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UNCORRECTED PROOFS
Tenth Volume – First Number

Editorial Paper

“Chilean Journal of Statistics”

Ten years after its launch:

A message from the new Editor-in-Chief

Welcome to the first issue of the tenth volume of the Chilean Journal of Statistics
(ChJS). Today, April 29, 2019, the ChJS celebrates ten years of life and begins leaving
its childhood, walking quickly to become a teenager. I remember perfectly well when the
baby ChJS was born. I was present at that birth and I accompanied the baby during its
first three years of life as its Executive Editor. The first volume of the ChJS had two
issues, published in April and September 2010, which paid tribute to Dr. Pilar Iglesias, a
beloved Chilean statistician. Pilar was the main motivation for the Chilean editorial board
to launch this journal, which has as its ancestor the Revista de la Sociedad Chilena de
Estad́ıstica, published in Spanish from 1984 to 2000. I would like to name its dearest uncles
who helped the ChJS to survive. Among them are Marcia Branco and Rosangela Loschi
from Brazil, Eduardo Gutiérrez-Peña and Manuel Mendoza from Mexico, Marc Genton
from Switzerland, as well as Guido del Pino, Manuel Galea, Ronny Vallejos, and Reinaldo
Arellano from Chile. I would like to take this opportunity to congratulate Reinaldo, who
has honored the Chilean statistical community as the recent winner of the “Mahalanobis
Prize 2019” awarded by the International Statistical Institute. Obviously, the ChJS would
be nothing without the valuable contributions of renowned international researchers who
have honored us by publishing their interesting works in our journal; all of these papers
are available for free at http://chjs.mat.utfsm.cl/issues.html. We also thank all the
anonymous reviewers who have contributed to keeping the top quality standards of the
ChJS.

Although the ChJS is published by the Chilean Statistical Society (www.soche.cl) and
belongs to the Chilean statistical community, our journal can be recognized as an inter-
national publication since its editorial board is composed of colleagues from practically
the five continents. Our Editors are from Argentina, Australia, Austria, Bulgaria, Brazil,
Canada, Chile, China, Colombia, Greece, India, Italy, Mexico, Netherlands, Peru, Portu-
gal, Romania, Saudi Arabia, Spain, Switzerland, UK, and US. Our current Editorial Board,
presented at http://chjs.mat.utfsm.cl/board.html, is a mixture of experienced edi-
tors and talented young researchers, the latter mainly from Chile and Brazil, who with
great interest and enthusiasm have honored us by accepting to be part of the ChJS. They
are having their first editorial experiences, although they all have extensive experience as
researchers as well as reviewers for prestigious international journals.

I would also like to thank the members of the Directory of the Chilean Statistical Society
(https://soche.cl/quienes-somos) headed by its President, Dr. Mauricio Castro, for
the trust placed in me to be the new Editor-in-Chief of the ChJS. They can rest assured
that, just as I did in the past as its Executive Editor, I will make my best e↵ort to bring
the ChJS to the highest standards of professionalism, impartiality and quality that all
scientific journals must strive for.

ISSN: 0718-7912 (print)/ISSN 0718-7920 (online)
c� Chilean Statistical Society – Sociedad Chilena de Estad́ıstica
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In addition to this presentation note, the first issue of the tenth volume of the ChJS
comprises five papers. Jhonnata B. de Carvalho, Murilo C. Silva, George F. von Borries,
André L.S. de Pinho, and Ricardo F. von Borries, from Brazil and US, combined Fourier
analysis and support vector machines to conduct an interesting work for classification
of electroencephalograms, a relevant current theme related to data science. Luis Benites,
Roćıo Maehara, Vı́ctor H. Lachos, and Heleno Bolfarine, from Peru, US and Brazil, pro-
posed a regression model based on a finite mixture of skew heavy-tailed distributions, a
widely studied topic by Brazilian and Chilean researchers within the context of statistical
modeling. Ednário Mendonça, Michelli Barros, and Joelson Campos, from Brazil, derived
goodness-of-fit tests based on the Kullback-Leibler information for the Birnbaum-Saunders
model, a distribution which has had some of its more important developments in Chile and
Brazil. Nathalia L. Chaves, Caio L.N. Azevedo, Filidor Vilca, and Juvêncio S. Nobre, from
Brazil and Chile, introduced a new distribution to describe data with positive support and
asymmetry by combining the Birnbaum-Saunders and centered skew-normal models, pro-
viding di↵erent statistical and mathematical features for this new model. Finally, our fifth
paper is presented by Gauss M. Cordeiro, M. Mansoor, and Serge B. Provost, from Brazil,
Pakistan and Canada, who derived their work in the setting of distribution theory, an area
of wide development around the world, connecting the Harris and Lindley distributions to
perform an interesting study which was applied to the modeling of hydrological data.

As a final comment, I would like the Chilean statistical community, as well as the interna-
tional statistical community, our prestigious Editorial Board and past authors to champion
ChJS as an emerging international journal and to encourage others to submit new works
to the ChJS. Currently, we are indexed by several international systems, including the
Institute for Scientific Information (ISI) Web of Science in the Emerging Sources Cita-
tion Index. The ChJS faces important challenges for the near future, such as reaching the
Science Citation Index and looking for partnerships with prestigious publishers, societies
and associations. However, just as with statistics itself, our success will depend on a team
e↵ort. Each one of us is important in meeting these challenges. We need you all.

Vı́ctor Leiva
Editor-in-Chief
Chilean Journal of Statistics
http://www.victorleiva.cl

http://www.victorleiva.cl
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Abstract

This paper introduces a method for the classification of electroencephalogram (EEG)
data combining Fourier analysis, support vector machine (SVM) and a weighting sys-
tem, called WFF-SVM, that provides high correct classification rates (accuracy) using
a small training data set. Basically, an SVM classifier is calculated for each frequency in
the periodogram and a proposed weighting system, based on the error rate of each SVM
classifier, is used to obtain a final decision value. Also, it is shown that principal com-
ponent analysis can be used to identify the best group of EEG channels to apply to the
classification method, improving the correct classification rate. Two applications with
real data are presented. The first application uses a public data set of epileptic patients
and compares the proposed method with other methods presented in the literature.
In this case, the correct classification rate obtained was 100%. The second application
consists of EEG data collected from a subject submitted to 10 visual stimuli and the
correct classification rate obtained was 95.31%. The classifier WFF-SVM combines mul-
tiple existing techniques, each one of them widely used in time series and dimensionality
reduction problems. Our paper combines standard signal processing techniques to obtain
high classification rates of EEG data.

Keywords: Epilepsy data · Periodogram · Principal components analysis · Simple
moving averages · Supervised learning.

Mathematics Subject Classification: Primary 62H25 · Secondary 68Q32.

1. Introduction

Machine learning (ML) techniques have been gaining prominence due to real-world prob-
lems as well as large databases. Basically, one can divide ML methods into two classes,
supervised learning and unsupervised learning. In unsupervised learning, the method has
to recognize the groups by existing standards with a certain criterion. This type of learning
tries to gain some understanding of the process that generated the data, e.g., the K-means
method applied in DNA gene expression and Internet newsgroups (Ding and He, 2004),

⇤Corresponding author. Email: jhon_dbz@yahoo.com.br
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clustering with hill-climbing optimization method applied to bee species (Friedman and
Rubin, 1967), botanical data (Rubin, 1967) and in clustering of plants, wines and heart
diseases (Souza et al., 2017). In supervised learning, groups (or classes) are known a priori
and it is necessary to provide examples for method training. These methods are often
used in classification and regression problems, e.g., logistic regression in the prediction
of a financial crisis in Latin American companies (Giampaoli et al., 2016), in the fault
diagnosis in chemical processes using Fisher discriminant analysis (Chiang et al., 2000),
SVM classification in validation of cancer tissue samples (Furey et al., 2000). However, our
interest is in the classification of electroencephalography signals.
An EEG are recordings of the electrical potentials produced by the brain (Bronzino,

1999; Buzsaki, 2006). Basically, the digital EEG is a time series containing information of
the electrical activity generated by the brain. EEG has vast application in areas such as
epilepsy detection (Andrzejak et al., 2001), emotion regulation using neurofeedback (Ruiz
et al., 2014), a↵ective neuroscience (Sitaram et al., 2011), and brain computer interface
(Kübler et al., 2001; Wolpaw et al., 2002). For an e�cient classification of EEG, an al-
gorithm should address two main problems: feature extraction and classification method.
Several methods have been used to extract features of EEG data, such as discrete wavelet
transforms (DWT) (Jahankhani et al., 2006; Subasi, 2007; Subasi and Gursoy, 2010),
amplitude values (Kaper et al., 2004), clustering techniques (Li and Wen, 2011), autore-
gressive and adaptive autoregressive parameters (Penny et al., 2000; Pfurtscheller et al.,
1998), wavelet packet decomposition and extracted eigenvalues from the resultant wavelet
coe�cients using principal component analysis (PCA) (Acharya et al., 2012), continu-
ous wavelet transform (CWT), higher order spectra (Acharya et al., 2013), approximate
entropy and DWT (Ocak, 2009), analytic time-frequency flexible wavelet transform and
fractal dimension (Sharma et al., 2017).
In order to classify a set of extracted features, several pattern recognition methods have

been used, such as artificial neural network (Guo et al., 2009; Jahankhani et al., 2006;
Nigam and Graupe, 2004; Subasi, 2007), mixture of expert model (Subasi, 2007), linear
discriminant analysis (Subasi and Gursoy, 2010), SVM (Chandaka et al., 2009; Subasi and
Gursoy, 2010), decision trees (Polat and Günes, 2007), least squares SVM (Li and Wen,
2011; Übeyli, 2010) and hidden markov models (Chiappa and Bengio, 2004). For a more
complete review refer to Lotte et al. (2007).
Recently several algorithms have been developed to classify EEG in a variety of applica-

tions, such as in Zhang et al. (2016), which proposed a linear Bayesian discriminant with
a Laplace prior, named sparse Bayesian method by exploiting a Laplace prior. A major
advantage of this method is that it estimates automatically all the parameters of the clas-
sifier, without the need to use cross-validation. However, we point out that any Bayesian
procedure needs a suitable prior distribution and although the Laplace distribution has
been suggested it is conceivable that for a particular application a better prior distribution
can be found. Wang et al. (2016) introduces a new approach that utilizes spatiotempo-
ral feature extraction with multivariate linear regression (MLR) to learn discriminative
of steady-state visual evoked potentials (SSVEP) features, for improving the detection
accuracy. SSVEP are signals that are natural responses to visual stimulation at specific
frequencies. MLR is implemented on dimensionality reduced EEG training data and a con-
structed label matrix to find optimally discriminative subspaces. Jiao et al. (2017) proposed
a method that is an extension of multiset canonical correlation analysis (MsetCCA), called
multilayer correlation maximization (MCM) model for further improving SSVEP recog-
nition accuracy. MCM combines advantages of both Canonical Correlation Analysis and
MsetCCA by carrying out three layers of correlation maximization processes. Zhang et al.
(2018) introduced a new method, called multi-kernel extreme learning machine (MKELM)
to EEG classification. Basically, this method transforms the EEG through the common
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spatial pattern (CSP) and inserts a kernel function in the extreme learning machine (ELM).
The MKELM provides a way to circumvent calculation of the hidden layer outputs and
inherently encode it in a kernel matrix.
The proposed WFF-SVM is a classifier based on the SVM and the Fourier transform,

providing the periodogram as feature extraction. In addition, it uses a weighting system
based on the error rate. Thus, we call this classifier weighted Fourier frequencies and SVM,
WFF-SVM for short. The WFF-SVM classifier di↵ers from the other methods because it
requires just one data transformation (Fourier), which leads to a good capacity to discrim-
inate among groups. The PCA is used to identify the most active regions of the brain,
providing the use of fewer electrodes and reducing the complexity of the data, since some
electrodes pick up only noises, whereas the other methods ended up losing information
by reducing the dimension based on the application of CSP or PCA. In relation to the
Fourier transform, we observed that analyzing the signals in the frequency domain (peri-
odogram), as shown in Figure 1, allows us to discriminate the signals for some frequencies.
Our classifier takes into account the most distinct frequencies for classification through
the weighting system. However, we point out that the choice of the kernel function is not
unique, but for our applications the results are virtually the same by considering di↵erent
kernels, suggesting a robust procedure.
Visual stimuli are commonly used to understand di↵erent components, such as color,

texture, motion, objects, readability (text versus nontext), and others (Thomas and Vinod,
2017). Moreover, visual stimuli are also used in biometric authentication (Zuquete et al.,
2010), emotion classification (Wang et al., 2014), person identification (Das et al., 2009),
and others. We tested our classification method using real-world EEG data of two main
applications: epilepsy and vision. The first application (described in Subsection 4.1) uses
a publicly available data set described in Andrzejak et al. (2001), already used in previous
works on EEG classification, and it allows a direct comparison of our classification method
to other methods presented in the literature. In this application, the proposed method
achieved a correct classification rate of 100.00% under a relatively simple model, showing
that the proposed method performs well compared to other methods in the literature. The
second application (described in Subsection 4.2) uses a data set collected in an experiment
conducted at the University of Texas at El Paso in which the EEG data are acquired while
the subject is submitted to visual stimuli. The proposed method showed a high correct
classification rate of 95.31% using only three signals from each class in the training phase.
This paper is organized as follows. Section 2 provides a brief review of the SVM classifier

relevant for our work and presents the periodogram, which is used for feature extraction.
Section 3 presents our classification method integrating Fourier data analysis, SVM and
a weighting system. Section 4 reports the performance of our method using real-world
data of two applications and compares it with concurrent methods found in the literature.
Section 5 provides some discussions, conclusions and recommendations for future work.

2. Background

In this section, the methods used in the WFF-SVM classifier are described. The first
method is the SVM and it includes three main blocks: the basic classifier, parameters
estimation and SVM with nonlinear functions. The other methods are the Fourier analysis,
periodogram, and the technique of simple moving averages.

2.1 Support vector machine

The SVM is a pattern recognition technique that has been widely used in problems
like regression and classification (Hastie et al., 2008; Hornik et al., 2006; Theodoridis
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and Koutroumbas, 2008; Vapnik, 1996). In classification problems the SVM technique
separates two classes (say W1 and W�1) by a hyperplane h�,xi + �0 = 0, where
h·, ·i is the inner product, x,� 2 RD and �0 2 R, corresponding to the decision function

f(x) = sign(h�,xi+ �0). (1)

The optimal hyperplane is defined as the one maximizing the margin of separation between
classes. Note that the optimal hyperplane does not necessarily guarantee a complete sepa-
ration of points from the two classes. This hyperplane can be constructed using Lagrange
multipliers and then solving a constrained convex optimization problem.
Consider a set of training samples xi with i = 1, 2, . . . , N , then the primal optimization

problem along with the soft margin method (Cortes and Vapnik, 1995) is given by

min
�,�0, ⇠i

1

2
k�k2 + c

NX

i=1

⇠i, (2)

subject to

⇢
yi (h�,xii+ �0) � 1� ⇠i,
⇠i � 0, for i = 1, . . . , N,

where the constant c is previously chosen and determines the influence of the two terms
in the minimization problem. The variables ⇠i are known as slack variables measuring the
proportional amount of predictions that fall on the wrong side of the margin, and yi is an
indicator variable defined by

yi =

⇢
+1, if xi 2 W1,
�1, if xi 2 W�1.

Using Lagrange multipliers (Hastie et al., 2008), one can obtain the Wolfe dual function
given by

LD =
NX

i=1

↵i �
1

2

NX

i=1

NX

k=1

↵i↵kyiykhxi,xki. (3)

The solution is obtained by maximizing LD, a simple convex optimization problem which
must satisfy the conditions 0  ↵i  c and

PN
i=1 ↵iyi = 0.

One can also generalize the SVM technique using a non-linear discriminant (unlike the
hyperplane). In this case, a mapping is used in a larger number of dimensions. It can
be shown (Theodoridis and Koutroumbas, 2008) that this mapping in a larger number of
dimensions can be implemented without increasing the computational demand by replacing
the inner product hxi,xki in Equation (3) by a kernel K(xi,xk) to compute the inner
product in a higher dimensional space. In this study, we consider two popularly used
kernels:

• Gaussian kernel: K1(xi,xj) = exp
�
��||xi � xj ||2

 
;

• Polynomial kernel: K2(xi,xj) = hxi,xjid;

where � and d are kernel width and polynomial degree, respectively. Note when d = 1, the
polynomial kernel is called linear kernel.
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2.2 Fourier analysis

Fourier frequency analysis is a very important tool in signal processing and the peri-
odogram is one of its subproducts (Fuller, 1996). The periodogram shows how the co-
variance of a time series is distributed in frequency. Any stationary time series can be
represented as a sum of sines and cosines (Fuller, 1996), that is, a discrete stationary time
series {Xt}, where t = 1, . . . , n, (n being odd) can be represented by

Xt =
a0
2

+

bn/2cX

j=1

ak cos(!kt) + bk sin(!kt),

where bn/2c is the largest integer less than or equal to n/2, ak and bk are parameters to
be estimated. Also, the Fourier frequencies are defined by

!k =
2⇡k

n
, k = 0, . . . ,

jn
2

k
.

The periodogram can be defined as the sequence {Jk}, where

Jk =
n

2

�
a2k + b2k

�
, (4)

and the sum of squares removed by cos(!kt) and sin(!kt) is

Jk =
2

n

2

4
 

nX

t=1

Xt cos(!kt)

!2

+

 
nX

t=1

Xt sin(!kt)

!2
3

5 .

Thus, the value of the periodogram at frequency !k is the contribution from this frequency
to the sum of squares of {Xt} or, equivalently, its energy.
Some periodograms shown in this paper are smoothed using a moving average technique

(Brockwell and Davis, 2002). Considering {Jk} a sequence of points in the periodogram,
for some ↵ 2 IN, we define the smoothing by

J↵
k =

1

↵

↵X

j=1

Jk+j�1, k = 0, 1, . . . ,
jn
2

k
+ 1� ↵, (5)

where J↵
k is the average of ↵ terms in sequence starting at the point Jk, meaning that each

point J↵
k is the average contribution of ↵ frequencies for the total energy of the series.

Let Xi,1 and Xi,2 2 RP⇥C EEG samples of two classes from the i-trial with C and P
being the number of channels and samples, respectively. The application of the Fourier
transform will be in each column (channel) of Xi,1 and Xi,2 from the i-trial, building a
vector

J↵
`,k = (J↵

`,ki,g
)>, (6)

with i = 1, . . . , Ng, Ng being the number of trials belonging to class g (g = 1, 2) and

` = 1, . . . ,C. These vectors together with the vector of labels y = (y1, y2, . . . , yN1+N2
)>

are the inputs of the classifier WFF-SVM.
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3. New Method for EEG Classification

The classification of EEG data is a di�cult task, with the analysis disturbed because most
of the EEG channels may not be relevant to the classification at hand. Usually, traditional
classification techniques alone do not provide good results when applied to EEG data.
Therefore, it is important to construct a new method able to distinguish important brain
regions and to capture the essential information contained in the data.

3.1 Motivation

The Fourier analysis, especially the periodogram, can reveal hidden patterns in signals.
Figure 1 has a set of 4 plots, all of which represent the signals generated by two di↵erent
stimuli and captured by a channel of the EEG data (red for W1 class and black for W�1

class) for a visual stimuli study (see Section 4.2). The top-left graph represents the super-
imposed plots of the original EEG signals. Note that it is di�cult to visually distinguish
two di↵erent classes in the time-domain plots presented in this graph. The top-right and
bottom-left graphs represent the periodogram and the smoothed periodogram (J4

k in Equa-
tion (5)) of the signals, respectively. Now, it is easier to notice hidden patterns revealed
by the periodograms of the data.
The plots indicate that the periodograms of W1 have higher values at central frequencies

than the periodograms of W�1. In fact, the bottom-right graph in Figure 1 shows a possible
discriminant (the dashed line) for these periodograms. Note that the periodograms of W1

always have values above this hypothetical discrimination line for the central frequencies of
the periodogram. However, it should be noted that this type of pattern does not occur for
all the channels nor in all regions of the brain. It is necessary to use methods that identify
both the relevant channels and the relevant frequencies in a set of periodograms, so that
in an application, such as epilepsy detection of signals can be automatically classified into
one of the expected classes.

3.2 Calculating the discriminant

The graphs in Figure 1 are revealing. It is easy to discriminate the periodograms for certain
frequencies, but this separation is not so clear for other frequencies. It is noticeable that
each frequency has its own importance and, therefore, could be evaluated individually and
not as a whole. Thus, this paper describes a method in which a di↵erent discriminant is
calculated for each frequency using the SVM classifier.
Considering the set of training J↵

`,k of Equation (6) and the label vector y with C chan-
nels, ` = 1, 2, . . . , C and a set of F frequencies, k = 0, 1, . . . , F (k-th point of the smoothed
periodogram and F = bn/2c), define SVM`,k[j↵`,k] as the discriminant function generated
by SVM, given by Equation (1), that classifies a new value j↵`,k of the periodogram for a
test signal into one of two classes, W1 or W�1, according to

SVM`,k[j
↵
`,k] =

⇢
+1, if j↵`,k is classified in W1,
�1, if j↵`,k is classified in W�1.

