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Editors
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Jorge Figueroa-Zúñiga Universidad de Concepción, Chile

Isabel Fraga Universidade de Lisboa, Portugal

Manuel Galea Pontificia Universidad Católica de Chile
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Emilio Gómez-Déniz Universidad de Las Palmas de Gran Canaria, Spain

Daniel Gri�th University of Texas at Dallas, US

Eduardo Gutiérrez-Peña Universidad Nacional Autónoma de Mexico

Nikolai Kolev Universidade de São Paulo, Brazil

Eduardo Lalla University of Twente, Netherlands

Shuangzhe Liu University of Canberra, Australia
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UNCORRECTED PROOFS
Eleventh Volume – Second Number

Editorial Paper

Confirming our international presence with publications and

submissions from all continents in COVID-19 pandemic

V́ıctor Leiva1 and Carolina Marchant2

1School of Industrial Engineering, Pontificia Universidad Católica de Valparáıso, Valparáıso, Chile
2Faculty of Basic Sciences, Universidad Católica del Maule, Talca, Chile

Welcome to the second issue of the eleventh volume of the Chilean Journal of Statistics
(ChJS), published on 30 December 2020. The ChJS celebrates eleven years of life during
very testing times due to the coronavirus pandemic. The new coronavirus has a↵ected
the whole world in di↵erent ways, which was first identified in November 2019 in Wuhan,
China. This is an ongoing pandemic of coronavirus disease caused by severe acute respi-
ratory syndrome named coronavirus 2, also known as SARS-CoV-2 or COVID-19. Such a
pandemic is also a key period for statistics, because its use has allowed governments around
the planet to establish regulations aimed at stopping the spread of the virus. The World
Health Organization declared the outbreak an international public health emergency in
January 2020 and a pandemic in March 2020. Today, more than 82.1 million of cases have
been confirmed and more than 1.79 million of deaths have been attributed to COVID-
19 around the world. Medicine, science, statistics, and generation of new knowledge have
played a fundamental role during this year, with scientific journals playing a relevant role
as they publish research of quality. We believe the world will overcome this situation, but
we are sure new customs acquired during this period, such as interconnectivity, telework,
teleconferencing, virtuality, among others, will remain forever. Although their development
was initiated much before this pandemic, areas of big data, data science, machine learn-
ing, and statistics have been emphasized in 2020. All of these areas play an important role
not only in artificial intelligence, science, and engineering, but in practically all areas of
knowledge.
The scientific and editorial production of this volume of the ChJS would not have been

achieved without the valuable contributions of many people. Renowned international re-
searchers from the all five continents have honored us by publishing their interesting works
in our journal so that we thank their contributions. In addition, we also thank all the
anonymous reviewers who have contributed to keeping the high quality standards of the
ChJS. Furthermore, our editorial board is grown from this issue. Welcome on board Dr.
Yolanda Gómez from Chile, Dr. Diego Gallardo from Chile, and Dr. Danilo Alvares from
Brazil/Chile. We are sure that with their enthusiasm, dynamism and talent, our journal
will benefit greatly. We are honored by their acceptance to be part of the ChJS. Moreover,
we are obliged and pleased to thank our prestigious editorial board, composed of colleagues
from all five continents and listed in http://chjs.mat.utfsm.cl/board.html, who have
collaborated from di↵erent perspective to increase our visibility and quality of the papers
published by the ChJS. Of course, we must also thank the President and the Board of
Directors of the Chilean Statistics Society (listed in https://soche.cl/quienes-somos)
and the entire Chilean statistical community for placing in us, the Editors-in-Chief of the
ChJS, their trust in our work.

ISSN: 0718-7912 (print)/ISSN 0718-7920 (online)
c� Chilean Statistical Society – Sociedad Chilena de Estad́ıstica
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The second issue of the eleventh volume of the ChJS comprises six papers authored by
researchers from Algeria, Brazil, Chile, Colombia, India, Netherlands, Saudi Arabia, and
United Kingdom (UK):

(i) Our first paper is authored by Ibrahim M. Almanjahie, Mohammed Kadi Attouch, Omar
Fetitah, and Hayat Louhab, who derived a family of robust nonparametric estimators
for a regression function with unknown scale parameter based on the kernel density
method and functional data. The authors accompanied their theoretical results with a
simulation study to evaluate the good performance of their proposal, and applied it to
real functional ergodic data concerning air pollution.

(ii) The second paper is authored by Ricardo Puziol de Oliveira, Marcos Vinicius de Oliveira
Peres, Jorge Alberto Achcar, and Nasser Davarzani, who developed a trivariate Marshall-
Olkin-Weibull distribution for the modeling of right-censored data. In addition, the
authors performed simulations to assess the performance of the corresponding model
estimators, and applied their results to real data from industrial engineering.

(iii) In the third paper, Henrique José de Paula Alves and Daniel Furtado Ferreira introduced
a new alternative test to the Hotelling T2 and likelihood ratio methods for multivariate
normal and non-normal population mean vectors. In this paper, the authors accompanied
their methodological findings evaluating the performance of the proposed new tests by
Monte Carlo simulations, calculating the type I error probabilities and power of the
tests. Addition, an illustration with real data of contents of sand and clay from Amazon,
Brazil, was provided to show potential applications.

(iv) The fourth paper is authored by Josmar Mazucheli, André F.B. Menezes, Sanku Dey,
and Saralees Nadarajah, who developed and characterized a reparametrize Chaudhry-
Ahmad distribution. In this paper, the authors accompanied their theoretical results
with a Monte Carlo simulation study to compare the proposed estimators and their bias-
corrected versions, obtained from the Cox-Snell formula and parametric bootstrapping.
This paper closes with an application by using wind speed data from Brazil.

(v) The fifth paper is authored by André Leite, Abel Borges, Geiza Silva, and Raydonal
Ospina, who presented an integer programming formulation to handle a real instance
of a courses-to-lecturers timetabling problem based on a case study with real data from
Brazil.

(vi) This issue of the ChJS closes with a paper authored by Jorge Figueroa-Zúñiga, Rodrigo
Sanhueza-Parkes, Bernardo Lagos-Álvarez, and Germán Ibacache-Pulgar, who presented
and characterized an ingenious distribution to model bounded data with equal and un-
equal proportions of cases at the tails. The authors named this the trapezoidal Ku-
maraswamy distribution and applied it to data sets from education and engineering.

An aspect of which we are proud at the Chilean Statistical Society and ChJS is that
we are and will continue to be an open access journal, publishing works free of any article
processing charges (APC). In addition, we are working on implementing an online platform
for submissions, which should facilitate the work of Editors and Reviewers, as well as
the submission process for authors. Moreover, we are pleased and happy to count with
a new indexation for the ChJS corresponding to the Scopus system of Elsevier, which
joins the emerging sources citation index published by the Clarivate Analytics from the
Institute for Scientific Information (ISI) belonging to Web of Science Group. We feel very
motivated because this year we received 51 submissions, coming from 30 countries (of all
five continents) and 132 authors. We detail the information generated from these data on
countries of authors and submissions in Figures 1 and 2.
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Figure 1. Distribution of authors of the articles submitted to the ChJS during 2020 with respect to their country.

Figure 2. Distribution of papers submitted to the ChJS during 2020 according to the country of the corresponding
author.
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Finally, we would like the statistics and data science communities around the world,
our Editorial Board, and authors who have published with us, to champion the ChJS
as a high quality open access journal, free of APC, that cares for gender equality, and
is independent from global systems. We are proud to be an eleven-year-old international
journal with high and fair standards of review, so we encourage past and new authors
to submit their works to the ChJS. As mentioned above, currently we are indexed by
several international systems, including the ISI Web of Science and the Scopus database
of Elsevier for abstracting and citations. We face important challenges for the future, such
as implementing our online platform for submissions, reaching the Science Citation Index,
and looking for partnerships with scientific publishers, societies and associations. Just as
with any other scientific endeavor, the success of the ChJS depends on a team e↵ort. We
are all important to meet these challenges, so we need all of you.

Vı́ctor Leiva and Carolina Marchant
Editors-in-Chief
Chilean Journal of Statistics
http://soche.cl/chjs

http://soche.cl/chjs
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Research Paper

Robust kernel regression estimator of the scale parameter

for functional ergodic data with applications

Ibrahim M. Almanjahie1, Mohammed Kadi Attouch2, Omar Fetitah2, and
Hayat Louhab2

1College of Science, Department of Mathematics, King Khalid University, Saudi Arabia
2Laboratoire de Probabilités Statistique Processus Stochastiques,

Sidi Bel Abbes University, Algeria

(Received: 19 October 2020 · Accepted in final form: 22 December 2020)

Abstract

In this paper, we propose a family of robust nonparametric estimators for a regres-
sion function with unknown scale parameter based on the kernel method. We establish
the asymptotic normality of the estimators for functional explanatory variables when
the observations exhibit some kind of dependence (stationary ergodic process). This
approach can be used for predicting and for building confidence regions. A simulation
study is conducted to support our theoretical results and to exhibit the good behavior
of the proposed estimator for finite samples with di�erent rates of dependency, and
particularly in the presence of several outliers in the data set. In addition, a real data
study is provided to illustrate the good behavior of our estimator.

Keywords: Confidence bands · Functional data · Lindeberg condition
· Nonparametric kernel estimate · Robust equivariant regression.

Mathematics Subject Classification: Primary 62G35 · Secondary 62G20.

1. Introduction

Nonparametric kernel regression estimation is a familiar tool to explore the underlying
relation between the response variable and covariates. In the functional data studies, these
estimators are largely studied in Ramsay and Silverman (2002), and Ferraty and Vieu (2006).
As in parametric regression estimation, the kernel estimator may be a�ected by outliers and
then it is needed to consider robustness estimation.

Recall that robust regression modeling is an old subject in statistics. It was started by
Huber (1964) who studied estimation of a location parameter. We cite Collomb and Hardle
(1986) and Laïb and Ould Saïd (2000) for some results on multivariate time series (mixing
and ergodicity conditions). Robust regression is widely studied in nonparametric functional
statistics. Indeed, it was firstly introduced by Azzedine et al. (2008) who proved the almost
complete convergence of this model in the independent and identically distributed case. Since
their work, several results on nonparametric robust functional regression were considered.
Key references on this topic are Crambes et al. (2008), Chen and Zhang (2009), Attouch et

úCorresponding author. Email: attou_kadi@yahoo.fr

ISSN: 0718-7912 (print)/ISSN 0718-7920 (online)
c• Chilean Statistical Society – Sociedad Chilena de Estadística
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74 Almanjahie et al.

al. (2009), Attouch et al. (2010), Gheriballah et al. (2013), Boente and Fraiman (1990) and
the references therein.

Notice that all these results are obtained when the scale parameter is known. Boente and
Vahnovan (2015, 2017) proposed robust equivariant M-estimators for regression and partial
linear models. In this paper, we consider the more general case, that is, when the scale is
unknown and the data are dependent. Specifically we model ergodic functional time series.

It is well known that ergodicity is a fundamental hypothesis in statistical physics, ther-
modynamics and signal processing. In all these areas, ergodicity is studied on a continuous
path. Thus, it is necessary to develop statistical tools allowing one to treat the continuous
ergodic process in its own dimension by exploring its functional character. This is the general
framework of the present work.

Note that the ergodicity assumption is less restrictive than the mixing condition usually
assumed in functional time series studies. In particular, this is implied by most mixing
conditions. The literature on ergodic functional time series data is still limited. The few
existing results are in Laïb and Louani (2011, 2010), Gheriballah et al. (2013), Benziadi et
al. (2016a,b). Among the extensive literature on functional data analysis, we only refer to
the overviews for parametric models given by Bosq (2000), Ramsay and Silverman (2002)
and to the monograph of Ferraty and Vieu (2006) for nonparametric models.

The main objective of this paper is to generalize the results of Boente and Vahnovan
(2015) from the independent case to the ergodic case. Specifically we prove the asymptotic
normality of an estimator constructed by combining the concepts of robustness with those of
unknown scale parameter. This result is obtained under standard conditions allowing us to
explore the di�erent structural axes of the subject, such as the robustness of the regression
function and the correlation between the observations. We point out that, unlike the case
of fixed scale, here the scale parameter must be estimated, which makes the establishment
of its asymptotic properties more di�cult.

The reminder of this paper is organized as follows. Section 2 is dedicated to the presen-
tation of the robust estimator with unknown scale parameter. The needed assumptions and
notations are given in Section 3. We state and proof our main results in Section 4. Some
simulation results are reported in Section 5 to compare the M-estimator (for known and
unknown scale parameter) with the kernel regression estimator. Section 6 deals with a real
data application. The proofs of the main results are relegated to the Appendix. In Section
7, the main conclusions of this study and ideas for future research are provided.

2. The robust equivariant estimators and their related functional

Let (Xi, Yi)i=1,...,n be a sequence of strictly stationary dependent random variables and
identically distributed as (X, Y ), which is a random pair valued in F ◊ IR, where (F , d) is
a semi-metric space. We study the nonparametric estimation of the robust regression ◊(x),
when the scale parameter is unknown and strong dependencies are present (ergodicity). In
fact, for any x œ F , ◊(x) is defined as a zero with respect to the parameter a by means of

� (x, a, ‡) = E
5
Âx

3
Y ≠ a

‡

4
|X = x

6
= 0,

where Âx is a real valued function which satisfies some regularity conditions, to be stated
below, and ‡ is a robust measure of the conditional scale. In what follows, we assume, for
all x œ F , that the robust regression ◊(x) exists and is unique; see, for example, Boente and
Fraiman (1989).
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Consider a functional stationary ergodic process Zi = (Xi, Yi)i=1,...,n; see Laïb and Louani
(2011) for some definitions and examples. When the scale parameter is unknown, a robust
estimator may be constructed following two steps. Firstly, we estimate the scale parameter ‡
by the local median of the absolute deviation from the conditional median (MED), ‚mMED(x),
of the conditional distribution of Y given X = x, denoted F (y|X = x) = E(1(≠Œ,y](Y )|X =
x), for any y œ R, where 1A denotes the indicator function on the set A. Then, for x œ F ,
the kernel estimator ‚s(x) of ‡(x) is the zero of the equation given by ‚F (s|X = x) = 1/2,
with

‚F (y|X = x) =
qn

i=1 K
1

d(x,Xi)
h

2
1(≠Œ,y] (Yi)

qn
i=1 K

1
d(x,Xi)

h

2 ,

where K is a kernel function, d(x, Xi) denotes the distance between the fixed point x and
the realization of the functional random variable Xi, and the bandwidth parameter h = hn

is a sequence of positive numbers which goes to zero as n goes to infinity. Next, the kernel
estimator ‚◊(x), of the robust regression ◊(x), is the zero, with respect to a, of ‚�(x, a, ‚s) = 0,
where

‚� (x, a, ‚s) =
qn

i=1 K
1

d(x,Xi)
h

2
Âx

1
Yi≠a

‚s
2

qn
i=1 K

1
d(x,Xi)

h

2 .

3. Notations, hypotheses and comments

Throughout the paper, when no confusion is possible, C and C
Õ are some strictly pos-

itive generic constants, x is a fixed point in F and Nx is a fixed neighborhood of x.
For r > 0, let B(x, r) := {x

Õ œ F/d(xÕ
, x) < r}. Moreover, for i = 1, . . . , n, Fk is the

‡≠field generated by ((X1, Y1), . . . , (Xk, Yk)) and we pose Bk is the ‡≠field generated by
((X1, Y1), . . . , (Xk, Yk), Xk+1).

Our basic assumptions are:
(A1) The function Âx is continuous and monotone in the second component.
(A2) The processes (Xi, Yi)iœN satisfies: (i) „ (x, r) = P (X œ B (x, r)) > 0, and „i (x, r) =

P (Xi œ B (x, r) |Fi≠1) > 0, ’r > 0; and (ii) for all r > 0, 1/(n„ (x, r))
qn

i=1 „i (x, r) pæ 1,
and n„ (x, h) æ Œ as h æ 0, with pæ meaning convergence in probability.

(A3) The function � is such that: (i) the function � (x, ., ‡) is of class C1 in Nx, a fixed
neighborhood of ◊(x); (ii) for each fixed t in Nx, the functions � (., t, ‡), and ⁄2 (·, t, ‡) =
E

#
Â2

x ((Y ≠ t)/‡) |X = ·
$

are continuous at x; and (iii) the derivative of � (x, z, ‡) =
E [� (X1, z, ‡) ≠ � (x, z, ‡) |d (x, X1) = s] exists at s = 0, and is continuous in the second
component in Nx.

(A4) For each fixed t in the neighborhood of ◊(x), and ’j Ø 2,

E
Ë
Âj

x ((Y ≠ t)/‡) |Bi≠1
È

= E
Ë
Âj

x ((Y ≠ t)/‡) |Xi

È
< c < Œ, a.s.,

with “a.s.” meaning almost sure convergence.
(A5) The kernel K is a positive function with support in (0, 1) , its derivative K

Õ exists in (0, 1),
and satisfies K

Õ (t) < 0 for 0 < t < 1.
(A6) There exists a function ·x, such that ’t œ [0, 1], limhæ0 „ (x, th)/„ (x, h) = ·x (t), K2 (1)≠

s 1
0

!
K2 (u)

"Õ
·x (u) du > 0 and K (1) ≠

s 1
0 K

Õ (u) ·x (u) du ”= 0.
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(A7) The functions fx (x) and p (x) are bounded on S such that Ap = infxœS p (x) > 0, and
Af = infxœS fx (x) > 0. Moreover, p (x) is a continuous function in a neighborhood of S.

(A8) First, we have that: (i) F (y|X = x) is a continuous function of x in a neighborhood of
S and besides it satisfies the equicontinuity condition ’Á > 0, ÷” > 0 : |u ≠ v| < ” =∆
supxœS (|F (U |X = x) ≠ F (v|X = x)|) < Á; and second (ii) F (y|X = x) is symmetric
around ◊(x) and a continuous function of y for each fixed x.

(A9) The sequence h = hn is such that hn æ 0, n„ (h) æ Œ and (n„(h)) /n æ Œ.
(A10) The sequence k = kn is such that kn/n æ 0, kn æ Œ and kn/ log(n) æ Œ.

Remark It is well known that a fundamental property of robust M-estimators is the convex-
ity and the boundedness of the score function. Convexity is important for the existence and
uniqueness of the estimate, whereas the boundedness is essential for reducing the influence
of atypical values. In this work, convexity is controlled by means of the monotonicity condi-
tion (A1). However, we opt for a presentation without the boundedness condition to cover,
for example, the classical regression, which is studied under the ergodic process framework
by Laïb and Louani (2011). Assumptions (A2) and (A3) are the same conditions used in
Gheriballah et al. (2013), while conditions (A4), (A5) and (A6) are very similar to those
used by Ferraty et al. (2010). In addition, (A7) and (A8) are the regularity conditions on
the marginal density of X and on the conditional distribution function which imply that, for
any set S œ F , 0 < infxœS s (x) Æ supxœS s (x) < Œ and that ◊(x) is a continuous function
of x. Assumptions (A9) and (A10) are standard conditions imposed for brevity of proofs.

4. Asymptotic results

The result in Proposition 4.1 ensures the uniform consistency on a set S œ F , for both
kernel or nearest neighbor with kernel estimates. Theorem 4.2 deals with the asymptotic
normality of the proposed estimator.
Proposition 4.1 Assume that assumptions (A5), (A7) and (A8) holds. Moreover, assume
that (A9) hold for kernel weights, and that (A10) holds for nearest neighbor with kernel
weights. Then, for any set S, we have that

(a) Under (A1) and (A8-ii), we have that supxœS |‚◊(x) ≠ ◊(x)| a.s.æ 0.
(b) If F (y|X = x) has a unique median at ◊(x), then we reach supxœS | ‚mMED(x)≠◊(x)| a.s.æ 0.

Theorem 4.2 Assume that (A1)-(A6), and (A8-ii) hold. Then, as ‚◊(x) pæ ◊(x) and ‚s (x) pæ
‡ (x) , we have that

3
n„ (x, h)

‡2 (x, ◊(x))

41/2 1
‚◊ (x) ≠ ◊(x) ≠ Bn (x)

2
dæ N (0, 1) as n æ Œ,

where dæ meaning convergence in distribution, Bn(x) = h�Õ(0, ◊(x))—0/—1 + o(h) and
‡2(x, ◊(x)) = —2⁄2(x, ◊(x), ‡)/(—2

1(�1(x, ◊(x), ‡))2), with —0 = ≠
s 1

0 (sK(s))Õ
—x(s)ds, —j =

≠
s 1

0 (Kj)Õ(s)—x(s)ds, for j = 1, 2, �1(x, ◊(x), ‡) = ˆ�(x, ◊(x), ‡)/ˆt, and A = {z œ
F , ⁄2(z, ◊(z), ‡)�1(z, ◊(z), ‡) ”= 0}.

In order to remove the bias term Bn, we need an additional condition on the bandwidth
parameter h.
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Corollary 4.3 Under the assumptions of Theorem 4.2, and if the bandwidth parameter
h satisfies nh2„ (x, h) æ 0 as n æ Œ, then

3
n„ (x, h)

‡2 (x, ◊(x))

41/2 1
‚◊(x) ≠ ◊(x)

2
dæ N (0, 1) as n æ Œ.

5. Simulation study

Next, we show the e�ciency of the proposed estimator in terms of consistency.
The first direct use of Theorem 4.2 is to predict a functional time series process. Let

(Zt)tœ[0,b[ be a continuous-time real-valued random process. From the process Zt, we may
construct N functional random variables (Xi)i=1,...,N defined by Xi (t) = ZN≠1((i≠1)b+c),
’t œ [0, b] . The predictor estimator of Y is defined by ‚Y = ‚◊ (XN ). Then, by applying the
above results, we obtain the following corollary.

Corollary 5.1 Under the assumptions of Corollary 4.3, we have

3
N„ (x, hN )

‡2 (XN , ◊ (XN ))

41/2 1
‚◊ (XN ) ≠ ◊ (XN )

2
dæ N (0, 1) as N æ Œ.

The second direct result obtained in Theorem 4.2 is to build the conditional confidence
curve. Note that an important application of the asymptotic normality result is the con-
struction of confidence intervals for the true value of ◊(x) given that X = x. However, the
latter requires an estimation of the bias Bn(x) term and of the standard deviation ‡(x, ◊(x)).
For the sake of shortness, we neglect the bias term and we estimate ‡(x, ◊(x)) by plug-in
method as follows. E�ectively, if Âx is of class C1, with respect to the second component,
the quantities ⁄2 (x, ◊(x), s) and �1 (x, ◊(x), s) can be estimated by

‚⁄2
1
x, ‚◊(x), ‚s

2
=

qn
i=1 K

1
d(x,Xi)

h

2
Â2

x

3
Yi≠‚◊(x)

‚s

4

qn
i=1 K

1
d(x,Xi)

h

2 ,

‚�1
1
x, ‚◊(x), ‚s

2
=

qn
i=1 K

1
d(x,Xi)

h

2
ˆ
ˆtÂx

3
Yi≠‚◊(x)

‚s

4

qn
i=1 K

1
d(x,Xi)

h

2 .

We estimate —1 and —2 by

‚—1 = 1
n„ (x, h)

nÿ

i=1
K

3
d (x, Xi)

h

4
, ‚—2 = 1

n„ (x, h)

nÿ

i=1
K2

3
d (x, Xi)

h

4
.

It follows that ‚‡(x, ‚◊(x)) = (‚—2‚⁄2(x, ‚◊(x), ‚s)/(‚—1)2‚�2
1(x, ‚◊(x), ‚s))1/2.

Then, from the asymptotic normality result in Section 4, we have

�n =
3

n„ (x, h)
‡2 (x, ◊(x))

41/2 1
‚◊ (x) ≠ ◊(x)

2
dæ N (0, 1) as n æ Œ.
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Therefore, we get an approximate (1 ≠ ’)100% confidence interval for ◊(x) stated as

‚◊(x) ± t1≠’/2 ◊

Q

a
‚‡2

n

1
x, ‚◊(x)

2

n„ (x, h)

R

b
1/2

,

where t1≠’/2 denotes the (1 ≠ ’/2)100th standard normal quantile.
To verify the theoretical results, it is possible to visualize the data histogram and then

compare its shape to the normal density. The histogram of �n is almost symmetric around
zero and to well-shaped like the standard normal density. To do that, we consider the
functional nonparametric model given by

Yi = r (Xi) + ‘i, i = 1, . . . , n,

where the ‘is are generated independently according to a normal distribution with mean 0.
Now, we describe how our functional ergodic data are generated. Firstly, we use an R rou-

tine named simul.far of the far package to generate the functional explanatory variables
(Xi)i=1,...,n. This routine simulates a functional autoregressive process white Wiener noise.

For this simulation experiments, we consider sinusoidal basis, with five functional axis,
of the continuous functions from [0, 1] to R. Recall that, as it is shown in Laïb and Louani
(2011), this kind of process satisfies the ergodicity condition. The curves Xis are discretized
in the same grid composed by 100 points and are plotted in Figure 1.

Time

0 20 40 60 80 100

−
3

−
2

−
1

0
1

2
3

Figure 1. A sample of 100 curves, for dfl = (0.45, 0.90, 0.34, 0.45)

Secondly, the scalar response Yi is computed by considering the operator defined as

r(x) = 5
⁄ 1

0
exp {x (t)} dt.

We compare our estimator (robust equivariant regression –RER–) ‚◊(x) with the kernel
robust regression (KRR) ◊̃(x) introduced by (Azzedine et al., 2008) and the functional
kernel regression (FKR) (Ferraty and Vieu, 2006), where ‚◊(x), ◊̃(x) and ‚m(x) are defined
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as ‚◊(x) is the zero with respect to a of

qn
i=1 K

1
d(x,Xi)

h

2
Âx

1
Yi≠a
‚s(x)

2

qn
i=1 K

1
d(x,Xi)

h

2 = 0,

and Â◊(x) is the zero with respect to a of

qn
i=1 K

1
d(x,Xi)

h

2
Âx (Yi ≠ a)

qn
i=1 K

1
d(x,Xi)

h

2 = 0, ‚m(x) =
qn

i=1 YiK
1

d(x,Xi)
h

2

qn
i=1 K

1
d(x,Xi)

h

2 .

The e�ciency of the predictors is evaluated by the empirical mean square errord (MSEs)
expressed as

MSE‚◊ = n≠1
nÿ

i=1

1
◊(Xi) ≠ ‚◊(Xi)

22
,

MSE◊̃ = n≠1
nÿ

i=1

1
◊(Xi) ≠ ◊̃(Xi)

22
,

MSE‚m = n≠1
nÿ

i=1
(◊(Xi) ≠ ‚m(Xi))2 .

Through this simulation study, we chose the quadratic kernel K defined as K(u) = (3/4)(1≠
u2)1[0,1](u). The choice of bandwidth parameter h is a crucial question in nonparametric
estimation, we propose to choose the optimal bandwidth by using cross-validation (CV)
procedure. We adopt the selection rule proposed by Ferraty and Vieu (2006) and given by
h = arg minh CV(h), where CV(h) =

qn
i=1(Yi ≠ ‚◊≠i(Xi))2, with ‚◊≠i(·) being the leave-one-

out CV –values of the estimator ‚◊(·) calculate at Xi–; see Ferraty and Vieu (2006) for more
details.

We use the semi-metric given by he first derivative of sample curves stated as

d (Xi, Xj) =
Û⁄ 1

X Õ
i(t) ≠ X Õ

j(t)
22

dt.

For this comparison study, we treat three estimators in the same conditions.
The first illustration concerns the asymptotic normality of ‚◊ (x). In order to conduct a

Monte Carlo study of the asymptotic normality, we fix one curve, X0 say, from the previous
data. Then, we draw 100 independent replication with samples of size n = 50, 100, 500 of
the same data and we compute, for each sample a quantity established as

‚�n =

Q

ca

1
‚—1

22 ‚�2
1

1
X0, ‚◊ (X0) , ‚s

2

‚—2‚⁄2
1
X0, ‚◊ (X0) , ‚s

2

R

db

1/2
1

‚◊ (X0) ≠ ◊ (X0)
2

.

We point out that the functions „(x, h) did not intervene in the computation of the nor-
malized deviation by simplification. Thus, the simulation results indicate that ‚�n obeys the
standard normal law when n is large; see Figure 2 (a)-(c).
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(a) dfl = diag(0.225, 0.45, 0.17, 0.225)
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(c) dfl = diag(0.90, 1.80, 0.68, 0.90)

Figure 2. Histograms and density curves.

Now, in order to explore the two structural axes of our study, such as the correlation of
data and the robustness of the estimate, we compare the performance of our estimator with
various values of n and various parameters of the functional autoregressive Xi. Typically, we
consider three values of n = 50, 100, 500, and three matrix dfl = diag(0.225, 0.45, 0.17, 0.225),
dfl = diag(0.45, 0.90, 0.34, 0.45) and dfl = diag(0.90, 1.80, 0.68, 0.90). We emphasize that the
results of our simulation study are evaluated over 100 independent replications. The most
significant results are gathered in Figure 2 (a)-(c). Note the performance of the estimator
is closely related to the degree of correlation expressed by ÎflÎ. In sense that the histogram
density converge significantly with respect to the value of ÎflÎ.

