.00) 1.61 (1.04) 3.61 (2.44) 347.98 (218.82) 3.65 (2.44) 1.62 (1.13) 1.02 (1.00)
10 1.57 6.43 1.00 (1.00) 1.00 (1.00) 1.04 (1.00) 340.06 (298.09) 1.04 (1.00) 1.00 (1.00) 1.00 (1.00)
100 3.21 4.76 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 359.28 (359.28) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 3.66 4.33 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 371.28(371.28) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

µ = 2.00. � = 3.00

1 �6.73 10.73 3.31 (2.00) 14.32 (7.11) 34.18 (15.34) 339.57 (126.84) 34.69 (15.42) 14.62 (7.12) 3.36 (2.00)

�2 = 6.38. Id = 3.19

2 �3.81 7.81 1.18 (1.00) 3.09 (2.31) 8.30 (5.46) 345.06 (193.59) 8.25 (5.45) 3.09 (2.35) 1.18 (1.00)
3 �2.63 6.62 1.02 (1.00) 1.61 (1.10) 3.64 (2.65) 336.19 (215.73) 3.68 (2.67) 1.62 (1.00) 1.02 (1.00)
10 �0.43 4.43 1.00 (1.00) 1.00 (1.00) 1.04 (1.00) 344.24 (304.75) 1.04 (1.00) 1.00 (1.00) 1.00 (1.00)
100 1.24 2.74 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 360.82 (360.82) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
500 1.66 2.34 1.00 (1.00) 1.00 (1.00) 1.00 (1.00) 368.28 (368.28) 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

mean, when using n = 1. However, with n = 2, the ARL0 is already reduced to about 8
to 10 samples. This fact only reinforces the excellent applicability of the method for data
with heavy tails.
Considering our method for light-tailed distributions (Tables 6 and 7), which furnishes a

ARL0 around 332 to 370 samples, the ARL0 provided by the usual Shewhart method has
higher values (especially when n < 100), around 360 to 2400 samples. This peculiar fact
of high ARL0 occurs because the tail of the normal distribution is heavier than that of
the power-exponential distribution. Besides, when the process is under control, a sample
(from the power-exponential distribution) will rarely exceed the usual Shewhart limits
(designed to cover 99.73% of the samples when the process is normally distributed and
under control). On the other hand, despite these high ARL0, the usual procedure shows to
detect well large deviations in the process mean, taking a maximum of 16, 6 and 4 samples
to detect shifts of 1.5, 2.0 and 3.0 standard deviations, respectively. Moreover, these ARL0

reduce as n increases. This fact is, at first sight, surprising, as it is expected that the
higher the ARL0, the longer it will take to detect a true alarm. However, as we are in the
situation of large shifts (greater than 1.5 standard deviations), these changes in the mean
are su�cient for the usual Shewhart chart to indicate such changes satisfactorily. Still for
light-tailed distributions, the proposed method meet expectations and provides the ARL1

within the desired range, since the proposed approach is based on the true distribution
of the data (in this case the power-exponential). In addition to that, with regard to the
power of detection, the proposed method always presents ARL1 less than or equal to the
usual method. Furthermore, it is worth mentioning that for both types of tail weights, the
usual method detects changes in the mean almost instantly (ARL1 = 1) when n � 10.
In short, the proposed method presents excellent performance in term of ARL0 and

ARL1, being the most recommended in cases with distributions of heavier tail than the
normal distribution. On the other hand, in the context of light-tailed distributions, the
usual Shewhart method is recommended, because although the proposed method has ex-
cellent performance, the Shewhart X presents ARL0 equal to or greater than that of the
proposed method and it is comparable to the detection power of the proposed approach.
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5. A real example

This section illustrates the applicability of the method proposed in Section 3, when the
data is symmetric, but not necessarily with normal distribution. The data refers to the
result of the pH of 1599 red wines produced by the Portuguese company Vinho Verde, one
of the largest wine producers in Portugal, from May 2004 to February 2007. Cortez et al.
(2009) provided more details about the Vinho Verde company and the specifications of the
data set. The data used are available at https://archive.ics.uci.edu/ml/datasets/
Wine+Quality. In this section we also consider a comparison of the proposed method to
obtain the control limits with the usual Shewhart method.
Based on Cortez et al. (2009), there are strong indications that the 1599 observations

come from a process under control. Therefore, the first thousand observations are consid-
ered for phase I (process of constructing a control chart). In phase I, we perform a visual
graphic analysis (see Figure 1), the descriptive statistics (see Table 10) and a symmetry
test using the symmetry.test function of the lawstat package of R, which is based on
Miao et al. (2006). In the normal boxplot in Figure 1 we note some possible “atypical”
points. However, as the data is under control, it is more likely that these points are just
points in the tail of a heavier tailed distribution than the normal distribution. In Table
10, we can observe that the mean are close to the median, di↵ering just around one stan-
dard deviation (

p
0.249 ⇡ 0.5). Furthermore, the coe�cient of skewness and kurtosis are

both close to zero, which is a indication of symmetry. In addition to the strong suggestion
of symmetry, observed in Figure 1, and a brief analysis of the descriptive statistics, the
symmetry test provides a p-value of 0.74, that is, there is a strong statistical evidence to
not reject the hypothesis of data symmetry.
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Figure 1. PH Histogram and boxplot of the first thousand wines.