(7)

Then, each discriminant will classify a new signal between two classes depending on
whether the periodogram has higher or lower value at a particular frequency. Figure 2
shows an example of these discriminants. Note that each discriminant function SVM`,k[.]
could present a di↵erent decision. Thus, in order to unify these decisions, the next two
sections present a weighting system that generates a single answer to the decision problem.
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Figure 1. Representations of a set of signals generated by two stimuli. Each line is a signal from the W1 class
(red/lighter lines) or W�1 class (black/darker lines). Top-left: original signals. Top-right: periodogram of the signals.
Bottom-left: smoothed periodogram of the signals. Bottom-right: smoothed periodogram of the signals with a possible
naive discriminant (dashed line). These data are obtained at the Multi-Sensing-Processing and Learning Laboratory
(MSPL) at the University of Texas at El Paso (UTEP).
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Figure 2. Some discriminating points (dashed line) for some Fourier frequencies !k for classes W1 and W�1. Red
(lighter lines) represents class W1 and black (darker lines) represents class W�1.

3.3 Weighting system

Now, we have several discriminant functions, one for each EEG channel and each point in
frequency, with discriminant functions producing di↵erent decisions. However, it is clear
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that there are some discriminants more reliable than others and this reliability is de-
termined by the incorrect classification rate (or error rate) on the training phase of the
classification problem. For example, if for some channel ` and frequency k the discriminant
function SVM`,k[.] provides a low error rate on the training phase, then it is considered
more reliable than another discriminant function with a higher error rate. Having this in
mind, we introduce a weighting system based on the error rate for each discriminant.
The weight for channel ` and frequency k is defined as

 `,k = [1� 2 ·min(Error Rate, 0.5)]⇢̂`,k , (8)

where Error Rate 2 [0, 1] and ⇢̂`,k � 1 is a constant given by

⇢̂`,k =
SSTotal

SSTreatment
, (9)

where SSTotal =
Pnc

i=1

PNi

j=1(J
↵
i,j � J)2 and SSTreatment =

Pnc

i=1

PNi

j=1(J i. � J)2, with nc

representing the number of classes (in this case we have nc = 2), Ni is the number of
frequencies of the smoothed periodogram of the i-th class, J↵

i,j is the j-th smoothed peri-

odogram of the i-th class, J i. is the arithmetic mean of the i-th class and J is the mean
of all smoothed periodograms. The basic concept of our truncated weighting system is to
allocate 0 to the ones that have at least a 50% error rate, since min{0, 0.5} = 0 implies
zero weight. This is so because, based on our experience, it does not make sense to consider
classifiers that provide over 50% error rate. On the other hand, the weighting system is
an increasing function as the error rate tends to zero, achieving its maximum value when
the error rate is zero. Finally, the power ⇢̂`,k is used to penalize the classifiers that have
an error rate between 0 and 50%.
There are several advantages in the use of the exponent ⇢̂`,k in Equation (9) for the

weighting system. It only involves sums, is easy to implement, does not involve optimiza-
tion, has computational cost almost zero, it uses the data for calculation, it measures the
distance between the groups taking into account the variability between and within the
groups, and each frequency will have its own weight for SVM.
It is very important to use this kind of information to classify EEG data because much of

the data contain non-relevant information of non-activated brain regions such as artifacts
in EEG or noise. The next section will show how to use these weights to produce a single
decision between one of the two classes W1 or W�1 for new signals.
The implementation of the WFF-SVM method is presented in Algorithm 1. In Figure

3 we display a flowchart of the SVM framework that summarizes all the steps proposed.
This classifier is denominated weighted Fourier and support vector machine (WFF-SVM).

Algorithm 1 Training WFF-SVM algorithm.

1: Let X1,i 2 RP⇥C and X2,i 2 RP⇥C denote EEG samples of two classes recorded from
the i-th trial. Choose the SVM kernel, the value of c and ↵ smoothing parameter of
Equation (5);
2: Apply the Fourier transform of Equation (4) in each column (channel) of Xi,1 and
Xi,2 from the i-trial and use the moving average technique of Equation (5);
3: Use the SVM in the smoothed periodograms in step 2, totalizing C ⇥ F models;
4: Calculate the training error rate to each model in step 3 and the respective weight of
Equation (8).
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Figure 3. Flowchart for the training and classification phase of a new signal.

3.4 Test phase for practical application

On the test phase for a practical application, we have a new set of signals (one signal per
channel) to be classified as class W1 or W�1. This is done in two di↵erent ways (which will
be compared later in this paper) using the discriminant function of Equation (7) associated
with the weight of Equation (8).
The proposed classification method comprises the following main steps: first, consider a

new stimulus X 2 RP⇥C and for each channel `(` = 1, . . . ,C) calculate the periodogram
{J↵

`,k}. Then, for each channel ` and frequency k of the periodogram use the discriminant
function SVM`,k[J↵

`,k] given by Equation (7) to obtain a particular decision (+1 or -1).
Finally, using the weights, two decision methods are devised to classify the EEG signals.
In the first decision method, which we label as D1, each decision SVM`,k[J↵

`,k] is weighted
by  `,k and each channel has its own decision weighting as in

D1 = sign

(
CX

`=1

sign

(
FX

k=0

 `,k ⇥ SVM`,k[J
↵
`,k]

))
. (10)

In the second decision method, which we label as D2, each channel has its own decision
weighting SVM`,k[J↵

`,k] by  `,k, and the final decision is a pool between channels. Thus,
we define

D2 = sign

8
>>><

>>>:

CX

`=1

FP
k=0

SVM`,k[J↵
`,k]⇥ l,k

FP
k=0

 `,k

9
>>>=

>>>;
. (11)

Basically, this decision system takes into account the performance of the channel in the
training phase, because if there is a considerable disagreement regarding the classifiers in
a given channel, the contribution of this channel to the final classification will not have a
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great influence. Then, for both decision methods, we apply the criteria

Decision =

8
<

:

W1, if Dj = +1,
W�1, if Dj = �1,
None, if Dj = 0,

(12)

for j = 1, 2. The implementation of the classification of a new signal is presented in
Algorithm 2.

Algorithm 2 Classification of a new signal in WFF-SVM algorithm.

1: Let Xnew 2 RP⇥C denote EEG sample of a new recorded;
2: Apply the Fourier transform of Equation (4) in each column (channel) of Xnew and
use the moving average technique of Equation (5);
3: Apply the C ⇥ F SVM models calculated by Algorithm 1 in the smoothed peri-
odograms of step 2, totalizing C ⇥ F of values of Equation (7);
4: Use the C ⇥ F values calculated in the step 3 and use the decision weighting of
Equations (10) or (11).

The following sections present two applications with real EEG data. First the proposed
method is compared to other methods proposed in the literature, then we use it with a
new data set.

4. Applications and Results

This section presents two applications of our classification method. The first application
uses a publicly available data set described in Andrzejak et al. (2001) which is used in
several papers and is very useful to compare the proposed classification method with other
methods. The second application uses a data set collected in an experiment conducted by
the MSPL at UTEP. The classifier is implemented in the R software and to have access to
the respective code, visit https://carvalhomysearches.weebly.com; see R (2018).

4.1 Epilepsy data classification

The epilepsy data consists of five distinct sets each containing 100 single-channel EEG
segments (Andrzejak et al., 2001). Two of these sets, denoted A and B, are obtained from
EEG recordings from five healthy volunteers in an awake state with eyes open and eyes
closed, respectively. Sets C, D, and E originated from an EEG archive of pre-surgical
diagnosis. Segments in set D are recorded from within the epileptogenic zone, and those in
set C from the hippocampal formation of the opposite hemisphere of the brain. While sets
C and D contained only activity measured during seizure free intervals, set E only contained
seizure activity (for more details about these data sets see Andrzejak et al. (2001)). As in
previous studies (Nigam and Graupe, 2004; Subasi, 2007; Subasi and Gursoy, 2010), we
used only two datasets (A and E) to test the classifier.
Both sets A and E have 100 signals each, one signal for each channel and each signal

corresponding to 4097 samples. To perform the classification it is cut out the beginning and
the end of the signals and subsampled them into 20 signals (components) of 200 samples
each. Then, for each set A and E, we randomly selected 10 of the corresponding 20 signals
to use in the training phase. In the test phase we repeated this same subsampling process
to all the signals in both sets A and E. Thus, it is generated 2000 signals to use in the test
phase.

https://carvalhomysearches.weebly.com
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Many authors also proposed methods for the classification of EEG data using data sets
A and E to test their classifiers. Table 1 has a summary of the overall results and also the
result with the application of the proposed method, named WFF-SVM. In WFF-SVM is
used the linear kernel, c = 1, ↵ = 5 and D2 as described in Equations (2), (5) and (11),
respectively.
According to Zhang et al. (2018), the MKELM is more e�cient than the following meth-

ods: multilayer perceptron with a single hidden layer; the conventional SVM; SVM with
Gaussian and polynomial kernel; multi-kernel SVM using both Gaussian and polynomial
kernels; the conventional ELM; ELM with Gaussian kernel; ELM with polynomial kernel,
and finally, the multi-kernel ELM using both Gaussian and polynomial kernels. Therefore,
we also considered in the comparison the new classifier proposed by Zhang et al. (2018),
called MKELM, in both applications.

Table 1. Comparison of results for epilepsy data.

Reference % Accuracy Method

Subasi (2007)
94.50 ME
93.20 MLPNN

Subasi and Gursoy (2010)
98.75 DWT, PCA and SVM
99.50 DWT, ICA and SVM
100.00 DWT, LDA and SVM

Jahankhani et al. (2006) 98.00 NN
Guo et al. (2009) 95.00 RWE and NN

Nigam and Graupe (2004) 97.20 NN
Polat and Günes (2007) 98.72 TRF

Li and Wen (2011) 99.90 LS-SVM
Chandaka et al. (2009) 95.96 SVM

Übeyli (2010) 99.56 LS-SVM
Zhang et al. (2018) 100.00 MKELM
Proposed method 100.00 WFF-SVM

where ME is mixed of experts; MLPNN is multi-layer perceptron neural network; DWT is discrete wavelet transform;
LDA is linear discriminant analysis; ICA is independent component analysis; NN is neural networks; RWE is relative
wavelet energy; LS-SVM is least square support vector machine; MKELM is multi-kernel extreme learning machine
using both Gaussian and polynomial kernels with CSP feature.

Note that the proposed method is as e�cient as (or more e�cient than) the other
methods. A possible reason for this improvement is the weighting system capturing the
most important regions for classification, strengthening the process.
Despite the greater e�ciency of the proposed method, it can be noted that all methods

are very e�cient for this problem. The main reason for this result is that it is relatively easy
to classify the epilepsy data; in fact, neurologists can visually distinguish the EEG patterns
of epileptic patients and non-epileptics patients. For this reason, the following example
presents a more complex application that uses EEG data collected in an experiment based
on visual stimuli with a set of tasks to classify.

4.2 Classification of visual stimuli

In the visual stimuli application, the objective is to calculate the discriminant function so
that, given a new visual stimulus event, our classification method is capable of identifying
the slide presented to the subject from the EEG data recordings only. To do this, the
proposed method is used after a selection of activated channels using PCA.

Experimental Design The data set used in this application is acquired at the MSPL
at UTEP. The EEG data are recorded from a volunteer test subject using a Biosemi
EEG acquisition system with 128 channels. The acquisition system recorded EEG signals
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corresponding to 10 di↵erent visual stimuli, each one presented multiple times in random
order and during a regular interval of time. The visual stimuli used correspond to the
slides shown in Figure 4. Each stimulus is shown on a computer monitor screen 4 times
(in random order) with a five seconds break between each slide, corresponding to a blank
screen. An audible tone alerted the subject each time a new slide is about to be displayed.
Thus, the EEG data set of the second experiment comprised of 4 EEG signals for each one
of the 10 visual stimuli, acquired by 128 channels.

Figure 4. Ten visual stimuli shown to the test subject during EEG signal acquisition.

Using PCA for source localization The PCA is used to explain the variance-covariance
structure of a set of variables by a smaller set of variables formed by linear combinations
of the original ones (Johnson and Wichern, 2007). Generally, in databases that contain
strongly correlated variables (as in EEG data) the PCA is very useful to reduce the dimen-
sionality of the problem. In PCA, the first principal component is the linear combination
with the highest possible variance. This means, in the case of EEG data, that the most
important channels for the composition of the first principal component are the channels
that capture signals with higher variance (the channels corresponding to the activated
brain regions) as described in von Borries et al. (2013). Figure 5 shows contours obtained
for the first principal component when PCA is applied to EEG signals from 128 channels
of the visual stimuli experiment. One can observe that most of the variability in this ex-
periment is present in the channels located on the brain’s frontal lobe. The next sections
show that, in fact, this region is the most important for classification and the other regions
basically do not bring relevant information to the classification problem at hand. Actually,
our results show that the correct classification rate increases when the signals from those
regions are not included in classification.

Data analysis First, we train the classifier. Since the proposed method is a binary classi-
fier and we have 10 apparently di↵erent visual stimuli, the classification process is imple-
ment sequentially by pairs of visual stimuli. Moreover, as many images are very similar,
the classification is performed only with abstract images against images with arithmetic
operations, making a total of 16 discriminants (or 16 pairs). Cross-validation is used to ap-
proximate the correct classification rate of this method, as follows: for each pair of images
analyzed, the first repetition of each image (independent of the others) is excluded in the
training phase to be used in the testing phase. Then, the second repetition of each image
(independent of the others) is excluded in the training phase to be used in the testing
phase, and so on. Thus, 4⇥ 16⇥ 2 = 128 signals are used in the test phase. Note that the
signals used in the test phase are not used to build the discriminant, resulting in a reliable
analysis. The first test is done using the periodogram with the configurations ↵ = 1 and
4, linear kernel and using c = 1. Note in Table 2, the classification rates for each con-
figuration. There is an increase of around 10% for all configurations when the smoothed
periodogram (↵ = 4) is used, indicating that smoothing is a good option to improve the
classification rate. Furthermore, D1 method is better than the D2, but not having a very
large di↵erence between the rates. Figure 6 shows a contour plot of the accuracy of each
brain region. It should be noted that the EEG signals located at the brain’s frontal lobe
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had the best correct classification rates. The similarity between Figures 5 and 6 is remark-
able, indicating that the regions identified using PCA actually correspond to the regions
of higher correct classification rates. Therefore, one might think that the non-activated
regions contain non-relevant information that actually disturbs the classification. Thus,
the cross-validation process is repeated using 53 channels with the highest hit rates, where
most are from the front of the brain, with parameters c = 1, 10, 100. The results presented
in Table 3 indicate that the correct classification rates increase when using the smoothed
periodograms and specially when selecting only the most relevant channels. Therefore, it
appears to be extremely important, in a classification analysis of EEG data, to remove
from the analysis the channels that appear basically to capture non-relevant information.
However, the cost value does not seem to influence much on the results and the classifica-
tion rates are very similar for all values of c, so, for the analyzes that will be done from
now on, will be used c = 1.

Figure 5. Variability of signals through the Brain. Contours for the first principal component when PCA is applied
to EEG signals from 128 channels of the visual stimuli experiment. The front of the brain presents most of the signal
variability.

Figure 6. Contour lines for the correct classification rates by channel: new method with the smoothed periodogram,
↵ = 4 and c = 1.
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Table 2. Accuracy for some settings of smoothing parameter in the WFF-SVM algorithm.

Classifier ↵ Method % accuracy

WFF-SVM
1

D1 75.00
D2 73.44

4
D1 87.50
D2 84.37

Table 3. Results using ↵ = 4 for the accuracy using some values of cost (c), number of channels and type
of decision.

Cost Channel Method % accuracy

c = 1
128

D1 87.50
D2 84.37

53
D1 92.97
D2 92.97

c = 10
128

D1 85.94
D2 85.16

53
D1 92.97
D2 92.97

c = 100
128

D1 85.95
D2 85.16

53
D1 92.97
D2 92.97

After some ↵ variations, we obtained a classification rate of 95.31% with c = 1, ↵ = 5,
usingD2 with 53 channels, and 73.44% to MKELM using all the channels with CSP feature.
These are the best results found in this study. The non-requirement of an extensive training
data set constitutes an important characteristic of the proposed classification method since
in real-world applications the collection of signals available to train the classifier can be
limited to only a few cases.

5. Discussion and Conclusions

EEG technique is employed to help in a variety of diagnosis, such as posttraumatic stress,
human emotions and epilepsy. Regarding the latter one, there is a special interest to
detect as early as possible epilepsy in order to initiate the proper treatment and mitigate
this neurological disorder e↵ects. Several studies were conducted with this objective, such
as Fergus et al. (2015) who uses machine learning, whereas Thodoro↵ et al. (2016) and
Acharya et al. (2018) have used the deep learning (DL) approach. The DL method has
been used in several problems as in image recognition (Krizhevsky et al., 2012), diagnosis
of Alzheimer’s disease (Ortiz et al., 2016), prediction of sale prices of real estate units
(Rafiei and Adeli, 2015) and in the estimation of concrete compressive strength Rafiei et
al. (2017). There are examples in the literature that use SVM and DL, such as in Tang
(2013), who developed an approach in DL replacing the softmax layer by a linear SVM.
Erfani et al. (2016) used a hybrid model where an unsupervised deep belief networks is
trained to extract generic underlying features, and one class SVM is trained from the
features learned by the deep belief networks. Therefore, these works show that the use of
SVM in DL is not new and suggests that in future works WFF-SVM in DL can also be
contemplated in order to search for more e�cient methods. The WFF-SVM can be used in
any type of signal, EEG, electrocardiogram, electromyogram, etc. In order to accomplish
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that, it is su�cient to represent the data as a time series or in a certain proper order.
This proposed paper in based on a broader study found in Carvalho (2016), in which
electromyogram data were also considered. Furthermore, this classifier can be used in
clinical application or any other application. Regarding the computational intensive aspect,
with the rapidly increasing performance of new computers, including parallel programing
and the promising quantum programming the tendency is to be feasible. The application
using epilepsy data showed that the proposed method has no better competitor among
other methods presented in the literature. This paper presents a second and more complete
application. This application using EEG data captured during an experiment involving
visual stimuli showed a number of specific features for the classification of EEG data. In
particular, this application showed that the brain region identified using PCA was similar
to the region where the channels had the best individual correct classification rates. In fact,
the correct classification rate increased significantly by discarding the EEG channels that
had non-relevant information. The proposed method of using smoothed periodograms and
assigning weights to the channels based on their individual error rates resulted in higher
correct classification rates than other methods reported in the literature. It should be
noted that the proposed method showed a high correct classification rate of 95.31% using
only three signals from each class in the training phase. Thus, a topic for future research is
to extend the WFF-SVM to accept more than two groups for training and classification.
In addition, it would be important to propose some sort of threshold for decision-making,
in guiding the decision Equation (12) on how far it must be from zero to have a more
objective classification.
This paper presented a new method for classification of EEG data that uses Fourier

analysis and SVM. The proposed method employs a specific SVM decision value for each
frequency of the periodogram. In addition, a simple weighting system based on the perfor-
mance of the classifier, obtained in the training phase, is applied to the classification phase.
We used two data sets to test the performance of the proposed classifier. The first data set
referred to EEG of an epilepsy study and the second to EEG of a visual stimulation study.
Finally, one point for improvement include the extension of our classification method to
more than two classes and to expand the performance comparison with other methods.
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Abstract

In this paper, we propose a regression model based on the assumption that the error term
follows a mixture of normal distributions. Specifically, we consider a finite scale mix-
ture of skew-normal distributions, a rich family that contains the skew-normal, skew-t,
skew-slash and skew-contaminated normal distributions as members. This model allows
us to describe data with high flexibility, simultaneously accommodating multimodality,
skewness and heavy tails. We develop a simple EM-type algorithm to perform maximum
likelihood inference of the parameters of the proposed model with closed-form expres-
sions for both E- and M-steps. Furthermore, the observed information matrix is derived
analytically to account for the corresponding standard errors and a bootstrap procedure
is implemented to test the number of components in the mixture. The practical utility
of the new model is illustrated with a real dataset and several simulation studies. The
proposed algorithm and methods are implemented in an R package named FMsmsnReg.