The second result concern the confidence intervals presented in Figures 3 and 4, where
three curves corresponding to the predicted interval (green and blue curves) the estimated
value (red curve) are drawn. Note that Figure 4 shows the good behavior of our functional
forecasting procedure for the robust method in presence of outliers.
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Figure 3. Extremities of the predicted values versus the true values and the confidence bands for the FKR, KRR
and RER models respectively (simulation data without outliers).
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Figure 4. Extremities of the predicted values versus the true values and the confidence bands for the FKR, KRR
and RER models respectively (simulation data with 7% of outliers).

Table 1. Comparison between the both methods in the presence of outliers.
Number of the perturbed

observations by M MSE‚◊ MSE◊̃ MSE‚m
2 2.3118 2.8112 36.786
14 5.5197 21.8335 2513.116
100 50.716 220.506 331002.4

6. A real data application

Air pollution is one of the most influential factors in human health. Many di�erent chemical
substances contribute to the air quality. These substances come from a variety of sources. On
the one hand, there are natural sources such as forest fires, volcanic eruptions, wind erosion,
pollen dispersal, evaporation of organic compounds, and natural radioactivity. Furthermore,
on the other hand, human industrial activity represents the artificial air pollution sources.
Ozone (O3), nitric oxide (NO) and nitrogen dioxide (NO2) are among the most important
contaminants in urban areas, as they have been associated with adverse e�ects on human
health and the natural environment.

We apply the theoretical results obtained in the previous sections to real data. More
specifically, in functional prediction context, we examine the performance of the proposed
estimator by the robust equivariant approach ‚◊(x).

In this real data example, we are interested in the prediction of the future O3, NO and
NO2 concentrations given the curve of it is previous days. For this purpose application, we
consider hourly concentrations of the 3 air pollution gases for the year 2018 (Zt)tœ[0,8760[. We
consider the data collected from the Leicester University monitoring site in the UK. These
observations are available on the following website: https://uk-air.defra.gov.uk. Table
2 gives descriptive statistics of these.

https://uk-air.defra.gov.uk
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Table 2. Descriptive statistics of the air pollution data.
O3 NO NO2

Minimum 0.00 0.000 0.00
1st quartile 25.35 1.288 12.26
Median 42.11 3.346 19.56
Mean 42.52 7.027 23.07
3rd quartile 57.73 7.347 30.75
Maximum 149.58 190.765 115.43

We assume that the observations are linked by the model defined as

Yi = r (Xi) + ‘i, i = 1, . . . , n ≠ 1,

where n = 365, the functional random variables (Xi)i=1,...,n defined by Xi(t) = Z(24(i≠1)+t),
’t œ [0, 24[, and the scalar response variable Y is defined by Yi = (Z24i+s)i=1,...,n≠1 for a
fixed s œ [0, 24[. Indeed, Zt designs the O3, NO and NO2 concentrations for 8760 hours
between January 01st, 2018 and 31 December 2018. We cut this functional time series in
n ≠ 1 = 364 pieces Xi of 24 hours (one day). These functionals variables Xi are presented
in Figure 5.
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Figure 5. Hourly O3 (left), NO (center) and NO2 (right) concentrations of the year 2018.

We want to compare our proposed estimator ‚◊(x) (RER) with the robust one Â◊(x) (KRR),
and the (FKR) ‚m (x). The kernel K is chosen to be quadratic defined as

K(u) = 3
4

1
1 ≠ u2

2
1[0,1](u).

The choice of bandwidth parameter h is a crucial question in nonparametric estimation. We
propose to choose the optimal bandwidth by using the CV procedure. As mentioned, we
adopt the selection rule proposed by Ferraty and Vieu (2006). Regarding the shape of the
curves Xi, we suggest to use standard functional principal components analysis semi-metrics
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(Ferraty and Vieu, 2006), and we adapt it to the data set under analysis obtaining

dq (Xi, Xj) =
ı̂ıÙ

qÿ

k=1

3⁄
[Xi(t) ≠ Xj(t)] vk(t)dt

42
.

Here, we take q = 4, and vk is selected among the eigenfunctions of the empirical covariance
operator defined as

�n
X(s, t) = 1

n

nÿ

i=1
Xi(s)Xi(t).

We randomly split our data set (Xi, Yi)i=1...364 into two subsets, that is, in (i) a learning
sample (Ti, Xi, Yi)iœI (75% of the observations); and (ii) in a test sample (Xi, Yi)iœIÕ , cor-
responding to a 25% of the observations. We use the relative mean square error RMSE as
accuracy measure defined as

RMSE = 1
#(I Õ)

ÿ

iœIÕ

A
Yi ≠ ÂYi

Yi

B2

,

where ÂYi is the estimator for the three FKR, KRR and RER methods, and #(I Õ) is the size
of I Õ.

To further explore the performances of our models, we carry out M = 100 independent
replications which allows us to compute 100 values for RMSE and to display their distribu-
tion by means of a scatter-plots. Figures 6 (a)-(c) shows the scatter-plots of the RMSE of
the prediction values for the O3, NO and NO2, respectively.

(a) O3 (b) NO (c) NO2

Figure 6. Comparison of the RMSE among the FKR, KRR and RER methods for the variable indicated.

The obtained results of the scatter-plots of the RMSE proves that the Robust equivariant
regression gives better results than the Classical and the robust methods. In addition, we
give in Figure 7 (a)-(c) the 90% predictive intervals of the concentrations for the three gases
of the last 15 values in the sample test by using the three modeles FKR, KRR and RER.
The solid black curve the true values. the gray area represents the confidence zone between
the dashed Blue curves which represents the lower and upper predicted values.
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Figure 7. Comparison of the 90% predictive intervals among the listed methods for the variable indicated.

7. Conclusion and future research

We have provided in this work a generalization of the results given in Boente and Vahno-
van (2015) to the functional ergodic data. More precisely, we have proven the asymptotic
normality of the robust regression function in the case of unknown scale parameter. These
results were obtained under su�cient standard conditions that allowed us to explore di�erent
structural axes of the subject, such as the functional naturalness of the model and the data
as well as the robustness of the regression function and the correlation of the observation.

Based on the results of this paper on robust regression with unknown scale parameter,
we guess that most of the techniques using nonparametric functional kernel smothers could
be e�ciently extended. For instance, challenging open questions in this sense could concern
as extensions to other forms of nonparametric predictors (like functional local linear ones,
functional kNN ones, and many other ones). Extensions to other kinds of prediction models
in which a preliminary kernel stage plays a crucial role. This would include many semipara-
metric regression models like functional single index models, and partial linear models, and
many other ones. In addition, we see the possibility of extending our asymptotic result to
other kinds of dependency data, more particularly the data associated positively (Azevedo
and Oliveira, 2011).
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Appendix

Proof of Proposition 4.1 In order to prove Proposition 4.1, we begin by fixing some notation.
We prove that, for any measurable A µ R, ‚„A (x) = ‚rA (x)/‚p (x), where

‚rA (x) =
nÿ

i=1
Wi,n (x) IA (yi) , ‚p (x) =

nÿ

i=1
Wi,n, Wi,n (x) =

K
1

d(xi,x)
hn

2

qn
j=1 K

1
d(xj ,x)

hn

2 , (1)

denote the kernel weights. Next, we prove (a) and (b). Note that:
(a) Arguing as in Theorem 3.3 in Boente and Fraiman (1990), we only need to prove that

sup
xœS

sup
yœR

--- ‚F (y|X = x) ≠ F (y|X = x)
--- a.s.æ 0.

Theorems 3.1 or 3.2 from Boente and Fraiman (1990) entail that

sup
xœS

sup
yœR

|‚r (y, x) ≠ r (y, x)| a.s.æ 0, sup
xœS

|‚p (x) ≠ p (x)| a.s.æ 0, (2)

where r (y, x) = „(≠Œ,y] (x) = p (x) F (y|X = x) and ‚r (y, x) = ‚„(≠Œ,y] (x) , with ‚„(≠Œ,y] (x) and
‚p (x) being defined in Equation (1).

Note that Equation (2) can be derived for kernel weights using Proposition 2 in Collomb and
Hardle (1986). Now, Equation (2) follows from using (A7) and the inequality

sup
xœS

sup
yœR

--- ‚F (y|X = x) ≠ F (y|X = x)
--- Æ

sup
xœS

sup
yœR

|‚r (y, x) ≠ r (y, x)| + sup
xœS

|‚p (x) ≠ p (x)|

Ap
‚Ap

,

where Ap = infxœS p (x) and ‚Ap = infxœS ‚p (x).
(b) The equicontinuity condition given in (A8), and the uniqueness of the conditional median, imply

that ◊(x) is a continuous function of x. Thus, for any fixed a œ R, the function ha (x) =
F (a + ◊(x)|X = x) also is continuous with respect to x.

Given ‘ > 0, let 0 < ” < ‘, such that

|u ≠ v| < ” =∆ sup
xœS

(|F (U |X = x) ≠ F (v|X = x)|) <
‘

2 . (3)

Then, from the uniqueness of the conditional median and Equation (3), we get that

1
2 < F (◊ (x) + ”|X = x) <

1
2 + ‘

2 , (4)

1
2 ≠ ‘

2 < F (◊ (x) ≠ ”|X = x) <
1
2 . (5)

Consider ÿ (”) = infxœS F (◊(x) + ”|X = x) and ‹ (”) = supxœS F (◊(x) ≠ ”|X = x). The con-
tinuity of h” (x) and h≠” (x) together with Equations (4) and (5), entail that ‹ (”) < 1/2 <
ÿ (”), and so ÷ = min (ÿ (”) ≠ 1/2, 1/2 ≠ ‹ (”)) > 0. If Equation (2) holds, P (N ) = 0, and
supxœS supyœR | ‚F (y|X = x) ≠ F (y|X = x) | æ 0, then, for n large enough, we have that
supxœS supyœR | ‚F (y|X = x) ≠ F (y|X = x) | < min (÷/2, ‘/2) = ‘1. Then, for x œ S, we get

F (◊(x) + ”|X = x) ≠ ‘1 < ‚F (◊(x) + ”|X = x) < F (◊(x) + ”|X = x) + ‘1,

F (◊(x) ≠ ”|X = x) ≠ ‘1 < ‚F (◊(x) ≠ ”|X = x) < F (◊(x) ≠ ”|X = x) + ‘1,

which entails that
1
2 < ‚F (◊(x) + ”|X = x) <

1
2 + ‘,

1
2 ≠ ‘ < ‚F (◊(x) ≠ ”|X = x) <

1
2 ,

and hence, supxœS | ‚mMED (x) ≠ ◊ (x)| Æ ” < ‘, which concludes the proof. ⇤
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Proof of Theorem 4.2 and Corollary 4.3 We give the proof for the case of increasing
Âx, with the decreasing case being obtained by considering ≠Âx. Thus, we define, for all u œ R,
z = ◊(x) ≠ Bn (x) + u [n„ (x, h)]≠1/2 ‡ (x, ◊(x)) . Notice that

P
A3

n„ (x, h)
‡2 (x, ◊(x))

41/2 1
‚◊ (x) ≠ ◊(x) + Bn (x)

2
< u

B
= P

1
‚◊ (x) < ◊(x) ≠ Bn (x) + u [n„ (x, h)]≠1/2 ‡ (x, ◊(x))

2

= P
1

0 < ‚� (x, z, ‚s)
2

.

In addition, we have that

‚� (x, t, ‚s) = Bn (x, t, ‚s) + Rn (x, t, ‚s)
‚�D (x)

+ Qn (x, t, ‚s)
‚�D (x)

,

where

Qn (x, t, ‚s) =
1

‚�N (x, t, ‚s) ≠ �̄N (x, t, ‚s)
2

≠ � (x, t, ‚s)
1

‚�D (x) ≠ �̄D (x)
2

,

Rn (x, t, ‚s) = ≠
3

�̄N (x, t, ‚s)
�̄D (x)

≠ � (x, t, ‚s)
4 1

‚�N (x, t, ‚s) ≠ �̄N (x, t, ‚s)
2

,

Bn (x, t, ‚s) = �̄N (x, t, ‚s)
�̄D (x)

,

with

‚�N (x, a, ‚s) = 1
nE [K (h≠1d (x, X1))]

nÿ

i=1
K

!
h≠1d (x, Xi)

"
Âx

3
Yi ≠ a

‚s

4
,

�̄N (x, a, ‚s) = 1
nE [K (h≠1d (x, X1))]

nÿ

i=1
E

5
K

!
h≠1d (x, Xi)

"
Âx

3
Yi ≠ a

‚s

4
/Fi≠1

6
,

‚�D (x) = 1
nE [K (h≠1d (x, X1))]

nÿ

i=1
K

!
h≠1d (x, Xi)

"
,

�̄D (x) = 1
nE [K (h≠1d (x, X1))]

nÿ

i=1
E

#
K

!
h≠1d (x, Xi)

"
|Fi≠1

$
.

Then, it follows that

P
A3

n„ (x, h)
‡2 (x, ◊x)

41/2 1
‚◊ (x) ≠ ◊(x) + Bn (x)

2
< u

B
=

P
1

≠‚�D (x) Bn (x, z, ‚s) ≠ Rn (x, z, ‚s) < Qn (x, z, ‚s)
2

.

Therefore, our main result is a consequence of the following intermediate results. ⇤
Lemma 7.1 Under the assumptions of Theorem 4.2, we have, for any x œ A,

3
n„ (x, h) —2

1
—2⁄2 (x, ◊(x), ‚s)

41/2
Qn (x, z, ‚s) dæ N (0, 1) , as n æ Œ.

Proof of Lemma 7.1 For all i = 1, . . . , n, we denote by Ki (x) = K
!
h≠1d (x, Xi)

"
,

÷ni =
3

„ (x, h) —2
1

—2⁄2 (x, ◊(x), ‚s)

41/2 3
Âx

3
Yi ≠ z

‚s

4
≠ � (x, z, ‚s)

4
Ki (x)

E [K1 (x)] ,
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and we define ’ni = ÷ni ≠ E [÷ni|Fi≠1]. Then, we obtain
3

n„ (x, h) —2
1

—2⁄2 (x, ◊(x), ‚s)

41/2
Qn (x, z, ‚s) = 1Ô

n

nÿ

i=1
’ni.

Since ’ni is a triangular array of martingale di�erences according the ‡≠field (Fi≠1) , we can apply
the Central Limit Theorem based on the unconditional Lindeberg condition (Gaenssler et al., 1978).
More precisely, we must verify conditions:

1
n

nÿ

i=1
E

#
’2

ni|Fi≠1
$ pæ 1, (6)

1
n

nÿ

i=1
E

Ë
’2

niI’2
ni>‘n

È
pæ 0, ’‘ > 0, (7)

We begin by proving Equation (6). In order to do that, we write

E
#
’2

ni|Fi≠1
$

= E
#
÷2

ni|Fi≠1
$

≠ E2 [÷ni|Fi≠1] .

Therefore, it su�ces to prove that

1
n

nÿ

i=1
E2 [÷ni|Fi≠1] pæ 0,

1
n

nÿ

i=1
E

#
÷2

ni|Fi≠1
$ pæ 1. (8)

For the first convergence, we have

|E [÷ni|Fi≠1]| = 1
EK1 (x)

3
„ (x, h) —2

1
—2⁄2 (x, ◊(x), ‚s)

41/2
|E [(� (Xi, t, ‚s) ≠ � (x, t, ‚s) Ki (x)) |Fi≠1]|

Æ 1
E [K1 (x)]

3
„ (x, h) —2

1
—2⁄2 (x, ◊(x), ‚s)

41/2
sup

uœB(x,h)
|� (u, t, ‚s) ≠ � (x, t, ‚s)| E [Ki (x) |Fi≠1] .

Obviously, under (A2) and (A5), we have C„i (x, h) Æ E [Ki|Fi≠1] Æ C
Õ
„i (x, h) and C„ (x, h) Æ

E [�i (x)] Æ C
Õ
„ (x, h). In addition, condition (A3-ii) implies that

sup
uœB(x,h)

|� (u, t, ‚s) ≠ � (x, t, ‚s)| = o (1) .

Combining the lasts three results, we obtain

(|E [÷ni|Fi≠1]|)2 Æ sup
uœB(x,h)

----� (u, t, ‚s) ≠ � (x, t, ‚s)
3

—2
1

—2⁄2 (x, ◊(x), ‚s)

4----
1

„ (x, h)„2
i (x, h)

Æ sup
uœB(x,h)

----� (u, t, ‚s) ≠ � (x, t, ‚s)
3

—2
1

—2⁄2 (x, ◊(x), ‚s)

4----
1

„ (x, h)„i (x, h) .

Thus, by using the fact that
1

n„ (x, h)

nÿ

i=1
„i (x, h) pæ 1,

we obtain

1
n

nÿ

i=1
(E [÷ni|Fi≠1])2 = sup

uœB(x,h)
|� (u, t, ‚s) ≠ � (x, t, ‚s)|

3
—2

1
—2⁄2 (x, ◊x, ‚s)

4 A
1

n„ (x, h)

nÿ

i=1
„i (x, h)

B

= op (1) .
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Now, we analyze to the convergence in Equation (8). Consider

1
n

nÿ

i=1
E

#
÷2

ni|Fi≠1
$

= 1
n (EK1(x))2

3
„ (x, h) —2

1
—2⁄2 (x, ◊(x), ‚s)

4

◊
nÿ

i=1
E

C3
Âx

3
Yi ≠ z

‚s

4
≠ � (x, z, ‚s)

42
K2

i (x) |Fi≠1

D

= 1
n (EK1 (x))2

3
„ (x, h) —2

1
—2⁄2 (x, ◊x, ‚s)

4 A
nÿ

i=1
E

5
Â2

x

3
Yi ≠ z

‚s

4
�2

i (x) |Fi≠1

6B

≠ 2� (x, z, ‚s)
n (EK1 (x))2

3
„ (x, h) —2

1
—2⁄2 (x, ◊x, ‚s)

4 nÿ

i=1
E

5
Âx

3
Yi ≠ z

‚s

4
�2

i (x) |Fi≠1

6

+ 1
n (EK1 (x))2

3
„ (x, h) —2

1
—2⁄2 (x, ◊x, ‚s)

4
�2 (x, z, ‚s)

nÿ

i=1
E

#
�2

i (x) |Fi≠1
$

.

Let D1 =
qn

i=1 E
#
Â2

x ((Yi ≠ z)/‚s) �2
i (x) |Fi≠1

$
, D2 =

qn
i=1 E

#
Âx ((Yi ≠ z)/‚s) �2

i (x) |Fi≠1
$

, and
D3 =

qn
i=1 E

#
�2

i (x) |Fi≠1
$

. Observe that

D1 = ⁄2 (x, z, ‚s)
nÿ

i=1
E

#
K2

i (x) |Fi≠1
$

+
nÿ

i=1

5
E

5
K2

i (x) E
5
Â2

x

3
Yi ≠ z

‚s

4
|Bi≠1

6
|Fi≠1

66

≠
nÿ

i=1
⁄2 (x, z, ‚s) E

#
K2

i (x) |Fi≠1
$

= ⁄2 (x, z, ‚s)
nÿ

i=1
E

#
K2

i (x) |Fi≠1
$

+
nÿ

i=1
E

5
K2

i (x) E
5
Â2

x

3
Yi ≠ z

‚s

4
|Xi

6
|Fi≠1

6

≠
nÿ

i=1

#
⁄2 (x, z, ‚s) E

#
K2

i (x) |Fi≠1
$$

.

To evaluate the second term, we have

1
nE [K1 (x)]

nÿ

i=1

5
E

5
K2

i (x) E
5
Â2

x

3
Yi ≠ z

‚s

4
|Xi

6
|Fi≠1

6
≠ ⁄2 (x, z, ‚s) E

#
K2

i (x) |Fi≠1
$6

Æ sup
uœB(x,h)

|⁄2 (x, u, ‚s) ≠ ⁄2 (x, z, ‚s)|
A

1
n„ (x, h)

nÿ

i=1
P (Xi œ B (x, h) |Fi≠1)

B
.

Moreover, we use the continuity of ⁄2 (x, ., ‚s) to write

⁄2 (x, z, ‚s) = ⁄2 (x, ◊(x), ‚s) + o (1) .

Thus, we get

1
nE [K1 (x)]D1 = ⁄2 (x, ◊(x), ‚s) 1

nE [K1 (x)]

nÿ

i=1
E

#
K2

i (x) |Fi≠1
$

+ o (1) ,

and similarly, we can obtain

1
nE [K1 (x)]D2 = � (x, ◊(x), ‚s) 1

nE [K1 (x)]

nÿ

i=1
E

#
K2

i (x) |Fi≠1
$

+ o (1) = o (1) .
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Hence, we have

1
n

nÿ

i=1
E

#
÷2

ni|Fi≠1
$

= 1
n (E [K1 (x)])2

3
„ (x, h) —2

1
—2

4 nÿ

i=1
E

#
K2

i (x) |Fi≠1
$

+ o (1) .

In what follows, we employ the same ideas used in Ferraty et al. (2010) to reach

E
#
K2

i (x) |Fi≠1
$

= K2 (1) „i (x, h) ≠
⁄ 1

0
(K2(u))

Õ
„i (x, uh) du,

and E [K1 (x)] = K (1) „ (x, h) ≠
s 1

0 (K(u))Õ
„ (x, uh) du. Then, it follows that

1
n„ (x, h)

nÿ

i=1
E

#
K2

i (x) |Fi≠1
$

= K2 (1)
n„ (x, h)

nÿ

i=1
„i (x, h)

≠
⁄ 1

0
(K2(u))

Õ „ (x, uh)
n„ (x, h) „ (x, uh)

nÿ

i=1
„i (x, uh) du

= K2 (1) ≠
⁄ 1

0
(K2(u))

Õ
·x (u) du + op (1) = —2 + op (1) ,

and
1

n„ (x, h)E [K1 (x)] = —1 + o (1) .

We deduce that

lim
næŒ

1
n

nÿ

i=1
E

#
÷2

ni|Fi≠1
$

= 1,

which completes the proof of Equation (6).
Concerning Equation (7), we write

’2
niI’2

ni>Án Æ |’ni|2+”

Ò
(Án)”

, ’” > 0.

Observe that

E
#
’2+”

ni

$
= E

Ë
|÷ni (x) ≠ E [÷ni (x) |Fi≠1]|2+”

È

Æ 21+”E
Ë
|÷ni (x)|2+”

È
+ 21+”

---E
Ë
E [÷ni|Fi≠1]2+”

È--- .

Using the Jensen inequality, we obtain E[’2+”
ni ] Æ CE[|÷ni(x)|2+”]. Thus, it remains to evaluate

E[|÷ni(x)|2+”]. To that end, we once again use the Cr≠inequality obtaining

E
Ë
|÷ni (x)|2+k

È
Æ C

3
„ (x, h) —2

1
—2⁄2 (x, ◊(x), ‚s) E2 [K1 (x)]

41+”/2
E

5
K2+”

i (x) Â2+”
x

3
Yi ≠ t

‚s

46

+ �2+” (x, z, ‚s) E
#
K2+”

i (x)
$

.

We condition on Xi and use the fact that

E
5
Â2+”

x

3
Yi ≠ t

‚s

4
|Xi

6
< Œ,

to obtain

E
Ë
|÷ni (x)|2+”

È
Æ C

3
1

„ (x, h)

41+”/2
E

1
[Ki (x)]2+”

2
Æ C

3
1

„ (x, h)

4”/2
.
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Consequently, we get
1
n

nÿ

i=1
E

Ë
’2

niI’2
ni>Án

È
Æ C

3
1

n„ (x, h)

4”/2
æ 0,

and the proof is complete. ⇤
Lemma 7.2 (Laïb and Louani, 2010) Under assumptions (A1), (A2), (A5), and (A6), we have
‚�D (x) ≠ 1 = op (1).
Lemma 7.3 Under assumptions (A1)-(A3), (A5), and (A6), we have

3
n„ (x, h) —2

1
—2⁄2 (x, ◊(x), ‚s)

41/2
Bn (x, z, ‚s) = u + o (1) , as n æ Œ.

Proof of Lemma 7.3 From a simple manipulation, we obtain

�̄N (x, z, ‚s)
�̄D (x)

= 1qn
i=1 E [Ki (x) |Fi≠1]

nÿ

i=1
E [ Ki

5
E

5
Âx

3
Y ≠ z

‚s

4
|X1

6

≠ E
5
Âx

3
Y ≠ z

‚s

4
|X = x

66
|Fi≠1 ] + E

5
Âx

3
Y ≠ z

‚s

4
|X = x

6

≠ E
5
Âx

3
Y ≠ ◊(x)

‚s

4
|X = x

6
= D1 (x) + D2 (x) .

For D1 (x), the main idea of the proof follows from Ferraty et al. (2010). Under (A3-iii), obtaining

Ai = E
5
Ki

5
E

5
Âx

3
Y ≠ z

‚s

4
|Xi

6
≠ E

5
Âx

3
Y ≠ z

‚s

4
|X = x

66
|Fi≠1

6

= E [Ki [E [� (Xi, z, ‚s) ≠ � (x, z, ‚s) |d (x, Xi) |Fi≠1]]]
= E [Ki� (d (x, Xi) , z) |Fi≠1]

=
⁄

� (th, z) K (t) dPFi≠1 (th) = h�
Õ
(0, z)

⁄
tK (t) dPFi≠1 (th) .

We use the continuity of �Õ (0, ·), and the fact that
⁄

tK (t) dPFi≠1 (th) = K (1) „i (x, h) ≠
⁄ 1

0
(sK (s))

Õ
„i (x, sh) ds,

to obtain
1
n

nÿ

i=1
Ai = h�

Õ
(0, ◊(x))

3
K (1) ≠

⁄ 1

0
(sK (s))

Õ
·x (s) ds

4
+ op (h) .

In similar way, we have

1
n

nÿ

i=1
E [Ki (x) |Fi≠1] =

3
K (1) ≠

⁄ 1

0
K

Õ
(s) ·x (s) ds

4
+ op (1) .

Thus, we have D1 = Bn (x) + o (h) . Concerning D2, we use a Taylor expansion to get, under (A3),

D2 = ≠Bn (x) + u [n„ (x, h)]≠1/2 ‡ (x, ◊(x)) ˆ

ˆt
� (x, ◊(x), ‚s) + o

1
[n„ (x, h)]≠1/2

2
.

This completes the proof. ⇤
Lemma 7.4 Under assumptions (A1)-(A3), (A5), and (A6), we have

3
n„ (x, h) —2

1
—2⁄2 (x, ◊(x), ‚s)

41/2
Rn (x, z, ‚s) = o (1) .
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Proof of Lemma 7.4 Here, it su�ces to prove that

�̄N (x, t, ‚s) ≠ � (x, t, ‚s) �̄D (x)
�̄D (x)

= op (1)

and ---‚�N (x, t, ‚s) ≠ �̄N (x, t, ‚s)
--- = op (1) .

In addition, we have that

�̄N (x, t, ‚s) ≠ � (x, t, ‚s) �̄D (x)
�̄D (x)

= 1
nE [K1 (x)] �̄D (x)

nÿ

i=1
E

5
Ki (x) E

5
Âx

3
Yi ≠ t

‚s

4
|Bi≠1

6
|Fi≠1

6

≠� (x, t, ‚s) E [Ki (x) |Fi≠1]

= 1
nE [K1 (x)] �̄D (x)

nÿ

i=1
E

5
Ki (x) E

5
Âx

3
Yi ≠ t

‚s

4
|Xi

6
|Fi≠1

6

≠� (x, t, ‚s) E [Ki (x) |Fi≠1]

Æ 1
nE [K1 (x)] �̄D (x)

nÿ

i=1
E [Ki (x) |� (Xi, t, ‚s) ≠ � (x, t, ‚s)| |Fi≠1] .

Using (A2-ii), we deduce that
----
�̄N (x, t, ‚s) ≠ � (x, t, ‚s) �̄D (x)

�̄D (x)

---- Æ sup
xÕ œB(x,h)

---�
1

x
Õ
, t, ‚s

2
≠ � (x, t, ‚s)

--- æ 0.

Furthermore, we get ‚�N (x, z, ‚s) ≠ �̄N (x, z, ‚s) = op (1). Now, we must prove that E[‚�N (x, z, ‚s) ≠
�̄N (x, z, ‚s)] æ 0 and Var[‚�N (x, z, ‚s) ≠ �̄N (x, z, ‚s)] æ 0. The first one is a consequence of the defi-
nitions of ‚�N (x, z, ‚s), and �̄N (x, z, ‚s) . For the second one, we obtain ‚�N (x, z, ‚s) ≠ �̄N (x, z, ‚s) =qn

i=1 ”i (x, z, ‚s) , where

”i (x, z, ‚s) = 1
nE [K1]KiÂx

3
Yi ≠ z

‚s

4
≠ E

5
KiÂx

3
Yi ≠ z

‚s

4
|Fi≠1

6
.

By the Burkholder inequality, we have

E
C

nÿ

i=1
”i (x, z, ‚s)

D2

Æ
nÿ

i=1
E [”i (x, z, ‚s)]2 .

In addition, by the Jensen inequality, we arrive at

E2 [”i (x, z, ‚s)] Æ 1
n2E2 [K1]

E
5
K2

i Â2
x

3
Yi ≠ z

s

46
Æ 1

n2E2 [K1]
E

#
K2

i

$
Æ 1

n„2 (x, h)„i (x, h) .