Table 10. Descriptive statistics related to the first thousand pH observations (phase I) of the red wines.

Minimum Mean Median Maximum Variance Dispersion index Skewness Kurtosis
2.740 3.299 3.300 3.900 0.249 0.008 0.185 0.417

After the assumption of symmetry is considered reasonable, we perform model adequacy
tests to find out which symmetric distribution best fits the data. Table 11 shows the models
considered, the estimated parameters, AIC and BIC. These measures and estimates are
obtained using the gamlss package (Stasinopoulos et al., 2007) of the R software.
Based on Table 11, we see that the most suitable model for the data is the Student-

t model with bµ = 3.299, b� = 0.007, b⌫ = 2.841 (which provides an estimated standard
error b� = 0.1484), with the lowest AIC and BIC among the concurrent models. In Figure
2, we present the quantile residuals (Dunn and Smyth, 1996) for the Student-t model,
obtained using gamlss function. As expected, the quantile residual for the adjusted model
are independent and normally distributed, which indicates that the postulated model is
reasonable to the data.

https://archive.ics.uci.edu/ml/datasets/Wine+Quality
https://archive.ics.uci.edu/ml/datasets/Wine+Quality
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Table 11. Parameter estimates, AIC and BIC for the models considered for the pH of red wines.

Distribution Parameter estimates AIC BIC

Normal bµ = 3.299, b� = 0.025 �850.104 �840.288

Student-t bµ = 3.299, b� = 0.007, b⌫ = 2.841 �853.585 �848.862

Power-exponential bµ = 3.299, b� = 0.008, b = 0.558 �852.388 �847.665

Type I logistic bµ = 3.299, b� = 0.031 �849.183 �839.367
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Figure 2. QQ-Plot and dispersion graphic of the quantile residuals for the Student-t model.

Thus, considering the Student-t model and the estimated parameters, we use the proce-
dure described in Section 3 with n = 1 (chosen to preserve the original data monitoring
scale) and a probability of false alarm equal to 0.0027. For this configuration, we obtain
LCL = 2.50, UCL = 4.10 and an estimated ARL0 of 373 samples. We see in Figure 3
(left) that the proposed method do not detect any change in the pH of the monitored
wines. In contrast, in Figure 3 (right) , we see that, even though the data is under control,
the usual method of Shewhart, based on the normal distribution, detects changes in the
average pH of the wines, thus generating false alarms. As expected, the proposed method
performs better than the usual Shewhart method, in relation to the number of samples
until a false alarm, when the data has a heavier tail than the normal distribution (in this
case, Student-t distribution with 2.85 degrees of freedom).
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Figure 3. Control chart for monitoring the average pH of red wines from the Vinho Verde company produced from

May 2004 to February 2007 with by the proposed (left) and he usual Shewhart (right) methods.
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6. Final considerations

In this work, a monitoring method via bootstrap is proposed and evaluated in order to
monitor the mean of symmetric data whose distribution belongs to the symmetric distri-
bution class. This method comes as an alternative to Shewhart X chart when we want
to monitor non-normal symmetric data, especially with heavy-tailed distribution data.
The simulation study (illustrated with the Student-t and power-exponential distribution)
shows that the proposed approach, for ↵ = 0.0027, provides in-control average run length
between 340 and 380 samples and a good detection power, approaching one sample as n
increases. Regarding the behavior of the control limits, for the proposed approach, they
become closer to the mean when n increases.
In the context of light-tailed distribution, the proposed method presents good perfor-

mance in-control average run length close to the desired value and good detection power).
However, it is recommended the usual Shewhart X chart, because in addition to presenting
a detection power comparable to the proposed method, it has a false alarm rate lower than
that of the proposed method. It is worth nothing that the great advantage of using the
proposed method, instead of the usual Shewhart method, is in situations in which the data
distribution has a heavier tail than normal distribution, since the proposed method has a
lower rate of false alarm (being very close to the nominal value) and excellent detection
power, as seen in the simulation study and illustrated in the monitoring of the average
pH of red wines. Finally, the proposed method is robust to dispersion index variation.
As future work we highlight: (i) to analyze the e↵ect of the parameter estimation in the
proposed method, (ii) to consider a joint monitoring of the mean and the standard devia-
tion for symmetric class data and, (iii) to propose an EWMA and CUSUM charts for the
symmetric class to monitor small deviations from the mean.
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