Keywords: ECME algorithm · Mixture model · Non-normal error distribution
· Scale mixtures of skew-normal distributions
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1. Bibliographical Review and Motivating Example

1.1 Introduction

A basic assumption of the linear regression (LR) model is that the error term follows a
normal distribution. However, it is well known that data from some phenomena do not
always satisfy this assumption, instead having a distribution with heavy tails, skewness
or multimodality. Many extensions of this classic model have been proposed to broaden
the applicability of Gaussian linear regression (N-LR) analysis to situations where the
Gaussian error term assumption may be inadequate, such as, the use of the Student-t
distribution (Lange et al., 1989), which is appropriate for datasets involving errors with
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longer than normal tails. Other extensions include the use of the symmetrical class of
scale mixtures of normal (SMN) distributions (Andrews and Mallows, 1974; Lange and
Sinsheimer, 1993), as discussed in Galea et al. (1997), the asymmetrical class of skew-
normal (SMSN) distributions proposed by Branco and Dey (2001) or the unified skew-
elliptical distributions proposed by Arellano and Genton (2010). However, in practice when
nothing is known about the true distribution of the error terms, a risk exists that linear
regression analysis based on any of the above models will be performed using an incorrectly
specified model. There can also be situations where a single parametric family is unable
to provide a satisfactory model for local variations in the observed data.
To overcome these problems, solutions that use finite mixture (FM-LR) models have

been recently proposed. For instance, Bartolucci and Scaccia (2005), So↵ritti and Galim-
berti (2011) and Galimberti and So↵ritti (2014) developed methods for linear regression
analysis by assuming a finite mixture of Gaussian (FM-N-LR) and Student-t (FM-T-LR)
components for the error terms.
The classic approach to finite mixture modeling has several challenging aspects. There

are nontrivial issues, like non-identifiability and an unbounded likelihood. In this context,
Holzmann and Munk (2006) established the identifiability of finite mixtures of elliptical
distributions under conditions of the characteristic or probability density function (PDF)
generators. More recently, Otianiano et al. (2015) established the identifiability of finite
mixture of skew-normal (Azzalini, 1985) and skew-t (Azzalini and Genton, 2008) distribu-
tions.
The class of SMSN distributions, proposed by Branco and Dey (2001), is attractive

since it simultaneously models skewness with heavy tails (Prates et al., 2012) and con-
tains as proper elements distributions such as the skew-normal, skew-t, skew-slash, skew-
contaminated normal and all the symmetric class of scale mixtures of normal (SMN)
distributions defined by Andrews and Mallows (1974). Besides this, it has a stochastic
representation for easy implementation of the Expectation-Maximization (EM) algorithm
(Dempster et al., 1977) and it also facilitates the study of many useful properties. Thus,
this extension results in a flexible class of models for robust estimation and inference in
FM-LR models.
The objective of this paper is to propose a mixture regression model (and associated

likelihood inference) based on the mixtures of the class of scale mixtures of skew-normal
(SMSN) distributions, by extending the mixture model based on symmetrical distributions.
An advantage of this model is the possibility of fitting multimodality, heavy tails and
skewness simultaneously. We derive a mixture model for the random errors based on the
class of SMSN distributions (FM-SMSN-LR model) and evaluate the performance of the
FM-SMSN-LR model by simulations. In order to motivate our research, we describe the
following example with a dataset from the Australian Institute of Sport data (AIS).

1.2 Motivating example

Before discussing the goal of this work, we present a motivating example. More specifically,
we extend the linear regression model proposed by Bartolucci and Scaccia (2005), which
is defined as

Yi = �0 + xi
>
��� + "i, f("i) =

gX

j=1

pj�("i|µj ,�
2

j ), i = 1, . . . , n,

where Yi is the response of case i, xi = (xi1, . . . , xip)> is a vector of explanatory variable
values, ��� = (�1, . . . ,�p)> is a vector of unknown linear parameters, pj are positive weights
summing to 1, the µj terms satisfy the constraint

Pg
j=1

pjµj = 0, �(.;µj ,�
2

j ) denotes
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Figure 1. Histogram with a kernel PDF estimate superimposed (a) and the boxplot of ordinary residuals (b) with

AIS data.

the PDF of the normal distribution, by assuming that the distribution of the error terms
follows a finite mixture of SMSN distribution, so that the FM-SMSN-LR is defined. It is
important to stress that our proposal is di↵erent from that of Zeller et al. (2016), where
the linear regression is modeled with di↵erent regression functions, the so-called mixture
of regressions or switching regression (Quandt and Ramsey, 1978). An important question
that is addressed in this paper is whether a mixture model (g � 2) is needed instead of a
one-component model. Thus, we use the parametric bootstrap log-likelihood ratio statistic,
which was proposed by Turner (2000).
To test our proposed model, we use the AIS data available in an R package named

FMsmsnReg. Figure 1 (panels a and b) displays the histogram with a kernel PDF estimate
superimposed and the boxplot of ordinary residuals, respectively, obtained by fitting a
N-LR model to the AIS data. The plots reveal the existence of multimodal residuals, with
evident presence of outliers. In summary, it is necessary to consider a more robust structure
in the error. Therefore, this example serves as a motivation for the FM-SMSN-LR model.

1.3 Organization of the paper

The remainder of the paper is organized as follows. In Section 2, we briefly discuss some
properties of the univariate SMSN family. In Section 3, we present the FM-SMSN-LR
model, including the EM-type algorithm for maximum likelihood (ML) estimation, and
derive the empirical information matrix analytically to obtain the standard errors. In
Section 4, numerical samples using both simulated and real data are given to illustrate
the performance of the proposed model. Finally, some concluding remarks are presented
in Section 5.

2. Background

2.1 Scale mixtures of skew-normal distributions

Next, we start by defining the skew-normal (SN) distribution and then we introduce some
useful properties. As defined by Azzalini (1985), a random variable Z has a skew-normal
distribution with location parameter µ, scale parameter �2 and skewness parameter � 2 R,
denoted by Z ⇠ SN(µ,�2

,�), if its PDF is given by

�SN(z|µ,�2
,�) = 2�(z|µ,�2)�

�
�(z � µ)/�

�
.
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The relation between the SMSN class and the SN distribution is provided in the next
definition.

Definition 2.1 A random variable Y has an SMSN distribution with location parameter
µ, scale parameter �2 and skewness parameter �, denoted by SMSN(µ,�2

,�;H), if it has
the stochastic representation

Y = µ+ 
1/2(U)Z, U?Z,

where Z ⇠ SN(0,�2
,�), U is a positive random variable with cumulative distribution

function H( · |⌫) indexed by a scalar or vector parameter ⌫ and (u) is a positive function
of u.

The mean and variance of Y are given respectively by

E[Y ] = µ+

r
2

⇡
K1�, Var[Y ] = �

2

⇣
K2 �

2

⇡
K

2

1�
2

⌘
, (1)

where � = ��, with � = �/
p
1 + �2 and Kr = E[U�r/2], r = 1, 2, . . .. Although we can

deal with any (·) function, in this paper we restrict our attention to the case where
(u) = 1/u, since it leads to good mathematical properties. Given U = u, we have that
Y |U = u ⇠ SN(µ, u�1

�
2
,�). Thus, the PDF of Y is expressed as

f(y) = �SMSN(y|µ,�2
,�,⌫) = 2

Z 1

0

�(y|µ, u�1
�
2)�

⇣
u
1/2

�(y � µ)/�
⌘
dH(u|⌫). (2)

When H is degenerate, with u = 1, we obtain the SN(µ,�2
,�) distribution, and when � =

0, the SMSN distribution reduces to the class of scale-mixtures of the normal (SMN) dis-
tribution represented by the PDF f0(y) = �SMN(y|µ,�2

,⌫) =
R1
0

�(y|µ, u�1
�
2)dH(u|⌫).

2.2 Special cases of the SMSN distributions

Some special families of SMSN distributions are the following:

• The skew-t distribution with ⌫ degrees of freedom. In this case, the PDF of Y takes the
form

�T(y|µ,�2
,�, ⌫) =

�(⌫+1

2
)

�(⌫
2
)
p
⇡⌫�

✓
1 +

d

⌫

◆� ⌫+1
2

T

 r
⌫ + 1

d+ ⌫
A|⌫ + 1

!
, y 2 R,

where d = (y � µ)2/�2, A = �(y � µ)/� and T (·|⌫) denotes the distribution function
of the standard Student-t distribution, with location zero, scale one and ⌫ degrees of
freedom, namely t(0, 1, ⌫). We use the notation Y ⇠ ST(µ,�2

,�, ⌫).
• The skew-slash distribution. It is denoted by Y ⇠ SSL(µ,�2

,�, ⌫) and the associated
PDF is given by

�SL(y|µ,�2
,�, ⌫) = 2⌫

Z
1

0

u
⌫�1

�(y|µ, u�1
�
2)�(u1/2A)du, y 2 R.

The skew-slash is a heavy-tailed distribution having as limiting distribution the skew-
normal one (when ⌫ ! 1).
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• The skew contaminated normal distribution. We denote it by Y ⇠ SCN(µ,�2
,�, ⌫, �).

Its PDF is given by

�SCN(y|µ,�2
,�,⌫) = 2{⌫�(y|µ, ��1

�
2)�(�1/2A) + (1� ⌫)�(y|µ,�2)�(A)}, ⌫, � 2 (0, 1].

The parameters ⌫ and � can be interpreted as the proportion of outliers and a scale
factor, respectively. The skew contaminated normal distribution reduces to the skew-
normal distribution when � = 1.

2.3 Computational framework

The R software (R Core Team, 2016) produces statistical analyses, with its open
source codes. This non-commercial computational program may be downloaded from
http://www.r-project.org. Our method was implemented in R and its codes are avail-
able through the FMsmsnReg package (Benites et al., 2016). We use the mixmsmsn package,
which allows the simulation of mixture the class of scale mixture of skew-normal distribu-
tions, see Prates et al. (2013). This computational framework is useful for conducting the
simulation studies and the empirical illustration carried out in Section 4.

3. The linear regression model with FM-SMSN errors

3.1 General context

Next, we introduce the linear regression model using finite mixture of skew heavy tailed
distributions where the distribution of the error terms follows a finite mixture of scale
mixture of skew-normal distributions (FM-SMSN-LR), following a similar setup as that
developed by Bartolucci and Scaccia (2005). Consider the linear regression model expressed
as

Yi = �0 + x>
i ��� + "i, i = 1, . . . , n, (3)

where Yi is the response of case i, xi = (xi1, . . . , xip)> is a vector of explanatory vari-
ables of dimension (p + 1) ⇥ 1, and ��� = (�1, . . . ,�p)> is the regression parameter vector.
Furthermore, we assume that

f("i) =
gX

j=1

pj�SMSN

�
"i|µj + b�j ,�

2

j ,�j ,⌫j
�
, i = 1, . . . , n, (4)

where pj are positive weights summing to 1, the µj s satisfy the identifiability constraint
Pg

j=1
pjµj = 0, b = �

p
2/⇡K1, K1 = E[U�1/2], �j = �j�j with �j = �j/

q
1 + �

2

j . Then

from Equation (1), we have that E("i) = 0. Thus, for linearity of SMSN distributions, the
PDF of Yi is expressed as

f(yi|✓✓✓) =
gX

j=1

pj�SMSN(yi|µij + b�j ,�
2

j ,�j ,⌫j), µij = �0 + x>
i ��� + µj = #j + x>

i ���, (5)

where µij = x>
i ��� + #j , #j = �0 + µj and ✓✓✓ = (���>

, (p1, . . . , pg�1)>,#1, . . . ,#g, �
2

1
, . . . ,

�
2
g ,�1, . . . ,�g, ⌫1, . . . , ⌫g)> is the vector with all parameters. Concerning the parameter ⌫j

of the mixing distribution H(.|⌫j), for j = 1, . . . , g, it can be a vector of parameters, e.g.,
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the contaminated normal distribution. Thus, for computational convenience we assume
that ⌫1 = . . . = ⌫g = ⌫. This strategy works very well in the empirical studies that we
have conducted and greatly simplifies the optimization problem. For U = 1, Equations (3)
and (4) lead to the FM-N-LR defined by Bartolucci and Scaccia (2005). Moreover, when
g = 1 and a nonlinear function is used instead of x>

i ���, the FM-SMSN-LR framework
reduces to the model discussed by Garay et al. (2011). For each i and j, consider the
latent indicator variable Zij , such that

Zij =

(
1, if the ith subject is from the jth component;

0, otherwise.

Observe that Zij = 1 if and only if Zi = j. Then

P (Zij = 1) = 1� P (Zij = 0) = pj and yi|Zij = 1 ⇠ SMSN
�
µij + b�j ,�

2

j ,�j ;H(⌫)
�
.

(6)
Note that by integrating out Zi = (Zi1, . . . , Zig)>, we obtain the marginal PDF presented
in Equation (2) and Z1, . . . ,Zn are independent random vectors, each one having a multi-
nomial distribution with PDF defined as f(zi) = p

zi1
1

p
zi2
2

...(1 � p1 � . . . � pg�1)zig , which
we denote by Zi ⇠ M(1; p1 . . . , pg). These latent vectors appear in the hierarchical repre-
sentation given next, which is used to build the Expectation Conditional Maximization
Either (ECME) algorithm as proposed by Liu and Rubin (1994), which is a variant of the
EM algorithm Dempster et al. (1977). From Equation (6) along with Definition 2.1, the
FM-SMSN-LR model can be represented as

Yi|ui, ti, Zij = 1
IND⇠ N(µij +�jti, u

�1

i �j), (7)

Ti|ui, Zij = 1
IND⇠ TN

�
b, u

�1

i , (b,1)
�
,

Ui|Zij = 1
IND⇠ H(ui;⌫),

Zi
IID⇠ M(1; p1 . . . , pg), i = 1, . . . , n, j = 1, . . . , g, (8)

where IND denotes independent, whereas IID stands for independent and identically dis-

tributed, with �j = (1� �
2

j )�
2

j , �j = �j�j and �j = �j/

q
1 + �

2

j .

3.2 Parameter estimation via the ECME algorithm

Next, we show how to implement the ECME algorithm for ML estimation of the parameters
of the FM-SMSN-LR model. By using Equations (7) to (8), we have that the complete-data
log-likelihood function is given by

`c(✓✓✓|y, t,u, z) = c+
nX

i=1

gX

j=1

Zij

n
log(pj)�

1

2
log(�j)�

ui

2�j
(yi � µij ��jti)

2

+ log(h(ui|⌫)) + log
⇥
�TN(ti|b, u�1

i , (b,1))
⇤o

,

where c is a constant that is independent of the parameter vector ✓✓✓. By defining the
quantities bzij = E[Zij |b✓✓✓, yi], bs1ij = E[ZijUi|b✓✓✓, yi], bs2ij = E[ZijUiTi|b✓✓✓, yi] and bs3ij =
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E[ZijUiT
2

i |b✓✓✓, yi], as having known properties of conditional expectation, we obtain

bzij =
bpj�SMSN(yi|µij + b�j ,�

2

j ,�j ,⌫)Pg
j=1

bpj�SMSN(yi|µij + b�j ,�
2

j ,�j ,⌫)
,

bs1ij = bzijbuij , bs2ij = bzij(buijbµTij
+cMTj

b⌧1ij ) and bs3ij = bzij(buijbµ2

Tij
+cM2

Tj
+cMTj

(bµTij
+b)b⌧1ij ),

where

b⌧1ij = E

"
U

1/2
i W�1

 
U

1/2
i bµTij

)

cMTj

!
| b✓✓✓, yi, Zij = 1

#
, i = 1, . . . , n, j = 1, . . . , g,

cM2

Tj
=

�j

�j +�2

j

, bµTij
= b+

�j

�j +�2

j

(yi � µij ��b) and buij = E[Uj |b✓✓✓, yi, Zij = 1].

Once again, at each step the conditional expectations buij and b⌧1ij can be easily derived
from the results given in Basso et al. (2010). Thus, the Q�function is given by

Q(✓✓✓|b✓✓✓
(k)

) = c+
nX

i=1

gX

j=1

✓
bz(k)ij (log(pj)�

1

2
log(�j)�

1

2�j

⇣
bs(k)
1ij(yi � µij)

2 � 2(yi � µij)�jbs(k)2ij

+ �2

jbs
(k)
3ij

⌘
+ E[Zij log(h(Ui|⌫))|b✓✓✓

(k)
, yi] + E[Zij log(�TN(Ti|b, u�1

i , (b,1)))|b✓✓✓
(k)

, yi]

◆
.

In the CML-step we update the estimate of ⌫ by direct maximization of the marginal
log-likelihood, circumventing the computation of the conditional expectations bs4ij =

E[Zij log(h(Ui|⌫))|b✓✓✓, yi] and bs5ij = E[Zij log(�TN(Ti|b, u�1

i , (b,1)))|b✓✓✓
(k)

, yi]. Thus, the
ECME algorithm for ML estimation of ✓✓✓ is defined as follows:

E-step: Given a current estimate b✓✓✓
(k)

, compute bzij , bs1ij , bs2ij , bs3ij , for i = 1, . . . , n and
j = 1, . . . , g.

CM-steps: Update b✓✓✓
(k)

by maximizing Q(✓✓✓|b✓✓✓
(k)

) = E[`c(✓✓✓)|y,b✓✓✓
(k)

] over ✓✓✓, which leads to
the closed-form expressions given by
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j = n
�1

nX

i=1

bz(k)ij ,

b#(k+1)

j =

 
nX

i=1

�
bs(k)
1ij(yi � x>

i
b���)� b�(k)

j bs
(k)
2ij

�
!
/

nX

i=1

bs(k)
1ij ,

b���
(k+1)

=

0

@
nX

i=1

gX

j=1

bs(k)
1ijxix>

i

b�(k)
j

1

A
�1

nX

i=1

gX

j=1

1

b�(k)
j

[bs(k)
1ij(yi � b#

(k+1)

j )� b�(k)
j bs

(k)
2ij ]xi,

b�(k+1)

j =

 
nX

i=1

(yi � bµ(k+1)

ij )bs(k)
2ij

!
/

nX

i=1

bs(k)
3ij

b�(k+1)

j =
nX

i=1

⇣
bs(k)
1ij(yi � bµ

(k+1)

ij )2 � 2(yi � bµ(k+1)

ij )b�(k+1)

j s
(k)
2ij +

b�2(k+1)

j bs(k)
3ij

⌘
/
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CML-step: Update b⌫(k) by maximizing the current marginal log-likelihood function, ob-
taining

⌫(k+1) = argmax⌫

nX

i=1

log

0

@
gX

j=1

p
(k+1)

j �SMSN

⇣
yi|µ(k+1)

ij + b(⌫)�(k+1)

j ,�
2(k+1)

j ,�
(k+1)

j ,⌫
⌘
1

A.

Through constraint
Pg

j=1
pjµj = 0 (Bartolucci and Scaccia, 2005), we obtain the estimates

of �0 and µj as

b�(k+1)

0
=

gX

j=1

bp(k+1)

j
b#(k+1)

j and bµ(k+1)

j = b#(k+1)

j � b�(k+1)

0
,

respectively, for j = 1, . . . , g. This process is iterated until a suitable stopping criterion is
satisfied. To avoid an indication of lack of progress of the algorithm (McNicholas et al.,
2010), we adopted the Aitken acceleration method as the stopping criterion. At iteration k,
we first compute the Aitken acceleration factor c(k) = (`(k+1) � `

(k))/(`(k) � `
(k�1)), where

following Böhning et al. (1994), the asymptotic estimate of the log-likelihood at iteration
k + 1 is given by

`
(k+1)

1 = `
(k) +

1

1� c(k)

h
`
(k+1) � `

(k)
i
. (9)

As pointed out by Lindsay (1995), the algorithm is considered to reach convergence when

`
(k+1)

1 � `
(k+1)

< ", where " is the desired tolerance (we use " = 10�6). A usual criticism
is that EM-type procedures tend to get stuck in local modes. A convenient way to avoid
this limitation is to try several EM iterations with a variety of starting values. If there
are several modes, one can find the global mode by comparing their relative masses and
log-likelihood values. We suggest the following strategy: For �0 and ��� use the ordinary least-
squares (OLS) estimate. Initial values for pj , µj ,�

2

j , �j and ⌫, j = 1, . . . , g, are obtained
by fitting the mixture model given in Equation (3) to the OLS residuals (Bartolucci and
Scaccia, 2005), which can be done through the FMsmsnReg package (Benites et al., 2016).