Now, (A2) yields Var
Ë

‚�N (x, z, ‚s) ≠ �̄N (x, z, ‚s)
È

æ 0. ⇤

Lemma 7.5 Under assumptions (A1), (A2), (A5), and (A6), ‚◊ (x) exists a.s. for all su�ciently
large n.

Proof of Lemma 7.5
From the monotonicity of Âx(Y ≠ ./‚s), for all Á > 0, we have

� (x, ◊(x) ≠ Á, ‚s) Æ � (x, ◊(x), ‚s) Æ � (x, ◊(x) + Á, ‚s) .

By using a similar argument as those used in the previous Lemmas, we prove that

‚� (x, t, ‚s) pæ � (x, t, ‚s) m ’t œ Nx.
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Thus, for su�ciently large n and for all Á small enough, we reach ‚� (x, ◊(x) ≠ Á, ‚s) Æ 0 Æ
‚� (x, ◊(x) + Á, ‚s) , which holds with probability tending to one.

Since Âx is a continuous function, it follows that ‚� (x, t, ‚s) is a continuous function of t and,
there exists ‚◊ (x) œ [◊(x) ≠ Á, ◊(x) + Á] such that ‚�(x, ‚◊(x), ‚s) = 0. Hence, the uniqueness of ‚◊ (x)
is a direct consequence of the strict monotonicity of Âx in the second component and the fact that

P
A

nÿ

i=1
Ki = 0

B
= P

1
‚�D (x) = 0

2
æ 0 as n æ Œ,

which implies
qn

i=1 Ki ”= 0 with probability tending to 1. Moreover, since ‚◊(x) œ [◊(x)≠Á, ◊(x)+Á]
in probability, it follows that ‚◊(x) pæ ◊(x), as n æ Œ. ⇤
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Abstract

Multivariate lifetime data are common in many applications, especially in medical and
engineering studies. In this paper, we consider a trivariate Marshall-Olkin-Weibull distri-
bution to model trivariate data in presence of right censored data.Maximum likelihood
and Bayesian methods are used to get the parameter estimators of interest. An extensive
simulation study was performed to verify the e↵ectiveness of the maximum likelihood
estimators. Reliability data sets related to fiber failure strengths were considered to
illustrate the performance of the proposed model under the classical and Bayesian ap-
proaches. As a result, note that the trivariate Marshall-Olkin-Weibull model could be
considered as a good alternative to model trivariate lifetime data, especially under a
Bayesian approach which could be of interest for the reliability analysis, as observed
with the real data application in industrial engineering presented in the study or any
other area of interest.

Keywords: Bayesian approach · Censored data · Maximum likelihood method
· Monte Carlo simulation · Multivariate distributions.

Mathematics Subject Classification: Primary 62-XX · Secondary 62Hxx.

1. Introduction

Lifetime distributions have been studied extensively in the literature due to its medical
and engineering applications. Usually it is possible to have two or more lifetimes associ-
ated with each subject as for example in medical recurrent events. In these situations, it
is needed statistical models which capture the dependence among the lifetimes related to
each unit. These lifetime data may be censored at a fixed time point due to the limita-
tion of the follow-up period or withdrawal of the subject from the study. Assuming two
lifetime observations, Arnold and Strauss (1988); Sarkar (1987); Hawkes (1972); Downton
(1970); Gumbel (1960) introduced some bivariate distributions with exponential condition-
als. Block and Basu (1974); Marshall and Olkin (1967a); Freund (1961) proposed extensions
of the bivariate exponential distribution. In other direction, Basu and Dhar (1995) and
Arnold (1975) introduced some bivariate geometric distributions. Pellerey (2008) modeled
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dependent lifetimes using Archimedean survival copulas. Moreover, assuming three or more
lifetimes, Gultekin and Bairamov (2013); De Oliveira et al. (2021) introduced trivariate
geometric distributions. Hougaard (1986) proposed a class of multivariate failure time dis-
tributions. Marshall and Olkin (1967b) introduced a multivariate exponential distribution.
Arellano-Valle and Genton (2010) introduced multivariate unified skew-elliptical distribu-
tions and Richter and Venz (2014) proposed geometric representations of multivariate
skewed elliptically contoured distributions.
Considering the univariate situation, a distribution which is widely considered in the

lifetime data analysis is the Weibull distribution (Weibull, 1951) given the flexibility of fit
for the data. The mathematical properties and its applicability and generalizations have
been studied by many authors (see for example, Cohen, 1965; Philip, 1974; Lai et al.,
2003; Thoman et al., 1969; Stevens and Smulders, 1979; Rinne, 2008; Mudholkar et al.,
1996; Brown and Wohletz, 1995; Pinder III et al., 1978; Cao, 2004; Pham and Lai, 2007;
Saraiva and Suzuki, 2017; among many others). In this study, we explore a multivariate
exponential distribution introduced by Marshall and Olkin (1967b) given as an extension
of the fatal shock model to a multi-component system to build a new trivariate lifetime
distribution denoted as the trivariate Marshall-Olkin-Weibull (TMOW) distribution.
We assume three lifetime random variables denoted following this new distribution in

presence of right censored data. Maximum likelihood (ML) inference methods using nu-
merical iterative techniques and Bayesian methods using Markov chain Monte Carlo (MC)
methods are used to get the inferences of interest. Under the classical approach, the in-
ferences of interest are obtained using standard asymptotically normality of the likelihood
function considering the observed Fisher information matrix in place of the usual expected
Fisher information matrix given the complexity of the likelihood function. An extensive
simulation study is also performed to verify the e↵ectiveness of the considered inference
method assuming di↵erent fixed values for the parameters of the model and di↵erent sam-
ple sizes. An application for real data is also presented in order to verify the usefulness of
the proposed model.
The paper is organized as follows: in Section 2, it is introduced the TMOW along with

some mathematical properties. The estimation procedures assuming complete and censored
data are introduced in Section 3 and 4. In Section 5, the results of the MC simulation
study are presented to evaluate the biases, the root of the mean squared error and the
asymptotic normality of the ML estimators for the TMOW distribution. Section 6 presents
an application to reliability data related to fiber failure strengths. Section 7 provides some
concluding remarks.

2. The TMOW distribution

The TMOW distribution is constructed considering k-independent Poisson processes
governing the occurrence of shocks to components 1, . . . , k, respectively; governing the
occurrence of shocks to components pairs 1 and 2, 1 and 3, . . ., k � 1 and k, respectively;
and so on. This construction of the TMOW distribution plays a central role in life testing
and reliability analysis since it has exponential marginal distributions, a useful property
in many applications.
It is worth mentioning that an important property of the TMOW distribution is that

it is not absolutely continuous since it has singular parts (Marshall and Olkin, 1967b)).
In addition, the TMOW distribution could be also represented in terms of independent
exponentials since there exist independent exponential random variables Zs such that
Xi = minsi=1 Zs, for i = 1, . . . , k obtained from the fatal shock model.
Let Y = (Y1, . . . , Yk) be a random vector and consider the occurrence of simultaneous

shocks to all k-components assuming the fatal shock model. Then, the survival function
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(SF) of this special case of the TMOW distribution with k + 1 parameters is given by

S(y1, . . . , yk) = P(Y1 > y1, . . . , Yk > yk)

= exp{��1y1 � · · ·� �kyk � �k+1max(y1, . . . , yk)}, (1)

where �j > 0 and yj > 0, for j = 1, . . . , k + 1. Notice that the TMOW distribution is,
mathematically, a fairly simple distribution, however, its marginal distributions could be
inappropriate to model the behavior of units which have no constant failure rates. In this
way, an alternative is the use of a Weibull distribution which is the most commonly used
distribution to model reliability data since it is easy to interpret, has great flexibility of fit
and is an extension of the exponential distribution.
The probability density function (PDF) of a continuous random variable X with a

Weibull distribution is given by fW (x;↵,�) = ↵�↵x↵�1 exp{��x↵}, where x � 0, � > 0 is
the scale parameter and ↵ > 0 is the shape parameter. Their corresponding cumulative dis-
tribution function (CDF) and SF are given respectively by FW (x;↵,�) = 1� exp{��x↵}
and SW (x;↵,�) = exp{��x↵}. Assuming the fatal shock model previously described and
considering Equation (1), it is possible to define the multivariate Marshall-Olkin Weibull
(MMOW) distribution as an extension of the TMOW distribution. A comprehensive dis-
cussion about the MMOWk model is presented by Kundu and Dey (2009) and a discussion
assuming dependent right censorship is presented by Davarzani et al. (2015).

Definition 2.1. (Model formulation) Consider the transformation Yj = X�
j , that is,

Xj = Y 1/�
j , for j = 1, . . . , k; � > 0. Let X = (X1, . . . , Xk) be a random vector following a

MMOW distribution denoted by MMOWk(�1, . . . ,�k+1,�) with multivariate SF given by

S(x1, x2, . . . , xk) = P(X1 > x1, . . . , Xk > xk)

= exp{��1x
�
1 � . . .� �kx

�
k � �k+1max(x�1 , . . . , x

�
k)}. (2)

Note that if � = 1 in Equation (2), we obtain the multivariate Marshall-Olkin exponential
distribution. In this paper, we assume the special case of k = 3 lifetimes, that is, the
TMOW distribution, assuming a 3-component system. The SF for the lifetimes X1, X2

and X3 is given by

S(x1, x2, x3) = P(X1 > x1, X2 > x2, X3 > x3)

= exp{��1x
�
1 � �2x

�
2 � �3x

�
3 � �4max(x�1 , x

�
2 , x

�
3 )}, (3)

that is,

S(x) =

8
>>>>>>>>>><

>>>>>>>>>>:

S1(x) = exp{��14x�
1 � �2x�

2 � �3x�
3}, if x2 < x3 < x1 or x3 < x2 < x1,

S2(x) = exp{��1x�
1 � �24x�

2 � �3x�
3}, if x1 < x3 < x2 or x3 < x1 < x2,

S3(x) = exp{��1x�
1 � �2x�

2 � �34x�
3}, if x2 < x1 < x3 or x1 < x2 < x3,

S4(x) = exp{��1x�
1 � (�� �1)x�}, if x1 < x2 = x3 = x,

S5(x) = exp{��2x�
2 � (�� �2)x�}, if x2 < x1 = x3 = x,

S6(x) = exp{��3x�
3 � (�� �3)x�}, if x3 < x1 = x2 = x,

S7(x) = exp{��x�}, if x1 = x2 = x3 = x,
0, otherwise,

(4)

where � = �1 + �2 + �3 + �4, �14 = �1 + �4, �24 = �2 + �4 and �34 = �3 + �4. In addition,
the PDF for the random vector X = (X1, X2, X3) is obtained from f(x) = f(x1, x2, x3) =
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�@3S(x1, x2, x3)/@x1@x2@x3, where S(x1, x2, x3) is given in Equation (4), that is,

f(x) =

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

f1(x) = �14�2�3�3(x1x2x3)��1 exp{��14x�
1 � �2x�

2 � �3x�
3 }, if x2 < x3 < x1 or x3 < x2 < x1,

f2(x) = �1�24�3�3(x1x2x3)��1 exp{��1x�
1 � �24x�

2 � �3x�
3 }, if x1 < x3 < x2 or x3 < x1 < x2,

f3(x) = �1�2�34�3(x1x2x3)��1 exp{��1x�
1 � �2x�

2 � �34x�
3 }, if x2 < x1 < x3 or x1 < x2 < x3,

f4(x) = �1�4�2(x1x)��1 exp{��1x�
1 � (�� �1)x�}, if x1 < x2 = x3 = x,

f5(x) = �2�4�2(x2x)��1 exp{��2x�
2 � (�� �2)x�}, if x2 < x1 = x3 = x,

f6(x) = �3�4�2(x3x)��1 exp{��3x�
3 � (�� �3)x�}, if x3 < x1 = x2 = x,

f7(x) = �4�x��1 exp{��x�}, if x1 = x2 = x3 = x,

0, otherwise.
(5)

3. Classical inference for the TMOW with complete data

Let (X11, X21, X31), . . . , (X1n, X2n, X3n) be a random sample of size n from a TMOW
distribution with PDF given in (5). Consider the indicator variables stated as

v1 =

(
1, if x2 < x3 < x1 or x3 < x2 < x1,

0, otherwise;

v2 =

(
1, if x1 < x3 < x2 or x3 < x1 < x2,

0, otherwise;

v3 =

(
1, if x2 < x1 < x3 or x1 < x2 < x3,

0, otherwise;

v4 =

(
1, if x1 < x2 = x3 = x,

0, otherwise;

v5 =

(
1, if x2 < x1 = x3 = x,

0, otherwise;

v6 =

(
1, if x3 < x1 = x2 = x,

0, otherwise.
(6)

Then, we have seven possible situations considering the indicator variables defined as

• r1 = v1(1� v2)(1� v3)(1� v4)(1� v5)(1� v6), if x2 < x3 < x1 or x3 < x2 < x1;
• r2 = v2(1� v1)(1� v3)(1� v4)(1� v5)(1� v6), if x1 < x3 < x2 or x3 < x1 < x2;
• r3 = v3(1� v2)(1� v1)(1� v4)(1� v5)(1� v6), if x2 < x1 < x3 or x1 < x2 < x3;
• r4 = v4(1� v2)(1� v3)(1� v1)(1� v5)(1� v6), if x1 < x2 = x3 = x;
• r5 = v5(1� v2)(1� v3)(1� v4)(1� v1)(1� v6), if x2 < x1 = x3 = x;
• r6 = v6(1� v2)(1� v3)(1� v4)(1� v5)(1� v1), if x3 < x1 = x2 = x;
• r7 = (1� v1)(1� v2)(1� v3)(1� v4)(1� v5)(1� v6), if x1 = x2 = x3 = x.

From Equation (12), the log-likelihood function assuming a TMOW distribution and a
random sample of size n of lifetimes X1, X2 and X3 is given by

`(✓) =
nX

i=1

r1i log
�
�14�2�3�

3
�
+

nX

i=1

r1i(� � 1) log(x1ix2ix3i) +
nX

i=1

r7i(� � 1) log(xi)
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+
nX

i=1

r1i [��14x
�
1i � �2x

�
2i � �3x

�
3i] +

nX

i=1

r2i log
�
�1�24�3�

3
�
+

nX

i=1

r7i log (�4�)

+
nX

i=1

r2i(� � 1) log(x1ix2ix3i) +
nX

i=1

r2i [��1x
�
1i � �24x

�
2i � �3x

�
3i]� �

nX

i=1

r7ix
�
i

+
nX

i=1

r3i log
�
�1�2�34�

3
�
+

nX

i=1

r3i(� � 1) log(x1ix2ix3i) +
nX

i=1

r4i log
�
�1�4�

2
�

+
nX

i=1

r4i(� � 1) log(x1ixi) +
nX

i=1

r4i [��1x
�
1i � (�� �1)x

�
i ] +

nX

i=1

r5i log
�
�2�4�

2
�

+
nX

i=1

r5i(� � 1) log(x2ixi) +
nX

i=1

r5i [��2x
�
2i � (�� �2)x

�
i ] +

nX

i=1

r6i log
�
�3�4�

2
�

+
nX

i=1

r6i(� � 1) log(x3ixi) +
nX

i=1

r6i [��3x
�
3i � (�� �3)x

�
i ]

+
nX

i=1

r3i [��1x
�
1i � �2x

�
2i � �34x

�
3i] . (7)

The equations for the ML estimators are presented in Appendix 1. Since the ML esti-
mators do not have closed form, it is needed to use numerical methods as the Newton-
Raphson, the Nelder-Mead or the quasi-Newton methods to get the ML estimators for
each parameter of the model.

4. Classical inference for the TMOW with censored data

A particularity in the analysis of lifetime data is the presence of censored data, that could
be right, left or interval censoring. In this section, we assume the presence of right censored
data, that is, associated with each lifetime Xj , for j = 1, 2, 3, we have a fixed censoring
time Cj and the data are given by T1 = min(X1, C1), T2 = min(X2, C2) and T3 = (X3, C3).
In this way, the likelihood function for the parameters of the TMOW distribution has the
data set classified in eight regions stated as

• B1: T1, T2 and T3 are complete observations;
• B2: T1 is complete, T2 and T3, are censored observations;
• B3: T1 is censored, T2 is complete and T3 is a censored observation;
• B4: T1 and T2 are censored and T3 is a complete observation;
• B5: T1 and T2 are complete and T3 is a censored observation;
• B6: T1 is complete, T2 is censored and T3 is a complete observation;
• B7: T1 is censored, T2 and T3 are complete observations;
• B8: T1, T2 and T3 are censored observations.

Thus, the likelihood function for ✓ = (�1,�2,�3,�4,�) based on n observations ti =
(t1i, t2i, t3i), for i = 1, . . . , n, is given by

L(✓) =
Y

i2B1

f(ti)
Y

i2B2

✓
�@S(ti)

@t1i

◆ Y

i2B3

✓
�@S(ti)

@t2i

◆ Y

i2B4

✓
�@S(t3i)

@t3i

◆ Y

i2B5

✓
@2S(ti)

@t1i@t2i

◆

⇥
Y

i2B6

✓
@2S(ti)

@t1i@t3i

◆ Y

i2B7

✓
@2S(ti)

@t2i@t3i

◆ Y

i2B8

S(ti), (8)
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where S(t) is defined by Equations (3) and (4). Define the indicator variables for the
censored data as

�ji =

(
1, if Tji  Cji,

0, if Tji > Cji,
(9)

with j = 1, 2, 3 and i = 1, . . . , n. In this way, the logarithm of the likelihood function
stated in Equation (8) using the results (a), (b), . . . , (h) presented in Appendix 1 for the
TMOW distribution in presence of right censored data is given by

`(✓) =
nX

i=1

�1i�2i�3ir1i log f1(ti) +
nX

i=1

�1i�2i�3ir2i log f2(ti) +
nX

i=1

�1i�2i�3ir3i log f3(ti)

+
nX

i=1

�1i�2i�3ir4if4(ti) +
nX

i=1

�1i�2i�3ir5i log f5(ti) +
nX

i=1

�1i�2i�3ir6i log f6(ti)

+
nX

i=1

�1i�2i�3ir7i log f7(ti) +
nX

i=1

�1i(1� �2i)(1� �3i)r1i log g11(ti)

+
nX

i=1

�1i(1� �2i)(1� �3i)r2i log g12(ti) +
nX

i=1

�1i(1� �2i)(1� �3i)r3i log g13(ti)

+
nX

i=1

�1i(1� �2i)(1� �3i)r4i log g14(ti) +
nX

i=1

�1i(1� �2i)(1� �3i)r5i log g15(ti)

+
nX

i=1

�1i(1� �2i)(1� �3i)r7i log g17(ti) +
nX

i=1

(1� �1i)�2i(1� �3i)r1i log g21(ti)

+
nX

i=1

(1� �1i)�2i(1� �3i)r3i log g23(ti) +
nX

i=1

(1� �1i)�2i(1� �3i)r4i log g24(ti)

+
nX

i=1

(1� �1i)(1� �2i)�3ir2i log g32(ti) +
nX

i=1

(1� �1i)(1� �2i)�3ir3i log g33(ti)

+
nX

i=1

(1� �1i)(1� �2i)(1� �3i)r6i logS5(ti) +
nX

i=1

�1i�2i(1� �3i)r3i log g43(ti)

+
nX

i=1

(1� �1i)(1� �2i)(1� �3i)r3i logS3(ti) +
nX

i=1

�1i�2i(1� �3i)r2i log g42(ti)

+
nX

i=1

�1i�2i(1� �3i)r4i log g44(ti) +
nX

i=1

�1i�2i(1� �3i)r5i log g45(ti)

+
nX

i=1

�1i�2i(1� �3i)r7i log g47(ti) +
nX

i=1

�1i(1� �2i)�3ir3i log g53(ti)

+
nX

i=1

(1� �1i)(1� �2i)(1� �3i)r7i logS7(ti) +
nX

i=1

�1i(1� �2i)�3ir2i log g52(ti)
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+
nX

i=1

�1i(1� �2i)�3ir6i log g56(ti) +
nX

i=1

(1� �1i)�2i�3ir1i log g61(ti)

+
nX

i=1

�1i(1� �2i)�3ir1i log g51(ti) +
nX

i=1

(1� �1i)(1� �2i)(1� �3i)r2i logS2(ti)

+
nX

i=1

(1� �1i)�2i�3ir3i log g63(ti) +
nX

i=1

(1� �1i)(1� �2i)(1� �3i)r1i logS1(ti)

+
nX

i=1

�1i�2i(1� �3i)r1i log g41(ti) +
nX

i=1

(1� �1i)(1� �2i)(1� �3i)r4i logS4(ti)

+
nX

i=1

(1� �1i)(1� �2i)�3ir6i log g36(ti) +
nX

i=1

(1� �1i)(1� �2i)(1� �3i)r6i logS6(ti)

+
nX

i=1

(1� �1i)�2i�3ir2i log g62(ti) +
nX

i=1

(1� �1i)�2i(1� �3i)r2i log g22(ti)

+
nX

i=1

�1i(1� �2i)(1� �3i)r6i log g16(ti) +
nX

i=1

(1� �1i)�2i(1� �3i)r5i log g25(ti).

5. Simulation study

This section reports the results of a MC simulation study carried out to assess the
performance of the ML estimators of the TMOW distribution assuming complete data.
The computations for classical approach were performed using maxLik package (Hen-

ningsen and Toomet, 2011) from the R software (R Core Team, 2015) with the option
optim.method = ‘‘BFGS’’ for maxLik function. To apply the proposed Bayesian ap-
proach, we have considered the Gibbs Sampling algorithm available in the package R2jags
(Su and Yajima, 2012) from the R and JAGS software. A chain with N = 100, 000 values
was generated for each parameter, considering a burn-in of 5% of the size of the chain.
In addition, a value generated for every 100 was considered, resulting in chains of size
1, 000 for each parameter. Furthermore, using trace plots and Geweke’s diagnostic, the
convergence of the chains was monitored, and their stationarity was revealed. Computer
codes are available under request.
To estimate the parameters of the TMOW distribution, based on the squared error

loss function, L(⌘, a) = (⌘ � a)2, we consider that the joint posterior PDF of the pa-
rameter � = (�1, �2, �3, �4,�) is obtained directly from the Bayes formula assum-
ing independent non-informative gamma prior distributions with hyperparameters equals
to ↵ = 0.0001 and � = 0.0001 for each parameter and is written as ⇡(✓; data) =
L(�)⇡(�)

Q
⇡(�i)/

R
L(✓)⇡(�)

Q
⇡(�i) d�d✓i, for = 1, 2, 3, 4.

The generation of the random values X1, X2 and X3 from the TMOW distribu-
tion follows the steps: (1) generate U1 ⇠ Weibull(�1,�), U2 ⇠ Weibull(�2,�), U3 ⇠
Weibull(�3,�), U4 ⇠ Weibull(�4,�); (2) define X1 = min(U1, U4), X2 = min(U2, U4) and
X3 = min(U3, U4); and (3) return the observed values (x1, x2, x3) of (X1, X2, X3).
The simulation study was performed under five scenarios and reported in Table 1, as-

suming the sample sizes equal to n = 10, 20, 30, . . . , 100. In addition, it was considered
1000 MC replications for each scenario from which were computed the biases and the root
of mean squared error (RMSE) as given in Equation (10). Specifically, the bias and RMSE
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were calculated using the expressions given by

Bias( b ) =
1

B

BX

i=1

( b i � i), RMSE( b ) =

 
1

B

BX

i=1

( b i � i)
2

!1/2

, (10)

where B = 1000 is the number of simulations and  denotes each parameter �1,�2,�3,�4

or �. The obtained results are presented in Tables 2 and 3 from where note that:

• The biases and RMSE for parameters �1,�2 and �3 are high and decrease slowly to zero
when n ! 1 when compared to the others parameters, but, in general, the average
biases and RMSE decrease when n ! 1 that show the consistency property of the ML
estimators. That is, we have E(�i) ⇡ �i, i = 1, 2, 3, 4 and E(�) ⇡ � when n ! 1.

• In the scenarios 3, 4 and 5, the biases for �4 are negatives and close to zero. The same
happens to � in scenario 4. However, for the others parameters and scenarios, the biases
are positives for �i, i = 1, 2, 3.

• The results presented in scenario 3 has the higher values for the the biases and RMSE
for �i, i = 1, 2, 3 and �. For �4, this occur in the scenario 2. In contrast, the smaller
values for the the biases and RMSE are presented in scenarios 1 and 4.

• It is important to point out that the simulation also could be made using a Bayesian
approach with di↵erent prior distributions for the parameters of the TMOW distribution.
The coverage probability and the coverage length could be also computed;

• The simulation results could be improved considering other random variable generation
methods and using a better approach for the correlation structures of X1, X2 and X3.
Moreover, we conclude that the TMOW distribution could be used as a good alternative
model to describe trivariate lifetimes with good accuracy in applications.

As a numeric experiment, let us consider a complete simulated data set and a censored
data set (cut point equal to 2.5 for censored lifetimes) that consists of n = 50 trivariate
lifetimes generated from the TMOW distribution assuming the parameter values presented
in scenario 4 (see Table 1) for illustrative purposes of the model performance. The data
sets are presented in Table 4. The inference results of interest were obtained using the
maxLik package of the R software with optim.method = ‘SANN’ and are presented in
Table 5 as well the asymptotic 95% confidence intervals (CIs) which were obtained using
the asymptotic normal distribution given by N5(✓,⌃�1).
From the results presented in Table 5, we conclude that the TMOW model has a good

accuracy for both simulated data sets due to the small values (< 0.5) for the standard
error (SE) and the small length of the CI for each parameter which is expected since the
data set was generated from the TMOW distribution.

Table 1. True parameters values for each scenario.

Scenario �1 �2 �3 �4 �

1 1.20 1.30 1.30 0.18 0.10
2 1.20 1.30 1.50 1.45 1.20
3 0.40 0.50 0.60 1.50 2.00
4 0.40 0.50 0.60 0.70 0.80
5 0.80 0.90 0.70 0.35 0.20
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Table 2. Bias for each parameter for the considered scenarios.

Sample Size Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Bias(�1)

10 0.9406 1.8494 2.0303 0.8178 1.2065
20 0.7687 1.5009 1.8726 0.7527 1.0163
30 0.7132 1.4897 1.7802 0.7260 0.9889
40 0.6948 1.4287 1.7758 0.7225 0.9519
50 0.6727 1.3632 1.7367 0.7131 0.9457
60 0.6712 1.3575 1.7278 0.7090 0.9405
70 0.6592 1.3499 1.7270 0.7059 0.9365
80 0.6561 1.3471 1.7236 0.7053 0.9248
90 0.6380 1.3221 1.7235 0.7041 0.9110
100 0.6323 1.3108 1.7017 0.7006 0.9042

Bias(�2)

10 0.8385 2.0096 2.1121 0.8607 1.1388
20 0.6767 1.6119 1.8778 0.7709 0.9247
30 0.6528 1.5602 1.7946 0.7562 0.9112
40 0.5746 1.4537 1.7654 0.7217 0.8730
50 0.5722 1.4269 1.7236 0.7126 0.8663
60 0.5653 1.4038 1.7084 0.7037 0.8543
70 0.5563 1.3780 1.6938 0.7005 0.8493
80 0.5389 1.3703 1.6889 0.6929 0.8414
90 0.5226 1.3242 1.6825 0.6887 0.8145
100 0.5139 1.3121 1.6395 0.6701 0.8067

Bias(�3)

10 0.8184 2.1178 2.4012 0.8813 1.2464
20 0.6996 1.7690 1.9862 0.7785 1.0996
30 0.6114 1.6260 1.8556 0.7233 1.0481
40 0.5824 1.5543 1.8552 0.7165 1.0096
50 0.5809 1.5376 1.7908 0.7095 1.0092
60 0.5749 1.5191 1.7693 0.7092 1.0052
70 0.5709 1.5141 1.7593 0.7087 1.0040
80 0.5691 1.4873 1.7591 0.7072 1.0006
90 0.5524 1.4720 1.7536 0.6985 0.9865
100 0.5509 1.4612 1.7181 0.6846 0.9768

Bias(�4)

10 0.0248 0.0454 -0.0180 -0.0179 -0.0462
20 0.0126 0.0378 -0.0170 -0.0169 -0.0458
30 0.0106 0.0360 -0.0157 -0.0157 -0.0454
40 0.0089 0.0344 -0.0145 -0.0147 -0.0451
50 0.0085 0.0339 -0.0132 -0.0135 -0.0447
60 0.0071 0.0338 -0.0130 -0.0123 -0.0446
70 0.0069 0.0336 -0.0112 -0.0119 -0.0445
80 0.0069 0.0332 -0.0104 -0.0104 -0.0432
90 0.0064 0.0329 -0.0092 -0.0093 -0.0403
100 0.0057 0.0326 -0.0080 -0.0073 -0.0335

Bias(�)

10 0.0055 0.0855 0.1077 -0.0571 0.0097
20 0.0028 0.0591 0.0666 -0.0553 0.0041
30 0.0026 0.0519 0.0340 -0.0526 0.0031
40 0.0021 0.0483 0.0247 -0.0523 0.0025
50 0.0010 0.0300 0.0205 -0.0522 0.0023
60 0.0008 0.0264 0.0097 -0.0500 0.0019
70 0.0004 0.0244 0.0070 -0.0408 0.0016
80 0.0002 0.0228 0.0040 -0.0372 0.0010
90 0.0002 0.0215 0.0037 -0.0330 0.0005
100 0.0001 0.0178 0.0014 -0.0228 0.0003
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Table 3. RMSE for each parameter for the considered scenarios.

Sample Size Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

RMSE(�1)

10 1.4104 2.5790 2.3998 1.0009 1.5558
20 0.9728 1.7555 2.0090 0.8267 1.1534
30 0.8109 1.6609 1.8660 0.7745 1.0626
40 0.7820 1.5619 1.8437 0.7601 1.0087
50 0.7421 1.4531 1.7772 0.7316 0.9897
60 0.7308 1.4406 1.7664 0.7314 0.9711
70 0.7120 1.4122 1.7587 0.7269 0.9612
80 0.6875 1.3879 1.7580 0.7258 0.9581
90 0.6843 1.3820 1.7502 0.7208 0.9409
100 0.6828 1.3725 1.7370 0.7165 0.9382

RMSE(�2)

10 1.1970 2.5686 2.4845 1.0251 1.4077
20 0.8903 1.8512 2.0086 0.8477 1.0475
30 0.7808 1.7373 1.8814 0.8081 0.9955
40 0.6412 1.5749 1.8152 0.7424 0.9172
50 0.6402 1.5241 1.7751 0.7403 0.9114
60 0.6385 1.4822 1.7545 0.7391 0.9037
70 0.6313 1.4668 1.7356 0.7286 0.8941
80 0.5879 1.4361 1.7329 0.7119 0.8775
90 0.5623 1.3677 1.7116 0.7020 0.8407
100 0.5580 1.3556 1.6671 0.6855 0.8307

RMSE(�3)

10 1.1615 2.8146 3.0221 1.1047 1.5354
20 0.9039 2.0753 2.1512 0.8608 1.2066
30 0.7067 1.7595 1.9633 0.7638 1.0943
40 0.7057 1.7371 1.9256 0.7566 1.0678
50 0.6599 1.6315 1.8414 0.7444 1.0415
60 0.6471 1.6293 1.8226 0.7403 1.0409
70 0.6247 1.5752 1.7931 0.7287 1.0327
80 0.6124 1.5382 1.7873 0.7271 1.0206
90 0.6013 1.5333 1.7858 0.7196 1.0087
100 0.5989 1.5181 1.7425 0.7021 0.9973

RMSE(�4)

10 0.0335 0.0476 0.0181 0.0180 0.0463
20 0.0170 0.0386 0.0170 0.0170 0.0360
30 0.0140 0.0363 0.0168 0.0168 0.0236
40 0.0118 0.0346 0.0157 0.0158 0.0189
50 0.0108 0.0341 0.0144 0.0146 0.0153
60 0.0094 0.0340 0.0132 0.0135 0.0128
70 0.0092 0.0337 0.0125 0.0121 0.0107
80 0.0089 0.0333 0.0119 0.0117 0.0079
90 0.0083 0.0329 0.0100 0.0108 0.0072
100 0.0073 0.0327 0.0098 0.0100 0.0057

RMSE(�)

10 0.0178 0.2115 0.3536 0.1174 0.0328
20 0.0122 0.1541 0.2546 0.0908 0.0230
30 0.0099 0.1318 0.1998 0.0800 0.0187
40 0.0080 0.1044 0.1657 0.0799 0.0162
50 0.0075 0.1022 0.1485 0.0723 0.0150
60 0.0071 0.0871 0.1362 0.0692 0.0135
70 0.0063 0.0779 0.1241 0.0665 0.0120
80 0.0056 0.0707 0.1216 0.0661 0.0112
90 0.0055 0.0690 0.1066 0.0655 0.0108
100 0.0046 0.0617 0.1044 0.0639 0.0104
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Table 4. Simulated data sets assuming the true parameters presented in scenario 4 for TMOW distribution.

Complete data

X1:

2.9050 1.6158 0.0360 1.4561 0.3848 1.6423 1.7376 2.4365 0.2093 0.8411 1.4982 0.3554 5.4551

0.9944 0.8322 0.2012 0.0784 0.7711 0.0184 1.7222 0.6561 2.3231 2.2312 2.8298 0.1304 1.8389

0.0566 0.7413 0.5567 0.2910 3.7102 1.1128 2.5874 0.2352 0.2228 1.1922 0.8506 1.1641 0.1689

1.9354 1.3771 0.8613 0.7622 2.5632 0.0054 1.0581 1.3065 0.3640 0.0045 1.8680

X2:

2.9050 1.3486 0.8815 0.3376 0.3848 0.7980 1.7376 0.1366 0.2093 0.8411 2.1215 0.4391 2.3127

1.0389 0.6509 0.2012 0.0784 0.7711 2.5113 1.7222 0.1462 0.0569 1.9140 1.2382 1.5333 0.0373

0.3128 2.0642 0.1847 0.2930 0.5026 1.1128 1.4667 0.0727 0.2228 0.0352 0.8506 2.5642 0.1689

2.3867 1.3771 1.0442 0.7622 2.7941 0.0054 0.3199 0.5004 1.5470 1.4413 2.9805

X3:

1.5124 1.4561 2.5641 0.5822 0.3848 0.3794 1.7376 0.5608 0.2093 0.1380 0.4593 0.9403 0.0971

1.4204 0.4511 0.2012 0.0784 0.7711 1.7915 1.7222 0.6561 0.7871 0.4913 2.8522 0.2301 3.5971

0.3128 0.7610 0.5567 0.2930 1.4540 0.0052 2.0376 0.7102 0.0016 2.8227 0.8506 0.3387 0.1689

3.4390 0.0107 0.6489 0.7622 1.9607 0.0054 1.2430 1.3065 1.5470 1.2935 0.9869

Censored data

X1:

2.9050 1.6158 0.0360 1.4561 0.3848 1.6423 1.7376 2.4365 0.2093 0.8411 1.4982 0.3554 5.4551

0.9944 0.8322 0.2012 0.0784 0.7711 0.0184 1.7222 0.6561 2.3231 2.2312 2.8298 0.1304 1.8389

0.0566 0.7413 0.5567 0.2910 3.7102 1.1128 2.5874 0.2352 0.2228 1.1922 0.8506 1.1641 0.1689

1.9354 1.3771 0.8613 0.7622 2.5632 0.0054 1.0581 1.3065 0.3640 0.0045 1.8680

X2:

2.9050 1.3486 0.8815 0.3376 0.3848 0.7980 1.7376 0.1366 0.2093 0.8411 2.1215 0.4391 2.3127

1.0389 0.6509 0.2012 0.0784 0.7711 2.5113 1.7222 0.1462 0.0569 1.9140 1.2382 1.5333 0.0373

0.3128 2.0642 0.1847 0.2930 0.5026 1.1128 1.4667 0.0727 0.2228 0.0352 0.8506 2.5642 0.1689

2.3867 1.3771 1.0442 0.7622 2.7941 0.0054 0.3199 0.5004 1.5470 1.4413 2.9805

X3:

1.5124 1.4561 2.5641 0.5822 0.3848 0.3794 1.7376 0.5608 0.2093 0.1380 0.4593 0.9403 0.0971

1.4204 0.4511 0.2012 0.0784 0.7711 1.7915 1.7222 0.6561 0.7871 0.4913 2.8522 0.2301 3.5971

0.3128 0.7610 0.5567 0.2930 1.4540 0.0052 2.0376 0.7102 0.0016 2.8227 0.8506 0.3387 0.1689

3.4390 0.0107 0.6489 0.7622 1.9607 0.0054 1.2430 1.3065 1.5470 1.2935 0.9869

Table 5. ML estimates and the corresponding SE for the model parameters (both simulated data sets).

Parameter
Complete data Censored data

ML SE 95% CI ML SE 95% CI

�1 0.4276 0.0915 (0.2482, 0.6069) 0.3831 0.0847 (0.2172, 0.5491)

�2 0.5623 0.1164 (0.3342, 0.7904) 0.5705 0.1030 (0.3687, 0.7723)

�3 0.6489 0.1282 (0.3976, 0.9001) 0.4703 0.0970 (0.2801, 0.6604)

�4 0.7489 0.1441 (0.4664, 1.0314) 0.7629 0.1366 (0.4951, 1.0306)

� 0.8109 0.0660 (0.6815, 0.9402) 0.7792 0.0633 (0.6553, 0.9032)

6. Application to real reliability data

To illustrate the proposed model, let us assume a reliability data set introduced by
Crowder et al. (1994). This data set consists of fiber failure strengths. The four values
in each row give the breaking strengths of fiber sections of lengths 5, 12, 30 and 75mm.
The values are right-censored at 4.0 and a zero indicates accidental breakage prior to
testing; the zeros have been treated as missing data. The data sets are available in Table
7.2 from Crowder et al. (1994). In view of the apparent heterogeneity between fibers a
model allowing individual random levels would be appropriate and the proposed TMOW
model could be useful in the data analysis. In this way, we assume as response lifetimes the
length equals 12mm as X1, the length equals 30mm as X2 and the length equals 75mm as
X3. Firstly, to apply the proposed methodology under a right-censored scheme, we have
considered the Classical approach. The inference results of interest were obtained using the
maxLik package of the R software with the option optim.method = ‘‘BFGS’’ for maxLik
function and are presented in Table 6 as well the asymptotic 95% CIs which were obtained
using the asymptotic normal distribution given by N5(✓,⌃�1).
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Table 6. ML estimates for fiber failure strengths data sets.

Parameter
Data set 1 Data set 2 Data set 3

ML SE 95% CI ML SE 95% CI ML SE 95% CI

�1 0.00008 0.00008 (-0.00008, 0.00024) 0.00019 5.93164 (-11.6256, 11.6260) 0.00013 0.00013 (-0.00012, 0.00038)

�2 0.00095 0.00071 (-0.00044, 0.00234) 0.00845 0.00131 ( 0.00588, 0.01102) 0.00192 0.00119 (-0.00041, 0.00425)

�3 0.00353 0.00209 (-0.00057, 0.00763) 0.02057 0.00331 ( 0.01408, 0.02706) 0.00420 0.00245 (-0.00061, 0.00910)

�4 0.00002 0.00003 (-0.00004, 0.00008) 0.00108 5.93164 (-11.6247, 11.6269) 0.00001 0.00017 (-0.00033, 0.00033)

� 7.08472 0.69575 ( 5.72108, 8.44836) 6.58032 0.47135 ( 5.65649, 7.50415) 6.86184 0.63028 ( 5.62652, 8.09716)

From the results displayed in Table 6, one can notice that there is an instability using the
classical approach (negative bounds for 95% CI, high values for standard errors), especially
for Data set 2. This fact may be related to the complexity of the likelihood in presence of
right-censored data. Thus, to avoid this problem, a Bayesian method was considered (see
Appendix 1). The inference results of interest for each data set are presented in Table 7 and
the plots of the marginal posterior densities for the parameters of the model considering
each data set are presented in Figure 1.

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012

0
1

0
0

0
2

0
0

0
3

0
0

0
4

0
0

0
5

0
0

0
6

0
0

0

Density Plot for λ1

N = 1000   Bandwidth = 2.056e−05

0.000 0.002 0.004 0.006 0.008

0
2

0
0

4
0

0
6

0
0

8
0

0

Density Plot for λ2

N = 1000   Bandwidth = 0.0001547

0.000 0.005 0.010 0.015

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

Density Plot for λ3

N = 1000   Bandwidth = 0.0004298

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030

0
2

0
0

0
4

0
0

0
6

0
0

0

Density Plot for λ4

N = 1000   Bandwidth = 0.0001

5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5

0
.0

0
.2

0
.4

0
.6

0
.8

Density Plot for σ

N = 1000   Bandwidth = 0.1243

0.0000 0.0005 0.0010 0.0015 0.0020

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
0

0
0

3
5

0
0 Density Plot for λ1

N = 1090   Bandwidth = 4.085e−05

0.000 0.002 0.004 0.006 0.008 0.010 0.012

0
1

0
0

2
0

0
3

0
0

Density Plot for λ2

N = 1090   Bandwidth = 0.0003446

0e+00 1e−04 2e−04 3e−04 4e−04

0
2

0
0

0
4

0
0

0
6

0
0

0
8

0
0

0

Density Plot for λ3

N = 1090   Bandwidth = 0.0001

0.000 0.005 0.010 0.015 0.020

0
5

0
1

0
0

1
5

0

Density Plot for λ4

N = 1090   Bandwidth = 0.0007289

5.0 5.5 6.0 6.5 7.0 7.5 8.0

0
.0

0
.2

0
.4

0
.6

Density Plot for σ

N = 1090   Bandwidth = 0.126

0e+00 2e−04 4e−04 6e−04 8e−04

0
1

0
0

0
2

0
0

0
3

0
0

0
4

0
0

0
5

0
0

0
6

0
0

0
7

0
0

0

Density Plot for λ1

N = 1000   Bandwidth = 1.935e−05

0.000 0.002 0.004 0.006

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

Density Plot for λ2

N = 1000   Bandwidth = 0.0002003

0.000 0.002 0.004 0.006 0.008 0.010 0.012

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

Density Plot for λ3

N = 1000   Bandwidth = 0.0003731

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025

0
2

0
0

0
4

0
0

0
6

0
0

0

Density Plot for λ4

N = 1000   Bandwidth = 0.0001

5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5

0
.0

0
.2

0
.4

0
.6

0
.8

Density Plot for σ

N = 1000   Bandwidth = 0.1243

Figure 1. Posterior PDF plots for the parameters of the model assuming the three failure strength data sets (top:
Data set 1; middle: Data set 2; bottom: Data set 3).
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Table 7. Bayesian estimate, credible interval (CrI) and corresponding standard deviation (SD) for fiber

failure strengths data sets.

Parameter
Data set 1 Data set 2 Data set 3

Mean SD 95% CrI Mean SD 95% CrI Mean SD 95% CrI

�1 0.00015 0.00013 (0.00003, 0.00052) 0.00026 0.00017 (0.00006, 0.00064) 0.00014 0.00010 (0.00004, 0.00041)

�2 0.00123 0.00081 (0.00040, 0.00333) 0.00273 0.00135 (0.00104, 0.00581) 0.00191 0.00091 (0.00082, 0.00426)

�3 0.00399 0.00211 (0.00147, 0.00936) 0.00002 0.00001 (0.00001, 0.00003) 0.00395 0.00161 (0.00190, 0.00800)

�4 0.00013 0.00035 (0.00001, 0.00120) 0.00661 0.00287 (0.00263, 0.01291) 0.00001 0.00007 (921E-08, 0.00015)

� 6.98866 0.47595 (5.92113, 7.79890) 6.57077 0.48138 (5.68461, 7.39571) 6.93945 0.39701 (6.08930, 7.53128)

From the results obtained, note that, for Data sets 1 and 3, the estimate of the parameter
�4 is very close to zero that means its contribution for the likelihood function is very small.
The same happens to the parameter �3 in Data set 2. In general, we conclude that the
posterior SD values approach to zero and the 95% CrI have reasonable lengths.

7. Concluding remarks

In this paper, we introduced a new trivariate distribution obtained as a special case of
the multivariate Marshall-Olkin Weibull distribution. For this new model, we presented
some inference properties and an extensive simulation study was performed to verify the
performance of the maximum likelihood estimators assuming di↵erent fixed values for the
parameters of the model and di↵erent sample sizes.
The obtained results from Monte Carlo studies showed that the bias and root of mean

squared error of the estimators of the trivariate Marshall-Olkin-Weibull distribution are
asymptotically non-biased and approaches to zero when the sample size increases even
assuming negative values for the biases in some scenarios. From these results, it is possible
to conclude that using the proposed model, the obtained inference results are reason-
able accurate considering complete data sets and with good performance of the computa-
tional algorithm used to get the inferences of interest. However, in the application of fiber
strengths, there was a problem with maximum likelihood estimators leading to negative
bound for the 95% confidence intervals which could be related of the likelihood function
under a right-censoring scheme. To avoid this problem, we considered a Bayesian esti-
mator that provide a better accuracy and good convergence of the simulation algorithm
used to get the inference results of interest even using approximately non-informative prior
distributions.
In conclusion, the trivariate Marshall-Olkin-Weibull distribution could be used as an

alternative to model trivariate data which could be interesting for the reliability analysis (as
the fiber strength application) used in engineering applications, or others areas of interest,
especially considering a Bayesian approach to estimate the parameters. It is important to
point out that other approaches also could be used to get inferences of the proposed model
using the expectation-maximization algorithm (Kundu and Dey, 2009) but this topic will
be the goal of other study.
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Appendix

ML estimators with complete data

From Equations (5) and (6), the likelihood function for ✓ = (�1,�2,�3,�4,�) assuming
a TMOW distribution and a random sample of size n of the lifetimes X1, X2 and X3 is
given by

L(✓) =
nY

i=1

[f1(xi)]
r1i

nY

i=1

[f2(xi)]
r2i

nY

i=1

[f3(xi)]
r3i

nY

i=1

[f4(xi)]
r4i

nY

i=1

[f5(xi)]
r5i

nY

i=1

[f6(xi)]
r6i

⇥
nY

i=1

[f7(xi)]
r7i . (11)

where xi = (x1i, x2i, x3i), for i = 1, . . . , n; f1(xi), f2(xi) and f3(xi) are given in Equation
(5). In this way, the likelihood function stated in Equation (11) can be rewritten as

L(✓) =
�
�14�2�3�

3
�Pn

i=1 r1i
nY

i=1

(x1ix2ix3i)
r1i(��1) exp

(
� �14

nX

i=1

r1ix
�
1i � �2

nX

i=1

r1ix
�
2i

��3

nX

i=1

r1ix
�
3i

)
�
�1�24�3�

3
�Pn

i=1 r2i
nY

i=1

(x1ix2ix3i)
r2i(��1) exp

(
� �1

nX

i=1

r2ix
�
1i

��24

nX

i=1

r2ix
�
2i � �3

nX

i=1

r2ix
�
3i

)
�
�1�2�34�

3
�Pn

i=1 r3i
nY

i=1

(x1ix2ix3i)
r3i(��1)

⇥ exp

(
��1

nX

i=1

r3ix
�
1i � �2

nX

i=1

r3ix
�
2i � �34

nX

i=1

r3ix
�
3i

)
�
�1�4�

2
�Pn

i=1 r4i

⇥
nY

i=1

(x1ixi)
r4i(��1) exp

(
��1

nX

i=1

r4ix
�
1i � (�� �1)

nX

i=1

r4ix
�
i

)
�
�2�4�

2
�Pn

i=1 r5i

⇥
nY

i=1

(x2ixi)
r5i(��1) exp

(
��2
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r5ix
�
2i � (�� �2)

nX

i=1

r5ix
�
i

)
�
�3�4�

2
�Pn

i=1 r6i
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i=1

(x3ixi)
r6i(��1) exp

(
��3

nX

i=1

r6ix
�
3i � (�� �3)

nX

i=1

r6ix
�
i

)
(�4�)
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i=1 r7i

⇥
nY

i=1

xr7i(��1)
i exp

(
��

nX

i=1

r7ix
�
i

)
. (12)

The ML estimators for the parameters �1, �2, �3, �4 and � are obtained solving the
equations @`/@�1 = 0, @`/@�2 = 0, @`/@�3 = 0, @`/@�4 = 0 and @`/@� = 0. From the
log-likelihood given in Equation (7), the first derivatives of `(✓) with respect to �1, �2, �3,
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�4 and � are given respectively by

@`

@�
=

3

�

nX

i=1

[r1i + r2i + r3i] +
2

�

nX

i=1

[r4i + r5i + r6i] +
1

�
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i=1

r7i

+
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+
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Under standard asymptotic ML theory, confidence intervals and hypothesis tests for
�1,�2,�3,�4 and � could be obtained from the asymptotic normality of the ML estimators
�̂1, �̂2, �̂3, �̂4 and �̂, that is, b✓ = (�̂1, �̂2, �̂3, �̂4, �̂) ⇠ N5(✓,⌃�1), where N5 denotes a
multivariate normal distribution of dimension 5 assuming large sample sizes and ⌃ is the
observed Fisher information matrix given by

⌃ =

0

BBBBBBBBBBBBBBB@

� @2`
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1
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, (13)

where all components of Equation (13) are calculated at the obtained ML estimators for
the parameters of the model. The second derivatives of the log-likelihood function `(✓)
required in the observed Fisher information matrix are given by
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Terms of the likelihood function with censored data

From Equations (9) and (6), we obtain expressions for the terms of the likelihood function
defined in Equation (8) as

(a)

Y
i2B1

f(ti) =

Yn

i=1
[f1(ti)]

r1i
Yn
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,

where f1(ti), f2(ti), f3(ti), f4(ti), f5(ti), f6(ti) and f7(ti) are defined by Equation (5).
(b)
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where
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where
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where S1(ti), S2(ti), S3(ti), S4(ti), S5(ti), S6(ti) and S7(ti) are defined by Equation (4).
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Abstract

New alternative tests to the Hotelling T2 and the likelihood ratio tests for the multivari-

ate normal and non-normal population mean vector are proposed here. These new tests

are based on the ordinary and robust comedian covariance matrix estimator. The new

adapted likelihood ratio test overcomes the high dimensional issue that occurs with both

T2 and likelihood ratio tests. The asymptotic and parametric bootstrap distributions

for test statistics are used and the performance of these new tests based on normal and

non-normal distributions is evaluated through Monte Carlo simulations. Contaminated

normal multivariate populations are also considered to evaluate the e�ects of outliers on

test performances. Type I error probabilities and power in all simulations are computed

using the R software. The non-robust parametric bootstrap version of the likelihood

ratio test performs better and is recommended since it is easy to implement and com-

putationally fast. An application of the proposed new and T2 tests to a real data set is

provided. We use an R package of our authorship to perform the tests described here.
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1. Introduction

A big challenge in statistics is based on verifying if a p-variate normal mean vector µ is
equal to a known vector µ0 when the dimensionality p is greater than the sample size
n. The Hotelling T

2 test is widely used to test the null hypothesis. However, under non-
normal distributions or in the presence of outliers, the use of the Hotelling T

2 test is not
recommended. First, this statistic is built under multivariate normality. Second, even under
normality, this statistic considers the average sample vector X and the covariance matrix
S that are strongly influenced by outliers, as in the univariate case (Willems et al., 2002).
Third, T

2 cannot be calculated when the number of variables p is greater than or equal to
the number of observations n, since the sample covariance matrix, that is present in this
statistic, is a singular matrix (Bai and Saranadasa, 1996). In addition, Bai and Saranadasa
(1996) noted that the test power based on the T

2 statistic has low power when under these
same conditions, as also shown in Pan and Zhou (2011).
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Another widely used statistical method is the likelihood ratio (LR) test (Ferreira, 2018;
Wagala, A., 2020). In addition, testing the null hypothesis on a vector of population means
becomes a challenge under non-normal asymmetric distributions or in the presence of out-
liers. The Hotelling or likelihood ratio tests consider the sample estimators of the vector of
means and the covariance matrix in their expressions, which are highly influenced by out-
liers. Some robust testing proposals can be found by Tiku (1982); Mudholkar and Srivastava
(2000); Willems et al. (2002). In contrast, Srivastava and Du (2008); Srivastava (2009); Chen
et al. (2010); Lee et al. (2012); Srivastava et al. (2013); Wang et al. (2013); Marozzi (2015)
proposed alternative nonparametric tests for the LR test in non-normal populations, the
number of variables p is greater than or equal to the number of observations n.

In this article, new statistical tests are proposed for the null hypothesis involving tests
on the vector of multivariate population means. The idea is to obtain robust adaptations
of the T

2 and LR statistics using robust comedian estimators (Sajesh and Srinivasan, 2012)
for the vector of averages and population covariance matrix. The fundamental concept is to
replace ordinary estimators with the mean vector and covariance matrix with their respective
robust comedian estimators and provide accurate tests for the mean vector considering the
parametric bootstrap distribution under the null hypothesis. In addition, for the LR test
statistic with the original and robust comedian estimator of the covariance matrix, the
determinants (generalized variances) are replaced by the trace operator, which represents
the total sample variance. These new tests are potentially more advantageous than the
adapted tests mentioned above, since they can perform better under non-normality and in
the presence of outliers. In addition, they are computationally easy to implement and apply.

The performance of these proposed new tests is evaluated by Monte Carlo simulations
calculating the type I error probabilities and power of the tests. In Section 2, the new
proposed tests are introduced. The results regarding the type I error probability and power
of the tests are shown in Section 3. The exact binomial test proposed by Cardoso de Oliveira
and Ferreira (2010) is evaluated by Monte Carlo simulations. Section 4 applies the results
obtained in this work to real data. In Section 5, the conclusions are presented.

2. Methods

2.1 General context

Consider the problem of testing the hypotheses given by

H0: µ = µ0 versus H1: µ ”= µ0. (1)

In order to do this, let Xj = [Xj1, . . . , Xjp]€, with j = 1, . . . , n, be a random sample of size
n from a p-variate normal distribution with mean vector µ and covariance ⌃. Here, n refers
to the number of observations, and p refers to the number of variables (dimensionality) in
each random vector. In general, the p components in the random vectors are correlated
variables, where its p ◊ p covariance matrix ⌃ is positive definite.

Under the null hypothesis H0 as in Equation (1) the test statistic Hotelling T
2 is given by

T
2
c = n(X ≠ µ0)€

S
≠1(X ≠ µ0). (2)

where X =
qn

j=1 Xj/n is the sample mean vector, S = (1/(n≠1))
qn

j=1(Xj ≠X)(Xj ≠X)€

is the sample covariance matrix, and n is the sample size. Under H0 and with the assumption
of normality and homoscedastic covariance matrix, the T

2
c given in Equation (2) follows a

Hotelling T
2 distribution given by (n≠1)pFp,n≠p/(n≠p), where Fp,n≠p is the F distribution

with p and n ≠ p degrees of freedom.
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Considering the hypotheses given in Equation (1), another statistical method used is the
LR test. Let X ≥ Np(µ,⌃), where ⌃ is unknown. Therefore, the LR statistic is given by
the expression stated as

≠ 2 log(�) = n[log(|S + H|) ≠ log(|S|)], (3)

where H = (X ≠ µ0)(X ≠ µ0)€ and log is the natural logarithm. Consider � œ Rs the
unrestricted parametric space and �0 ™ Rr the restricted parametric space, with �0 µ �.
In general, under certain conditions of regularity, Equation (3) follows an asymptotic chi-
square distribution with r ≠ s degrees of freedom (Ferreira, 2018) under the null hypothesis
H0. Thus, the rejection region of H0 is given by R = {x| ≠ 2 log(�(x)) > ‰

2
1≠–(r ≠ s)},

where – is the nominal significance level and ‰
2
1≠–(r ≠ s) is the 100(1 ≠ –)% percentile of

a chi-square distribution with r ≠ s degrees of freedom. In this case, for testing hypothesis
about normal mean vector, the degrees of freedom r ≠ s are equal to p.

Here, the proposed new tests based on the modifications of the T
2 statistic defined in

Equation (2) and LR statistic stated in Equation (3) are shown. Also, the adopted Monte
Carlo simulation procedure to assess their performance is described. For this, consider a sam-
ple of size n from the normal p-variate distribution with a mean vector µ and covariance
matrix ⌃ to test the null hypothesis H0 given in Equation (1). In all cases, the original and
transformed LR expressed in Equation (3) are applied, consider the trace operator replacing
the determinant operator and the robust estimator replacing the traditional estimator of
the covariance matrix. Only in the cases where p < n, the T

2 test and its modifications
that use the comedian estimators. The theoretical justification can be seen in Section 1.
To evaluate test performance, first, type I error probabilities are calculated by generating
sample sizes from populations under H0, with a mean vector of µ0. Second, random samples
are generated under H1, with µ ”= µ0. In both cases, samples from normal and non-normal
populations are generated. The p-variate Student-t distributions with 5 degrees of freedom
for the non-normal distribution case. We also consider contaminated normal (CN) popula-
tions for generating outliers. Some factorial combinations of the number of variables p and
sample size n are considered.

Without loss of generality, the population covariance matrix ⌃ with the compound sym-
metry structure given by

⌃ = ‡
2

S

WWWU

1 fl . . . fl

fl 1 . . . fl

...
... . . . ...

fl fl . . . 1

T

XXXV = ‡
2[(1 ≠ fl)I + flJ ] (4)

is considered, where J is a p ◊ p matrix with all entries equal to 1 and I is an identity
array of the same order as J . Also, without loss of generality, ‡

2 = 1 and fl = 0.9 since
the test statistics are invariant under the true covariance structure. The p-variate Student-t
distribution is used to pick a distribution that has heavier tails than the multivariate normal
distribution and violate the assumptions of the T

2 and LR statistics. The p-variate CN
distribution is ÊN1(µ,⌃1) + (1 ≠ Ê)N2(µ,⌃2). Again, without loss of generality, Ê = 0.9,
⌃1 is defined by Equation (4) and ⌃2 is constructed using the constraint: |⌃2|/|⌃1| =
�, and thus, ⌃2 = �1/p⌃1, where � = 2. Sample sizes are n = 10, 50, 70, 100 and 200
and the nominal significance level – is – = 5%. The number of variables is p = 2, 5 and
200 and 2 000 Monte Carlo simulations to evaluate the empirical estimates of the type I
error probabilities and power of each test are considered. The parametric bootstrap null
distribution are generated with 2 000 resamples from a N(0, S

•) distribution, where the
null hypothesis H0 is imposed by considering µ = 0 to generate the null distribution of the
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statistic. Also, the covariance matrix used to generate the bootstrap null distribution, given
S

•, is the sample covariance matrix computed by using the traditional or robust comedian
estimator in the original sample for traditional and robust bootstrap tests, respectively.