3.3 Model selection and approximate standard errors

Consider the problem of comparing several FM-SMSN-LR models, with di↵erent numbers
of component PDFs. Here, we use two model selection criteria, the Akaike information
criterion plus a bias correction term (Hurvich and Tsai, 1989), denoted by (AICc), and the
adjusted Bayesian information criterion (Sclove, 1987), denoted by (BICa). These criteria
are defined as

AICc = �2`(b✓✓✓) + 2n⇢

n� ⇢� 1
and BICa = �2`(b✓✓✓) + ⇢ log

✓
n+ 2

2

◆
,

where `(✓✓✓) is the actual log-likelihood, ⇢ is the number of free parameters that have to be
estimated in the model, and n is the sample size.
A simple way of obtaining the standard errors of ML estimators of mixture model pa-

rameters is to approximate the asymptotic covariance matrix of b✓✓✓ by the inverse of the
observed information matrix. Let Io(✓✓✓) = �@

2
`(✓✓✓|y)/@✓✓✓@✓✓✓> be the observed information

matrix, where `(✓✓✓|y) is the observed log-likelihood function, which is obtained using Equa-
tion (5). In this work we use the alternative method suggested by Basford et al. (1997),
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which consists of approximating the inverse of the covariance matrix by

Io(b✓✓✓) =
nX

i=1

bsibs>i , where bsi =
@

@✓✓✓
log [f(yi|✓)]

����
✓✓✓=b✓✓✓

, (10)

where bsi = (bs>i,��� , bsi,p1 , . . . , bsi,pg�1 , bsi,#1
, . . . , bsi,#g

, bsi,�2
1
, . . . , bsi,�2

g
, bsi,�1

, . . . , bsi,�g
, bsi,⌫)>. It is

important to stress that the standard error of ⌫, obtained from bsi,⌫ , depends heavily on the

calculation of conditional expectation E[log(Ui)|yobsi ,b✓✓✓], which relies on computationally
intensive Monte Carlo integrations, since no analytical expression for this expected value
exists. Therefore, the expressions for the elements bs>i,��� , bsi,pj , bsi,#j

, bsi,�2
j
, bsi,�j

, for j = 1, . . . , g,
are given as

bs>i,��� =

PG
j=1
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After some algebraic manipulation, we obtain
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where the expressions I�ij(w) and I
�
ij(w) are given in Basso et al. (2010). The information-

based approximation defined in Equation (10) is asymptotically applicable. However, it is
less reliable unless the sample size is su�ciently large. Observe that the asymptotic covari-
ance matrix of the ML estimates, that is, the inverse of Equation (10), was obtained using
the parametrization 'j = �0 + µj , j = 1, . . . , g. We can use the traditional delta method
(see Rao, 1973, Sec. 6a.2), to obtain standard errors using the original parameterization.
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Figure 2. Target mixture PDFs from simulated data in Scenario 1 (a) and Scenario 2 (b).

4. Numerical Studies

4.1 Parameter recovery (simulation study I)

We conduct three simulation studies to illustrate the performance of our proposed model.
The first simulation presented below reports the consistency of the approximate standard
errors for the ML estimators of parameters through the EM algorithm with each sample
under the stopping criterion in Equation (9), whereas the contents of the second and third
simulations are described in the corresponding subsections. In addition, we finish this
section of numerical studies with an empirical illustration based on real data.
Here, we consider two scenarios for simulation in order to verify if we can estimate the

true parameter values accurately by using the proposed ECME algorithm. This is the first
step to ensure that the estimation procedure works satisfactorily. We fit data that were
artificially generated from the following model with two components

f(yi|✓✓✓) =
2X

j=1

pj�SMSN(yi|µij + b�j ,�
2

j ,�j ,⌫), i = 1, . . . , n,

where Zij is a component indicator of Yi with P (Zij = 1) = pj , j = 1, 2, x
>
i = (xi1, xi2),

such that xi1 ⇠ U(0, 1) and xi2 ⇠ U(0, 1), for i = 1, . . . , n, and "1 and "2 follow a distri-
bution as in the assumption given in Equation (3). We consider the following parameter
values: �0 = �1, ��� = (�1,�2)> = (�4,�3)>, µ1 = �4, µ2 = 1, �1 = 1, �2 = �4 and
p1 = 0.2. In addition, we consider the following scenarios (depicted in Figure 2): scenario 1
(well separated components) with �

2

1
= 0.2 and �

2

2
= 0.4, and scenario 2 (poorly separated

components) with �
2

1
= 2 and �

2

2
= 2. For each combination of parameters, we gener-

ated 1000 Monte Carlo samples of size n = 1000 from the FM-SMSN-LR models, under
four di↵erent situations: FM-SN-LR, FM-ST-LR (⌫ = 3), FM-SSL-LR (⌫ = 3) and FM-
SCN-LR (⌫> = (0.1, 0.1)). The average values and standard deviations (MC SD) of the
estimators across the 1000 Monte Carlo samples were computed, along with the average
(IM SE) values of the approximate standard deviations of the estimates obtained through
the method described in the Subsection 3.3. Moreover, we compute coverage probability of
each parameter (COV), which is defined by COV(b✓) = (1/m)

Pm
j=1

I(✓ 2 [b✓L, b✓U]), where
I is the indicator function such that ✓ lies in the interval [b✓L, b✓U], with b✓L and b✓U being
estimated lower and upper bounds of the 95% CI, respectively. The results are presented
in Table 1. Note that under both scenarios (well and poorly separated components), the
results suggest that the proposed FM-SMSN-LR model produces satisfactory estimates.
It can bee seen from this table that the estimation method of the standard errors provides

relatively close results (IM SE and MC SD), indicating that the proposed asymptotic
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Table 1. Simulation study I: mean and MC SD are the respective estimated means and standard deviations

from fitting a FM-SMSN-LR model based on 1000 samples. IM SE is the average value of the approximate

standard error obtained through the information-based method. COV is the coverage probability. True

values of parameters are in parentheses.

Scenario 1: �2
1 = 0.2, �2

2 = 0.4 Scenario 2: �2
1 = �2

2 = 2

Parameter SN ST(⌫ = 3) SCN (⌫ = 0.1) SSL(⌫ = 3) SN ST(⌫ = 3) SCN (⌫ = 0.1) SSL(⌫ = 3)

�0(�1) Mean -0.9971 -1.0038 -0.9953 -0.9989 -1.0119 -1.0070 -0.9965 -1.0413

IM SE 0.0602 0.0859 0.0777 0.0883 0.1928 0.3345 0.2369 0.3238

MC SD 0.0698 0.0755 0.0713 0.0770 0.0925 0.1214 0.1324 0.1284

COV 90.6% 96.7% 96.6% 96.0% 99.4% 95.7% 91.8% 95.8%

�1(�4) Mean -4.0002 -3.9985 -3.9996 -3.9947 -3.9949 -3.9958 -3.9963 -4.0005

IM SE 0.0368 0.0418 0.0402 0.0423 0.0889 0.1021 0.0974 0.0985

MC SD 0.0365 0.0426 0.0403 0.0449 0.0899 0.1076 0.0950 0.1031

COV 94.7% 94.2% 95.5% 95.0% 95.0% 92.9% 95.4% 93.3%

�2(�3) Mean -3.0012 -2.9998 -3.0014 -2.9938 -2.9994 -2.9989 -2.9967 -3.0013

IM SE 0.0374 0.0424 0.0410 0.0432 0.0859 0.1005 0.0975 0.1020

MC SD 0.0370 0.0442 0.0413 0.0430 0.0836 0.1046 0.0977 0.1109

COV 95.6% 93.7% 94.0% 96.0% 96.2% 94.4% 94.2% 92.0%

µ1(�4) Mean -4.0026 -3.9945 -4.0040 -4.0166 -4.0295 -3.9806 -4.0899 -3.9924

IM SE 0.0853 0.0800 0.0894 0.0854 0.1396 0.2782 0.1896 0.2531

MC SD 0.0691 0.0876 0.0744 0.0859 0.1111 0.3161 0.2483 0.2202

COV 98.2% 99.8% 98.6% 98.6% 97.3% 92.3% 84.5% 94.8 %

µ2(1) Mean 0.9992 1.0012 1.0007 0.9945 0.9990 1.0103 1.0391 0.9955

IM SE 0.0837 0.0878 0.0862 0.0873 0.0744 0.1098 0.0861 0.0983

MC SD 0.0630 0.0625 0.0656 0.0625 0.0692 0.1000 0.1060 0.0813

COV 98.3% 99.7% 98.4% 99.0% 96.7% 96.7% 86.4% 97.7%

�2
1 Mean 0.2097 0.2089 0.2084 0.1946 2.0069 2.2009 1.9385 1.9221

IM SE 0.0680 0.0575 0.0643 0.0543 1.4238 0.9880 0.7385 1.5234

MC SD 0.0427 0.0639 0.0644 0.0539 0.5626 1.0118 0.8238 0.9698

COV 88.7% 89.8% 88.9% 89.0% 99.6% 87.3% 83.3% 89.1%

�2
2 Mean 0.3991 0.4026 0.3940 0.3988 2.0452 1.9839 1.8290 2.1521

IM SE 0.0274 0.0385 0.0343 0.0381 0.1978 0.3796 0.1898 0.2758

MC SD 0.0283 0.0501 0.0423 0.0463 0.1816 0.2642 0.3309 0.3109

COV 94.0% 85.9% 85.5% 88.0% 95.9% 93.7% 72.5% 89.2%

�1(1) Mean 1.0916 1.0534 1.0894 0.9679 1.1614 1.0068 0.6175 0.8514

IM SE 0.7420 0.4956 0.6466 0.4814 1.4279 1.0923 1.2206 2.7316

MC SD 0.8216 0.4983 0.6441 0.4385 0.4974 0.7792 1.3124 1.1426

COV 94.3% 96.3% 95.9% 98.0% 99.6% 96.9% 88.4% 92.4%

�2(�4) Mean -4.0874 -4.1108 -4.0739 -4.1418 -4.2153 -4.0168 -3.7773 -4.0682

IM SE 0.5446 0.5969 0.5971 0.6086 0.6299 0.8950 0.6262 0.6219

MC SD 0.5406 0.6141 0.6007 0.5477 0.5967 0.6555 0.8671 0.6494

COV 96.8% 95.5% 94.3% 96.0% 96.8% 94.5% 86.8% 93.6%

p1(0.2) Mean 0.1998 0.2004 0.1999 0.1985 0.1987 0.2033 0.2028 0.2000

IM SE 0.0126 0.0131 0.0130 0.0131 0.0146 0.2218 0.0159 0.0204

MC SD 0.0126 0.0125 0.0129 0.0127 0.0138 0.0235 0.0213 0.0191

COV 95.3% 95.8% 95.0% 94.0% 96.3% 92.9% 87.3% 94.6%

⌫ Mean - 3.0735 0.1070 2.9791 - 3.2216 0.1342 4.4543

�(0.1) Mean - - 0.1098 - - - 0.1415 -

approximation for the variances of the ML estimates of Equation (10) is reliable. Note
also that the coverage probability (COV) for the regression parameters is quite stable for
two scenarios, indicating that the proposed asymptotic approximation for the variance
estimates of the ML estimates is reliable.

4.2 Asymptotic properties of the EM estimates (simulation study II)

The main focus in this simulation study is to show the asymptotic properties of the EM
estimates. Our strategy is to generate artificial samples from the FM-SMSN-LR model
with x

>
i = (xi1, xi1), such that xi1 ⇠ U(0, 1) and xi2 ⇠ U(0, 1), for i = 1, . . . , n. We choose

sample sizes n = 100, 250, 500, 1000, 2500 and 5000. The true values of the parameters
were taken as �0 = �1, ��� = (�1,�2)> = (�4,�3)>, µ1 = �4, µ2 = 1, �2

1
= 0.2, �2

2
= 0.4

and p1 = 0.2. For each combination of parameters and sample sizes, we generated 1000
random samples from the FM-SMSN-LR models, under three di↵erent situations: FM-
SN-LR, FM-ST-LR (⌫ = 3), FM-SSL-LR (⌫ = 3) and FM-SCN-LR (⌫> = (0.1, 0.1)).
In order to analyze asymptotic properties of the EM estimates, we computed the bias
and the relative root mean square error (RMSE) for each combination of sample size and
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parameter values. For ✓i, they are given by

Bias(✓i) =
1

1000

1000X

i=1

(✓(j)i � ✓i) and RMSE(✓i) =

vuut 1

1000

1000X

i=1

(✓(j)i � ✓i)2,

where b✓(j)i is the estimate of ✓i for the jth sample. The results for �0, �1 and �2 are shown
in Figure 3; the results for µ1, �1 and �1 are shown in Figure 4; the results for µ2, �2, �2

are shown in Figure 5; and the results for p1 are shown in Figure 6. One can see a pattern
of convergence to zero of the bias and RMSE when n increases for all the parameters. As a
general rule, we can say that Bias and RMSE tend to approach zero when the sample size
increases, indicating that the estimates based on the proposed EM-type algorithm under
the FM-SMSN-LR model do provide good asymptotic properties.
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Figure 3. Average bias (1st row) and average RMSE (2nd row) of the estimators of �0,�1, �2 for simulation II.

4.3 Robustness of the EM estimates (simulation study III)

The purpose of this simulation study is to compare the e↵ect of the robustness of the
estimates of the FM-SMSN-LR models in the presence of outliers on the response variable.
We compare the FM-SN-LR, FM-ST-LR (⌫ = 3), FM-SSL-LR (⌫ = 3) and the FM-CN-
LR ((⌫, �) = (0.1, 0.1)) models. In this scenario, we generated 500 samples of size n = 500
of the FM-SMSN-LR model with f("i) =

P
2

j=1
pj�SMSN("i|µj + b�j ,�

2

j ,�j ,⌫). The true

values of the parameters were taken as �0 = �1, ��� = (�1,�2)> = (�4,�3)>, µ1 = �4,
µ2 = 1, �2

1
= 0.2, �2

2
= 0.4 and p1 = 0.2. To assess how much the EM estimates are

influenced by the presence of outliers, we replaced observation y150 by y150(�) = y150 + �,
with � = 1, 2, . . . , 10. For each replication, we obtained the parameter estimates with and
without outliers, with the three FM-SMSN-LR models.
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Figure 4. Average bias (1st row) and average RMSE (2nd row) of the estimators of µ1,�1, �1 for simulation II.
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34 Benites et al.

Sample size

B
ia

s

100 800 1500 2200 2900 3600 4300 5000

−
0

.0
0

0
7

0
.0

0
1

3
0

.0
0

3
3

p1

SN
ST
SCN
SSL

Sample size

R
M

S
E

100 800 1500 2200 2900 3600 4300 5000

0
.0

0
0

.0
1

0
.0

2
0

.0
3

0
.0

4
0

.0
5

p1

SN
ST
SCN
SSL

Figure 6. Average bias (1st row) and average RMSE (2nd row) of the estimators of p1 for simulation II.

We are interested in evaluating the relative change (RC) in the estimates as a function
of �. Given ⇥⇥⇥ = (�1,�2, p1, p2,✓✓✓1,✓✓✓2), with ✓✓✓j = (�0, µj ,�

2

j ,�j), j = 1, 2, the RC is defined
by

RC
⇣
b⇥⇥⇥i(�)

⌘
=

�����
b⇥⇥⇥i(�)� b⇥⇥⇥i

b⇥⇥⇥i

����� ,

where b⇥⇥⇥i(�) and b⇥⇥⇥i denote the EM estimates of ⇥⇥⇥i with and without perturbation, re-
spectively.
Figure 7 shows the average values of the relative changes undergone by all the parame-

ters. We note that for all parameters, the average RCs suddenly increase under FM-SN-LR
model as the � value grows. In contrast, for the FM-SMSN-LR models with heavy tails,
namely the FM-ST-LR (⌫ = 3) and FM-SCN-LR(⌫ = (0.1, 0.1)), the measures vary little,
indicating they are more robust than the FM-SN-LR model in the ability to accommodate
discrepant observations.

4.4 Empirical illustration

Next, the proposed techniques are illustrated with the analysis a real dataset, the one
previously analyzed by Cook and Weisberg (1982) in a normal regression setting. The
dataset comes from the Australian Institute of Sport (AIS) and consists of measurements
of 202 athletes. Here, we focus on percent body fat (Bfat), which is assumed to be explained
by the sum of skin folds (ssf) and height in cm (Ht). Thus, we consider the FM-SMSN-LR
model given by

Bfati = �0 + �1ssfi + �2Hti + "i, i = 1, . . . , 202,

where "i belongs to the FM-SMSN family.
By using the FMsmsnReg package (see the appendix), we fit the FM-SMSN-LR models as

was described in Section 3. Table 2 compares the fit of various mixture models for g = 1
to 5 components, using the model selection criteria discussed in Subsection 3.3. Note from
this table that, as expected, the heavy-tailed models perform significantly better than the
SN model (and the symmetric counterparts such as the normal and Student-t models),
with mixtures of two (g = 2) components being significantly better in all cases, except for
the normal case (FM-N), where a mixture of g = 3 is needed.
Moreover, the 2-component FM-ST-LR model fits the data substantially better. This

conclusion also is verified through a hypotheses procedure for testing the number of com-
ponents in the FM-ST-LR model. As reported by Turner (2000), we can use parametric
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Figure 7. Average RCs of estimates with di↵erent perturbations � for simulation study III.

Table 2. Comparison of maximum log-likelihood, AICc and BICA for fitted FM-SMSN-LR models using

the AIS data. The number of parameters is denoted by m.

Model g m log-lik AICc BICa

FM-N 1 5 -367.2395 744.7850 745.1792

FM-N 2 8 -359.2902 735.3265 735.7009

FM-N 3 11 -355.2892 733.9679 734.1192

FM-T 1 6 -363.9525 738.2111 738.6053

FM-T 2 9 -358.2494 733.2449 733.6194

FM-T 3 12 -356.3237 736.0369 736.1881

FM-SN 1 6 -363.0346 738.5001 738.9097

FM-SN 2 10 -356.3079 733.7675 734.0164

FM-SN 3 14 -354.1438 738.5336 738.2486

FM-SN 4 18 -353.1388 746.0152 744.7987

FM-SN 5 22 -352.2579 754.1695 751.5973

FM-ST 1 7 -360.7632 736.1038 736.5070

FM-ST 2 11 -353.9696 731.3286 731.4799

FM-ST 3 15 -353.8492 740.2790 739.7994

FM-ST 4 19 -352.3138 746.8034 745.2888

FM-ST 5 23 -351.7865 755.7752 752.7944

FM-SCN 1 8 -357.0375 738.5001 738.9097

FM-SCN 2 12 -353.7235 733.0978 733.1278

FM-SCN 3 16 -354.1656 743.2717 742.5722

FM-SCN 4 20 -352.0380 748.7169 746.8773

FM-SCN 5 24 -352.8184 760.4164 756.9983

FM-SSL 1 7 -362.3246 739.2264 739.6296

FM-SSL 2 11 -354.1580 731.7054 731.8566

FM-SSL 3 15 -354.1941 740.9689 740.4892

FM-SSL 4 19 -352.2586 746.6930 745.1785

FM-SSL 5 23 -352.3504 756.9031 753.9224
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Table 3. AIS data. Parameter estimates of the FM-SMSN- LR models with g = 2. SE denotes the corre-

sponding standard errors obtained via the information-based matrix.

Parameter FM-SN FM-ST FM-SCN FM-SSL

ML SE ML SE ML SE ML SE

�0 14.7241 0.0001 14.51593 0.00253 14.6622 0.0025 14.7475 0.0025

�1 0.1799 0.0012 0.17972 0.00850 0.1805 0.0089 0.1796 0.0091

�2 -0.0757 0.1302 -0.07536 0.19264 -0.0757 0.1458 -0.0754 0.1513

p1 0.1543 0.9295 0.15418 1.04192 0.1483 1.0841 0.1514 1.0393

µ1 2.5504 2.2932 1.93244 4.00942 2.3654 3.8355 2.3891 3.9553

µ2 -0.4652 1.8546 -0.35226 2.94875 -0.4120 2.5091 -0.4263 2.6266

�2
1 0.8483 0.5074 3.80681 1.57056 2.2957 1.6255 2.3158 1.6615

�2
2 2.2793 0.4021 1.06550 11.56693 1.1240 7.1021 0.9740 7.0029

�1 0.1624 0.8467 -5.70438 0.52991 -3.5415 0.4408 -4.8612 0.3724

�2 -2.2318 1.7509 -0.62860 9.52263 -1.0111 7.9389 -1.0144 11.9961

⌫ - - 7.45874 - 0.2270 - 2.3036 -

� - - - 0.3075 - -
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Figure 8. Panels (a) and (b) display the histogram ordinary residuals superimposed on the FM-SMSN-LR residual

PDF for g = 1 and g = 2 components, respectively with AIS dataset.

or semiparametric bootstrap to test hypotheses concerning the number of components in
the mixture. Following the method proposed by Turner (2000), we considered 1000 boot-
strap statistics for testing g = 1 versus g = 2, in which case the p-value was 0.027 for the
parametric bootstrap. Accordingly, there is strong evidence that at least two components
are needed. For testing g = 2 versus g = 3, the bootstrap p-value was 0.984, so there is no
evidence that more than two components are required to model the AIS dataset.
Table 3 presents the ML estimates of the parameters considering the four models with

g = 2, say FM-SN-LR, FM-ST-LR, FM-SCN-LR and the FM-SSL-LR, along with the cor-
responding standard errors (SE), obtained via the information-based procedure presented
in Subsection 3.3. Notice from Table 3 that the small value of the estimate of ⌫ for the
FM-ST-LR and FM-SSL-LR models indicates a lack of adequacy of the SN assumption.
In Figure 8, we plot the histogram of OLS residuals and then display the residual PDFs

for the four FM-SMSN-LR models superimposed on a single set of coordinate axes, with
g = 1 and g = 2 components respectively. Additional results related to g = 3 and g = 4
components are given in Figure 10. Based on this graphical representation, it appears once
again that the FM-ST-LR, FT-SCN-LR and the FT-SSL-LR models have quite reasonable
and better fit than the FM-SN-LR model with g = 2 components.
In order to detect incorrect specification of the error distribution for our best model

(FM-ST-LR), we present quantile versus quantile (QQ) plots and simulated envelopes for
the residuals (y� ŷ) in Figure 9. The QQ plots for the other models are given in Figure 11.
This figure provides strong evidence that the FM-ST-LR (with g = 2 components) yields
a better fit to the current data than the ST-LR model (with g = 1 component), since there
are no observations falling outside the envelope.
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Figure 9. Panels (a) and (b) display the QQ plots and simulated envelopes for the residual (y � by) with for g = 1

and g = 2 components, respectively with AIS dataset.
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Figure 10. Panels (a) and (b) display the histogram of ordinary residuals with FM-SMSN-LR residual with for

g = 3 and g = 4 components, respectively with AIS dataset.
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Figure 11. Panels (a), (b) and (c) display the QQ plots and simulated envelopes for the residual (y � by) for g = 2

components based on FM-SN, FM-SCN and FM-SSL distributions, respectively with AIS dataset.

5. Conclusions

In this paper we consider a regression model whose error term follows a finite mixture of
SMSN distributions, which is a rich class of distributions that contains the skew-normal,
skew-t, skew-slash and skew-contaminated normal distributions as proper elements. This
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approach allows us to model data with great flexibility, simultaneously accommodating
multimodality, skewness and heavy tails for the random error in linear regression models.
It is important to stress that our proposal is di↵erent from that of Zeller et al. (2016), where
they use a finite mixture of linear regression models, the so-called switching regression.
In this paper, instead of mixtures of regressions, mixtures are exploited as a convenient
semiparametric method, which lies between parametric models and kernel PDF estimators,
to model the unknown distributional shape of the errors. For this structure we developed
a simple EM-type algorithm to perform ML inference of the parameters with closed-form
expression at the E-step. The proposed methods are implemented using the FMsmsnReg

package, providing practitioners with a convenient tool for further applications in their
domain. The practical utility of the new method is illustrated with the analysis of a real
dataset and several simulation studies.
The proposed methods can be extended to multivariate settings using the multivariate

SMSN class of distributions (Cabral et al., 2012), such as the recent proposals of Sof-
fritti and Galimberti (2011) and Galimberti and So↵ritti (2014). Due to the popularity of
Markov chain Monte Carlo techniques, another potential work is to pursue a fully Bayesian
treatment in this context for producing posterior inference. The method can also be ex-
tended to mixtures of regressions with skewed and heavy-tailed censored responses, based
on recent approaches by Caudill (2012) and Karlsson and Laitila (2014).

Appendix: Sample output from the FMsmsnReg package

------------------------------

Finite Mixture of Scale Mixture Skew Normal Regression Model

------------------------------

Observations = 202

Family = Skew.t

------

Estimates

------

Estimate SE

beta0 14.51593 0.00253

beta1 0.17972 0.00850

beta2 -0.07536 0.19264

mu1 1.93244 4.00942

mu2 -0.35226 2.94875

sigma1 3.80681 1.57056

sigma2 1.06550 11.5669

shape1 -5.70438 0.52991

shape2 -0.62860 9.52263

pii1 0.15418 1.04192

nu 7.45874 NA

------------

Model selection criteria

------------

Loglik AIC BIC EDC ICL

Value -357.030 730.235 766.626 739.502 2916.687

----

Details

----

Convergence reached? = TRUE

EM iterations = 147 / 500

Criteria = 1e-07

Processing time = 27.11465 secs
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Abstract

In this work, we propose a goodness-of-fit test based on the Kullback-Leibler information
for the Birnbaum-Saunders distribution. We use Monte Carlo simulations to evaluate
the size and power of the proposed test for several alternative hypotheses under di↵erent
sample sizes. We compare the powers with standard goodness-of-fit tests based as the
Anderson-Darling and Cramér-von Mises tests. Finally, we illustrate the proposed test
with a real data set to show its potential applications.

Keywords: Anderson-Darling and Cramér-von Mises tests · Information measures
· Maximum likelihood estimation · Monte Carlo method · Power test · R software

Mathematics Subject Classification: Primary 62J20 · Secondary 62J99.

1. Introduction

The Birnbaum-Saunders (BS) model, proposed by Birnbaum and Saunders (1969), is a
life distribution originating from a material fatigue problem, which relates the time to
the occurrence of failure with some cumulative damage that is assumed to be Gaussian
distributed. The BS model has received much attention in the last decades due to its wide
applicability. Based on to its genesis from material fatigue, di↵erent cumulative damage
processes can be modeled by this distribution, including natural engineering applications,
but the BS model can also be applied to other areas as: medicine (Leiva et al., 2007;
Barros et al., 2008; Azevedo et al., 2012; Gomes et al., 2012; Desousa et al., 2018; Leao
et al., 2018), atmospheric contamination (Leiva et al., 2008, 2010, 2015a; Vilca et al.,
2011; Ferreira, 2013; Marchant et al., 2018, 2019), water quality (Leiva et al., 2009; Vilca
et al., 2010), neuronal sciences (Leiva et al., 2015b), human aging (Leiva and Saunders,
2015), and earthquakes (Lillo et al., 2018), among others. However, because the BS model
is a statistical distribution, we can apply it to several other fields, for example, business,
finance, industry, science management, and quality control. For more details about various
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developments on the BS distribution, see Leiva (2016) and references cited therein. The
BS model has also been used to construct new more flexible models having heavier and
lighter tails than the standard BS distribution, as well as in the construction of models in
the unit interval; see Barros et al. (2008), Azevedo et al. (2012), Mazucheli et al. (2018)
and Athayde et al. (2019).
In statistics, it is of great interest to determine whether a probabilistic model fits a

data set well or not, which could indicate whether these data may have been generated
from this model or not. In this sense, several goodness-of-fit tests have been proposed
for di↵erent probability distributions. Since goodness-of-fit tests measure the discrepancy
between a theoretical model and a data set, they can be done in a variety of ways, such
as, for example, formulated by chi-squared type tests, by statistics based on the empirical
cumulative distribution function or empirical characteristic function. Further details on
goodness-of-fit tests can be found in D’Agostino and Stephens (1986), Castro-Kuriss (2011)
and Barros et al. (2014).
The Anderson-Darling (AD) and Cramér-von Mises (CM) statistics are often used to test

normality. These statistics are based on the distance between the empirical distribution
function and the theoretical distribution function. Chen and Balakrishnam (1995) pro-
posed a general purpose approximate goodness-of-fit test based on these statistics which
may be used to test the validity of di↵erent families of skew distributions. Note that the
Kullback-Leibler (KL) criterion is an information measure, which can be used to evaluate
the discrepancy between two distribution functions. Such a measure of information has
shown good results in testing fitting of models to data sets, in the sense of obtaining more
powerfull tests than the standard tests; see Park (2005) and Rad et al. (2011). Then, due
to the wide applicability of the BS distribution, the objective of this paper is to propose
a goodness-of-fit test for the BS distribution based on the KL information and investigate
if the proposed test is most powerful than in the case of standard AD and CM tests.
The rest of this paper is organized as follows. In Section 2, we present the methodology

with the definitions of entropy, KL information, and a brief review of the BS distribution,
as well as an estimation method of its parameters. In addition, in this section, goodness-
of-fit test for the BS distribution based on KL information are derived. In Section 3, a
simulation study based on the Monte Carlo method is conducted to evaluate the size and
power of the proposed test. Also in this section, we illustrate the proposed methodology
with a real data set. Finally, Section 4 provides the conclusions of this work and some
comments on future research related to this topic.

2. Methodology

2.1 Entropy and Kullback-Leibler information

In order to quantify the degree of disorder in a physical system the German Rudfold
Clausius introduced in Clausius (1867) a new quantity in thermodynamics which he called
entropy. Since this concept was introduced in studies of information theory by Shannon
(1948). Shannon’s idea was to measure the degree of disorder of the occurrence of the
values of a random variable (RV) in the sense that the more distinct rare events occurr.
Let X be an RV with cumulative distribution function (CDF) F and probability density

function (PDF) f. The di↵erential entropy H(f) of X is defined in Shannon (1948) by

H(f) = �
Z 1

�1
f(x) log(f(x))dx.

Let X1, . . . , Xn, with n � 3, be a sample from the distribution F , and let X(1)  · · ·  X(n)
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be their corresponding order statistics. A nonparametric estimator of H(f), proposed by
Vasicek (1976), is given by

Hmn =
1

n

nX

i=1

log
n

n

2m
(x(i+m) � x(i�m))

o
, (1)

where the window m is a positive integer less than n/2 and x(i�m) = x(1), for i �m < 1
and x(i+m) = x(n), for i+m > n, such that x(i) is i-th observed value of the corresponding
order statistic.
Let f(x) and g(x) be PDFs. The KL information is defined in Kullback and Leibler

(1951) as

I(f : g) =

Z 1

�1
f(x) log


f(x)

g(x)

�
dx, (2)

so that I(f : g) measures the divergence between the PDFs f and g. By using the Gibbs
inequality, we can show that I(f : g) � 0 and I(f : g) = 0 if and only if f(x) = g(x). Thus,
the sample estimate of the KL information can also be considered for goodness of fit.

2.2 The Birnbaum-Saunders distribution

Let X be a nonnegative RV. Then, X follows a BS distribution with shape parameter
↵ > 0 and scale parameter � > 0, if the CDF of X is given by

F (x) = �

"
1

↵

 r
x

�
�
r

�

x

!#
, x > 0.

We use the notation X ⇠ BS(↵,�) for indicating an RV X with BS distribution of shape
and scale parameters ↵ and �, respectively. Consequently, the PDF of X is given by

f(x) =
1p
2⇡

exp


� 1

2↵2

✓
x

�
+

�

x
� 2

◆�
x
�3/2(x+ �)

2↵
p
�

, x > 0. (3)

If X ⇠ BS(↵,�), then the following properties are satisfied:

(i) The parameter � is also the median of the distribution.

(ii) If Z ⇠ N(0, 1), then X and Z are related by X = �(↵Z + (↵2
Z

2 + 4)1/2)2/4. Thus,
Z = (1/↵)[(X/�)1/2 � (�/X)1/2] ⇠ N(0, 1).

(iii) cX ⇠ BS(↵, c�), if c > 0 and 1/X ⇠ BS(↵, 1/�).

(iv) E(X) = �(1 + ↵
2
/2) and Var(X) = �

2
↵
2(1 + 5↵2

/4).

(v) The qth quantile ofX is given by xq = �(↵zq + (↵2
z
2
q + 4)1/2)2/4, where zq = ��1(q),

N(0, 1) qth quantile.

(vi) The survival function is expressed as S(x;↵,�) = �{(1/↵)[(�/x)1/2 � (x/�)1/2]}.

For estimation of the model parameters, we consider the maximum likelihood (ML)
method. Let X1, . . . , Xn be a random sample of size n from X ⇠ BS(↵,�) with PDF
given by Equation PDF), so that x1, . . . , xn are their respective observed values. Then,
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the log-likelihood function for ✓ = (↵,�)> is given by

`(✓) = K � 1

2↵2

nX

i=1

✓
xi

�
+

�

xi
� 2

◆
+

nX

i=1

log(xi + �)� n log(↵)� n

2
log(�),

where K = n(log(1/
p
2⇡)� log(2))�3/2

Pn
i=1 log(xi). The ML estimate of ↵ is defined as

b↵ =

vuut 1

n

nX

i=1

 
xi

b�
+
b�
xi

� 2

!
.

In the case of the parameter �, the ML estimate do not have closed form requiring the
use of a numerical method. Under regularity conditions (see Cox and Hinkley, 1974), the

estimators b↵ and b� are consistent and have a bivariate normal joint asymptotic distribution
with asymptotic means ↵ and �, respectively, and an asymptotic covariance matrix ⌃b✓
that can obtained from the inverse of the Fisher information matrix given by

I(✓) =
✓ 2n

↵2 0
0 n

�2 (14 + 1
↵2 + I(↵))

◆
,

where

I(↵) = 2

Z 1

0

 
1

1 + 1
⇠(az)

� 1

2

!2

�(z)dz,

with � being the PDF of Z ⇠ N(0, 1) and ⇠(u) = u
1/2 � u

�1/2. For more details, see Leiva
(2016).

2.3 Goodness-of-fit tests for the BS distribution

Given a random sample X1, . . . , Xn of the RV X, we are interested in testing H0: the RV
X follows the BS(↵, �) distribution with PDF given in Equation (3) against H1: the RV
X does not follow the BS distribution. Note that Equation (2) can be written as

I(f : g) =

Z 1

�1
f(x)[log(f(x))� log(g(x))]dx

= �H(f)�
Z 1

�1
f(x) log(g(x))dx. (4)

Then, from Equation (4), an estimate of the KL information can be obtained. For doing
this, we replace H(f) by its estimate given in Equation (1) and we use the estimated values
of the parameters in f . Thus, under the null hypothesis that f(x) = g(x), we can estimate
the information of KL using

Imn = �Hmn �
Z 1

�1
f(x; b✓) log(f(x; b✓))dx,

where b✓ is a consistent estimator for ✓. Therefore, Imn is a test statistic to verify the
suitability of a continuous probabilistic model with PDF given by f to a data set.
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For X ⇠ BS(↵,�) and f given in Equation (3), we obtain

Imn = �Hmn � log
1p
2⇡

� 1

b↵2
+ log

✓
2b↵
q
b�
◆
+

1

b↵2

✓
1 +

b↵2

2

◆

+
3

2n

nX

i=1

log(x(i))�
1

n

nX

i=1

log(x(i) + b�),

where b↵ and b� are the ML estimates of ↵ and �, respectively. Thus, following Arizono and
Ohta (1989), we introduce the statistic

KLmn =
1

exp(Imn)
,

with 0  KLmn  1 since Imn 2 [0,1). Note that KLmn can be used as test statistic
for testing the goodness-of-fit of the BS distribuion to a data set. The decision rule is to
reject the hypothesis H0 if KLmn  KL⇤

mn(⇢), where KL⇤
mn(⇢) is the critical value for a

significance level ⇢. As we do not have an exact distribution of KLmn, then we obtain
KL⇤

mn(⇢) through Monte Carlo simulations.

3. Numerical Studies

3.1 Critical values for the simulations

To obtain the critical values of the proposed test, we conduct Monte Carlo simulation
studies with R = 10, 000 replications each. These studies are based on n 2 {10, 30, 50, 100},
↵ 2 {0.5, 1.0, 1.5}, and significance level ⇢ = 0.05. In addition, we fix, without loss of
generality, � = 1, since this is a scale parameter. The values considered for the window m

are those returned the maximum critical value, according to Arizono and Ohta (1989). This
procedure is described in Algorithm 1. All simulations are obtained from implementations
in the R statistical software, which is freely distributed from www.R-project.org. For
parameters estimation we use the maxLik package.

Algorithm 1: Obtaining the critical values of the proposed test.

1: Fix n, ↵ and �;
2: Generate 10,000 random samples of size n from X ⇠ BS(↵,�);
3: For each sample, estimate the parameter vector ✓ = (↵,�)> consistently, through

the ML method;
4: For each sample, obtain the values of the test statistic KLmn;
5: Sort the test statistic values obtained in the previous step and determine the 5th

quantile and then obtain the critical values for the respective significance level.

The critical values obtained, considering the BS(0.5,1), BS(1,1) and BS(1.5,1) distributions
are presented in Tables 1-3.

3.2 Evaluating the empirical size and power of the test

Next, the empirical size and power of the proposed test are evaluated for di↵erent sample
sizes based on the Monte Carlo method. We make a comparison among the AD, CM and
KL tests, whose statistics are denoted by A

2
,W

2, KL, and verify in what situations the
test based on the KL information is better, in the sense of being most powerful.
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Table 1. Critical values for the statistic KLmn considering the BS(0.5,1) distribution and significance
level 5%.

m

n 1 2 3 4 5 6 7 8 9 10

3 0.2462
4 0.2577
5 0.2925 0.4221
6 0.3256 0.4404
7 0.3544 0.4620 0.4835
8 0.3866 0.4935 0.5083
9 0.4054 0.5102 0.5319 0.5168
10 0.4250 0.5340 0.5481 0.5401
12 0.4614 0.5689 0.5840 0.5760 0.5625
14 0.4911 0.5908 0.6114 0.6072 0.5973 0.5771
16 0.5159 0.6207 0.6383 0.6354 0.6227 0.6069 0.5880
18 0.5308 0.6396 0.6597 0.6605 0.6461 0.6331 0.6184 0.5980
20 0.5499 0.6564 0.6820 0.6796 0.6674 0.6542 0.6428 0.6250 0.6082
25 0.5754 0.6871 0.7176 0.7194 0.7124 0.7042 0.6905 0.6769 0.6617 0.6489
30 0.5976 0.7132 0.7421 0.7474 0.7481 0.7384 0.7280 0.7153 0.7036 0.6899
35 0.6122 0.7297 0.7593 0.7699 0.7707 0.7655 0.7577 0.7473 0.7352 0.7254
40 0.6243 0.7423 0.7766 0.7904 0.7900 0.7860 0.7789 0.7720 0.7620 0.7527
45 0.6343 0.7547 0.7887 0.8007 0.8053 0.8034 0.7975 0.7917 0.7832 0.7765
50 0.6426 0.7634 0.7982 0.8129 0.8165 0.8142 0.8146 0.8062 0.8027 0.7935
60 0.6568 0.7755 0.8135 0.8291 0.8350 0.8368 0.8355 0.8330 0.8274 0.8235
70 0.6646 0.7854 0.8251 0.8421 0.8498 0.8515 0.8522 0.8501 0.8476 0.8435
80 0.6751 0.7959 0.8349 0.8514 0.8596 0.8641 0.8644 0.8649 0.8628 0.8595
90 0.6804 0.8012 0.8408 0.8598 0.8687 0.8735 0.8758 0.8742 0.8733 0.8718
100 0.6858 0.8075 0.8471 0.8656 0.8760 0.8818 0.8833 0.8841 0.8826 0.8813

Under same the conditions of the obtained critical values, we calculate the empirical
size of the test. Algorithm 2 displays this procedure. The results of our simulation study
are presented in Table 4. Note that the empirical size is close to the nominal level for all
situations considered, indicating that the test is controlled.

Algorithm 2: Obtaining the empirical size of the proposed test.

1: Fix n, ↵ and �;
2: Generate 10,000 random samples of size n from X ⇠ BS(↵,�);
3: For each sample, estimate the parameter vector ✓ = (↵,�)> consistently, through

the ML method;
4: For each sample, obtain the values of the test statistic KLmn;
5: Obtain the empirical size of the test by calculating the proportion of replications

that present test statistic value less than the critical value for the corresponding
values of n and m.