Without loss of generality, to evaluate the type I error probabilities the µ0 vector under
the null hypothesis given in Equation (1) is the p-dimensional 0 null vector and the true
vector of population mean is also µ = 0. Under the alternative hypothesis H1 stated in
Equation (1), for the power study, the true population mean vector µ is chosen considering
a fixed generalized Mahalanobis distance ”(µ,µ0) between µ and µ0 given by

”(µ,µ0) = n(µ ≠ µ0)€⌃≠1(µ ≠ µ0). (5)

In this case, µ0 = 0, and the true population mean vector is calculated by trial and error
in Equation (5) by taken a fixed ” value and the final value is used as a parameter in
each of the population distributions considered under H1. The chosen values from ” are
0, 0.5, 1, 1.5, 3, 5, 10. Therefore, since the values of the mean vector change as n changes,
keeping fixed the value of the distance of Mahalanobis ”(µ,µ0) = n(µ≠µ0)€⌃≠1(µ≠µ0),
the power does not change as n increases.

Thus, five new tests based on the traditional T
2 statistic defined in Equation (2) and

in the LR statistic defined in Equation (3) are proposed, including the traditional and ro-
bust versions that use the comedian mean vector and covariance matrix estimators (Falk,
1997; Maronna and Zamar, 2002; Sajesh and Srinivasan, 2012). Some tests are based on
parametric bootstrap versions as well as the asymptotic chi-square distribution. However,
some asymptotic chi-square tests have not been shown since they did not control the type
I error probabilities. The performance of these new tests is evaluated by Monte Carlo sim-
ulations. Below, each of the proposed new tests for testing the null hypothesis H0: µ = µ0
is described. The new LR test has a chi-square asymptotic distribution with p degrees of
freedom, as the original LR test.

One special case is considered regarding the distributions and for some values of n, p

and ”. A shifted zero mean exponential distribution with parameter � = 1p, where 1p is a
p-dimensional vector with 1 in all entries. The latter is a case of a skewed distribution. For
the exponential distribution, a p-dimension random vector Z is generated from a N(µ, ⌃)
distribution. A p-dimensional random vector Y from this distribution is obtained considering
for the ith entry the random variable stated as Yi = F

≠1(�(Zi); ⁄i) ≠ 1/⁄i, for i = 1, . . . , p,
where F

≠1(x; ⁄i) is the quantile function of the exponential distribution of parameter ⁄i

evaluated at x and �(x) is the cumulative distribution function of the standard normal
distribution evaluated at x.

2.2 The parametric bootstrap T
2

test

We construct the parametric bootstrap T
2 test, called T

2
PB (T2PB), where PB stands for

parametric bootstrap, adopting the following steps:
(1) From the original sample, the parameters ⌃ and µ are estimated, respectively, by

S
ú and X

ú, where S
ú and X

ú are the traditional sample covariance matrix and
vector mean, respectively. The test statistic is computed by

T
ú2 = n

1
X

ú ≠ µ0
2€

S
ú≠1

1
X

ú ≠ µ0
2
. (6)

(2) By using the original covariance estimates Sú, a random sample of size n is generated
from a p-variate normal distribution imposing H0, that is, by setting µ = µ0. Also
⌃ = S

ú. Therefore, a sample of size n is generated from a N(µ0, Sú) distribution.
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(3) In each parametric bootstrap sample, the sample mean XPB and the sample covari-
ance matrix SPB are estimated.

(4) In each parametric bootstrap sample, compute the test statistic by means of

T
2
PB = n(XPB ≠ µ0)€

S
≠1
PB(XPB ≠ µ0). (7)

(5) Steps (2) to (4) are repeated B times and a set of size B + 1 is constructed with the
test statistic values computed in Equation (7) and the original value calculated in
Equation (6). The null distribution of the parametric bootstrap test is constituted
by this set. Therefore, if the ith member of this set is represented by T

2
i , for i =

1, . . . , B + 1, then the p-value is computed by

p-value =

B+1ÿ

i=1
I(T 2

i Ø T
ú2)

B + 1 , (8)

where I(T 2
i Ø T

ú2) is the indicator function.
(6) The null hypothesis given in Equation (1) is rejected at the significance level – if

the p-value defined in Equation (8) is less than –.
Note that the traditional T

2 test is also considered, by computing the p-value direct from
the Hotelling T

2 distribution of the test statistic value obtained in Equation (6). This is
named by T2 and is considered the benchmark test.

2.3 The robust parametric bootstrap T
2

test

The robust parametric bootstrap T
2 test, called T

2
RPB (T2RPB), in which RPB stands for

robust parametric bootstrap, are performed by adopting the same steps described for the
previous test. However, some of them are modified as in the following sequence.

In Step 1, the estimators S
ú and X

ú are replaced by comedian estimators SR and XR
the test statistic in the original sample is computed by T

ú2 = n(XR ≠µ0)€
S

≠1
R (XR ≠µ0).

In Step 2, the sample of size n is generated from a N(µ0, SR) distribution, where again,
the null hypothesis is imposed by considering the multivariate normal mean equal to µ0,
the null value of the population mean.

In Step 3, the mean and the sample covariance in each parametric bootstrap sample are
denoted, respectively, by XRPB and SRPB.

In Step 4, the test statistic is computed by T
2
RPB = n(XRPB ≠ µ0)€

S
≠1
RPB(XRPB ≠ µ0).

Steps 5 and 6 are identically as described in the previous test, with T
2
i replaced now by

the ith value from the bootstrap null distribution of T
2
RPB. In this case, the asymptotic

chi-square distribution with p degrees of freedom is not considered as an alternative test,
since the corresponding robust T

2 test did not control the type I error probability (results
omitted here). More details on the performance of the above tests can be seen in Alves and
Ferreira (2019).

We have shown in Section 1, in addition to the problems presented for their use in data
following non-normal distributions, that the traditional T

2 test is not valid for high dimen-
sional data (p > n) due to the singularity of the sample covariance matrix S. The LR test
has the same limitations of the T

2 to be implemented in high dimensional data sets and
non-normal circumstances. Considering to Ledoit and Wolf (2002) as reference, we propose
an alternative test to the LR test that is based on replacing the determinants of the ma-
trices S and S + H for their respective traces. Here, H = n(X ≠ µ0)(X ≠ µ0)€. In this
way, we have obtained a new test that applies to high-dimensional (p > n) data sets and
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that maintains the same distributional properties of LR test. The validity of the asymptotic
null distribution of the new test with traditional sample estimators of the mean vector and
covariance matrix is evaluated by Monte Carlo simulations. Also, the parametric bootstrap
and robust parametric bootstrap versions for this latest proposal are built, as we have done
for the T

2 test. In the following subsections, we present the new procedures.

2.4 The asymptotic LR trace test

The asymptotic trace version of the LR test, named asymptotic trace LR (ATLR) test, is
obtained by directly replacing the determinant given in the expression of the LR by the
trace operator tr. Let the null hypothesis be H0: µ = µ0, then the ATLR test statistic is
T

2
ATLR = n{log[tr(Sú + H)] ≠ tr(Sú)}, where H = (Xú ≠ µ0)(Xú ≠ µ0)€, that under the

null hypothesis H0 and normality has a chi-square distribution with p degrees of freedom,
since the plim (probability limit) of H is 0 as n æ Œ, still under the null H0. The null
hypothesis should be rejected if the T

2
ATLR Ø ‰

2
1≠–(p).

2.5 The TLR parametric bootstrap test

There is no guarantee the T
2
ATLR has an asymptotic chi-square distribution with p degrees of

freedom under H0 and multivariate normality. To overcome this issue we proposed the TLR
parametric bootstrap test, named trace likelihood ratio parametric bootstrap (TLRPB) test.
The steps to apply for this test are the same as described previously for T

2
PB, except for

some details explained as follows.
In Step 1, the estimators S

ú and X
ú are computed in the original sample and the test

statistic is T
ú2 = n{log[tr(Sú + H

ú)] ≠ tr(Sú)}, where H
ú = (Xú ≠ µ0)(Xú ≠ µ0)€.

In Step 2, the sample of size n is generated from a N(µ0, Sú) distribution, where the null
hypothesis is imposed by considering the multivariate normal mean equal to µ0, the null
value of the population mean.

In Step 3, the mean and the sample covariance in each parametric boot-
strap sample are denoted respectively by XTLRPB and STLRPB. In Step 4,
the test statistic is T

2
TLRPB = n{log[tr(STLRPB + HTLRPB)] ≠ tr(STLRPB)},

with HTLRPB = (XTLRPB ≠ µ0)(XTLRPB ≠ µ0)€.
Steps 5 and 6 are identically as described in the previous test, with T

2
i replaced now by

the ith value from the bootstrap null distribution of T
2
TLRPB.

2.6 The robust TLR parametric bootstrap test

For overcoming problems with outliers the robust parametric bootstrap version of the pre-
vious TLRPB, called robust trace likelihood ratio parametric bootstrap (RTLRPB) is con-
structed. The steps necessary for this test to be applied are the same as the previous steps
described for the T

2
PB, except for some details explained below.

In Step 1, the comedian estimators SR and XR are computed in the original sample and
the test statistic is T

ú2 = n{log[tr(SR+HR)]≠tr(SR)}, where HR = (XR≠µ0)(XR≠µ0)€
.

In Step 2, the sample of size n is generated from the N(µ0, SR) null distribution.
In Step 3, the comedian sample mean and sample covariance in each parametric bootstrap

sample are denoted respectively by XRTLRPB and SRTLRPB.
In Step 4, the test statistic is T

2
RTLRPB = n{log[tr(SRTLRPB +HRTLRPB)]≠ tr(SRTLRPB)},

where HRTLRPB = (XRTLRPB ≠ µ0)(XRTLRPB ≠ µ0)€.
Steps 5 and 6 are identically as described in the previous test, with T

2
i replaced now by

the ith value from the bootstrap null distribution of T
2
RTLRPB.
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2.7 The exact binomial test

The test type I error probabilities are evaluated by Monte Carlo simulations, and according
to Cardoso de Oliveira and Ferreira (2010), these estimates are not error-free. Therefore, an
exact binomial test is used to decide whether each of the modified or the original statistical
test is considered accurate, liberal or conservative. In this sense, considering a nominal level
of significance of 1%, the hypotheses to be tested are defined as

H0: – = 5% versus H1: – ”= 5%. (9)

The statistic of the exact binomial test is given by

Fc =
3

z + 1
N ≠ z

431 ≠ –

–

4
, (10)

where z is the number of rejection of the null hypothesis accounted by one of the tests con-
sidering the nominal significance level of – and N is the number of Monte Carlo simulations
performed. Under the null hypothesis defined in Equation (9), the Fc statistic defined in
(10) follows a F distribution with ‹1 = 2(N ≠ z) and ‹2 = 2(z + 1) degrees of freedom. If
the null hypothesis is rejected and the type I error probability is considered significantly
less than the nominal level adopted of the 5%, the test can be considered conservative; if
the null hypothesis is rejected and the type I error is considered significantly higher than
the nominal level adopted of the 5%, the test can be considered liberal; and if the null
hypothesis is not rejected the test can be considered accurate.

A computer with a Core-I7 processor with 4 cores and 8 GB of RAM is used. The simula-
tions are performed in R with functions developed by the authors, except for the mvrnomr,
var, pf, pchisq, ginv and covComed functions of the MASS, statistics and robustbase
packages. The execution time of each simulation is 12 hours on average considering small
sample sizes (10, 50, and 70) and, in the case of larger sample sizes (100, and 200), the
average duration of the simulations is 2 days, regardless of the dimension considered.

3. Monte Carlo simulations

3.1 General context

The performance results for the proposed new tests are presented in two stages. First, the
results regarding type I error probability control and power for cases where p = 2 and
p = 5 where shown. Second, the results for the special case of high dimension (p = 200)
are shown. The performance of these new tests is evaluated considering the multivariate
normal, Student-t with 5 degrees of freedom and CN distributions.

3.2 Type I error probabilities

The type I error probabilities for the five new tests proposed via Monte Carlo simulations are
shown in Table 1, considering the dimension p = 2 at the significance level of – = 0.05. The
exact binomial test is used to classify these tests as exact, liberal, or conservative (see Section
2). The traditional and ordinary Hotelling T

2 test is also applied in each circumstance and
it is invoked as a benchmark test. We note that for all n sample sizes considered, as well as
for all evaluated multivariate distributions, the proposed tests T2, T2PB, and T2RPB are
exact since they showed test size equal to the nominal significance level –. The traditional
T

2 test constituted an exception when considering the bivariate Normal distribution with
a sample size of 50. In this case, this test is conservative but still acceptable. The same is
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not the case for LR adaptations. The ATLR is conservative on all distributions and sample
sizes considered. For this test, a substantial loss of power is expected to occur, which is an
important fact to be taken into account. The TLRPB test and RTLRPB test (see Section
2), in all the evaluated scenarios, are all accurate. A single exception occurs for the TLRPB
test, considering the multivariate normal distribution with n = 50, where it shows a liberal
performance in the control of the type I error probability. In practice, a test is considered
reliable if it has an exact size. Otherwise, if it is conservative, it can be considered acceptable.
However, if it is a liberal test, then it must be discarded. It does not appear the case for the
TLRPB test, once it showed a unique exception. Therefore, since in circumstances where
the normality assumption is violated, the performance regarding the type I error probability
control of the proposed new tests is acceptable.

Table 1. Type I error probabilities of the six tests with – = 5% and p = 2, considering the multivariate
normal (N), Student-t with 5 degrees of freedom (t5) and CN distributions.

Test Model
n

10 50 70 100 200

T2

N 0.0525
≠

0.0380
≠

0.0505 0.0485 0.0460

t5 0.0450 0.0495 0.0420 0.0485 0.0510

CN 0.0520 0.0450 0.0420 0.0490 0.0570

T2PB

N 0.0510 0.0475 0.0455 0.0485 0.0475

t5 0.0510 0.0430 0.0405 0.0485 0.0560

CN 0.0535 0.0435 0.0440 0.0430 0.0515

T2RPB

N 0.0430 0.0480 0.0525 0.0450 0.0535

t5 0.0430 0.0390 0.0520 0.0500 0.0485

CN 0.0530 0.0455 0.0525 0.0490 0.0615

ATLR

N 0.0195
≠

0.0085
≠

0.0120
≠

0.0110
≠

0.0130
≠

t5 0.0275
≠

0.0085
≠

0.0105
≠

0.0140
≠

0.0145
≠

CN 0.0200
≠

0.0125
≠

0.0120
≠

0.0140
≠

0.0120
≠

TLRPB test

N 0.0535 0.0940
+

0.0555 0.0445 0.0535

t5 0.0500 0.0680 0.0460 0.0520 0.0580

CN 0.0515 0.0520 0.0485 0.0445 0.0470

RTLPBT

N 0.0560 0.0490 0.0445 0.0430 0.0530

t5 0.0415 0.0415 0.0555 0.0510 0.0555

CN 0.0550 0.0505 0.0480 0.0435 0.0570

≠: significantly (p < 0.01) less than the nominal significance level of 5%.

To evaluate if the patterns presented in Table 1 are maintained we decided to increase
the dimensionality p and keep the sample sizes n fixed. Table 2 presents the results for
the empirical type I error probabilities considering the dimension p = 5. Similar behavioral
pattern to the control of the type I error probabilities showed for the case with p = 2 holds.
The atypical situation (conservative) for the T

2 test no longer occurs. We note that the
T2RPB for the multivariate Student-t distribution with 5 degrees of freedom and n = 10
and 200 is conservative in this case. The TLRPB test and RTLRPB test are considered
exact tests. The ATLR remains conservative and therefore acceptable. Likewise, it expects
that this test substantially loses power for this dimension. Next, we present the results of
the power of the tests for these same cases.

3.3 Power

The powerful performance of the proposed new tests is evaluated in the same cases used
to evaluate type I error probabilities: distributions, sample sizes, and dimensions. In all
circumstances, the power curves are plotted against Mahalanobis distances (”), given in 5,
between the true population vector µ and the hypothetical mean vector µ0. These distances
have been fixed (see Section 2) to establish the true value of the population mean vector.
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Table 2. Type I error probabilities of the six tests with – = 5% and p = 5, considering the multivariate
Normal (N), Student-t with 5 degrees of freedom (t5) and CN distributions.

Test Model
n

10 50 70 100 200

T2

N 0.0525 0.0545 0.0430 0.0500 0.0565

t5 0.0420 0.0545 0.0435 0.0440 0.0445

CN 0.0475 0.0535 0.0465 0.0475 0.0520

T2PB

N 0.0520 0.0545 0.0430 0.0500 0.0560

t5 0.0545 0.0505 0.0440 0.0440 0.0465

CN 0.0475 0.0540 0.0555 0.0470 0.0515

T2RPB

N 0.0505 0.0595 0.0465 0.0460 0.0605

t5 0.0315
≠

0.0385 0.0430 0.0405 0.0365
≠

CN 0.0430 0.0525 0.0460 0.0475 0.0500

ATLR

N 0.0050
≠

0.0000
≠

0.0005
≠

0.0005
≠

0.0005
≠

t5 0.0000
≠

0.0005
≠

0.0000
≠

0.0005
≠

0.0010
≠

CN 0.0005
≠

0.0005
≠

0.0005
≠

0.0000
≠

0.0105
≠

TLRPB test

N 0.0555 0.0550 0.0490 0.0585 0.0570

t5 0.0445 0.0455 0.0610 0.0495 0.0530

CN 0.0510 0.0575 0.0465 0.0545 0.0525

RTLRPB test

N 0.0555 0.0550 0.0490 0.0585 0.0570

t5 0.0490 0.0460 0.0535 0.0455 0.0405

CN 0.0495 0.0550 0.0425 0.0450 0.0520

≠: significantly (p < 0.01) less than the nominal significance level of 5%.

Note in Figure 1 that the TLRPB test showed the best performance among all evaluated
tests with p = 2. Under non-normality or in the presence of outliers, the performance of
this test showed a loss of power only when the multivariate Student-t distribution with 5
degrees of freedom is considered (Figure 1 (b)). We also noticed that the asymptotic version
ATLR has lower power as expected; see Tables 1 and 2.

In order to verify if the patterns observed in Figure 1 remain the dimensionality is fixed in
p = 2 and the multivariate distributions are the same, but the number of observations varied
in n = 50, 70, 100 and 200 for generating the power curves by Monte Carlo simulations.
Under these circumstances, the behavioral power patterns shown in Figure 1 remain the same
(Figures 2, 3, 4 and 5). The only exceptions are for the multivariate Student-t distribution
with 5 degrees of freedom (Figures 2(b), 3(b), 4(b) and 5(b)). In this case, the performance
of the TLRPB test and RTLRPB test is equivalent and higher than the performance of the
other tests.

In general, for this dimension (p = 2), the parametric bootstrap version (TLRPB test)
performed better when compared to the other tests. Also, all tests show a very robust
behavioral pattern, since they control the type I error probabilities and show higher power
when compared with the multivariate normal case.

We decide to increase the dimension to p = 5 and to maintain the same sample sizes n and
distributions. Similar performance of all tests that presented at p = 2 remains. Considering
the dimension p = 5, Figures 6, 7, 8, 9 and 10 show the results obtained for the power of the
tests. Figures 6(b), 7(b), 8(b), 9(b) and 10(b) show that power of the parametric bootstrap
version (TLRPB test) and the robust parametric bootstrap version (RTLRPB test) are
equivalent and higher than the other tests in the multivariate Student-t distribution with
5 degrees of freedom. In general, the TLRPB test performs better. The ATLR continues
to show substantial low power, once it has shown to be a conservative test, this pattern of
behavior is expected; see Tables 1 and 2.
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Figure 1. Power of the tests as a function of the generalized Mahalanobis distance ” between the parametric and
hypothetical vector means, with n = 10 and p = 2, where the gray lines represent the lower and upper limits of the
exact binomial interval and the maximum power.
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Figure 2. Power of the tests as a function of the generalized Mahalanobis distance ” between the parametric and
hypothetical vector means, with n = 50 and p = 2, where the gray lines represent the lower and upper limits of the
exact binomial interval and the maximum power.
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Figure 3. Power of the tests as a function of the generalized Mahalanobis distance ” between the parametric and
hypothetical vector means, with n = 70 and p = 2, where the gray lines represent the lower and upper limits of the
exact binomial interval and the maximum power.
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Figure 4. Power of the tests as a function of the generalized Mahalanobis distance ” between the parametric and
hypothetical vector means, with n = 100 and p = 2, where the gray lines represent the lower and upper limits of
the exact binomial interval and the maximum power.
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Figure 5. Power of the tests as a function of the generalized Mahalanobis distance ” between the parametric and
hypothetical vector means, with n = 200 and p = 2, where the gray lines represent the lower and upper limits of
the exact binomial interval and the maximum power.
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Figure 6. Power of the tests as a function of the generalized Mahalanobis distance ” between the parametric and
hypothetical vector means, with n = 10 and p = 5, where the gray lines represent the lower and upper limits of the
exact binomial interval and the maximum power.
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Figure 7. Power of the tests as a function of the generalized Mahalanobis distance ” between the parametric and
hypothetical vector means, with n = 50 and p = 5, where the gray lines represent the lower and upper limits of the
exact binomial interval and the maximum power.

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10
δ

P
o
w

e
r

ATLRT RTLRPBT T2 T2PB T2RPB TLRPBT

(a) Normal distribution

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10
δ

P
o
w

e
r

ATLRT RTLRPBT T2 T2PB T2RPB TLRPBT

(b) t5 distribution

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10
δ

P
o
w

e
r

ATLRT RTLRPBT T2 T2PB T2RPB TLRPBT

(c) CN distribution

Figure 8. Power of the tests as a function of the generalized Mahalanobis distance ” between the parametric and
hypothetical vector means, with n = 70 and p = 5, where the gray lines represent the lower and upper limits of the
exact binomial interval and the maximum power.
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Figure 9. Power of the tests as a function of the generalized Mahalanobis distance ” between the parametric and
hypothetical vector means, with n = 100 and p = 5, where the gray lines represent the lower and upper limits of
the exact binomial interval and the maximum power.
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Figure 10. Power of the tests as a function of the generalized Mahalanobis distance ” between the parametric and
hypothetical vector means, with n = 200 and p = 5, where the gray lines represent the lower and upper limits of
the exact binomial interval and the maximum power.

3.4 Special case of p = 200: type I error probabilities and power

Table 3 shows the results considering this case of high dimensionality (p = 200). It is
considering sample sizes of n = 10, 50, 70, 100, and 200 and therefore deal with the cases
where p Ø n. For this circumstance, the traditional T

2 test and the adapted T2PB, T2RPB
can not be applied due to the high dimension issue (see Section 1). It is noticed that
the ATLR is conservative in all scenarios considered. It is expected that this test shows
substantial low power. It is also noticed that the other adapted tests, TLRPB test and
RTLRPB test, are exact, according to the binomial test (see Section 2).

Table 3. Type I error probabilities of the three tests with – = 5% and p = 200, considering the multivariate
Normal (N), Student-t with 5 degrees of freedom (t5) and CN distributions.

Test Model
n

10 50 70 100 200

ATLR

N 0.0130
≠

0.0130
≠

0.0120
≠

0.0110
≠

0.0130
≠

t5 0.0145
≠

0.0145
≠

0.0105
≠

0.0140
≠

0.0145
≠

CN 0.0120
≠

0.0120
≠

0.0120
≠

0.0140
≠

0.0120
≠

TLRPB test

N 0.0535 0.0535 0.0495 0.0450 0.0535

t5 0.0580 0.0580 0.0460 0.0520 0.0580

CN 0.0470 0.0470 0.0485 0.0445 0.0470

RTLRPB test

N 0.0530 0.0530 0.0445 0.0430 0.0530

t5 0.0555 0.0555 0.0555 0.0510 0.0555

CN 0.0570 0.0570 0.0480 0.0435 0.0570

≠: significantly (p < 0.01) less than the nominal significance level of 5%.

The power results for p = 200 are shown in Figures 11 to 15. Considering n = 10, Figure
11 shows that the TLRPB test outperformed the other proposed tests. It is also noticed that,
unlike the other dimensions considered (p = 2 and p = 5), the TLRBP and RTLRPB test
perform similarly with the multivariate Student-t distribution with 5 degrees of freedom
(Figure 11 (b)). It is also noticed for this scenario that the asymptotic version (ATLR)
shows substantial low power. This fact is already expected, as it did control the type I error
probabilities in a conservative way (Table 3).

When the sample size n is increased, it is noticed that the TLRPB test continues to
perform better (Figures 12, 13, 14 and 15). For the multivariate Student-t distribution with
5 degrees of freedom (Figures 12(b), 13(b), 14(b) and 15(b)), the TLRPB test and RTLRPB
test have similar performance. This pattern is identical to those for the dimensions of p = 2
and p = 5. In contrast, the ATLR has substantial power gain for this dimension (p = 200).
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(a) Normal distribution (b) t5 distribution (c) CN distribution

Figure 11. Power of the tests as a function of the generalized Mahalanobis distance ” between the parametric and
hypothetical vector means, with n = 10 and p = 200, where the gray lines represent the lower and upper limits of
the exact binomial interval and the maximum power.

This fact can be noticed in Figures 13, 14 and 15. In general, the TLRPB test (parametric
bootstrap version test) outperformed in power when confronted with other tests.

(a) Normal distribution (b) t5 distribution (c) CN distribution

Figure 12. Power of the tests as a function of the generalized Mahalanobis distance ” between the parametric and
hypothetical vector means, with n = 50 and p = 200, where the gray lines represent the lower and upper limits of
the exact binomial interval and the maximum power.

(a) Normal distribution (b) t5 distribution (c) CN distribution

Figure 13. Power of the tests as a function of the generalized Mahalanobis distance ” between the parametric and
hypothetical vector means, with n = 70 and p = 200, where the gray lines represent the lower and upper limits of
the exact binomial interval and the maximum power.
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(a) Normal distribution (b) t5 distribution (c) CN distribution

Figure 14. Power of the tests as a function of the generalized Mahalanobis distance ” between the parametric and
hypothetical vector means, with n = 100 and p = 200, where the gray lines represent the lower and upper limits of
the exact binomial interval and the maximum power.

(a) Normal distribution (b) t5 distribution (c) CN distribution

Figure 15. Power of the tests as a function of the generalized Mahalanobis distance ” between the parametric and
hypothetical vector means, with n = 200 and p = 200, where the gray lines represent the lower and upper limits of
the exact binomial interval and the maximum power.

In a more general analysis, considering all scenarios evaluated (n = 10, 50, 70, 100, and
200 and p = 2, 5, 200), the Monte Carlo simulations for type I error probability and power
showed that the TLRPB test performed better. We recommend using this test as it is not
hard to implement and computationally fast.

Willems et al. (2002) concluded that his proposed new test T
2
R showed power losses when

compared to the traditional Hotelling T
2 test for several configurations of n and p (n > p).

Under p-variate CN populations, with 10% of contamination, the T
2
R has also less power

than the traditional Hotelling T
2 test. Dong et al. (2016) indicated that his proposed new

test for high dimensional data, based on a shrinkage process of the traditional Hotelling T
2

statistic test, showed high power under p-variate normal and Student-t with 4 degrees of
freedom distributions, considering di�erent values of µ.

In both tests (Willems et al., 2002; Dong et al., 2016), the e�ect of the sample size n

influenced the power, which is an expected fact. In the results of the present work it does
not occur, as presented before, because the values of the population means change when
the sample sizes change, keeping fixed the value of the distance of Mahalanobis ”(µ,µ0) =
n(µ≠µ0)€⌃≠1(µ≠µ0). To clarify, note that Willems et al. (2002) and Dong et al. (2016)
fixed the population mean vector µ, and therefore, the value of Mahalanobis distance ”

increases with increasing sample size n. Thus the power grew with an increase of n. On the
contrary, in the present work µ changed in each simulation when n varied, keeping the value
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of ” fixed, which keeps the power practically constant, as can be seen from Figures 1 to 15.
Di�erences in the power values found under identical configuration, but at di�erent values
of n, are attributed to the Monte Carlo error.

4. Special cases and real data analysis

4.1 General context

Marozzi (2015) proposed an alternative multivariate test class for case-control studies for
high dimensional data, considering heavy tails or skewed distributions. The proposed tests
are based on the combination of tests on inter point distances. The Euclidean distance
is utilized. These tests are exact, unbiased and consistent. The results showed that the
proposed tests are very powerful under normality, heavy tails, and skewed distributions.
Marozzi (2015) applied these same tests to magnetic resonance data which are usually with
few observations and many variables, that is, high-dimensional data.

We decided to verify the behavior of our proposed tests regarding the type I error control
and power considering heavy tails and skewed distributions. For this, we consider the multi-
variate exponential distributions with parameter � = 1. In the latter case, data are shifted
to zero mean by subtracting the population exponential mean µ = 1. We consider in our
simulations only the dimensions p = 2 and 5 and the same sample sizes n of Section 2.