To determine the empirical power, we consider some probability distributions for the
alternative hypothesis. These distributions are chosen and grouped into classes to be an-
alyzed according to the shape of their hazard function: increasing, decreasing and non-
monotonous. The probability distributions considered in the evaluation of the power test
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Table 2. Critical values for the statistic KLmn considering the BS(1,1) distribution and significance level
5%.

m

n 1 2 3 4 5 6 7 8 9 10

3 0.2618
4 0.2724
5 0.3066 0.4446
6 0.3369 0.4698
7 0.3653 0.4947 0.5095
8 0.3974 0.5215 0.5398
9 0.4132 0.5349 0.5650 0.5420
10 0.4350 0.5575 0.5809 0.5691
12 0.4681 0.5870 0.6143 0.6133 0.5941
14 0.4960 0.6066 0.6390 0.6408 0.6338 0.6115
16 0.5202 0.6338 0.6610 0.6654 0.6591 0.6464 0.6292
18 0.5342 0.6508 0.6803 0.6871 0.6807 0.6709 0.6592 0.6416
20 0.5539 0.6671 0.6974 0.7049 0.6989 0.6923 0.6854 0.6683 0.6558
25 0.5778 0.6946 0.7299 0.7387 0.7371 0.7358 0.7279 0.7177 0.7056 0.6986
30 0.5987 0.7193 0.7525 0.7621 0.7686 0.7639 0.7587 0.7502 0.7436 0.7357
35 0.6140 0.7341 0.7680 0.7823 0.7863 0.7856 0.7827 0.7776 0.7709 0.7651
40 0.6258 0.7460 0.7830 0.7990 0.8038 0.8031 0.7997 0.7968 0.7911 0.7869
45 0.6355 0.7572 0.7942 0.8089 0.8156 0.8169 0.8157 0.8122 0.8085 0.8053
50 0.6436 0.7663 0.8028 0.8196 0.8261 0.8261 0.8289 0.8249 0.8231 0.8175
60 0.6575 0.7776 0.8169 0.8338 0.8422 0.8453 0.8471 0.8463 0.8431 0.8427
70 0.6651 0.7872 0.8279 0.8461 0.8555 0.8583 0.8603 0.8606 0.8596 0.8577
80 0.6753 0.7967 0.8375 0.8546 0.8637 0.8694 0.8717 0.8730 0.8727 0.8716
90 0.6806 0.8024 0.8429 0.8621 0.8722 0.8781 0.8815 0.8809 0.8816 0.8809
100 0.6859 0.8084 0.8484 0.8675 0.8789 0.8850 0.8877 0.8898 0.8895 0.8895

are: gamma, generalized exponential, beta, Pareto type I, Weibull, and half-normal, whose
PDFs are the following:

• Gamma(; ✓) with PDF

f1(x;, ✓) =
1

�()✓
x
�1 exp

⇣
�x

✓

⌘
, x > 0, , ✓ > 0

and CDF denoted by F1.
• GExp(; ✓) with PDF

f2(x;, ✓) = ✓x exp{�✓x}[1� exp(�✓x)]�1
, x > 0,

, ✓ > 0, and CDF denoted by F2.
• Beta(; ✓), with PDF

f3(x;, ✓) =
�(+ ✓)

�()�(✓)
x
�1(1� x)✓�1

, 0 < x < 1,

, ✓ > 0, and CDF denoted by F3.
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Table 3. Critical values for the statistic KLmn considering the BS(1.5,1) distribution and significance level
5%.

m

n 1 2 3 4 5 6 7 8 9 10

3 0.2819
4 0.2911
5 0.3237 0.4760
6 0.3514 0.5053
7 0.3796 0.5303 0.5440
8 0.4102 0.5547 0.5791
9 0.4256 0.5665 0.6065 0.5852
10 0.4449 0.5865 0.6206 0.6114
12 0.4763 0.6121 0.6529 0.6591 0.6446
14 0.5036 0.6274 0.6734 0.6850 0.6848 0.6684
16 0.5270 0.6509 0.6916 0.7056 0.7080 0.7029 0.6938
18 0.5385 0.6651 0.7067 0.7234 0.7267 0.7247 0.7198 0.7136
20 0.5564 0.6787 0.7191 0.7371 0.7430 0.7454 0.7462 0.7343 0.7317
25 0.5806 0.7025 0.7460 0.7630 0.7704 0.7791 0.7791 0.7785 0.7741 0.7770
30 0.6010 0.7260 0.7643 0.7816 0.7940 0.7992 0.8004 0.8024 0.8021 0.8048
35 0.6149 0.7396 0.7777 0.7984 0.8080 0.8131 0.8167 0.8198 0.8209 0.8238
40 0.6273 0.7499 0.7900 0.8116 0.8210 0.8254 0.8293 0.8318 0.8340 0.8349
45 0.6365 0.7602 0.8008 0.8193 0.8298 0.8358 0.8404 0.8425 0.8447 0.8478
50 0.6443 0.7685 0.8080 0.8285 0.8385 0.8425 0.8496 0.8507 0.8541 0.8544
60 0.6581 0.7794 0.8206 0.8402 0.8507 0.8572 0.8614 0.8645 0.8661 0.8708
70 0.6657 0.7884 0.8309 0.8506 0.8618 0.8677 0.8720 0.8749 0.8778 0.8789
80 0.6758 0.7977 0.8397 0.8580 0.8694 0.8761 0.8808 0.8847 0.8867 0.8886
90 0.6807 0.8026 0.8449 0.8652 0.8760 0.8838 0.8891 0.8904 0.8934 0.8946
100 0.6856 0.8089 0.8502 0.8699 0.8824 0.8895 0.8936 0.8972 0.8988 0.9012

Table 4. Empirical size for di↵erent sample size and values of the parameter ↵ indicated.

n m BS(0.5,1) BS(1,1) BS(1.5,1)

10 3 0.0473 0.0588 0.0494
30 5 0.0564 0.0563 0.0513
50 7 0.0520 0.0514 0.0454
100 8 0.0504 0.0515 0.0482

• Pareto(; ✓), with PDF

f4(x;, ✓) =
✓



x+1
, x 2 [✓,1), , ✓ > 0,

and CDF denoted by F4.
• Weibull(; ✓), with PDF

f5(x;, ✓) =


✓

⇣
x

✓

⌘�1
exp

n
�
⇣
x

✓

⌘o
, x > 0,

, ✓ > 0 and CDF denoted by F5.
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• HN(✓), with PDF

f6(x; ✓) =
2✓

⇡
exp

✓
�x

2
✓
2

⇡

◆
, x � 0, ✓ > 0,

and CDF denoted by F6.

The power of the test is calculated based on testing the hypotheses

⇢
H0: X ⇠ BS(↵,�), for some ↵ > 0 and � > 0;
H1: X ⇠ Fi(✓), with ✓ > 0 and i = 1, . . . , 6.

In the procedure, 10,000 Monte Carlo replications and sample sizes n = 10, 30, 50, 100 are
considered. The powers of the tests are obtained at the significance level ⇢ = 0.05. For
each value of n and each distribution in H1, with di↵erent parameters, the 10,000 samples
are generated and the respective values of the test statistic are calculated. Based on the
critical values presented in Tables 1-3, we obtain the rejection proportions based on the
10,000 simulated samples. In addition, the power of the test is evaluated based on the
CM and AD statistics using the procedure proposed by Chen and Balakrishnam (1995).
We make a comparison among the tests and verify in what situations the test based on
the KL information is better, in the sense of being most powerful. Tables 5-8 present the
powers for the test in question with sample sizes of n = 10, n = 30, n = 50 and n = 100,
respectively.

Table 5. Empirical power for di↵erent forms of hazard functions and di↵erent distributions considering
sample size n = 10.

Hazard function Alternatives KLmn W
2

A
2

Increasing
Gamma(3; 1) 0.1534 0.0873 0.0937
GExp(3; 1) 0.1288 0.0805 0.0825
Beta(2; 1) 0.6841 0.3970 0.4282

Decreasing
Gamma(0.5; 1) 0.0376 0.0890 0.0959
GExp(0.5; 1) 0.0428 0.0938 0.1025

Nonmonotone
Pareto(2; 1) 0.4748 0.4070 0.4342
Weibull(2; 1) 0.2405 0.1507 0.1617
HN(3) 0.2434 0.2096 0.2298

Table 6. Empirical power for di↵erent forms of hazard functions and di↵erent distributions considering
sample size n = 30.

Hazard function Alternatives KLmn W
2

A
2

Increasing
Gamma(3; 1) 0.2656 0.1856 0.2082
GExp(3; 1) 0.2050 0.1544 0.1719
Beta(2; 1) 0.9970 0.9053 0.9388

Decreasing
Gamma(0.5; 1) 0.3465 0.3959 0.5343
GExp(0.5; 1) 0.3638 0.3937 0.5442

Nonmonotone
Pareto(2; 1) 0.9767 0.9039 0.9365
Weibull(2; 1) 0.5458 0.4172 0.4559
HN(3) 0.7164 0.6576 0.6987
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Table 7. Empirical power for di↵erent forms of hazard functions and di↵erent distributions considering
sample size n = 50.

Hazard function Alternatives KLmn W
2

A
2

Increasing
Gamma(3; 1) 0.3575 0.2774 0.3099
GExp(3; 1) 0.2716 0.2187 0.2498
Beta(2; 1) 1.0000 0.9905 0.9965

Decreasing
Gamma(0.5; 1) 0.6622 0.7369 0.8711
GExp(0.5; 1) 0.6779 0.7394 0.8748

Nonmonotone
Pareto(2; 1) 0.9993 0.9922 0.9970
Weibull(2; 1) 0.7317 0.6190 0.6671
HN(3) 0.9026 0.8701 0.8999

Table 8. Empirical power for di↵erent forms of hazard functions and di↵erent distributions considering
sample size n = 100.

Hazard function Alternatives KLmn W
2

A
2

Increasing
Gamma(3; 1) 0.4937 0.4829 0.5364
GExp(3; 1) 0.3744 0.3807 0.4276
Beta(2; 1) 1.0000 1.0000 1.0000

Decreasing
Gamma(0.5; 1) 0.9861 0.9786 0.9969
GExp(0.5; 1) 0.9882 0.9772 0.9957

Nonmonotone
Pareto(2; 1) 1.0000 1.0000 1.0000
Weibull(2; 1) 0.9134 0.8922 0.9256
HN(3) 0.9948 0.9915 0.9958

According to our simulation study, we conclude that the goodness-of-fit test based on the
KL information, in general, presents greater powers when compared to standard AD and
CM tests, for small sample size. When the hazard function under alternative hypothesis
is decreasing, the proposed test has di�culties in discriminating the models, leading to
powers close to nominal levels. This is because the hazard functions considered under the
alternative hypothesis closely approximate the hazard function of the BS distribution. In
addition, as the sample size increases, the power of the test also increases, as expected.

3.3 Empirical illustration

Next, we consider a set of data related to fatigue life cycles of samples of 6061-T6 aluminum
presented in Birnbaum and Saunders (1969). These specimens were cut at an angle parallel
to the direction of rotation, oscillating at 18 cycles per second. They were exposed to a
pressure with a maximum stress of 26000 psi (pounds per square inch). The data are
presented in Table 9.
We want to test the null hypothesis that the sample presented in Table 9 follows the

BS distribution.The model parameter estimates are b↵ = 0.1614 and b� = 392.7622. The
value observed for the test statistic is klmn = 0.9270, and the critical value for this case is
KL⇤

mn(⇢) = 0.8834, at the 5% significance level. Therefore, we do not reject the hypothesis
that the data follow the BS distribution. Figure 1 compares the empirical distribution
function with the theoretical one. We can observe from this figure that the empirical and
theoretical distribution functions are very close, which reinforces the conclusion reached
by the test.
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Figure 1. Empirical and theoretical distribution functions BS for aluminum data.

Table 9. Data set of aluminum lifetimes (26.000 psi).

233 258 268 276 290 310 312 315 318 321
321 329 335 336 338 338 342 342 342 344
349 350 350 351 351 352 352 356 358 358
360 362 363 366 367 370 370 372 372 374
375 376 379 379 380 382 389 389 395 396
400 400 400 403 404 406 408 408 410 412
414 416 416 416 420 422 423 426 428 432
432 433 433 437 438 439 439 443 445 445
452 456 456 460 464 466 468 470 470 473
474 476 476 486 488 489 490 491 503 517
540 560

4. Conclusions and Future Research

In this paper, we proposed a goodness-of-fit test for the Birnbaum-Saunders distribution
based on the Kullback-Leibler information. The proposed goodness-of-fit test performed
better than the standard Anderson-Darling and Cramér-von Mises tests, in the sense that
the proposed test had greater power for the alternatives considered with increasing and
nonmonotone hazard functions. When the distribution of the alternative hypothesis had
a decreasing hazard function, the test based in KL information presented less power than
the Anderson-Darling and Cramér-von Mises tests. In general, the proposed test proved to
be a good alternative to the standard Anderson-Darling and Cramér-von Mises tests. As
future research, we hope to obtain new tests for the Birnbaum-Saunders distribution based
on information measures for censored data, more specifically, for type II and progressively
Type-II censored samples.
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Abstract

In this paper, we introduce a new distribution for positively skewed data by combining
the Birnbaum-Saunders and centered skew-normal distributions. Several of its proper-
ties are developed. Our model accommodates both positively and negatively skewed
data. Also, we show that our proposal circumvents some problems related to another
Birnbaum-Saunders distribution based on the usual skew-normal model, previously pre-
sented in the literature. We derive both maximum likelihood and Bayesian inference,
comparing them through a suitable simulation study. The convergence of the expectation
conditional maximization (for maximum likelihood inference) and MCMC algorithms
(for Bayesian inference) are verified and several factors of interest are compared. In
general, as the sample size increases, the results indicate that the Bayesian approach
provided the most accurate estimates. Our model accommodates the asymmetry of the
data more properly than the usual Birnbaum-Saunders distribution, which is illustrated
through real data analysis.

Keywords: Bayesian inference · Birnbaum-Saunders distribution · ECM algorithm
· Frequentist inference · MCMC algorithms · R software
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1. Introduction

The Birnbaum-Saunders (BS) distribution is characterized by two parameters and de-
fined in terms of the standard normal distribution. The BS distribution has been received
considerable attention over the past few years, since it has been used quite e↵ectively to
model positively skewed data, especially lifetime and crack growth data. Since the pio-
neering work of Birnbaum and Saunders (1969a) was published, several extensions of the
BS distribution have been proposed in the literature and its parameters estimated under
both frequentist and Bayesian paradigms.
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From a frequentist viewpoint, Birnbaum and Saunders (1969b) presented a discussion on
the maximum likelihood (ML) parameter estimation. Mann et al. (1974) showed that the
BS distribution is unimodal. Engelhardt et al. (1981) developed confidence intervals and
hypothesis tests for both parameters. Desmond (1985) developed a BS-type distribution
based on a biological model. Desmond (1986) investigated the relationship between the BS
distribution and the inverse Gaussian distribution. Lu and Chang (1997) used bootstrap
methods to construct prediction intervals for future observations. In the linear regression
context, Rieck and Nedelman (1991) developed a related log-linear model and showed
that it can be used for modeling accelerated life tests and to compare average lifetime of
di↵erent populations.
From a Bayesian perspective, there are few works on the BS distribution. The first one is

due to Achcar (1993) who developed Bayesian estimation using numerical approximations
for the marginal posterior distributions of interest based on the Laplace approximation.
Also, Xu and Tang (2011) presented a Bayesian study with partial information, while
Wang et al. (2016) assumed that the two parameters follow mutually independently in-
verse gamma distributions. All these results were studied under a normal distribution for
generating the BS distribution.
In terms of modeling, most of the generalizations of the BS distribution are based on

elliptical and skew-elliptical laws, in order to obtain more robust and flexible models.
Some works developed extensions based on symmetric distributions as Diaz-Garcia and
Leiva (2005) who generalized the BS model using elliptical distributions that includes the
Cauchy, Laplace, logistic, normal and Student-t distributions as particular cases. Other
works are: the generalized BS distribution (Leiva et al., 2007), the Student-t BS distribution
(Barros et al., 2008), and the scale-mixture of normal BS distribution (Balakrishnan et
al., 2009), among others. More information can be found in Leiva (2016), who presented a
review on the BS distribution. Other generalizations have been obtained in di↵erent ways
to those aforementioned, as Owen and Padgett (1999), who developed a three-parameter
BS distribution and the �-BS distribution presented in Cordeiro and Lemonte (2011).
Also, Ferreira (2013) proposed a based BS distribution useful for modeling tail events
and Mazucheli et al. (2018) presented a distribution on the unit interval based on the BS
model. In addition, Balakrishnan et al. (2017) and Maehara (2018) provided new families
of BS distribution based on the skew scale mixture of normal models. Also, extensions of
the BS distribution based on the skew-elliptical models can be found in Vilca and Leiva
(2006), Leiva et al. (2007, 2008) and Vilca et al. (2011). In these works, theoretical results
were obtained, extending the properties of the BS and log-BS distributions.
A Bayesian perspective for the BS distributions based on skew-normal (SN) distribution

did not receive much attention in the literature. Indeed, Vilca et al. (2011) considered,
under a frequentist perspective, the BS distribution based on the SN model. However,
even though the SN distribution has been applied with success in several fields, when the
related asymmetry parameter is equals to zero, the associated Fisher information matrix
is singular. Recently, to overcome this problem, Arellano and Azzalini (2008) and Azzalini
(2013) explored a SN distribution under a convenient parameterization (proposed by Azza-
lini (1985) and deeper explored by Pewsey (2000)), the so-called centered parametrization
(CP), which leads to a non-singular Fisher information matrix. Moreover, the relative
profile log-likelihood function (RPLL) for the Pearson index of skewness exhibits a more
regular behavior, closer to a quadratic function, and without a stationary point under null
asymmetry . The resulting empirical distributions of the estimators under the CP, named
CP estimators, are much closer to the normality than those obtained under the usual SN
distribution, which is named direct parametrization estimators. All these desirable prop-
erties, related to the the CP, may be transferred to the respective BS distribution based
on the centered SN (CSN) model. It is worthwhile to mention that all the aforementioned
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BS models (that consider the SN model) used the direct parametrization that is, likely,
they inherit the above problems.
The main objective of this work is to propose an alternative to the skew-normal BS

(SNBS) distribution proposed by Vilca et al. (2011), considering the CSN distribution,
as the generator variable. The resulting BS-type distribution has advantages, in inference
terms, over the SNBS distributions (including those obtained as particular cases of the
more general families as those of Balakrishnan et al. (2009) and Maehara (2018)), similarly
to those related to the CSN distribution, compared with the SN distribution. The specific
objectives of this work are: to develop a BS distribution based on the CSN model, named
centered skew-normal BS (CSNBS) distribution, highlighting its advantages over the SNBS
distribution proposed by Vilca et al. (2011), and its main properties. Also, estimation
procedures under both frequentist and Bayesian approaches are developed and compared,
considering di↵erent scenarios. In addition, some model comparison statistics are studied.
Finally, two real data sets are analyzed showing some advantages of the CSNBS model
compared to the usual BS distribution.
The paper is outlined as follows. In Section 2, we present our distribution and some

motivation for its development. In Section 3, the estimation methods are proposed and
some statistics of model comparison are presented. In Section 4, some simulation studies
are presented and two real data sets are analyzed. Finally, in Section 5, some additional
comments and conclusions are provided.

2. The Centered Skew-normal BS Distribution

2.1 The centered skew-normal distribution

A random variable Y is said to have a CSN distribution, denoted by Y ⇠ CSN(µ,�, �),
where µ, � and � are the mean, the standard deviation and the Pearson coe�cient of
skewness, respectively, if its density is given by

fY (y) = 2
�z
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The quantity � is the asymmetry parameter, see Azzalini (1985). For µ = 0 and � = 1, we
have the standard CSN distribution, denoted by Y ⇠ CSN(0, 1, �), whose density is given
by
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1 + �2/3s2. For inferential purposes, a useful stochastic
representation of Y is given by
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, (2)

where Xi ⇠ N(0, 1), for i = 0, 1, are independent and so H = |X0| follows a half-normal
(HN) distribution, denoted by HN(0, 1).
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2.2 The proposed distribution

Here, we present the CSNBS distribution, which is defined similarly to the usual BS and
the SNBS distributions by

T = �

2

4↵Y

2
+

s✓
↵Y

2

◆2

+ 1

3

5
2

, (3)

where Y ⇠ CSN(0, 1, �), ↵ is the shape parameter, � is the location parameter, and � is
the asymmetry parameter. We use the following notation T ⇠ CSNBS(↵,�, �). The vector
(↵,�, �)> is called centered parameter and based on the SN distribution, that is, (↵,�,�)>

is named direct parameters. Following the same steps as in the usual BS distribution, we
have that its density is given by

fT (t) = 2� [at;µ,�(↵,�)]� [� at;µ,�(↵,�)]At;�(↵,�), t > 0, (4)

where at;µ,�(↵,�) = µz+�z at(↵,�), At;�(↵,�) = �zAt(↵,�), at(↵,�) = (
p

t/��
p

�/t) /↵,
At(↵,�) = dat(↵,�)/dt = t

�3/2(t+ �)/(2↵�1/2), and the other quantities are previously
defined. Note that for � = 0, we have the usual BS distribution. The mean and variance
of T (see Appendix A for more details) are given, respectively, by
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where � = 2(⇡ � 3)(4/⇡2)�4[1� (2�2/⇡)]�2 + 3.
The following theorem is very useful to develop both classical and Bayesian approaches

since they lead to conditional distributions that allow us to implement, more easily, the
EM algorithm, and simplify the Bayesian developments. For the use of standard MCMC
software, such as WinBUGS, OpenBUGS, JAGS or Stan, see Lunn et al. (2000), Lunn et
al. (2009), Depaoli et al. (2016) and Carpenter et al. (2016).