4.2 Multivariate exponential distribution

For the multivariate exponential distribution, in general, the tests are very liberal. The
exception occurred for ATLR and TLRBPT. The ATLR is exact for n = 10 and conservative
for n Ø 50 with p = 2 or p = 5 (see Tables 4 and 5). The TLRPB test did not control the
type I error for n = 10 and n = 100 with p = 2 and p = 5, showing a liberal behavior (see
Tables 4 and 5, though with no expressive di�erence from the nominal significance level of
5%. In the other cases, it is exact. For large enough n, say n = 200, the T2 and T2BP tests
showed either type I error probabilities control or inexpressive liberal behavior, although
significant (see Tables 4 and 5).

Table 4. Type I error probabilities of the six tests with – = 5% and p = 2, considering the multivariate
exponential distribution.

Test Model
n

10 50 70 100 200

T2

exponential

0.1296
+

0.0778
+

0.0648
+

0.0658
+

0.0558

T2BP 0.5414
+

0.9651
+

0.0648
+

0.0658
+

0.0558

T2RBP 0.3470
+

0.9412
+

0.9821
+

1.0000
+

1.0000
+

ATLR 0.0459 0.0269
≠

0.0160
≠

0.0199
≠

0.0070
≠

TLRPB test 0.0927
+

0.0608 0.0439 0.0658
+

0.0489

RTLRPB test 0.2393
+

0.6112
+

0.7149
+

0.8335
+

0.9811
+

≠:

significantly (p < 0.01) less than the nominal significance level of 5%.
+: significantly (p < 0.01) greater than the nominal significance level of 5%.

The power of the tests for exponential distribution with n = 200 and p = 2 and p = 5
can be seen in Figures 16(a) and (b). Only the T2, ATLR, and TLRPB test tests should be
considered in the comparison, as they are those who controlled the Type I error probabilities.
Again, the TLRPB test test is the most powerful, especially with ” = 10, followed by the
T2 and ATLR tests, in this order.

Table 6 shows the results of type I error probabilities for multivariate exponential distri-
bution. We consider the dimension p = 200 and the sample size n = 200, with the nominal
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Table 5. Type I error probabilities of the six tests with – = 5% and p = 5, considering the multivariate
exponential distribution.

Test Model
n

10 50 70 100 200

T2

exponential

0.1296
+

0.0778
+

0.0648
+

0.0658
+

0.0558

T2BP 0.5517
+

0.9753
+

0.0676
+

0.0759
+

0.0658
+

T2RBP 0.3490
+

0.9423
+

0.9827
+

1.0000
+

1.0000
+

ATLR 0.0449 0.0267
≠

0.0180
≠

0.0299
≠

0.0080
≠

TLRPB test 0.0929
+

0.0618 0.0459 0.0755
+

0.0495

RTLRPB test 0.2397
+

0.6125
+

0.7193
+

0.8435
+

0.9831
+

≠:

significantly (p < 0.01) less than the nominal significance level of 5%.
+: significantly (p < 0.01) greater than the nominal significance level of 5%.

0.00

0.25

0.50

0.75

1.00

0.0 0.5 10.0

δ

P
o
w

e
r

T2 T2PB T2RPB ATLRT TLRPBT RTLRPBT

(a) n = 200, p = 2
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Figure 16. Power of the tests as a function of the generalized Mahalanobis distance ” between the parametric and
hypothetical vector means, with multivariate exponential distribution, where the gray lines represent the lower and
upper limits of the exact binomial interval and the maximum power.

significance level of 5%, that is, an extreme case. We realized that only the ATLR and
TLRPB test tests controlled the type I error, being the first conservative and the second,
exact. The margin of error of the Monte Carlo simulations is also presented (see Table 6).
The RTLRPB test test showed all type I error probabilities close to 1 and is extremely
liberal in this high-dimensional case.

Table 6. Type I error probabilities (” = 0) and power (” = 0.5 and 10) of the three tests with – = 5%,
p = 200 and n = 200, considering the multivariate exponential distribution, where the values in parenthesis
express the margin of error of Monte Carlo simulations.

Test Model
”

0 0.5 10

ATLR

exponential

0.0069
≠

(0.0051) 0.0000(0.0036) 0.0000(0.0036)

TLRPB test 0.0488 (0.0133) 0.0473(0.0131) 0.9909(0.0058)

RTLRPB test 0.9810
+

(0.0084) 0.9673(0.0110) 1.0000(0.0036)

≠:

significantly (p < 0.01) less than the nominal significance level of 5%.
+: significantly (p < 0.01) greater than the nominal significance level of 5%.

We develop a package that is available in the R software (R Core Team , 2020) to assist
the user in executing the mentioned methodology called multivariate tests for the vector of
means (Alves and Ferreira, 2020). Then, we introduce the use of this package to one real
data set.
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4.3 Application to real data

In this section, the proposed methodology is applied to one real data set, that deals with the
contents of sand and clay from capoeira nova, in the Amazon, Brazil, available in Ferreira
(2018). The data set has two variables (sand and clay) and 30 observations (p = 2, n = 30).
We want to verify that the new capoeira soil has an average sand and clay content equal
to that of a forest population, at a level of 5% of significance. An exploratory analysis is
previously carried out and we verified that the variables sand and clay are correlated and
the data do not show normal p-variable according to the Royston test. There is also the
presence of outliers in the data. Table 7 presents the data set of sand and clay contents in
a new capoeira soil in the Amazon to be analyzed.

The vector of sample averages for the sand and clay contents takes on the values of 22
and 36.1, respectively, that is, X = [22, 36.1]€. According to Ferreira (2018), it is known
that in a forest soil the average levels of sand and clay content have values equal to 14
and 42, respectively, that is, µ0 = [14, 42]€. So, in possession of the samples collected of
sand and clay contents in a new capoeira soil, in the Amazon, the hypotheses to be tested
are H0: µ = µ0 versus H1: µ ”= µ0. The T2, T2PB, T2R, T2RPB, ATLR, TLRPB and
RTLRPB tests have been applied; see Section 2.

Table 8 shows that all tests took the same decision to reject the null hypothesis H0.
However, since the assumption of p-variate normality is not met, we suggest choosing the
result of the TLRPB test because this is the most powerful among all tests evaluated in
Alves and Ferreira (2019). All tests provided the same decision to reject the null hypothesis.

Table 7. Sand and clay contents in a new capoeira soil in the Amazon.
sand clay sand clay sand clay
11 38 20 32 13 47
24 25 18 34 28 32
16 49 17 39 11 45
18 34 30 32 27 36
5 64 45 24 7 59
11 40 11 50 42 23
17 38 41 21 21 35
9 40 22 36 48 21
13 40 14 32 12 36
53 21 25 28 31 32

Table 8. Tests for the vector of population means for the levels of sand and clay in a new capoeira soil,
in the Amazon.

Test Statistics p-value Decision
T2 11.93406 0.00802 Reject H0
T2PB 11.93406 0.00899 Reject H0
T2RPB 45.19158 0.00049 Reject H0
ATLR 9.21556 0.00997 Reject H0
TLRPB test 9.21556 0.00299 Reject H0
RTLRPB test 7.11871 0.02848 Reject H0
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5. Conclusions

The trace likelihood ratio parametric bootstrap test is recommended for testing hypoth-
esis about a multivariate population mean vector of normal and non-normal populations,
including the presence of outliers. For the case of the contaminated multivariate normal dis-
tribution, the robust average and comedian covariance matrix estimators performed below
tests that do not use these estimators. This fact occurred in all scenarios evaluated consid-
ering this distribution. It is possible to conclude that the use of robust comedian mean and
covariance estimators is not helpful for testing hypotheses on a population mean vector.

These tests have some limitations, as in the multivariate lognormal distribution, where
they did not perform well in controlling type I error probabilities, being considered liberal.
As a future work, we will intend to adapt these tests to data from two or more populations.
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Abstract

The Chaudhry-Ahmad distribution is a two-parameter continuous probability distribu-
tion obtained as a solution to a generalized Pearson system of di↵erential equation. Al-
though its probability density curve resembles the inverse-Gaussian, gamma, log-normal,
Weibull and other distributions, it has been neglected in the analysis of right-skewed
data. The purpose of this paper is three folded. Firstly, to reparametrize the Chaudhry
and Ahmad distribution and present some of its basic properties. Secondly to derive
the analytical bias-corrected maximum likelihood estimators applying the Cox-Snell
methodology and thirdly to study, by MC simulations, the small-sample properties of
the maximum likelihood estimators and their bias-corrected versions, obtained from
the Cox-Snell formula and by parametric bootstrap technique. The numerical results
show, for both parameters, that the maximum likelihood estimators are highly biased,
especially in small samples. On the other hand, both, the analytical and bootstrap
methodologies, significantly reduce the biases and the mean-squared errors. It is appar-
ent from the results that the analytical bias-correction is more e�cient than bootstrap
resamples. Finally, wind speed data from six weather stations distributed in the state
of Tocantins in Brazil is used to illustrate the applicability of the proposed methods.

Keywords: Bootstrap bias correction · Cox-Snell bias-correction · Maximum
likelihood estimation · Monte Carlo simulation · Wind speed data.

Mathematics Subject Classification: Primary 60E05 · Secondary 62F10.

1. Introduction

Chaudhry and Ahmad (1993) introduced a nonnegative two-parameter probability dis-
tribution, called the Chaudhry-Ahmad (CA) distribution as a solution of the generalized
Pearson system of di↵erential equation. It is noteworthy that from the generalized Pearson
system of probability distributions, many continuous probability density functions (PDFs)
can be generated (Sankaran et al., 2003; Stavroyiannis, 2014). Indeed, as discussed in
Shakil et al. (2010, 2016), the well known families of distributions such as the normal and
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Student-t (known as Pearson type VII), beta distribution (known as Pearson type I) and
gamma distribution (known as Pearson type III), introduced by Karl Pearson during the
late 19th century (Pearson, 1893, 1895, 1901, 1916), can be generated as a solution to
Equation (1) by proper choice of its parameters.
Although the CA PDF curve resembles the inverse-Gaussian (IG), gamma, log-normal,

Weibull and other distributions, it has not been widely explored in the statistical liter-
ature. Recently, Shakil et al. (2010) derived a family of distribution, which includes the
CA distribution as a special case. To the best of our knowledge, there are only two real
data analysis considering the CA distribution. Nanos and Montero (2001) showed that
CA distribution fitted better than the Weibull distribution in a problem involving predic-
tion of the diameter distribution of a stand. In Nanos et al. (2000) the Weibull and CA
distributions were used to model resin production distributions for maritime pine stands.
It is important to point out that the CA distribution is capable of modeling increasing

hazard rate funtions (HRFs). There are many situations where only increasing HRFs
are used or observed: Woosley and Cossman (2007) observed that drugs during clinical
development have increasing HRFs; Tsarouhas and Arvanitoyannis (2010) showed that
machines of the bread production display increasing HRFs; Koutras (2011) observed that
software degradation times have increasing HRFs; Lai (2013) investigated the optimum
number of minimal repairs for systems have increasing hazard rates and so on.
Although the maximum likelihood (ML) estimators have many appealing properties

(Edwards, 1992; Lehmann and Casella, 1998), it is also well known that ML estimators
could be biased, especially when the study is being done in small samples. Owing to
this reason, researchers strive to develop nearly unbiased estimators for the parameters of
several probability distributions. Notable among them are Saha and Paul (2005), Lemonte
et al. (2007), Giles and Feng (2009), Lagos-Àlvarez et al. (2011), Giles (2012a), Giles
(2012b), Schwartz et al. (2013), Giles et al. (2013), Teimouri and Nadarajah (2013), Ling
and Giles (2014), Zhang and Liu (2015), Teimouri and Nadarajah (2016), Reath (2016),
Schwartz and Giles (2016), Wang and Wang (2017), Mazucheli and Dey (2018), Mazucheli
et al. (2018), Mazucheli et al. (2020) and references cited therein.
The objective of this paper is to perform improved parameter estimation of the CA

distribution. We consider the analytical methodology introduced by Cox-Snell (1968) and
the parametric bootstrap resampling method (Efron, 1982). We describe two corrective
approaches to bias-correction, both methods reduce the biases of the ML estimators to the
second order magnitude.
After this introduction, the paper is organized as follows. In Section 2, we introduce the

CA distribution and deduce expressions used to obtain the ML estimators of its parameters,
calculating the expected Fisher information matrix. In Section 3, by using the Cox-Snell
formula, we derive analytical expressions for the second order biases of the maximum
likelihood estimators, and also discuss the bootstrap bias correction. A Monte Carlo (MC)
simulation study is carried out in Section 4 to compare the ML estimators and their
bias-corrected versions, obtained from the Cox-Snell formula and parametric bootstrap
technique. An application by using wind speed data from Brazil is provided also in this
section. As a result of this application, we are able to provide, for example, better estimates
of most frequent wind speeds observed at various stations. Some concluding remarks are
presented in Section 5.

2. Preliminaries, model description and estimation

In this section, we provide background on the CA distribution and the ML estimators
of its parameters, as well as the corresponding expected Fisher information matrix.
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2.1 Background on the Chaudhry-Ahmad distribution

Chaudhry and Ahmad (1993) developed a two-parameter probability distribution as a
solution of the generalized Pearson system of di↵erential equation

d

dx
f(x) =

c0 + c1 x+ c2 x2 + · · ·+ cm xm

c0
0
+ c0

1
x+ c0

2
x2 + · · ·+ c0n x

n
f(x), (1)

where m,n � 1 are integers, and the coe�cients c and c0 are real numbers. These authors
considered a special case of Equation (1) taking m = 4, n = 3, c0

0
= c0

1
= c0

2
= 0,

c4/2 c03 = �2↵, c0/2 c03 = 2� and c0
3
6= 0. This distribution, which now bear their names,

can also be obtained as the root reciprocal of the inverse Gaussian distribution, that is, the
distribution of the random variable X = 1 /

p
Y , where Y ⇠ IG(µ,�) with µ = (↵ /�)1/2

and � = 2↵.
The cumulative distribution function (CDF) of the CA distribution is given by
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(2)
where x, ↵, � > 0 and � denotes the CDF of a standard normal distribution.
Solving the orthogonality di↵erential equation of Cox and Reid (1987), we consider in

Equation (2) � = ↵�4, such that � will be the mode of the PDF. The advantage of such
parametrization is that � has a direct interpretation and it is orthogonal to ↵. Thus, from
Equation (2), the PDF of a CA distributed random variable with parameters ↵ and � can
be written as

f(x;↵,�) = 2

r
↵

⇡
exp

h
�
�p

↵x� �2
p
↵x�1

�2i
. (3)

Figure 1 displays the PDF and the HRF curves considering di↵erent values of ↵ and
� = 1 (� is a location parameter). We observe that the PDF is skewed to the right and
unimodal with turning point at xmax = � = 1. We also observe that the HRF of CA
distribution is monotone increasing.
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Figure 1. PDF and HRF of the CA distribution for ↵ = (0.5, 1.0, 2.0 and 4.0) and � = 1.
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The kth moment about the origin of CA distribution is given by

µ0
k = 2

r
↵

⇡
exp

�
2↵�2

�
�k+1K k

2
+

1
2
(2↵�2), (4)

whereK⌫ denotes the modified Bessel function of the second kind (Abramowitz and Stegun,
1974). In particular, from Equation (4), the first four moments about the origin are stated
as
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2.2 Maximum likelihood estimation

Suppose that X = (X1, . . . , Xn)> is a random sample of size n from CA distribution
with PDF given by Equation (3) and x = (x1, . . . , xn)> its observations. The log-likelihood
function for ✓ = (↵,�) is given by

`(✓;x) /
n

2
log(↵) + 2n↵�2

� ↵
nX

i=1

x2i � �4 ↵
nX

i=1

x�2

i . (5)

Di↵erentiating in Equation (5) with respect to ↵ and �, we have the score vector U✓ =
(U↵, U�)> with components given by
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After simple algebraic manipulation of Equations (6) and (7), note that the ML estimates

of ↵ and � can be written as b� = (m0
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The expected Fisher information matrix of ✓ is given by

I(✓) = [Iij ] = �nE
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@2
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#
, i, j = 1, 2. (8)

From Equation (8), we observe that the information matrix is diagonal, which means
that the ML estimators are asymptotically independent. Hence, the asymptotic variance
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of b↵ and b� are given, respectively, by

Var(b↵) = 2↵2

n
, Var(b�) = 1

8n↵
. (9)

The asymptotic variance of b� only depends on ↵. Thus, as ↵ decreases, the variance of
b� increases. The asymptotic 100(1 � �) confidence intervals for ↵ and � can be obtained
respectively as

b↵± z�/2

q
dVar(b↵), b�± z�/2

q
dVar(b�), (10)

where z�/2 indicated in Equation (10) denotes the 100(1� �/2) percentile of the standard
normal distribution.

3. Bias-corrected maximum likelihood estimators

In this section, we derive analytical expressions for the second order biases of the maxi-
mum likelihood estimators by using the Cox-Snell formula, and also discuss the bootstrap
bias correction.

3.1 Cox-Snell analytic bias correction

Let `(✓;x) denote the log-likelihood function of a p-dimensional parameter vector ✓
based on a sample of observations x. We assume the following regularity conditions on the
behavior of the log-likelihood function (Cox and Hinkley, 1979):

(a) Xi, for i = 1, . . . , n, are independent and identically distributed random variables.
(b) The parameter space of ✓ is compact.
(c) The true but unknown parameter value ✓0 is identified, that is,

✓0 = argmax
✓

E✓0
[log (f (xi;✓))] .

(d) The likelihood function

` (✓;x) =
nX

i=1

log (f (xi;✓))

is continuous in ✓.
(e) E✓0

[log (f (xi;✓))] exists.
(f) The log-likelihood function is such that (1/n)`(✓;x) converges almost surely (in

probability) to E✓0
[log(f(xi;✓))] uniformly in ✓.

Conditions (a) to (d) are clearly satisfied for the CA distribution. Conditions (e) and (f)
are also satisfied since, for all ↵ > 0 and � > 0,
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The joint cumulants of the derivatives of ` are given by
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for i, j, l = 1, . . . , p. All these expression are assumed to be of order O(n).
Cox-Snell (1968) showed that when the samples are independent, but not necessarily

identically distributed, the bias of the rth element of the ML estimator of ✓, b✓, can be
expressed as

B(b✓r) =
pX

i=1

pX

j=1

pX

l=1

Iri Ijl [0.5Iijl + Iij,l] +O
�
n�2

�
, (11)

where r = 1, . . . , p and Iij denotes the (i, j)th element of the inverse of the expected Fisher
information matrix.
In respect to the orthogonally parametrization of CA distribution, after extensive alge-

bra, it can be shown that I111 = �24n↵/�, I122 = I212 = I221 = �8n, I222 = n/↵3,
I11,1 = 24n↵/�, I12,2 = I21,2 = 8n and all other terms are equal to zero. Hence, the
second-order bias of the ML estimators of ↵ and � are given respectively by

B(b↵) = 3↵

n
(12)

and

B(b�) = 3

16n↵�
, (13)

Using Equations (12) and (13), we define the bias-corrected (BC) estimator as

b↵BC = b↵� bB(b↵), b�BC = b�� bB(b�). (14)

Note that b↵BC and b�BC defined in Equation (14) have bias of order O(n�2) as indicated
in (11). Thus, it is expected that they have superior sampling properties relative to b↵
and b�. We also empathize that the bias-corrected ML estimator for � in the original

parametrization Equation (2) is obtained from b� � (3
p
b↵ b� + 1.5

q
b�)/

p
b↵n.

3.2 Parametric bootstrap bias correction

An alternative approach to analytically bias-corrected ML estimators is based on boot-
strap resampling scheme (Efron and Tibshirani, 1993; Davison and Hinkley, 1997). In this
method the bias correction is performed numerically without deriving analytical expression
for the bias function. In fact, the parametric bootstrap bias correction (PB) estimates use
the ML estimates of the data to generate pseudo-random samples from the distribution to
estimate the bias and then subtract the bias from the ML estimates.
Let b✓(·) be the average value of the ML estimator from B bootstrap replications, based

on a pseudo-sample of size n generated from Equation (3) using the parameters of the ML

estimates b✓. The estimated bias of b✓ is defined as bB(b✓) = b✓(·) � b✓. Then, the bootstrap

bias-corrected estimator is b✓PB = 2 b✓ � b✓(·).
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4. Numerical evaluations

In this section, we carry out a MC simulation study to compare the ML estimators
and their bias-corrected versions. In addition, we illustrate the applicability of the CA
distribution for bias corrections to the wind speed data.

4.1 Simulation study

Our MC simulation study is conducted to compare the finite-sample behavior of the
ML estimators and their bias-corrections obtained by Cox-Snell methodology (BC) and
parametric bootstrap scheme (PB) for the parameters that index the CA distribution.
For this purpose, we generate samples of size n = 10, 20, 30, 40 and 50 from Equation (3)
considering ↵ = 0.5, 1.0, 1.5, 2.0 and 4.0 and fixed � = 1, since it is a location parameter
and the estimators are scale invariant. The behavior of PDF and HRF for these parameters
values were illustrated in Figure 1. It is important to note that the mean, variance, skewness
and kurtosis of a CA distributed random variable decrease as ↵ increases.
To simulate random variables from a CA distribution, we generated samples from a

random variable Y with inverse Gaussian distribution and we used the transformation
X = 1/

p
Y .

To assess the performance of the methods under consideration, we calculated the bias and
root mean-squared error (RMSE). The number of MC simulations was fixed atM = 10, 000
and B = 1, 000 bootstrap replicates were used. All simulations were carried out in Ox

Console which is a matrix programming language with object-oriented support developed
by Jurgen Doornik (Doornik, 2007).
Table 1 depicts the estimated bias and root mean-squared error, in parentheses, for

di↵erent values of ↵ and � = 1. We can observe that all the estimates show the property
of consistency, that is, the RMSEs decrease as sample size increases. We also note that
the ML estimates of ↵ are highly biased, particularly when the sample size is small. For
instance, the biases of the ML estimates of ↵ for (n,↵) = (10, 0.5) and (n,↵) = (10, 4) are
approximately 22% and 169%, respectively. Also the biases of the ML estimates of ↵ for
(n,↵) = (20, 0.5) and (n,↵) = (20, 4) are approximately 9% and 68%, respectively. The
estimates b↵BC and b↵PB clearly outperform the ML estimates as far as the bias goes. For
example, the biases of the BC estimates of ↵ for (n,↵) = (10, 0.5) and (n,↵) = (10, 4)
are approximately 0.3% and 1.5%, respectively. The biases of the PB estimates of ↵ for
(n,↵) = (10, 0.5) and (n,↵) = (10, 4) are approximately 8.9% and 74.6%, respectively.
Thus, the proposed estimators achieve substantial bias reduction, especially for the small
and moderate sample sizes and therefore, we consider them as better alternatives of the
ML estimates of ↵. We also observe that the bias-corrected estimates are closer to the true
parameter values than the unadjusted estimates as sample size increases. Additionally, the
estimated root mean-squared errors for ↵ of the bias corrected estimates are smaller than
those of the uncorrected estimates. On the other hand, the RMSE of � are very similar
for all estimators.
Now, in order to evaluate the overall performance of each estimation method with respect

to the bias and root mean squared error, for each value of n, we use two measures introduced
by Cribari-Neto and Vasconcellos (2002). The authors called these quantities as integrated
bias squared norm and average root mean squared error. They are calculated as follows

IBSQ(k) =

vuut 1

16

16X

h=1

(rh,k)
2, ARMSE(k) =

1

16

16X

h=1

RMSEh,k,
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Table 1. Estimated bias (root mean-squared error) for ↵ and �, (� = 1.0).

Estimator of ↵ Estimator of �
↵ n ML BC PB ML BC PB

0.5

10 0.2191 (0.5098) 0.0034 (0.3223) -0.0891 (0.2778) 0.0351 (0.1646) 0.0018 (0.1667) 0.0029 (0.1662)

20 0.0908 (0.2345) 0.0022 (0.1838) -0.0135 (0.1787) 0.0173 (0.1142) -0.0003 (0.1149) -0.0000 (0.1149)

30 0.0571 (0.1686) 0.0014 (0.1428) -0.0048 (0.1411) 0.0111 (0.0924) -0.0009 (0.0929) -0.0008 (0.0929)

40 0.0410 (0.1369) 0.0004 (0.1208) -0.0029 (0.1200) 0.0082 (0.0798) -0.0009 (0.0801) -0.0008 (0.0801)

50 0.0324 (0.1174) 0.0005 (0.1061) -0.0016 (0.1057) 0.0063 (0.0715) -0.0010 (0.0717) -0.0010 (0.0717)

1.0

10 0.4330 (0.9830) 0.0031 (0.6178) -0.1810 (0.5368) 0.0171 (0.1131) 0.0004 (0.1138) 0.0006 (0.1137)

20 0.1775 (0.4620) 0.0009 (0.3625) -0.0303 (0.3526) 0.0085 (0.0793) -0.0004 (0.0795) -0.0003 (0.0795)

30 0.1149 (0.3370) 0.0034 (0.2851) -0.0090 (0.2818) 0.0059 (0.0648) -0.0001 (0.0649) -0.0001 (0.0650)

40 0.0844 (0.2722) 0.0031 (0.2394) -0.0035 (0.2380) 0.0046 (0.0559) 0.0000 (0.0560) 0.0000 (0.0560)

50 0.0667 (0.2334) 0.0027 (0.2103) -0.0015 (0.2094) 0.0034 (0.0501) -0.0003 (0.0501) -0.0003 (0.0501)

1.5

10 0.6543 (1.5198) 0.0080 (0.9603) -0.2688 (0.8293) 0.0121 (0.0927) 0.0010 (0.0931) 0.0011 (0.0930)

20 0.2657 (0.6906) 0.0008 (0.5419) -0.0459 (0.5272) 0.0064 (0.0653) 0.0005 (0.0654) 0.0005 (0.0654)

30 0.1653 (0.4970) -0.0013 (0.4218) -0.0197 (0.4173) 0.0040 (0.0530) -0.0000 (0.0530) -0.0000 (0.0530)

40 0.1213 (0.4035) -0.0003 (0.3559) -0.0100 (0.3539) 0.0027 (0.0457) -0.0004 (0.0458) -0.0003 (0.0458)

50 0.0963 (0.3489) 0.0005 (0.3152) -0.0056 (0.3140) 0.0022 (0.0410) -0.0002 (0.0410) -0.0002 (0.0410)

2.0

10 0.8784 (2.0228) 0.0149 (1.2756) -0.3550 (1.1005) 0.0090 (0.0796) 0.0007 (0.0798) 0.0007 (0.0798)

20 0.3588 (0.9360) 0.0050 (0.7348) -0.0575 (0.7144) 0.0042 (0.0559) -0.0003 (0.0560) -0.0003 (0.0560)

30 0.2319 (0.6808) 0.0087 (0.5762) -0.0161 (0.5694) 0.0026 (0.0456) -0.0004 (0.0457) -0.0004 (0.0457)

40 0.1707 (0.5483) 0.0079 (0.4820) -0.0054 (0.4788) 0.0020 (0.0397) -0.0003 (0.0397) -0.0003 (0.0397)

50 0.1317 (0.4702) 0.0038 (0.4244) -0.0044 (0.4227) 0.0015 (0.0354) -0.0003 (0.0354) -0.0003 (0.0354)

4.0

10 1.6928 (3.8947) -0.0150 (2.4553) -0.7463 (2.1403) 0.0053 (0.0565) 0.0011 (0.0566) 0.0011 (0.0566)

20 0.6965 (1.8473) -0.0080 (1.4543) -0.1329 (1.4157) 0.0027 (0.0398) 0.0004 (0.0398) 0.0004 (0.0398)

30 0.4358 (1.3260) -0.0078 (1.1271) -0.0573 (1.1144) 0.0018 (0.0325) 0.0003 (0.0325) 0.0003 (0.0325)

40 0.3110 (1.0752) -0.0123 (0.9521) -0.0385 (0.9465) 0.0014 (0.0282) 0.0003 (0.0282) 0.0003 (0.0282)

50 0.2406 (0.9169) -0.0138 (0.8318) -0.0301 (0.8289) 0.0011 (0.0253) 0.0002 (0.0253) 0.0002 (0.0253)

where rh,k and RMSEh,k correspond to the 16 di↵erent values of the bias and the root
mean squared errors of each estimator given in Table 1. The results are reported in Tables
2-3.
From Table 2, we see that integrated bias squared norm of the corrected estimates (BC

and PB) are smaller than ML estimates for both parameter ↵ and �. From Table 2, we can
see that the average root mean-squared error of the corrected estimates (BC and PB) are
smaller than ML estimates for ↵, while for � the ARMSE are quite similar. Therefore, these
simulation results show that second-order bias reduction is quite successful in bringing the
corrected estimates closer to their true values.

Table 2. Integrated bias squared norm.

n
Estimator of ↵ Estimator of �

ML BC PB ML BC PB

10 0.9274 0.0103 0.3990 0.0189 0.0011 0.0015
20 0.3806 0.0043 0.0695 0.0094 0.0004 0.0004
30 0.2398 0.0055 0.0284 0.0061 0.0005 0.0004
40 0.1728 0.0067 0.0181 0.0045 0.0005 0.0004
50 0.1342 0.0065 0.0139 0.0035 0.0005 0.0005

Table 3. Average root mean-squared error.

n
Estimator of ↵ Estimator of �

ML BC PB ML BC PB

10 2.1352 1.3464 1.1701 0.1077 0.1086 0.1084
20 1.0034 0.7892 0.7680 0.0752 0.0755 0.0755
30 0.7226 0.6135 0.6066 0.0611 0.0613 0.0613
40 0.5852 0.5172 0.5141 0.0528 0.0530 0.0530
50 0.5004 0.4532 0.4515 0.0473 0.0474 0.0474
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4.2 Wind real data modeling

The data consist of annual maximum wind speed of six weather stations localized in
state of Tocantins, Brazil. The data were obtained from the website http://www.inmet.
gov.br/portal. Some descriptive statistics of the observed annual maximum wind speed
for the stations are summarized in Table 4. Note that the values of skewness are positive
for four stations, indicating that the data are right-skewed.

Table 4. Descriptive statistics of the wind speed data for all weather stations.

Station Period n Min Mean Med Max SD Skewn Kurt

82659 1980-2016 34 1.4667 3.0441 3.0667 5.0000 1.1491 0.1541 1.5672
82863 1977-2016 40 2.5667 4.8862 4.6667 8.3333 1.6084 0.4240 2.0874
83033 1993-2016 21 3.6667 5.4817 5.4667 7.1000 1.0460 -0.1572 2.1114
83064 1961-2016 56 2.2667 3.9939 3.9750 6.0000 0.9736 0.1973 2.3523
83228 1975-2016 42 3.1000 4.3657 4.3333 5.6667 0.6096 -0.1140 2.6386
83235 1961-2016 56 2.3333 3.9994 3.6667 6.6667 0.9424 0.8900 3.4780

In Table 5 we report the ML estimates and the bias corrections estimates along with
the asymptotic standard errors calculated from Equation (9). We can observe that the
maximum likelihood estimates of ↵ and � are greater than the second order bias corrected
estimates for all stations, this suggests that the ML estimates are overestimating the true
value of the parameters. We also observe that the corrected ML estimates of ↵ have smaller
standard errors than the uncorrected estimates.
In order to test whether the data sets fits the CA distribution and whether the bias-

corrected estimates yield better fits than the uncorrected estimates, we perform the
goodness-of-fit tests based on Kolmogorov-Smirnov (KS), Cramér-von-Mises (CM) and
Anderson-Darling (AD) statistics. The p-values of these statistics are shown in Table 8.
We have used the function mledist from fitdistrplus library, (Delignette-Muller, 2015),
available in R environment, (R Core Team, 2017), to find the ML estimates. The p-values
associated with Kolmogorov-Smirnov, Anderson-Darling and Cramér-von Mises tests were
calculated using 10,000 nonparametric bootstrap resamples applying the functions ks.test,
ad.test and cvm.test, available in goftest (Faraway et al., 2014) R library. Here we are to
note that CA distribution can be used to model the annual maximum wind speed data
for the six stations. We can see from Table 8 that the p-values of KS, CM and AD com-
puted from bias-corrected estimators are greater than the uncorrected estimator (except
KS for one station). This means that bias corrected estimates provide better fits than the
ML estimates. This conclusion is also supported by the empirical and fitted CDF plots
in Figure 2. Furthermore, in Table 6, we compare the suitability of the CA distribution
against eight commonly used probability distributions to modeling wind speed data. The
assessment of the goodness-of-fit is based on the log-likelihood values, since all distribu-
tions have the same number of parameters. The results are reported in Table 6 and we can
see that CA distribution is the best model among the others. The superscripts indicates
the rank obtained by the estimation method (the smaller the better). The line named as
rank total (TR) shows the sum of the ranks.

Table 5. Point estimates (standard errors) for all weather stations.

Estimator of ↵ Estimator of �
Station ML BC PB ML BC PB

82659 0.1081 (0.0262) 0.0986 (0.0239) 0.0978 (0.0237) 2.4341 (0.1844) 2.4132 (0.1931) 2.4121 (0.1939)

82863 0.0559 (0.0125) 0.0517 (0.0116) 0.0515 (0.0115) 4.1773 (0.2365) 4.1572 (0.2459) 4.1627 (0.2464)

83033 0.1148 (0.0354) 0.0984 (0.0304) 0.0962 (0.0297) 5.1707 (0.2277) 5.1556 (0.2459) 5.1539 (0.2487)

83064 0.1359 (0.0257) 0.1286 (0.0243) 0.1279 (0.0242) 3.6335 (0.1282) 3.6268 (0.1317) 3.6250 (0.1321)

83228 0.3323 (0.0725) 0.3086 (0.0673) 0.3075 (0.0671) 4.2329 (0.0946) 4.2297 (0.0982) 4.2315 (0.0984)

83235 0.1639 (0.0310) 0.1551 (0.0293) 0.1540 (0.0291) 3.7170 (0.1167) 3.7115 (0.1200) 3.7098 (0.1204)

http://www.inmet.gov.br/portal
http://www.inmet.gov.br/portal
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Figure 2. Empirical and fitted CDFs for all examined stations.
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Table 6. Negative of the log likelihood values, �2 log(L), of the competing distributions.

Station CA Weibull Gamma Log-normal Log-logistic IG Gumbel BS Nakagami

82659 101.41171 103.08485 103.16926 103.61387 107.40959 103.07384 104.33798 102.98922 103.06803

82863 145.72021 149.65658 147.26385 146.97424 150.40229 146.59403 147.42526 146.57722 148.07467

83033 61.38164 60.07571 61.05463 61.63147 62.57278 61.60196 63.31809 61.58895 60.63202

83064 154.24223 155.75407 154.18212 155.13656 157.55659 155.00575 157.10368 154.96044 153.95161

83228 78.12604 77.54263 77.45112 78.24037 79.07058 78.23726 83.30999 78.22805 76.89401

83235 143.76405 156.27229 145.25597 143.52984 144.24176 143.47972 142.38881 143.51143 147.76918

RT 181 336 254 357 499 265 418 212 223

Table 7. Voung test (p-values) comparing CA distribution with others.

Weibull Gamma Log-normal Log-logistic IG Gumbel BS Nakagami

0.595 (0.276) 2.146 (0.016) 3.782 (0.000) 8.895 (0.000) 2.538 (0.006) 5.876 (0.000) 2.773 (0.003) 0.882 (0.189)

1.522 (0.064) 2.171 (0.015) 2.460 (0.007) 4.628 (0.000) 1.806 (0.035) 2.156 (0.016) 1.959 (0.025) 1.479 (0.070)

-0.650 (0.742) -0.788 (0.785) 1.378 (0.084) 1.218 (0.112) 1.564 (0.059) 2.545 (0.005) 1.482 (0.069) -1.014 (0.845)

0.497 (0.310) -0.072 (0.529) 2.107 (0.018) 1.929 (0.027) 2.267 (0.012) 3.379 (0.000) 2.203 (0.014) -0.192 (0.576)

-0.168 (0.567) -1.282 (0.900) 0.872 (0.192) 0.654 (0.256) 1.090 (0.138) 2.854 (0.002) 1.008 (0.157) -1.233 (0.891)

3.457 (0.000) 1.943 (0.026) -0.555 (0.711) 0.244 (0.404) -0.799 (0.788) -0.686 (0.754) -0.750 (0.773) 2.375 (0.009)

Table 8. p-values associated to goodness-of-fit measures for all weather stations.

KS CM AD
Station ML BC PB ML BC PB ML BC PB

82659 0.4697 0.5185 0.5205 0.3129 0.3970 0.4039 0.3247 0.4056 0.4112
82863 0.6574 0.7285 0.7192 0.7725 0.8539 0.8515 0.7825 0.8570 0.8547
83033 0.9390 0.9763 0.9775 0.8936 0.9252 0.9262 0.8599 0.9042 0.9047
83064 0.8883 0.8736 0.8684 0.7438 0.7689 0.7677 0.7557 0.7962 0.7976
83228 0.4790 0.4961 0.5090 0.6607 0.6748 0.6836 0.7368 0.7534 0.7578
83235 0.2996 0.3054 0.3097 0.4005 0.3801 0.3795 0.4824 0.4735 0.4731

Therefore, using the interpretation for � given in Section 1, the estimates given in Table
5 can be interpreted as follows. The most frequent wind speed at: station 82659 is around
2.4; station 82863 is around 4.2; station 83033 is around 5.2; station 83064 is around 3.6;
station 83228 is around 4.2; station 83235 is around 3.7.

5. Conclusions

In this paper, we have adopted a corrective approach to derive analytical expressions
for the second order biases of the maximum likelihood estimators of the parameters of the
Chaudhry-Ahmad distribution. Furthermore, we have also considered an alternative bias-
correction mechanism through bootstrap resampling. The biases of the proposed estimators
are of order O

�
n�2

�
, whereas for the maximum likelihood estimators they are of order

O
�
n�1

�
, indicating that the proposed estimates converge to their true value considerably

faster than those of the maximum likelihood estimates.
The numerical evidence shows that the proposed bias corrected estimators are quite

attractive because they outperform the maximum likelihood estimates in terms of biases,
integrated bias squared norm and root mean-squared error. Further, our analytic bias
correction is found to be superior to the alternative of bias-correction via the bootstrap in
terms of bias reduction. The proposed bias-corrected estimators are strongly recommended
over maximum likelihood estimator, especially when the sample size is small or moderate
since it has smaller bias and root mean-squared error
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Abstract

The purpose of this work is to present a decision support system for scheduling courses
of statistics and data science to help educational institutions. Currently, an increasing
demand of statisticians and data scientists around the world of businesses and organi-
zations is observed. By distributing resources, such as the available time for teachers to
form those human personnel, is challenging because of the many dependencies that can
exist, which must be taken into account. We describe an integer programming formu-
lation to handle a real instance of a courses-to-lecturers timetabling problem based on
a case study. The proposed system is successfully applied by experimental runs using
course o�erings and classroom data from past semesters.

Keywords: Integer programming· Mathematical programming · Timetabling problem.

Mathematics Subject Classification: Primary 90C10 · Secondary 6207.

1. Introduction

Integer programming tries to allocate finite resources, in an optimal way. In usual applica-
tions, the problem description leads to obtaining an optimal value, either a maximum or
minimum, for an objective function based on the number of units of resources allocated to
each competing entity and constraints on the allocation of the resources. The parameters
that describe the number of units are referred to as decision variables. This potential has
served to solve relevant questions in areas such as industrial research and economy, adminis-
tration or scientific issues. Hence, within a good theoretical basis, it is possible to automatize
general processes or even promote their optimization, as well as keep managers informed to
support decision making.

A classic problem which appears often in the literature of combinatorial optimization is
the matching problem (Papadimitriou and Steiglitz, 1982; Even et al., 1975). In a particular
situation, it is also known as the timetabling problem and can be formulated as a binary
integer programming problem (MirHassani, 2006; de Werra, 1985; Selim, 1983).

Periodically, universities, schools or human resources departments face the challenge of
assigning tasks to their sta�. There exist legal and institutional constraints which must be
satisfied besides, eventually, the aim to optimize some aspect, according to a given criteria.
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Usually each instance has very specific features. A huge part of the papers in this area are
motivated by scheduling issues in universities or schools (Burke and De Causmaecker, 2002).
When handling educational institutions – schools and universities –, it is common to talk
about educational timetabling. At this point, it is possible to distinguish three main classes
of timetabling problems (Burke et al., 1997; Schaerf, 1999):

• School timetabling problem (STP): In this ranking are found the problems of the weekly
schedule between teacher/class in schools/colleges. Here it is considered that the subjects
are fixed for each class and the main objective is to avoid one teacher being allocated to
two classes simultaneously or two classes having lessons with one particular teacher in
one timetable.

• University course timetabling problem (UCTP): It has in view the weekly schedule
of all subjects for all periods of the university courses by determining the relation
(teacher/classroom/classroom). It di�ers from the school timetabling, because in this
classification the students can choose the subjects (electives) they wish to enroll. The
objective is also to minimize the overlap of any of the variables involved.

• Examination timetabling problem (ETP): It deals with the scheduling of exams for uni-
versity courses, avoiding overlapping of exams of subjects that have students in common
and keeping the exam dates as far away from students as possible.

Now it is more clear why models built for specific problems do not claim to serve for all
instances. The reader is referred to de Werra (1985), in which the author considers general
formulations for the timetabling problem, starting from the simpler or less specific one and
then including common constraints in practical applications. Also, he solves this problem
using an approach based on graph coloring methods. Despite these generalization di�culties
(or maybe because of them), there is a wide scientific production on timetabling which
deals with its theory and applications and several approaches are proposed. The massive
use of computers to solve timetabling problems probably started with the construction
of class-teacher timetables in 1963 (Gotlieb, 1963). A survey conducted by the Automated
Scheduling and Planning Group at the University of Nottingham in the year of 1995 obtained
feedback from 56 British universities on the use of computers to build timetables (Burke
et al., 1997). Then, 42% of the British universities were used to schedule manually, 37% were
assisted by computers, and 21% totally automated. The timetabling problem is very popular
because it promotes competitions such as the International Timetabling Competition (ITC),
which have had three versions (2002, 2007 and 2011), Post et al. (2016). These events had
a positive impact in the research community in the sense of stating common instances and
so enabling comparisons between the models and algorithms proposed. The binary integer
linear programming model is an useful approach to this problem (Bakir and Aksop, 2008;
Ferreira et al., 2011; Havas et al., 2013; Sánchez-Partida et al., 2014; Eledum, 2017)).

Data science is currently getting attention because of the Big Data trend. Di�erent sectors
of society are now able to continuously gather data from websites, mobile devices, social
media tools and legacy systems, not to mention the burgeoning Internet of Things (IoT).
Institutions, governments and businesses today are drowning in data. This is information
that, when examined with discerning eyes, ostensibly reveals the trends that could help
better serve customers, increase sales, keep their businesses growing and help save lives. In
global emergencies like the coronavirus disease (COVID-19) pandemic (Ghebreyesus, 2020),
open science policies can remove obstacles to the free flow of research data and ideas, and
thus accelerate the pace of research critical to combating the disease (Zastrow, 2020). In
this sense, Statisticians and Data scientists are in demand because there is a shortage of
qualified data science professionals on the market today.
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In this work, we design a decision support system for scheduling courses of statistics
and data science. We focus to help educational institutions to distributing resources e�-
ciently such as the available time spent for teachers to form those human resources, once
dependencies that can exist in the process of distribution need to be taken into account to
reduce tensions that confront teachers of statistics and data science in practice (Cobb, 2011;
Batanero and Díaz, 2012).

The objective of this paper is to provide a case study of the university courses timetabling
class. We examine the Department of Statistics from the Federal University of Pernambuco
in Brazil (https://www.ufpe.br/dep-estatistica) because it has a similar structure to
other undergraduate and graduate programs in statistics and data sciences in Latin America
and other countries. Educational questions must be satisfied and we try to take into account
and answer the lecturers’ subjective preferences for the courses and schedules (weekly, in this
case). So far, this process has been realized manually, taking some weeks until a conclusion.
We attempt to promote its automation by implementing an optimization model that looks
for the best schedules.

The rest of this paper is organized as follows. Section 2 has brief comments on common
and specific scheduling rules of the present instance regarding matching lecturers to courses
and times that must be considered and describes the integer linear programming model
proposed in this case. Section 3 introduce a coe�cient for multiple solutions to choose the
optimal allocation based on satisfaction of lecturers. Section 4 presents the results obtained
after using this model in several semesters. Section 5 concludes the paper.

2. Scheduling rules and mathematical model

Firstly, the model is based on the satisfiability approach of optimizing the lecturer’s prefer-
ences by courses and schedules. This paradigm guides the objective function. Secondly, as
usual when building courses-timetables, we consider common scheduling rules such as (there
may be more):
(a) One, and only one, lecturer teaches each class.
(b) Lecturers just may be in one place at a time.
(c) Each course must be taught by the same lecturer.
(d) Lecturers have a maximum load of courses to teach.
(e) Only assign adjacent shifts.
(f) Try to maximize number of graduating students.

Additionally, we consider specific features. For instance, we need to deal with basic and
external courses, which have a prefigured timetable by other departments, and manage the
choice of courses to o�er by semester. Also, classes of the same course should be properly
spaced over the weekdays and so on.

Next, we describe the structure of the proposed model. The particular contents and details
of the computational implementations are not exhaustive. The notations present in Table
1 is considered, calling this set and explaining as it is convenient in the text. Furthermore,
variables and parameters are defined as follows.

In our approach we consider the following decision and auxiliary variables and parameters:

(a) u(t, c) (parameter): Ordinal utility of relation professor-course. It represents the prefer-
ence of the lecturer t about course c. Each lecturer informs a ordered list of preferred
courses and the first one has the greater u value, the second one the second greater u
value and so on.

https://www.ufpe.br/dep-estatistica
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Table 1. Description of sets and indexes used in the model.

Set Index Description

T , Td, Ts t Lecturers, department lecturers and assistants ones
C, Cund, Cext c All courses, undergraduate courses and external ones
D d Weekdays
S s Shifts: morning, afternoon, night
B © {1, 2} b First and second time blocks (or time slots) in a given shift
P , Pb p All semesters and semesters in which are o�ered basic courses
Cp c Courses distinguished by semesters
N n Students near graduation
Fn c Courses required by undergraduating student n

Dgrad (t, d) Days in which lecturer t teaches some graduate course
H (t, d, s, b) Graduate schedules that must to be avoided
L (t, d, s, b) Locked schedules of lecturer t

Ap (d, s, b) External undergraduate courses schedules by semester
E (c, d, s, b) External courses (o�ered to others departments) schedules

(b) load(t) (parameter): This parameter regards the classes load that lecturer t must satisfy
with undergrad courses (or external courses). In the model, its value provides an upper
limit to how many courses of this kind he must teach. This depends, for instance, on
lecturer being assistant or not, teaching courses or having administrative responsibilities.

(c) x(t, c, d, s, b) (decision variable): Indicator variable of event “lecturer t is allocated to
teach course c in day d, shift s and time slot b”.

(d) y(t, c) (auxiliary variable): Binary variable which informs whether lecturer t is matched
to course c.

(e) z(t, d) (auxiliary variable): Binary variable which indicates whether lecturer t teaches
some class in day d.

Here, by building a timetable to lecturer’s educational tasks is guided, first of all, by the
following criteria: answer as much as possible the preferences of the lecturers for courses and
schedules. Then, the objective function is defined. It is intended to maximize the quantity
(objective function)

Q =
ÿ

T

ÿ

C
u(t, c)y(t, c) ≠ M

ÿ

T

ÿ

D
z(t, d).

The constant M is a positive large number, and it promotes a penalization on Q when
increasing z values, that is an adjacent purpose is to concentrate the teachings of a given
lecturer at the minimum feasible number of days. We remark that, by definition, z(t, d) is
the indicator variable of the event “lecturer t teaches some class on the day d”.

Next, we introduce the following notations and settings to determine the constraints of
the problem:
(a) Definition of the auxiliary variable y(t, c): For each pair lecturer-course scheduled, the

variable y equals one if, and only if, summing x over all triples day-shift-block equals
two, once each course considered here must have two time blocks of classes per week,
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which is formulated as
ÿ

D

ÿ

S

ÿ

B
x(t, c, d, s, b) = 2y(t, c), ’ t œ T , c œ C.

(b) Definition of the auxiliary variable z(t, d): It is intended to concentrate the lecturers’
teachings at minimum feasible number of days, which is done by means of the proposed
penalization in Q and an inequality stated as

ÿ

C

ÿ

S

ÿ

B
x(t, c, d, s, b) 6 6z(t, d), ’ t œ T , d œ D.

Notice that the maximum hypothetical value assumed by the triple sum is six. This
would be a reality if the considered lecturer teaches in the two time blocks of all three
shifts. Combination of constraints regarding to control the intervals between classes of
each course and the lecturers’ loads (to be described) avoid this result.

Indeed, though we talk in definition of z, only this constraint does not guarantee that,
if lecturer t0 is scheduled for no classes on day d0, z(t0, d0) = 0. But, once we are han-
dling with an integer linear programming model, in the optimal solution the combined
e�ects of this constraint and the penalization in Q act to make z work according to the
interpretation we gave to it.

(c) Each department lecturer t should teach a maximum of load(t) undergraduate or exter-
nal courses, which is established by

ÿ

C
y(t, c) 6 load(t), ’ t œ Td.

(d) Some lecturers also cooperate with the statistics graduate program. In order to sum in
z this information in the objective function, let Dgrad be the set of couples (t, d) such
that lecturer t teaches in day d some course on statistics graduate program, which is
formulated as

z(t, d) = 1, ’ (t, d) œ Dgrad.

Under the same argument, let H be the set of 4-tuples (t, d, s, b) such that lecturer t
teaches some class on the statistics graduate program on day d, shift s and time block b.
Notice that Dgrad = {(t, d) : (t, d, s, b) œ H}. Generally, the undergraduate schedule is
subordinated to the statistics graduate program. Then, to avoid time conflict between
both programs, we set

ÿ

C
x(t, c, d, s, b) = 0, ’ (t, d, s, b) œ H.

(e) Given a specific time slot, a lecturer must be teaching not more than one class on it.
This is a constraint present in almost all classes timetabling problems and stated as

ÿ

C
x(t, c, d, s, b) 6 1, ’ t œ T , d œ D, s œ S, b œ B.

(f) Each course must be delivered by the same lecturer, which is established by
ÿ

T
y(t, c) = 1, ’ c œ C.
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(g) It is necessary to avoid that instructors teach classes on extreme shifts in a day. Let Td

be the set of the department lecturers. Once in our case none of them showed interest
by courses supposed to be o�ered at night, we write this shift setting

ÿ

C

ÿ

D

ÿ

B
x(t, c, d, night, b) = 0, ’ t œ Td.

(h) We want to avoid classes of a same course happening two days in a row, as well as in
two consecutive time blocks at the same shift and day, that is, each course has classes
in di�erent and properly spaced weekdays. Then, this can be formulated as

ÿ

T

ÿ

S

ÿ

B
x(t, c, d, s, b) +

ÿ

T

ÿ

S

ÿ

B
x(t, c, d + 1, s, b) 6 1, ’ c œ C, d œ D.

(i) Basic courses constraints: These courses (for example, calculus, linear algebra, and ana-
lytic geometry) are o�ered by a specific department. They are necessary to many other
departments of exact sciences. Then, basic courses schedules are preset and thenceforth
the concerned departments look for conforming their timetable. Thus,

(1) Let Cp be the set of undergraduate courses of semester p and
(2) Let Ap be the set of triples (d, s, b) scheduled for basic courses in semester p.

Hence, in each semester, we restrict undergraduate courses to be matched to time blocks
by means of

ÿ

T

ÿ

Cp

ÿ

Ap

x(t, c, d, s, b) = 0, ’ p œ Pb.

(j) We must guarantee that, in each semester p, a time block is filled with a maximum of
one lecturer teaching one undergraduate course. Therefore, for all p œ P , d œ D, s œ

S, b œ B, we have
ÿ

T

ÿ

Cp

x(t, c, d, s, b) 6 1,

considering a term C0, which is the set of optional courses, with no defined semesters.
(k) External courses must be also considered, that is, courses o�ered by the Department of

Statistics to others departments, also have a preset schedule. Let E be the set of 4-tuples
(c, d, s, b) such that external course c is scheduled to time block b, shift s and day d.
Then, we get that

ÿ

T
x(t, c, d, s, b) = 1, ’ (c, d, s, b) œ E .

Thus, we guarantee that exactly one lecturer is matched to every external course.
(l) It often happens that students are subscribed to courses which belong to di�erent

semesters. Some di�culties arise from this fact when making decisions about which
courses o�er in each semester. Hence, in a first moment, it is considered the request of
courses coming from students near to achieve undergraduate level; secondarily, students
with no disapprovals have a preference. Let N denote the set of potential undergrad-
uating students and let Fn, for n œ N , be the set of courses required by a student n.
Then, for all n œ N , d œ D, s œ S, b œ B, we set

ÿ

T

ÿ

Fn

x(t, c, d, s, b) 6 1,
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which is equivalent to avoid time conflicts between every pair of distinct courses in Fn.
(m) We must avoid also time blocks in which lecturers prefer not teach. Let L be the set of

4-tuples (t, d, s, b) such that lecturer t prefers do not be scheduled on (d, s, b). Therefore,
we have that

ÿ

C
x(t, c, d, s, b) = 0, ’ (t, d, s, b) œ L.

If all the constraints are considered, we set it is a constraint satisfaction problem.

3. An alternative coefficient for multiple optimal solutions

It is possible that distinct solutions yield the same optimal value of the objective function.
This would mean that the problem has multiple optimal solutions, which is not a bad
picture. In order to introduce a model-independent criterion to judge whether some solution
is better than another, let I be the set of optimal solutions of some instance.

We propose a coe�cient for each solution i, called here Gi, calculated by the following
algorithm. To optimize the understanding, the reader may want to take a look at Table
4 to visualize the process. For particular solutions i and lecturer t, compute for the j-th
allocation the expression given by

gj , gj(i, t) = lj,t ≠ kj,t + ”j

lj,t ≠ 1 + ”j
,

where ”j is the indicator variable of the event “the j-th course is the last one of the list”.
Here, kj,t is the ranking of the j-th course, in order of preference, matched to lecturer t
in the list without all courses up to the (j ≠ 1)-th assigned course, whose length is lj,t =
l1,t ≠ (j ≠1). Let lecturer t is matched to mt 6 load(t) disciplines. Note that each gj œ (0, 1],
for j œ {1, 2, . . . , mt}, measures the meeting of the j-th preference given that the previous
allocations have already been considered.

Thus, setting

Gi,t ,
1

mt

mtÿ

j=1

gj , ’ i œ I, t œ T ,

we may define a satisfaction index

Gi , |T |
≠1

ÿ

T
Gi,t, ’ i œ I,

as a coe�cient of how well the solution i meet the lecturers’ preferences by courses, where
| · | denotes “cardinality of the set”. For instance, one may compute G1,13 for lecturer t = 13
to the unique optimal solution i = 1 presented in Table 4 and thus obtain

G1,13 = g1 + g2

2 = 1
2

35 ≠ 1
5 ≠ 1 + 4 ≠ 2

4 ≠ 1

4
= 5

6 .

Then, given the distinct optimal solutions in I of some instance, we will say that maxi{Gi :
i œ I} indicates which is the best solution.
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4. Application and results

The model was implemented in AMPL (a mathematical programming language) an algebraic
modeling language to describe and solve high-complexity problems for large-scale (Fourer
et al., 1987) and solved by means of the Gurobi (https://www.gurobi.com) an optimizer
software (Bixby, 2007) linked with the R statistical software https://www.r-project.org.
A computer with Linux Ubuntu 19.04 - Disco Dingo with AMD quad-core processor with a
frequency of 2.80 GHz and 4GB RAM was used to carry out the tests.

The proposed model was applied in three consecutive semesters. In the first semester
(Instance 4), there were 903 binary variables and 1,760 linear constraints. For the second
semester that the model is applied (Instance 5), the formulation had 2,514 binary variables
and 1,055 constraints. In both cases, a unique solution was found after less than 2 seconds.
Instance 6 presents a bigger problem with 3,750 binary variables. Therefore, we observe an
increase in the size of the instances over the semesters.

Table 4 (Instance 5) shows the preference list of each lecturer, in which the courses and
department lecturers are labeled by integers from 1 to 32 and 1 to 18, respectively, besides
one assistant lecturer. Courses with square shape labels were later attached to the original
lists by a commission to handle feasibility.

For Instance 4, about 70% of total lecturers had first preference met and about 10% of
them (lecturers 9 and 10) were not answered in the first three preferences. Tables 2 and 3
compare over the semesters the number of days in which lecturers were scheduled to teach,
the secondary criteria. As we said before, the scheduling process was manually executed up
to Instance 3. Also, for Instance 5, as high as 80% of total lecturers had first preference and,
as Instance 4, 10% were not answered in the first three preferences. Therefore, for Instance
6, about 60% of total lecturers had first preference met and about only 8% of them were
not attended in the first three preferences.

Table 2. Distribution of how many days were allocated to each lecturer.

Institution
Days 1 2 3 4 5 6

2 75% 48% 75% 89% 75% 83%
3 17% 33% 17% 11% 25% 17%
4 8% 19% 8% 0% 0% 0%

Table 3. Distribution of how many days were allocated to each lecturer whose load is at least two courses.

Institution
Days 1 2 3 4 5 6

2 64% 21% 50% 80% 87% 83%
3 24% 50% 33% 20% 13% 17%
4 12% 29% 17% 0% 0% 0%

https://www.gurobi.com
https://www.r-project.org
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Table 4. Solution for Instance 4.

Lecturer Days Preferences list

1 2 8 , 4, 3, 1, 7, 9, 5, 10, 6, 14

2 2 18 , 21

3 2 11 , 5, 6, 13, 23

4 2 7 , 5, 1

5 2 2, 9, 14 , 22, 19, 24, 25

6 2 2 , 11, 12, 20, 16, 17, 18, 24, 32, 25

7 2 25 , 26

8 2 21 , 16, 17, 25

9 2 2, 8, 5, 4, 10, 1, 18, 20 ,23

10 3 4, 5, 8, 9, 10, 22 , 23, 12 , 25

11 2 1 , 7, 21, 16, 25

12 2 12, 5, 25 , 26

13 2 5 , 8, 10 , 21, 19

14 2 9 , 11, 15, 20, 18, 21, 23, 24

15 2 16 , 17 , 25

16 2 6 , 15 , 5, 10, 11, 12, 13, 19, 20, 23, 24

17 2 4 , 10 , 2, 23, 8

18 3 19 , 1, 3 , 7, 21, 32, 25

Assistant 2 31 , 32 , 23

where the notations used indicate that:

0 allocated course;

0 allocated course which were not in original list;

0 course added to the original list;

0 course allocated to assistants.
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5. Conclusions and perspectives

In this paper we present a scheduling problem at the Department of Statistics of the Federal
University of Pernambuco. The case study developed aims to allocate teachers to subjects
according to their teaching preferences and reduce the number of days of classes. An entire
programming model was proposed and three real instances were tested, relative to three
consecutive semesters of the course. The optimal solutions obtained were applied in the
department (with good acceptance among teachers).