Theorem 2.1 Let T ⇠ CSNBS(↵,�, �) as in Equation (3), and Y and H as defined in
Equation (2). Then,

(i) The conditional density of T , given H = h, can be expressed as

fT |H(t|h) = �(⌫h + at(↵�,�))At(↵�,�),
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The density in Theorem 2.1 corresponds to the extended Birnbaum-Saunders (EBS)
discussed in Leiva et al. (2008) and denoted by EBS(↵�,�,� = 2, ⌫h). The proof of Theorem
2.1 is in the Appendix B.
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Figures 1-3 present the density of the CSNBS distribution for di↵erent values of ↵, �
and �. From Figure 1, we have that for ↵ = 0.2 the density is concentrated around �

(� = 1), and for ↵ = 0.8 the density is more asymmetric, with a higher variability. As
↵ increases, the density becomes more flat, positively skewed and more dispersed, as it
can be seen in Figure 2, for di↵erent values of ↵, fixing the other parameters. In addition,
Figure 3 shows densities more concentrated around � for di↵erent values of ↵ and �, with
� = 0.9. It is also possible to see that for large values of �, the density is more negatively
skewed. Note that the distribution tends to be symmetric around �, for � = 0 (the usual BS
distribution) and/or for small values of ↵. Positive asymmetry is observed as ↵ increases,
� decreases and/or � assumes positive values. In addition, negative asymmetry is observed
as ↵ decreases, � increases and/or � assumes negative values. Another interesting point is
that the CSNBS distribution may be negatively skewed, which is an unusual behavior for
positive random variables. This feature makes our distribution a very useful alternative
for modeling positive skewed data.
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Figure 1. CSNBS density for di↵erent values of �, with � = 1, ↵ = 0.2 (a)-(b) and ↵ = 0.8 (c)-(d).
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Figure 2. CSNBS density for di↵erent values of ↵, with � = 1, � = 0.9 (a) and � = �0.9 (b).
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Figure 3. CSNBS density with � = 2 (a), � = 3 (b), � = 4 (c), and � = 5 (d) for indicated ↵ and � = 0.9.

2.3 Some motivational remarks on the proposal

(i) It is well known that there is some di�culty in estimating the parameters of the SN
distribution by the ML approach, when the asymmetry parameter is close to zero. Some
problems seem to persist even if one switched to the Bayesian inference, unless a strongly
informative prior is considered, as pointed out by Arellano and Azzalini (2008). The
SNBS distribution seems to inherit such problems. Thus, the proposed CSNBS distri-
bution can circumvents these problems, since it is based on the CSN model.

(ii) When the asymmetry parameter is equals to zero, the Fisher information matrix is
singular, even if all parameters are identifiable. This a↵ects the behavior of the empir-
ical distributions of the ML estimators and the Bayesian estimators. To get a direct
perception of the problem, we generated 100 samples of size n = 200, from the SNBS
distribution and for each sample, the ML and Bayesian estimates (b↵, b�, b�) have been
computed. In this case, we fix ↵ = 0.5, � = 1 and � = 1, which induces a strong
positively skewed behavior of the SNBS distribution. Figures 4 and 5 display the corre-
sponding empirical distribution of b↵ and (b↵, b�), through a histogram and scatter plot,
respectively. Moreover, 100 samples of size n = 200 are generated from the CSNBS dis-
tribution, and the respective ML and Bayesian estimates (b↵, b�, b�) have been computed.
In this case, we fix ↵ = 0.5, � = 1 and � = 0.137, which induces a strong positively
skewed behavior of the CSNBS model. The empirical distributions of b↵ and (b↵, b�) are
shown in Figures 6 and 7, respectively. Clearly these empirical distributions are much
closer to normality than those in Figures 4 and 5. In fact, it can be shown that the
singularity of the expected Fisher information matrix, when the asymmetry parameter
is null, no longer occurs.

(iii) The CP circumvents the problem concerning the existence of an inflection point in the
RPLL of this parameter. This can be seen in Figure 8, which refers to the plots of
twice the RPLL function for �, the asymmetry parameter of the SNBS distribution (left
panel), and the for �, the asymmetry parameter of the CSNBS distribution (right panel).

The RPLL corresponds to `(b↵(�), b�(�), �) � `(b↵(�), b�(�), b�), where `(·) represents the
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log-likelihood function. The respective plots are constructed by considering a random
sample of both SNBS and CSBNS distributions, under suitable values of ↵, � and �. We
can notice a non-quadratic form of the log-likelihood function under the SNBS model,
induced by the existence of an inflection point when the asymmetry parameter is very
close to zero, making it di�cult the obtaining of the ML estimates. However, the log-
likelihood function of the CSNBS distribution presents a concave shape. Also, there is
no inflection point when the asymmetry parameter is equals zero.

(iv) The posterior distribution of � for the SNBS distribution has a non-quadratic form, as
it can be seen in Figure 9 (a), and this occurs even if we consider an informative prior.
However, the posterior distribution of � for the CSNBS distribution is well-behaved,
presenting a concave shape, as it can be seen in Figure 9 (b).

α̂

De
ns
ity

0.40 0.45 0.50

0
5

10
15

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

1.1 1.2 1.3 1.4 1.5 1.6

0.
38

0.
42

0.
46

0.
50

α̂

β̂

Figure 4. Estimated distributions of the ML estimates when samples of size n = 200 are drawn from SNBS; the
left panel displays the histogram of b↵, the right panel displays the scatter plot of (b↵, b�).
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Figure 5. Estimated distributions of the Bayesian estimates when samples of size n = 200 are drawn from SNBS
distribution; the left panel displays the histogram of b↵, the right panel displays the scatter plot of (b↵, b�).
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Figure 7. Estimated distributions of the Bayesian estimates when samples of size n = 200 are drawn from CSNBS
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Figure 9. Posterior distribution of � for the SNBS distribution (left) and of � for the CSNBS distribution (right).

3. Estimation and Inference

3.1 General context

We present the ML estimation, based on the expectation conditional maximization (ECM)
algorithm as in Meng and Rubin (1993), and the Bayesian approach, through MCMC algo-
rithms. Let T ⇠ CSNBS(↵,�, �) and then, recall that, from Theorem 2.1, we have T |(H =
h) ⇠ EBS(↵�,�,� = 2, ⌫h), where H = |X0| ⇠ HN(0, 1), ↵� = ↵

p
(1� �2)/(1� r2�2)

and ⌫h = ��(h� r)/
p
1� �2. In Appendix B, we present some results that are useful for

obtaining the ML estimators. For both methods, we consider a random sample T1, . . . , Tn

from T ⇠ SNBS(↵,�, �), where ✓ = (↵,�, �)>.
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3.2 The ECM algorithm and ML estimation

Here, we discuss the ML estimation through the ECM algorithm. The log-likelihood func-
tion for ✓ is given by `(✓|t) =

P
n

i=1 `i(✓|ti), where

`i(✓|ti) = log(2) + log {� [ati;µ,�(↵,�)]}+ log {� [� ati;µ,�(↵,�)]}+ log [Ati;�(↵,�)] , (5)

and ati;µ,�(↵,�) and Ati;�(↵,�) are given in Equation (4). Instead of considering the direct
maximization of Equation (5), we obtain the ML estimates through the ECM algorithm,
since it allows for a more tractable optimization process. In this case, we need to work with
the so-called augmented likelihood function. Also, instead of working with ✓⇤ = (↵,�, �)>,
we estimate ✓ = (↵,�, �)>, where � is defined in Equation (1). Then, we recover � through
the invariance principle related to the ML estimators. This is performed since the related
expressions (both analytically and computationally) are more tractable for ✓.

Recall that, From Theorem 2.1, we have Ti|Hi = hi
IND⇠ EBS(↵�,�,� = 2, ⌫hi

) andHi

IND⇠
HN(0, 1); i = 1, . . . , n, where “IND” denotes “independent”, ↵� = ↵

p
(1� �2)/(1� r2�2)

and ⌫hi
= �(�(hi � r))

p
1� �2. Then, defining tc = (t>,h>)>, with t = (t1, . . . , tn)> and

h = (h1, . . . , hn)>, the augmented log-likelihood function can be written as

`(✓|tc) =
nX

i=1

log[fT |H(ti|hi)] +
nX

i=1

fH(hi)

= c� �
2

2(1� �2)

nX

i=1

h
2
i +

r�
2

(1� �2)

nX

i=1

hi �
nr

2
�
2

2(1� �2)

+
�
p
1� r2�2

1� �2

nX

i=1

hiati(↵,�)�
r�
p
1� r2�2

1� �2

nX

i=1

ati(↵,�)�
1� r

2
�
2

2(1� �2)

nX

i=1

a
2
ti
(↵,�)

+
n

2
log(1� r

2
�
2) +

nX

i=1

log(ti + �)� n

2
log(1� �

2)� n log(↵)� n

2
log(�).

For a current value of ✓, say b✓, the E-step requires the evaluation of Q(✓|b✓) =

E[`(✓|tc)|t, b✓], where the expectation is taken with respect to the conditional distribution

H|(T = t), evaluated at b✓. For a estimate of ✓ at r-th iteration, say ✓(r) = (↵(r)
,�

(r)
, �

(r))>,

consider bhi = E[Hi|✓ = b✓, ti] and bh2
i
= E[H2

i
|✓ = b✓, ti], given in Theorem 2.1, that is,

bhi = b⌘ti +W�

✓
b⌘ti
b⌧

◆
b⌧ and bh2i = b⌘2ti + b⌧2 +W�

✓
b⌘ti
b⌧

◆
(b⌘tib⌧) , (6)

respectively, where b⌘ti = b�
p

1� r2b�2
�
ati(b↵, b�) + rb�/

p
1� r2b�2

�
, b⌧ =

p
1� b�2 and

W�(z) = �(z)/�(z), z 2 R. Then, let ✓(r) = (↵(r)
,�

(r)
, �

(r))> be the estimate of ✓ at the
k-th iteration. By considering Equation (6), we have that the augmented log-likelihood

function becomes Q(✓|✓(r)) = E[`(✓|tc)|t, b✓(r)], where
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Q(✓|✓(r)) = c� �
2(r)

2
�
1� �2(r)

�
nX

i=1

bh2(r)
i

+
r�

2(r)

�
1� �2(r)

�
nX
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bh(r)
i

� nr
2
�
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+
�
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p

1� r2�2(r)

↵(r)
�
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�
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h
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+
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log
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log
⇣
ti + �

(r)
⌘
� n

2
log

⇣
1� �

2(r)
⌘
� n log
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log
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�
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.

Hence, the ECM algorithm corresponds to iterate the following steps:

E-step: Given ✓ = b✓(r), compute bhi and bh2
i
, for i = 1, . . . , n by using Equation (6);

CM-step 1: Fix � = b�(r) and � = b�(r) and update b↵(r) through the positive root of
b↵2 + b̂

(r)b↵+ ĉ
(r) = 0, where

b̂
(r) =

1

(1� b�2(r))

h
b�(r)

q
1� r2b�2(r) 1

n

nX

i=1

bhiati(1, b�(r))� rb�(r)
q

1� r2b�2(r) 1
n

nX

i=1

ati(1, b�(r))
i
.

ĉ
(r) = �(1� r

2b�2(r))
(1� b�2(r))

1

n

nX

i=1

bhi
h
ati(1, b�(r))

i2
,

that is, b↵(r+1) = (�b(r + 1) +
p

b2(r+1) � 4c(r + 1))/2;

CM-step 2: Fix ↵ = b↵(r+1) and update b�(r) and b�(r) using

b�(r+1) = argmax
�

Q

⇣
b↵(r+1)

,�, b�(r)
⌘

and b�(r+1) = argmax
�

Q

⇣
b↵(r+1)

, b�(r+1)
, �

⌘
.

The updating of b�(r+1) and b�(r+1) needs to be done through some numerical optimiza-
tion method. In this work we use the function optim, available on the R software (see R
Development Core Team, 2017), considering the L-BFGS-B optimization algorithm (see

Byrd et al., 1995)). Also, we start the ECM algorithm with initial values, say, b↵(0), b�(0)

and b�(0), using: b↵(0) = [2(s/v) � 1]1/2 and b�(0) = (sv)1/2, where s = (1/n)
P

n

i=1 ti and

v = [(1/n)
P

n

i=1 1/ti]
�1, as in Vilca et al. (2011). After obtaining b↵(0) and b�(0), we can

define zi = (1/b↵(0))[(ti/b�(0))1/2 � (b�(0)
/ti)1/2], for i = 1, . . . , n, which are observations

related to a CSN distribution. Thus, b�(0) can be obtained by maximizing (numerically) the
log-likelihood function of a SN distribution with respect to �, which is given by

`(✓) =
nX

i=1

h
log(2) + log(�z) + log [� (µz + �zyi)] + log {� [�(µz + �zyi)]}

i
.

According to Vilca et al. (2011), for ensuring that the true ML estimates are obtained,
it is recommended to run the ECM algorithm using a range of di↵erent starting val-
ues and checking whether all of them result in similar estimates. The steps of the
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ECM algorithm are repeated until a suitable convergence is attained, for example, us-
ing k✓(r) � ✓(r�1)k < ", with " > 0. It is worthwhile to mention, under certain regularity

conditions, that b✓ converges in distribution to N3(✓,⌃b✓), as n ! 1. We approximate ⌃b✓
by I

�1(✓), where I(✓) = �῭, ῭ = [῭✓1✓2 ], ✓1, ✓2 = ↵,� or � is the Hessian matrix, and
῭
✓1✓2

= ῭
✓2✓1

= @
2
`(✓)/@✓1✓2 =

P
n

i=1 @
2
`i(✓)/@✓1✓2. The second derivatives of `i(✓) are

provided in Appendix C. The approximate standard errors (SE) of b✓ can be estimated

with the square roots of the diagonal elements of I�1(✓), replacing ✓ by b✓.

3.3 Bayesian inference

Next, we present the developments related to the Bayesian inference through MCMC
algorithms. We present the prior and the respective posterior distributions, along with
suitable MCMC algorithms to sample from the respective marginal posterior distributions
of interest. Consider both original and augmented likelihood functions (in order to compare
them). The first of them is given by

L(✓|t) =
nY

i=1

2� [ati;µ,�(↵,�)]� [� ati;µ,�(↵,�)]Ati;�(↵,�).

We assume the following prior distributions: ↵ ⇠ gamma(r↵;�↵), � ⇠ gamma(r� ;��) and
� ⇠ U(a; b), mutually independent, where gamma(r,�) stands for a gamma distribution
such that E(↵) = r/� and Var(↵) = r/�

2 and U(a; b) stands for a continuous uniform
distribution over the interval [a, b]. Combining the likelihood function with the prior dis-
tribution, we have that the joint posterior distribution is given by

⇡(✓|t) / ↵
r↵�1

�
r��1 exp [�(↵�↵ + ���)]

nY

i=1

� [ati;µ,�(↵,�)]� [� ati;µ,�(↵,�)]Ati;�(↵,�),

and the respective full conditional distributions, given by

⇡(↵|�, �, t) / ↵
r↵�1 exp(�↵�↵)

nY

i=1

� [ati;µ,�(↵,�)]� [� ati;µ,�(↵,�)]Ati;�(↵,�),

⇡(�|↵, �, t) / �
r��1 exp(����)

nY

i=1

� [ati;µ,�(↵,�)]� [� ati;µ,�(↵,�)]Ati;�(↵,�),

⇡(�|↵,�, t) /
nY

i=1

� [ati;µ,�(↵,�)]� [� ati;µ,�(↵,�)]Ati;�(↵,�).

In addition, the augmented likelihood function is given by

L(✓|tc) =
nY

i=1

p
2/⇡� [⌫hi

+ ati(↵,�)]Ati(↵,�) exp

✓
�h

2
i

2

◆
.

Similarly, combining the augmented likelihood function with the above prior distribution,
we have that the posterior distribution is expressed as

⇡(✓,h|t) / ↵
r↵�1

�
r��1

nY

i=1

� [ati,hi
(↵,�)]Ati(↵,�) exp


�1

2

�
h
2
i + 2↵�↵ + 2���

��



66 Chaves et al.

and the respective full conditional distributions are given by

⇡(h|↵,�, �, tc) /
nY

i=1

� [ati,hi
(↵,�)]Ati(↵,�) exp

✓
�h

2
i

2

◆
,

⇡(↵|�, �, tc) / ↵
r↵�1

nY

i=1

� [ati,hi
(↵,�)]Ati(↵,�) exp


�1

2

�
h
2
i + 2↵�↵

��
,

⇡(�|↵, �, tc) / �
r��1

nY

i=1

� [ati,hi
(↵,�)]Ati(↵,�) exp


�1

2

�
h
2
i + 2���

��
,

⇡(�|↵,�, tc) /
nY

i=1

� [ati,hi
(↵,�)]Ati(↵,�) exp

✓
�h

2
i

2

◆
,

where ati,hi
(↵,�) = ⌫hi

+ ati(↵,�). We can see that both posterior distributions are not
analytically tractable. Therefore, some numerical method must be employed to obtain
suitable numerical approximations for the respective marginal posterior distributions. The
above full conditional distributions do not correspond to known distributions, but they
can be simulated through some auxiliary algorithm such as the Metropolis-Hastings, slice
sampling or adaptive rejection. All these algorithms can be easily implemented in the R

program. In addition, which is the approach pursued here, we can use a general MCMC
computational framework, such OpenBUGS, see Lunn et al. (2009). In this case, it is nec-
essary to provide the original or the augmented likelihood function, along with the prior
distributions, such that the full conditional distributions are simulated through suitable
algorithms, following a pre-defined hierarchy available on the OpenBUGS. We made all sim-
ulations using the R package R2OpenBUGS.

4. Numerical Aspects

4.1 Simulation study I

A simulation study is conducted to assess the behavior of the ECM algorithm, in terms
of parameter recovery, and the accuracy of the corresponding SEs, calculated through
the observed Fisher information matrix. For that, N = 1, 000 replications are generated
considering n = 500 and ✓> = (↵,�, �) = (0.5, 1.0, 0.67), which induces a strong positively
skewed behavior of the SNBS distribution. In Table 1 we can see the mean of the estimates
( b̄✓), the mean of the theoretical (asymptotic) SE (SE(b✓)) and the empirical SE (SEemp).
We can notice that the parameters are well recovered and that the empirical SE are close
to the theoretical ones, which indicates that the use of the observed Fisher information
matrix, to obtain the corresponding SE, is appropriate.

Table 1. Results of the simulation study I.

b̄✓ SE(b✓) SEemp

b↵ 0.495 0.019 0.021
b� 1.003 0.032 0.028
b� 0.667 0.015 0.012
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4.2 Simulation study II

We consider a total of 30 scenarios, resulting from the combination of the levels of:
three di↵erent sample sizes (n) (10, 50, 200), under ↵ 2 (0.5; 1.5), � = 1 and � 2
(�0.67;�0.45; 0; 0.45; 0.67). The sample sizes are chosen in order to verify the proper-
ties of the estimators, as consistency, and to compare their behavior, in terms of accuracy.
The values of ↵ and � are chosen in order to induce di↵erent shapes and small variabil-
ity, whereas the values of � induce from null to high positive/negative asymmetry. We
calculated the usual statistics to measure the accuracy of the estimates: bias, variance
(Var), root mean squared error (RMSE) and absolute value of the relative bias (AVRB).

Let ✓ be the parameter of interest, b✓r be some estimate related to the replica r and b✓ =

(1/R)
P

R

r=1
b✓r. The adopted statistics are: Bias = b✓� ✓, Variance = (1/R)

P
R

r=1(
b✓r � b✓)2,

RMSE = ((1/R)
P

R

r=1(✓ � b✓r)2)1/2, AVRB = |b✓ � ✓|/|✓|.
The usual tools for monitoring the convergence of the MCMC algorithms, see Gamer-

man and Lopes (2006), indicate that a burn-in of 4,000, a thin of 100, simulating a total of
100,000 values, are enough to produce valid MCMC samples of size 1,000 for each parame-
ter. Since the other results are similar (they are omitted here but they are available under
request from the authors), we present only those related to the scenario where ↵ = 0.5,
� = 1, � = �0.67, varying the sample size. We used (< 0.001) to represent positive val-
ues (statistics and/or estimates) and (> �0.001) to denote negative values, when they
are close to zero. In addition, we refer the Bayesian estimates as “augmented”, when the
augmented likelihood function is used, and “original”, whenever the original likelihood
function is considered. The selected results can be seen in Table 2. In general, we can see
that, as the sample size increases, the estimates obtained by the three approaches tend
to the correspondent the respective true values. When ↵ = 0.5, the ML estimates are
more accurate than the Bayesian ones, especially considering the bias and AVRB met-
rics. In other scenarios (not shown), when ↵ = 1.5, the opposite occurs for all sample
sizes. Concerning � and �, it is possible to notice that, under the smallest sample size
(n = 10), the ML approach presents more accurate estimates than the Bayesian ones. In
addition, for n = 50 and n = 200, Bayesian estimates, for both parameters, are closer
to the respective true values. In conclusion, we can say that all estimators, mainly the
Bayesian ones, are consistent, since both bias and RMSE tend to decrease, as the sample
size increases. Furthermore, the results indicate (including those not shown here) that the
Bayesian approach provided the most accurate estimates. Moreover, we can notice that
the original and augmented approaches, performed quite similarly. Therefore, we decide to
use the original likelihood function) approach, since it is easier to implement and faster.