For future works, it is intended to study, for this model, the influence of the parameters
u(t, c) in solutions and even in computational complexity. Also, a parallel approach of the
problem based on the coe�cients Gi, in the sense of being specific about the required quality
of the solutions, may has interesting features. Therefore, during these di�cult times of mit-
igations measures given by the COVID-19 pandemic, we are studying di�erent adaptations
of the timetabling formulation present here to include Social Distancing in the re-opening
processes of courses in institutions of safe form and include time-space structures as a pref-
erences of teachers, information asymmetries on real-time updates, and travel times.
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Abstract

The Kumaraswamy distribution has been a very studied tool in the analysis and mod-

eling of limited-range continuous random variables. Several variants of this distribution

have been studied, but they do not have the possibility of lifting the tails of this distri-

bution. However, in many situations, scenarios where the data are bounded and tail-area

events occur at one or both tails independently. In order to model these scenarios, we

propose the trapezoidal Kumaraswamy distribution. This paper is centered on the trape-

zoidal Kumaraswamy distribution, which has two intuitive additional parameters with

respect to the Kumaraswamy distribution and generalizes this. We study its probability

density function and derive some fundamental properties, such as the moments, moment

generating function, and characteristic function. Then, the trapezoidal Kumaraswamy

distribution is rewritten conveniently as a finite mixture showing that its parameters can

be easily estimated using the expectation-maximization algorithm. We report results of

a simulation and an application to a real data set. Comparison with several competing

distributions indicates that the trapezoidal Kumaraswamy distribution presents a better

fit and so it can be quite useful in empirical applications.

Keywords: EM algorithm · Maximum likelihood · Mixture distributions.

Mathematics Subject Classification: 62E15 · 62F10.

1. Introduction

A good alternative for modeling continuous data restricted to a bounded interval is the
double bounded distribution (Kumaraswamy, 1980), named after as the Kumaraswamy dis-
tribution (Jones, 2009). This distribution provides a wide variety of shapes for its probability
density function (PDF) allowing di�erent type of data to be accommodated.

The Kumaraswamy distribution is very flexible. However, it does not consider tail-area
events nor high flexibility in the variance specification. In order to add flexibility into the
model, other distributions derived from the Kumaraswamy distribution have been pro-
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posed. For example, the Kumaraswamy Weibull (Cordeiro et al., 2010) and Kumaraswamy-G
(Cordeiro and de Castro, 2011) distributions have been derived including two additional pos-
itive parameters. The authors studied some of their mathematical properties by presenting
special submodels such as: the Kumaraswamy generalized gamma distribution (de Pascoa
et al., 2011), which is able to model bathtub-shaped hazard rate functions. The importance
of Kumaraswamy generalized gamma distribution is in its capacity to model functions of
monotonous failure frequency and non-monotone, which are fairly common in life-time data
analysis and reliability. Another case is the Kumaraswamy Gumbel distribution (Cordeiro
et al., 2012), which is probably the most widely applied statistical distribution to prob-
lems in engineering. Similarly, the Kumaraswamy-log-logistic (De Santana et al., 2012),
Kumaraswamy-geometric (Akinsete et al., 2014), and Kumaraswamy Fréchet (Mead and
Abd-Eltawab, 2014) distributions, among others of the same family have been proposed.
Furthermore, in the same direction, in order to make some existing distributions flexible,
other models have been proposed as in Liang et al. (2014), Nadarajah and Kotz (2004),
Nadarajah and Kotz. (2006), Akinsete and Famoye (2008), Eugene et al (2002), Cordeiro
and dos Santos Brito (2012), among others. Note that the Kumaraswamy distribution, and
its extensions, are unable to fit data which are concentrated at both tails. The main ob-
jective of this work is to propose a new bounded distribution which is able to model data
which are concentrated at both tails.

The reminder of this article is organized as follows. In Section 2, the trapezoidal Ku-
maraswamy (TK) distribution is proposed and its basic properties are discussed. In Section
3, we estimate parameters through a convenient reparametrization of the TK distribution
given in Section 2. Section 4 conducts a Monte Carlo simulation study for both the TK and
Kumaraswamy distributions, comparing them. In Section 5, two empirical illustrations are
provided corresponding to (i) percent slacks for reduction in pollutant emissions/discharges
for carbon dioxide (CO2) and water (H2O) in Angolan thermal power plants, and (ii) scores
of a university admission test in 1295 school establishments in Metropolitan region of Chile.
The results are compared with the classical Kumaraswamy distribution. Finally, discussions,
conclusions and further research of the proposed distribution appear in Section 6.

2. The new distribution

In this section, we discuss some properties of the Kumaraswamy distribution and we present
the TK distribution as well as its properties.

2.1 Background

The PDF of a random variable Y following a Kumaraswamy distribution is given by

fK(y; –, —) = –—y–≠1(1 ≠ y–)—≠1, y œ (0, 1), (1)

where – > 0 and — > 0. Then, note that

E(Y ) = m1, Var(Y ) = m2 ≠ m2
1,

with mk denoting the k-th moment of the Kumaraswamy distribution stated as

mk =
—�(1 + k

–)�(—)
�(1 + k

– + —)
= —B

3
1 + k

–
, —

4
,

where B is the beta function.
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In practice, the Kumaraswamy distribution has been a useful tool for modeling bounded
data. However, it is common in many cases to have data concentrated at both tails inde-
pendently. Hence, we propose the TK distribution as an extension which allows to model
this situation and that it conserve the flexibility of the Kumaraswamy distribution.

2.2 The trapezoidal Kumaraswamy distribution

Let Y follow a TK distribution of parameters a, b, –, — which we denote by Y ≥
TK(a, b, –, —). Then, the PDF of Y is established as

fTK(y; a, b, –, —) = a + (b ≠ a)y +
3

1 ≠ a + b

2

4
fK(y; –, —), (2)

with 0 < y < 1, 0 Æ a, b Æ 2, 0 Æ a + b Æ 2 and fK(y; –, —) being the Kumaraswamy PDF
of parameters – and — given in Equation (1). The parameters a and b can be intuitively
interpreted as the lift at the left and right tails of the PDF respectively; see Figure 1. As
a particular case, we have that, when a = b = 0, the standard Kumaraswamy distribution
is recovered –see Equation (1)– and we propose the rectangular Kumaraswamy distribution
when a = b = ◊.

0.0 0.2 0.4 0.6 0.8 1.0
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2
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4

y

f Y
(y

)

0.0 0.2 0.4 0.6 0.8 1.0
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3.
0

y

f Y
(y

)

Figure 1. Examples of TK PDF with – = 10, — = 15 and di�erent values of the parameters (a, b). Left: (a, b) =
(0.5, 0) (solid line), (a, b) = (1, 0) (dashed line) and (a, b) = (1.5, 0) (dotted line); right: (a, b) = (0, 1) (solid line),
(a, b) = (0.6, 0.6) (dashed line) and (a, b) = (0.8, 0.4) (dotted line).

We now present some properties of the TK distribution. Let Y ≥ TK(a, b, –, —). Then,
the k-th moment of Y is given by

mk = E(Y k) = a

k + 1 + b ≠ a

k + 2 +
3

1 ≠ a + b

2

4
mú

k, (3)

where mú
k is the k-th moment of the Kumaraswamy distribution of parameters –, —. Then,

Equation (3) can be written as

mk = a

k + 1 + b ≠ a

k + 2 +
3

1 ≠ a + b

2

4
—� (1 + k/–) � (—)
� (1 + — + k/–)

= a

k + 1 + b ≠ a

k + 2 +
3

1 ≠ a + b

2

4
—B (1 + k/–, —) . (4)
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With the expression defined in Equation (4), it is easy to deduce that

E(Y ) = a + 2b

6 +
3

1 ≠ a + b

2

4
—B

3
– + 1

–
, —

4
,

Var(Y ) = 3a + 9b ≠ (a + 2b)2

36

+
3

1 ≠ a + b

2

4
—

3
B

3
– + 2

–
, —

4
≠ (a + 2b)

3 B
3

– + 1
–

, —
4

≠
3

1 ≠ a + b

2

4
—B2

3
– + 1

–
, —

44
.

The moment generating function of the random variable Y is given by

MY (t) = E
1
etY

2
= 1 +

Œÿ

k=1
mk

tk

k! , t œ R,

and its characteristic function is stated as

ÏY (t) = E
1
eitY

2
= 1 +

Œÿ

k=1
mk

(it)k

k! , t œ R.

3. Estimation of trapezoidal Kumaraswamy distribution parameters

In this section, we discuss how to estimate the parameters of the TK distribution e�ciently.

3.1 Log-likelihood function

The likelihood function for a sample of n observations from the TK distribution is specified
as

L(a, b, –, —) =
nŸ

i=1

3
a + (b ≠ a)yi +

3
1 ≠ a + b

2

4
fK(yi; –, —)

4
. (5)

Then, one strategy to build estimators for its parameters is to maximize the corresponding
log-likelihood given by

¸(a, b, –, —) =
nÿ

i=1
log

3
a + (b ≠ a)yi +

3
1 ≠ a + b

2

4
fK(yi; –, —)

4
. (6)

The maximum likelihood estimators of a, b, – and — are obtained from the di�erentiation
of Equation (6) with respect to the mentioned parameters and equating to zero. However,
in this case, the obtained equations do not have closed-form. Hence, they need to be ob-
tained by numerically maximizing the log-likelihood function using a nonlinear optimization
algorithm, such as the Newton algorithm or the quasi-Newton algorithm, such the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm (Nocedal and Wright, 1999).

An e�ciently strategy to estimate the parameters of the TK distribution is solving this
problem as a missing data problem, specifying the likelihood function defined in Equation
(5) conveniently, as described in next subsection.
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3.2 The EM algorithm

First, we can observe that Equation (2) can be rewrite as a mixture of beta distributions
and a Kumaraswamy distribution, that is, by means of

fTK(y; a, b, –, —) = a

2(2 ≠ 2y) + b

22y +
3

1 ≠ a + b

2

4
fK(y; –, —), (7)

where f1(y) = fB(y; 1, 2) = 2 ≠ 2y and f2(y) = fB(y; 2, 1) = 2y are particular cases of
the beta PDF defined as fB(y; –ú, —ú), whereas f3(y) = fK(y; –, —) corresponds to Ku-
maraswamy PDF described in Equation (1). In addition, here w1 = a/2, w2 = b/2 and
w3 = (1≠(a+b)/2) are the weights such that w1+w2+w3 = 1 and 0 Æ w1, w2, w3 Æ 1. Then,
this problem can be solved as a finite mixture of distributions by using the expectation-
maximization (EM) algorithm (McLachlan and Peel, 2004). The EM algorithm is a general
method for finding maximum likelihood estimates when there are missing values or latent
variables. The idea behind the EM algorithm applied to mixture models is to assume that
the mixture is generated by missing observations of a discrete random variable Z, where
zi œ {1, 2, 3} indicates which mixture component generated the observation yi. The likeli-
hood function of the complete data formed by the observed data (y) and the unobserved
data (z), for a sample of n, is established by

pY ,Z(y, z; �) =
nŸ

i=1
pY ,Z(yi, zi; �) =

nŸ

i=1

3
a

2(2 ≠ 2yi)
41zi=1 3

b

2(2yi)
41zi=2

◊
33

1 ≠ a + b

2

4
fK(yi; –, —)

41zi=3

,

where Y and Z are the random vectors associated with (y) and (z), respectively. In addition,
� = (a, b, –, —) is the parameter vector and 1 is the indicator function, that is 1zi=j = 1 if
zi = j (with j œ {1, 2, 3}) holds, and 1zi=j = 0, otherwise. Note that, in the EM algorithm, it
is necessary to specify an auxiliary function Q, corresponding to the conditional expectation
of the log-likelihood function with complete data (y, z) given the observed data Y = y, and
a parameterization �(p≠1), that is, we have that

Q
1
�, �(p≠1)

2
= EY ,Z,�(p≠1)(log(pY ,Z(Y ,Z; �)))

=
nÿ

i=1
EY ,Z,�(p≠1)(log(pY ,Z(Yi, Zi; �)))

=
nÿ

i=1

3ÿ

j=1
r(p≠1)

ij log(pY ,Z(yi, zi; �))

=
nÿ

i=1

3ÿ

j=1
r(p≠1)

ij (log(wjfj(yi; �))),

where w1 = a/2, w2 = b/2, w3 = (1 ≠ (a + b)/2), f1(yi; �) = 2 ≠ 2yi, f2(yi; �) = 2yi,
f3(yi; �) = fK(yi; –, —) as in Equation (7), and

r(p≠1)
ij = P(Zi = j; Yi = yi, �(p≠1)) =

w(p≠1)
j fj(yi; �(p≠1))

q3
l=1 w(p≠1)

l fl(yi; �(p≠1))
.
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In the E-Step, we need to find the expected value of 1zi=j for j = 1, 2, 3 given yi and the
current parameterization �(p≠1), stated as

E
Ë
1zi=j ; yi, �(p≠1)

È
= r(p≠1)

ij .

In the M-Step, we find �(p) which maximizes Q(�, �(p≠1)). Calculating the derivates of Q
with respect to w1, w2, w3 under the restriction w1 + w2 + w3 = 1, is possible obtain the
estimators

w(p)
j =

qn
i=1 r(p≠1)

ij
qn

i=1
q3

j=1 r(p≠1)
ij

=
n(p≠1)

j

n
.

Additionally, the derivates with respect to – and — lead to the usual maximum likelihood
estimators of the Kumaraswamy distribution, which solve the equations expressed as

(— ≠ 1)
qn

i=1 r(p≠1)
i3 y–

i log(yi)
1 ≠ y–

i

≠ n(p≠1)
3
–

≠
nÿ

i=1
r(p≠1)

i3 log(yi) = 0 (8)

n(p≠1)
3
—

+
nÿ

i=1
r(p≠1)

i3 log(1 ≠ y–
i ) = 0. (9)

The corresponding estimates generated from Equations (8) and (9) can be obtained using the
quasi-Newton algorithm. Once we update the parameters, we must repeat both the E and
M steps, iteratively. In our case, in the M-step of the algorithm, we use the BFGS method
to iteratively solve the non-linear maximization problem associated. The BFGS method is
implemented in the R software by the functions optim and optimx; see www.R-project.org
and R Core Team (2018).

4. Simulation study

In this section, we conduct a simulation study to compare the performance of the TK
distribution with the Kumaraswamy distribution for samples generated from each of them.

4.1 Scenario of the simulations

In order to capture the particular tail behavior of each one, we use a sample size of 1000 and
generate 100 sample sets to calculate the mean log-likelihood function and the Akaike infor-
mation criterion (AIC). First, we simulate from the TK distribution with parameters given
by � = (0.2, 0.5, 7, 10), that is, we simulate an asymmetric distribution with independent
lifting in both tails to capture the essense of the proposed TK distribution. Second, we col-
lect a sample from the Kumaraswamy distribution with parameters stated as �B = (7, 10),
that is, an asymmetric distribution but without lifted tails in its PDF.

4.2 Results of the simulations

In our first simulation from the TK distribution, we can observe in Table 1 that the TK
distribution achieves a better fit than the Kumaraswamy distribution. In Table 2, we can
appreciate that the Kumaraswamy distribution tries to fit the model by increasing the

www.R-project.org
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variance, that is, finding small values for – and — to overcome the inability of this distribution
to raise the tails.

Table 1. Comparison between the mean log-likelihood and mean AIC of the TK and Kumaraswamy
distributions for 100 samples of size 1000 drawn from a TK distribution with parameters (0.2, 0.5, 7, 10)

Distribution Log-likelihood AIC
TK 363.26 ≠718.53
Kumaraswamy 237.38 ≠470.75

Table 2. Comparison between the mean of the estimated parameters of the TK and Kumaraswamy dis-
tributions for 100 samples of size 1000 drawn from a TK distribution with parameters (0.2, 0.5, 7, 10)

Estimated parameter
Distribution a b – —

True 0.20 0.50 7.00 10.00
TK 0.20 0.49 7.03 10.28
Kumaraswamy - - 2.72 1.94

In Figure 2, we can see the histogram for simulated data from the TK distribution and
the adjusted PDFs for the TK and Kumaraswamy distributions. The interpretation of the
estimated parameters a, b is straightforward and corresponds exactly to the lifting of the
tails of PDF in left and right tails respectively. In addition, note that the Kumaraswamy
distribution is unable to capture this lifting.
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Figure 2. Histogram for simulate data set from TKD and adjusted PDFs for two di�erent models: In solid line, the
TK model; In dashed line the Kumaraswamy model.

Table 3 reports the relative bias (RB) and the root-mean-squared error (RMSE) for each
parameter estimator over the 100 simulated samples under the TK distribution. They are
defined as

RB(◊) = 1
100

100ÿ

i=1

A ‚◊(i) ≠ ◊

◊

B

, MSE(◊) = 1
100

100ÿ

i=1
(‚◊(i) ≠ ◊)2,

where ◊ represents any particular parameter, and ‚◊(i) is the estimate of ◊ for the i-th sample.
Table 3 reports that the estimate of each parameter in each data set is reasonable when
fitting the TK distribution.
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Table 3. RB and RMSE of each parameter under 100 samples of size 1000 drawn from a TK distribution
with parameters (0.2, 0.5, 7, 10).

Parameter
Indicator a b – —

RB 0.00088 ≠0.00287 0.00038 0.00276
RMSE 0.00554 0.04537 0.08497 0.87242

In our second simulation from the Kumaraswamy distribution, we can observe in Table 4
that the TK distribution achieve an equally good fit than the Kumaraswamy distribution. In
Table 5, note that the TK distribution gives similar estimates for the parameters, compared
to the Kumaraswamy distribution.

Table 4. Log-likelihood and AIC for simulated data

Distribution Log-likelihood AIC
TK 843.52 ≠1679.03
Kumaraswamy 843.29 ≠1682.58

Table 5. Comparison between the mean of the estimated parameters of the TK and Kumaraswamy dis-
tributions for 100 samples of size 1000 drawn from a Kumaraswamy distribution with parameters (7, 10)

Estimated parameter
Distribution a b – —

True 0.00 0.00 7.00 10.00
TK 2.85e-04 1.12e-03 7.07 10.29
Kumaraswamy - - 7.05 10.22

Unsurprisingly, when the sample is generated from the Kumaraswamy distribution, we
do not see significant di�erences on the mean log-likelihood and AIC achieved by the two
adjusted Kumaraswamy and TK distributions. When the sample is drawn from the TK
distribution with a di�erence between the its two tails, a = 0.2 and b = 0.5, the best fit in
terms of the mean log-likelihood and AIC is achieved by the TK distribution. This can be
explained by the fact that the data generated from the tails of the distribution cannot be
captured only by using a Kumaraswamy distribution.

5. Empirical illustrations with real data

In this section, in order to illustrate the TK distribution in practice, we apply the pro-
posed results to two real data sets. We compare the goodness of fit between the TK and
Kumaraswamy distributions.

5.1 Pollutant emissions in Angolan thermal power plants

Data on Angolan thermal power plants span the period 2010 to 2014 were obtained from
a enterprise named ENE-EP. They are based on the plants balance sheets and income
statements, which are gathered and organized by ENE-EP as part of regular reporting.
The variables of interest for our study are the percent slacks for reduction in pollutant
emissions/discharges for CO2 and H2O. This scalar measure deals directly with the input
excesses and the output shortfalls of the decision making unit concerned and is typically
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Table 7. Log-likelihood and AIC values or H2O data

Distribution
Indicator TK Kumaraswamy
Log-likelihood 82.21 24.40
AIC ≠156.43 ≠44.81

used as e�ciency measure for modeling environmental performance (Barros and Wanke,
2017).

E�ciency scores computed from the slacks based model with undesirable (bad) outputs
(SBM-Undesirable) range between 0 and 1, where 1 denotes a maximum or 100 % of e�-
ciency. This suggests that a given thermal plant is operating at the frontier of the productive
technology. In fact, e�ciency is a productivity ratio between two DMUs: in data envelop-
ment analysis (DEA) based models, all plants are assessed against a convex frontier of best
practices formed by the most productive DMUs that can deliver higher outputs consuming
lower inputs or benchmarks. In DEA, each production unit is known as a decision making
unit (DMU).

Before proceeding, it is worth noting that if the variable assumes the extreme values of
zero and one (Y ú œ [0, 1]), then a practical transformation must be applied (Smithson and
Verkuilen, 2006) by

y = (n ≠ 1)
n

yú + 1
2n

, yú œ [0, 1],

where n is the sample size.
In our study, we consider 160 e�ciency scores (n = 160) for the 32 Angolan thermal power

plants from 2010 to 2014. This e�ciency scores has been measures for CO2 and H2O. From
Figures 3 and ??, note that the data distribution have a lifted left tail. Then, it is justified
to fit the TK distribution to model these data. The model under consideration is defined by

Yi
IND≥ TK(a, b, –, —), i = 1, . . . , 160,

where IND stands for independent. Note in Tables 6 and 7 that the TK distribution achieves
a best fit compared to the Kumaraswamy distribution. In Tables 8 and 9, we report the
estimated parameters. It is clear that the distribution in this example is lifted in the left
tail, since for CO2 data we have ‚a = 0.3806 and ‚b = 0, whereas for H2O data, ‚a = 0.3303
and ‚b = 0, and then we can see that these estimates have a very intuitive interpretation
since the tails of the PDF are lifted visually in these quantities. This fact is attempted to
be compensated in the Kumaraswamy distribution by increasing the variance (decreasing ‚–
and ‚—).

Table 6. Log-likelihood and AIC values for CO2 data

Distribution
Indicator TK Kumaraswamy
Log-likelihood 66.86 14.00
AIC ≠125.73 ≠23.99

In Figure 3, we can see the adjusted PDFs for the two di�erent models, with the TK
distribution being the model that better captures the distribution of the data.



172 Figueroa-Zúñiga et al.

Table 8. Estimated parameters for CO2 data

Estimated parameter
Distribution a b – —

TK 0.3806 2.50e-45 7.0541 5.1930
Kumaraswamy - - 1.7546 1.2278

Table 9. Estimated parameters for H2O data

Estimated parameter
Distribution a b – —

TK 0.3303 1.12e-43 8.2015 5.5768
Kumaraswamy - - 2.1070 1.2778
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Figure 3. Adjusted PDFs for two di�erent models: in solid line, the TK distribution; and in dotted line the Ku-
maraswamy distribution for CO2 (left) and H2O (right) data.

5.2 University admission score

We analyze the average score of university admission test in 1295 school establishments in
Metropolitan region of Chile, 2016. This test is applied to students who have graduated
from school in Chile, which is carried out at a national level and covers di�erent areas of
knowledge. In Chile, this test is named “prueba de selección universitaria (PSU)” and allows
the student’s admission to the di�erent universities of the country, depending on the result
obtained in this test. The data set is available in the website https://es.datachile.io.

We are interested in the performance of the students who have applied to the PSU. To
measure performance, a total of 1295 average scores per establishment have been collected in
the Metropolitan region of Chile and scored in the interval (0, 1) through the transformation
proposed by Smithson and Verkuilen (2006) formulated as

y = n ≠ 1
n

yú ≠ a1
a2 ≠ a1

+ 1
2n

, yú œ [a1, a2].

Then, y œ (0, 1) and in our case a1 = 293.5, a2 = 715.5 and n = 1295. We can see in Figure
4 that the data distribution have a lifted right tail and slightly lifted left tail. Thus, it is
justified to fit the TK distribution to model these data. The model under consideration is

https://es.datachile.io
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Table 10. Log-likelihood and AIC values for PSU data

Distribution
Indicator TK Kumaraswamy
Log-likelihood 393.68 352.95
AIC ≠779.35 ≠701.90

Table 11. Estimated parameters for PSU data

Estimated parameter
Distribution a b – —

TK 0.0066 0.3072 2.9844 6.6608
Kumaraswamy - - 2.3976 3.3506

defined by

Yi
IND≥ TK(a, b, –, —), i = 1, . . . , 1295.

We can see in Table 10 that the TK distribution achieves a best fit compared to the Ku-
maraswamy distribution. In Table 11 we report the estimated parameters. It is clear that
the distribution in this example is lifted in the tails (‚a = 0.0066 and ‚b = 0.3072) and we
can see that these estimates have a very intuitive interpretation since the tails of the PDF
are lifted visually in these quantities. This fact is once again attempted to be compensated
in the Kumaraswamy distribution by increasing the variance (decreasing ‚– and ‚—).

In Figure 4, we can see the adjusted PDFs for the two di�erent models, with the TK
distribution being the model that better captures the distribution of the data.
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Figure 4. Adjusted PDFs for two di�erent models: in solid line, the TK distribution; and in dotted line the Ku-
maraswamy distribution for PSU data.
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6. Concluding remarks and future research

The Kumaraswamy distribution and other distributions derived from this have been very
used in practice. However, until now, it has not been proposed a distribution that allows
us to raise the tails of the probability density function in the case of having data accumu-
lated in one or both ends. In this work, we introduced a new four-parameter model called
the trapezoidal Kumaraswamy distribution, that is a generalization of the Kumaraswamy
distribution which has the rectangular Kumaraswamy distribution as a particular case.
The trapezoidal Kumaraswamy distribution comes to solve the problem of adjusting data
with some concentration in the extremes. The trapezoidal Kumaraswamy distribution can
be represented as a finite mixture model generated by two specific beta distributions and
the Kumaraswamy distribution. The trapezoidal Kumaraswamy distribution presented two
additional parameters with respect to the Kumaraswamy distribution and they have the ad-
vantage of being very intuitive, because they represent the lifting of the probability density
function in the tails. The estimation procedure for their parameters is straightforward and
in this paper was presented a methodology of estimation achieving good results both with
the simulated and real data. In the simulation studies, we observed marked di�erences in
favor of the trapezoidal Kumaraswamy distribution when the samples have some concen-
tration in the tails. In the empirical illustration, the trapezoidal Kumaraswamy distribution
turned out to be the model that best adjusted the data and that attended to the essence of
the data distribution with some accumulation at the ends. Then, we can conclude that the
trapezoidal Kumaraswamy distribution seems to be a new robust alternative for modeling
data bounded on the unit interval.

Some open problems that arose from the present investigation are the following:

• An extension of this work that is under development is to propose the reparametrized
trapezoidal Kumaraswamy distribution in terms of its mean and connect to it a regression
structure, then we will propose a trapezoidal Kumaraswamy regression model.

• The development of a bayesian methodology can be of interest for an alternative imple-
mentation.

• The benefits of the distribution will be extended to any bounded distribution.
• A re-parametrization of the trapezoidal Kumaraswamy distribution in terms of its mode

is of interest, as this will allow us to connect its mean to a regression structure in a similar
manner to that as in generalized linear models.

• A quantile regression model with a trapezoidal Kumaraswamy distributed response will
be studied.

Therefore, the proposed results in this study opens opportunities to explore other theoretical
and numerical issues.
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Appendix

This appendix presents one piece of R codes used for fitting the trapezoidal Kumaraswamy
distribution.
library(extraDistr)
# For evaluation of Kumaraswamy probability density function (dkumar)
## Trapezoidal Kumaraswamy probability density function ##
dtrapkum<-function(data,w1,w2,alpha,beta){ # w1 and w2 are the weights

# described in the paper
eval<-w1*dbeta(data,1,2)+w2*dbeta(data,2,1)+(1-w1-w2)*dkumar(data,alfa,beta)
return(eval)
}

# Function used in Algorithm to estimate the Kumaraswamy parameters
model<-function(x,data){
alfa0<-(sum(tau3)/x[1])+sum(tau3*log(data))
-sum(tau3*(x[2]-1)*data^x[1]*log(data)/(1-data^x[1]))
beta0<-(sum(tau3)/x[2])+sum(tau3*log(1-data^x[1]))
c(alfa0=alfa0,beta0=beta0)
}

# Initial values
a<-0.1
b<-0.2
alfa<-2
beta<-2
w1<-a/2
w2<-b/2
w3<-1-w1-w2

# EM algorithm #
for(k in 1:1000){
# E step
tau1<-w1*dbeta(data,1,2)/(dtrapkum(data,w1,w2,alpha,beta))
tau2<-w2*dbeta(data,2,1)/(dtrapkum(data,w1,w2,alpha,beta))
tau3<-(1-w1-w2)*dkumar(data,alfa,beta)/(dtrapkum(data,w1,w2,alpha,beta))
# M step
pi1<-sum(tau1)/length(data)
pi2<-sum(tau2)/length(data)
solution<-multiroot(f=model,start = c(alfa,beta),maxiter=5000,data=data)
solution
alfa<-solution$root[1]
beta<-solution$root[2]
}
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