4.3 Real data analysis I

We analyze a data set corresponding to self-e�cacy, which is available in the R software
and can be accessed from the EstCRM package through the command data(SelfEff). A
group of 307 pre-service teachers, graduated from various departments in the college of
education, are asked to check on a 11 cm line segment with two end points (can not do at
all, highly certain can do) using their own judgment for the 10 items that measure teacher
self-e�cacy on di↵erent activities. We take, as response variable, the teacher self-e�cacy
in the creation of learning environments in which students can e↵ectively express them-
selves. Table 3 presents some descriptive statistics, including location measures, standard
deviation (SD), coe�cient of skewness (CS), and kurtosis (CK). We can notice that the
distribution is strongly negatively skewed. We fit the CSNBS and BS distributions, using
the Bayesian augmented and the ML method, to the data. The results obtained consider-
ing the frequentist approach are omitted here but they are available under request from
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Table 2. Results of simulation study II with � = �0.67.

Parameter n Method Mean Variance Bias RMSE AVRB

Augmented 0.577 < 0.001 0.077 0.081 0.154
10 Original 0.578 0.001 0.078 0.082 0.156

ML 0.520 0.071 0.020 0.267 0.040
↵ Augmented 0.511 < 0.001 0.011 0.016 0.022

50 Original 0.511 < 0.001 0.011 0.015 0.021
ML 0.498 0.001 -0.002 0.033 0.004

Augmented 0.502 < 0.001 0.002 0.005 0.004
200 Original 0.502 < 0.001 0.002 0.005 0.004

ML 0.490 < 0.001 -0.010 0.012 0.019
Augmented 1.006 < 0.001 0.006 0.023 0.006

10 Original 1.004 < 0.001 0.004 0.021 0.004
ML 1.105 0.214 0.105 0.474 0.105

� Augmented 0.996 < 0.001 -0.004 0.009 0.004
50 Original 0.997 < 0.001 -0.003 0.009 0.003

ML 1.039 0.018 0.039 0.140 0.039
Augmented 0.999 < 0.001 -0.001 0.005 0.001

200 Original 0.999 < 0.001 -0.001 0.005 0.001
ML 0.997 < 0.001 -0.003 0.004 0.003

Augmented -0.157 0.067 0.513 0.575 0.766
10 Original -0.182 0.054 0.488 0.540 0.728

ML -0.603 0.028 0.067 0.179 0.100
� Augmented -0.493 0.059 0.177 0.301 0.264

50 Original -0.505 0.049 0.165 0.276 0.247
ML -0.569 0.012 0.101 0.148 0.150

Augmented -0.614 0.017 0.056 0.142 0.083
200 Original -0.601 0.015 0.069 0.141 0.103

ML -0.523 0.002 0.147 0.153 0.220

the authors. The prior distributions are the same used in Section 3. In Table 4, in ad-
dition to the posterior expectations (PE), the posterior standard deviations (PSD) and
the 95% equi-tailed credibility intervals (CI), we also present the model selection criteria.
We consider the usual statistics of model comparison for both frequentist (AIC, BIC) and
Bayesian (DIC, EAIC, EBIC and LPLM) see, respectively (Akaike, 1974; Schwarz, 1978;
Spiegelhalter et al., 2014). The smaller values of AIC and BIC indicates the model that
fits the data better. In addition, the smaller the values of DIC, EAIC, EBIC, the better
the model fit, occurring the opposite with the LPML. We can notice that the estimates
of ↵ and � (under the CSNBS model) indicate that the distribution is strongly negatively
skewed. Notice also that we have indications that the asymmetry parameter is di↵erent
from zero, since this value does not belong to the CI. Moreover, the criteria indicated the
CSNBS model is the best. Figure 10 (left) presents the histogram of the observations and
estimated densities. We can notice that the CSNBS distribution presents an advantage
over the BS model. From Figure 10, we can notice that the CSNBS distribution predicts
better the observations than the BS distribution. In conclusion, we can say that the CSNBS
model is preferable to the BS model.

Table 3. Descriptive statistics for the teacher self-e�cacy data.

Mean Median Minimum Maximum SD Asymmetry Kurtosis

9.205 9.700 1.650 10.900 1.365 -1.752 7.781

4.4 Real data analysis II

We analyze now a data set corresponding to prices of bottles of Barolo wine and discussed
in Azzalini (2013). It concerns the price (in euros) of bottles (75 cl) of Barolo wine. The
data have been obtained in July 2010 from the websites of four Italian wine resellers,
selecting only quotations of Barolo wine, which is produced in the Piedmont region of
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Table 4. Posterior expectations (PE), posterior standard deviations (PSD), equi-tailed 95% CI and model
selection criteria.

Parameter PE PSD CI95%

CSNBS

↵ 0.154 0.002 [0.151; 0.157]
� 8.871 0.016 [8.836; 8.903]
� -0.971 0.003 [-0.978; -0.966]
EAIC 1,021.912
EBIC 1,033.093
DIC 3,047.154
LPML -508.531

BS

↵ 0.205 0.008 [0.190; 0.222]
� 9.016 0.105 [8.815; 9.229]
EAIC 1,252.772
EBIC 1,260.226
DIC 3,744.335
LPML -632.9564
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Figure 10. Histogram of the observations and estimated densities (left), histogram of the predicted and observed
distributions for the CSNBS (center) and BS (right) models.

Italy. The price does not include the delivery charge. In Table 5 and Figure 11 (left), we
present a descriptive analysis. It is possible to see that the distribution is positively skewed
and more concentrated in the first class [0,100]. We fit the CSNBS and BS distributions,
using the Bayesian augmented and the ML method, to the data. The results obtained
considering the frequentist approach are omitted here but they are available under request
from the authors. The prior distributions are the same used in Section 3. In Table 6,
in addition to the posterior expectations (PE), the posterior standard deviations (PSD)
and the 95% equi-tailed CI, we also present the Bayesian criteria. Table 6 shows that the
estimates of ↵ and � (under the CSNBS model) indicate that the distribution of the prices
is strongly positively skewed. Notice also that we have indications that the asymmetry
parameter is di↵erent from zero, since this value does not belong to the CI. Moreover,
the criteria indicated the CSNBS model is the best. Also, we construct QQ plots with
simulated envelopes. Similar to Vilca et al. (2011), we considered the Bayesian estimates
of ↵ and � in d(↵,�) = (1/↵2)(T/� + �/T � 2). When T ⇠ BS(↵,�), it is know that

d(↵,�) ⇠ N(0, 1). Since the observations d(b↵, b�) are expected to follow a standard normal
distribution, under the well fit of the model, the envelopes are simulated from the standard
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normal distribution, as described in Atkinson (1985). Similarly, if T ⇠ CSNBS(↵,�, �),

thus d(↵,�) ⇠ CSN(0, 1, �). Since the observations d(b↵, b�) are expected to follow a CSN
distribution, under the well fit of the model, the envelopes are simulated from the CSN
distribution. These plots are presented in Figure 11 (lines represent the 5th percentile, the
mean, and the 95th percentile of 100 simulated points). From those figures, we conclude
that the CSNBS distribution provides a better fit than the BS model. Specifically, from
the QQ plot shown in Figure 11 (a), we notice that the observations appear to form a
slight upward-facing concave. However, the QQ plot shown in Figures 11 (b) indicate that
the CSNBS distribution o↵ers an excellent fit, provided that the majority of observations
are inside of the envelope.

Table 5. Descriptive statistics for the prices of bottles of Barolo wine.

Mean Median Minimum Maximum SD Asymmetry Kurtosis

124.617 72 14 1000 37.041 2.903 12.982

Table 6. Posterior expectations (PE), posterior standard deviations (PSD), equi-tailed 95% CI and model
selection criteria.

Parameter PE PSD CI95%

CSNBS

↵ 0.844 0.037 [0.775; 0.917]
� 89.576 3.911 [82.260; 97.871]
� 0.690 0.070 [0.541; 0.809]
EAIC 3,437.879
EBIC 3,449.060
DIC 10,292.690
LPML -1,718.110

BS

↵ 0.858 0.035 [0.794; 0.929]
� 92.444 4.264 [84.778; 101.302]
EAIC 3,474.893
EBIC 3,482.346
DIC 10,410.620
LPML -1,736.669
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Figure 11. Histogram of the prices of bottles of Barolo wine (left), QQ plots with envelopes for BS (center) and
CSNBS (right) distributions for the data of Barolo wine bottle prices.
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5. Concluding Remarks

In this paper, we introduced a new distribution for modeling positive data which can
present both positive and negative asymmetry, by combining the Birnbaum-Saunders
and the centered skew normal distributions. We developed both maximum likelihood and
Bayesian estimation procedures, comparing them through a suitable simulation study. The
convergence of the conditional expectation maximization and MCMC algorithms were ver-
ified and several factors of interest were compared in the parameter recovery study. In
general, as the sample size increases, the results indicated that the Bayesian approach
provided the most accurate estimates. In future works we can consider the development
of predictive posterior checking to detect the goodness of fit. Furthermore, we suggest the
use of Je↵reys-rule prior and independence Je↵reys prior. Other auxiliary algorithms as
the Hamiltonian Monte Carlo (see Homand and Gelman, 2014; Carpenter et al., 2016)),
adaptive reject sampling and slice sampling (see Gamerman and Lopes, 2006) can be used
and compared. Other family of distributions could be used instead of the centered skew
normal distribution, as the scale mixture of the SN distributions, to generate new family
of Birnbaum-Saunders-type distributions. Finally, other numerical methods to obtain ap-
proximation for the marginal posterior distributions, such as the INLA algorithm, can be
considered (see Rue and Martino, 2009).

6. Appendix

Appendix A. Moments of the CSNBS Distribution

Theorem A.1 Let T ⇠ CSNBS(↵,�, �) and Y ⇠ CSN(0, 1, �). If E
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From the binomial theorem again, we have
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From Equation (A1), we get
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For j = 0, the first term of the sum in Equation (A1) is equal to �E(Y 2)(↵/2)2. For j = 1,
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Appendix B. The ECM Algorithm

The following result is used in the proof of Theorem 2.1.

Lemma 1. Let X ⇠ N(⌘, ⌧2), thus 8a 2 R
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Proof of Theorem 2.1

(i) Since Y ⇠ CSN(0, 1, �), using the stochastic representation given by Equation (2), we
can define

Y =
1

�z

h
�H +

p
1� �2X1 � µz

i
=

1

↵

hp
T/� �

p
�/T

i
.

Therefore,

Y |(H = h) =
1

↵

⇣p
T/� �

p
�/T

⌘���� (H = h) ⇠ N(µh,�
2),

where µh = �(h� r)/(1� r
2
�
2)1/2 and �

2 = (1� �
2)/(1� r

2
�
2). Then,

W |(H = h) = �µh

�
+

1

�↵

⇣p
T/� �

p
�/T

⌘ ���(H = h) ⇠ N(0, 1)

and

T = �

"
↵

2
(�W + µh) +

rh
↵

2
(�W + µh)

i2
+ 1

#
.

From the above result, the proof is completed.
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Therefore, the proof of (i) follows directly from that fH|T (h|t) = fT |H(t|h)fH(h)/fT (t). To
demonstrate (ii)-(iii), notice, for k = 1, 2, we have that
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Then, using some properties of the HN distribution from Lemma 1, the proof is com-
pleted.
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Appendix C. The Observed Fisher Information Matrix

The necessary expressions are given below. For the sake of simplicity, we consider the
following notation to obtain the necessary expressions, ati;µ,� = ati;µ,�(↵,�) and Ati;� =
Ati;�(↵,�).
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where W
0

�(x) = �W�(x)[x+W�(x)] is the derivative of W�(x) with respect to x, see Vilca
et al. (2011), and the other quantities are as before defined.
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Abstract

We introduce a three-parameter extension of the Lindley distribution, which has as
sub-models the Lindley and Marshall-Olkin Lindley distributions. The proposed model
turns out to be quite flexible: its probability density function can be decreasing or
unimodal and its associated hazard rate may be increasing, decreasing, unimodal or
bathtub-shaped. Since this new distribution has a survival function and a hazard rate
that can be expressed in closed form, it can readily be simulated and used to analyze
censored data. Computable expressions are obtained for certain statistical functions
such as its quantile function, ordinary and incomplete moments, moment generating
function, order statistics and reliability function. The maximum likelihood method is
utilized to obtain estimates of the model parameters and a simulation study is carried
out to assess the performance of the corresponding maximum likelihood estimators. Two
illustrative examples involving hydrological data sets are presented.
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1. Introduction

Lindley (1958) introduced a one-parameter distribution in the context of fiducial and
Bayesian statistics, which is obtained as a mixture of exponential(�) and gamma(2, �)
probability density functions (PDFs), as defined in Equation (2). Aly and Benkherouf
(2011) recently proposed a convenient method for adding two parameters to a baseline
distribution, which gives rise to what is referred to as the Harris extended (HE) family
of distributions. This family includes the baseline distribution itself as a basic exemplar
and provides more flexibility for modeling various types of data. This novel approach is
based on the probability generating function of a discrete distribution introduced by Harris
(1948). In this paper, we define a three-parameter generalization of the Lindley distribution
by applying to it the HE generator, the resulting model being named the Harris extended
Lindley (HEL) distribution. This distribution is in fact an extension of the Marshall-Olkin
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extended Lindley (MOL) distribution that was proposed by Ghitany et al. (2012), and
its additional shape parameter ↵ ought to provide an improved fit related to the MOL
distribution. This extra parameter helps in controlling the shape of the HE PDF and
enables us to model heavy-tailed distributions which are fairly common in hydrology; see,
e.g., Li et al. (2013) and Ashkar and El Adlouni (2014). Moreover, the new distribution
has an interesting physical interpretation when ↵ is a positive integer and 0 < ✓ < 1:
it is indeed the distribution of the time until failure of a device composed of N serial
components having constant failure rate, where N is a random variable which arises from
a branching process such as that described in Harris (1948). This distribution can be
utilized for modeling purposes in research fields such as hydrology, engineering, insurance,
biology and epidemiology wherein skewed positive data are frequently encountered.
One of the most crucial aspects of hydrological data analysis consists in achieving a close

fit to the experimental data by employing proper statistical models. The Gumbel, Weibull,
gamma, generalized logistic as well as other well-known distributions have been extensively
utilized for modeling hydrological observations such as rainfall, flood, precipitation and
stream flow data; see, e.g., Zelenhasic (1970), Chadwick et al. (2004), Heo and Boes (2011),
Bhunya et al. (2012) and Kang et al. (2015). Yet, there exists a need for developing more
flexible statistical models that would be applicable to data sets related to hydrological
structures and phenomena or water resource planning and management, and the proposed
three-parameter generalization of the Lindley distribution fits the purpose.
Although little attention has been paid to the Lindley distribution, there has recently

been a surge of interest in this model, generalizations thereof and related applications.
Nadarajah et al. (2007) introduced the exponentiated Lindley distribution as an alterna-
tive to the gamma, log-normal, Weibull and exponentiated exponential distributions; see
also Cordeiro et al. (2016). Several properties of the Lindley distribution have been studied
by Ghitany et al. (2008) who have shown that, for instance, it can provide a better fit than
the exponential distribution. Ghitany et al. (2011) studied another two parameter exten-
sion of Lindley distribution and called it the weighted Lindley distribution. By making
use of the Marshall-Olkin method, Ghitany et al. (2012) introduced and studied another
extension of the Lindley model called the Marshall-Olkin extended Lindley (MOL) distri-
bution. Ghitany et al. (2013) introduced a two-parameter power Lindley distribution and
discussed its properties. A three-parameter generalization of the Lindley model was intro-
duced by Mervoci and Sharma (2014). This extension, referred to as the beta Lindley (BL)
distribution, is generated from the logit of a beta random variable. Ghitany et al. (2015)
considered the problem of estimating the stress-strength parameter of the power Lindley
distribution. Mazucheli et al. (2016) developed some statistical for testing hypotheses on
the parameters of the weighted Lindley distribution. Alizadeh et al. (2017) introduced
another extension of the power Lindley distribution.
The objective of this work is to derive the HEL distribution focusing on its probabilistic

and statistics aspects, as well as applications in hydrology.
The remainder of the paper is organized as follows. We define the new distribution

in Section 2. In Section 3, we provide computable expressions for some of its statistical
functions such as its quantile function (QF), ordinary and incomplete moments, mean
deviations, moment generating function (MGF) and order statistics. In Section 4, the
model parameters are estimated by making use of the maximum likelihood (ML) method
and a simulation study is carried out. In Section 5, we illustrate the usefulness of the
proposed distribution by modeling two hydrological data sets. Finally, Section 6 o↵ers
some concluding remarks.
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2. The HEL Distribution

In this section, we provide probabilistic aspects of the HEL distribution. The survival
function (SF) and PDF of the distribution introduced by Lindley (1958) are respectively
given by

ḠL(x) =

✓
1 + �+ �x

1 + �

◆
e��x, x > 0, (1)

and

gL(x) =
�2

�+ 1
(1 + x) e��x, x > 0, (2)

where the parameter � is assumed to be positive. We now describe a technique whereby
the so-called Harris extended family of distributions can be generated and apply it to
the Lindley distribution. The resulting distribution is referred to as the Harris extended
Lindley (HEL) distribution. Let G(x) = G(x; ⇠) be a baseline cumulative distribution
function (CDF) and

Ḡ(x) = Ḡ(x; ⇠) = 1�G(x; ⇠)

be the corresponding SF of a lifetime random variable W , where ⇠ = (⇠1, . . . , ⇠q) is a
parameter vector of dimension q. Furthermore, let g(x) = g(x; ⇠) be the PDF of W . The
SF of the HE family is then defined by

F̄HE(x) =
✓1/↵ Ḡ(x)

⇥
1� ✓̄Ḡ(x)↵

⇤1/↵ , x > 0, (3)

where ✓̄ = 1� ✓, the parameters ✓ > 0 and ↵ > 0 being additional shape parameters that
allow for greater flexibility. Thereupon, the HE PDF has the form

fHE(x) =
✓1/↵ g(x)

⇥
1� ✓̄Ḡ(x)↵

⇤1+1/↵
, x > 0.

Aly and Benkherouf (2011) pointed out that when ↵ > 0 is a positive integer, the HE
family can be looked upon as resulting from examining a simple discrete branching process
where a particle either splits into (↵ + 1) identical branches or remains the same during
a short interval. Clearly, Equation (3) constitutes a flexible generator for obtaining new
parametric distributions from existing ones. For ✓ = 1, F̄ (x) = Ḡ(x) and Ḡ(x) is thus a
basic exemplar of the distribution. Additionally, the Marshall and Olkin (1997) extended
(MOE) family arises from Equation (3) by letting ↵ = 1. Accordingly, the HE family can
be viewed as a generalization of the MOE family.
The SF of the HEL distribution is defined as

F̄ (x) =
✓1/↵ḠL(x)

⇥
1� ✓̄ḠL(x)↵

⇤1/↵ , x > 0, (4)

for ↵ > 0, ✓ > 0, � > 0, where ḠL(x) is given in Equation (1), with its PDF corresponding
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to Equation (4) being

f(x) =
✓1/↵ �2 (1 + x) e��x

(1 + �)
⇥
1� ✓̄ ḠL(x)↵

⇤1+1/↵
, x > 0. (5)

Henceforth, a random variable X having the PDF specified in Equation (5) is denoted by
X ⇠ HEL(✓,↵,�). This three-parameter PDF has two shape parameters and one scale
parameter, and it can be either decreasing or unimodal. The two main special cases of the
HEL model are: (i) the MOL distribution in which case ↵ = 1; (ii) the Lindley distribution
which is obtained by letting ↵ = ✓ = 1. The hazard rate (HR) associated with HEL model
is given by

h(x) =
�2 (1 + x)

(�+ 1 + �x)

⇥
1� ✓̄ ḠL(x)

↵
⇤�1

, x > 0.

This HR can assume the four principal shapes associated with increasing, decreasing,
bathtub-shaped or upside-down bathtub-shaped HRs. The HEL model is thus most ap-
propriate to analyze a variety of hydrological and lifetime data sets. We note that there
appears to be very few three-parameter distributions in the literature whose HR can take
on the four main shapes of an HR. Moreover, the SF and HR of the HEL distribution have
closed-form representations. Accordingly, this model can readily be utilized to analyze
censored data sets. As well, simulating it is straightforward.
Figures 1 and 2 display some plots of the PDF and HR of the HEL distribution for

certain parameter values. Figure 1 indicates that the HEL PDF can be right-skewed and
reversed-J shaped. Figure 2 reveals that the HEL HR can be increasing (IFR), decreasing
(DFR), upside-down bathtub (UBT) or bathtub-shaped (BT).
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Figure 1. Plots of the HEL PDF for certain parameter values.

Given the functional form of the HEL PDF denoted by f(x), a general representation
of the mode that would be expressible in terms of the parameters of the distribution
does not appear to be tractable. However, for a specific set of parameters, the command
NSolve[f’[x]==0,x,Reals] in Mathematica can readily be utilized to determine the
mode. If the solution happens to be greater than zero, then the PDF has a mode at
that point; otherwise, it is strictly decreasing on the positive half-line. The extremum of
the HR can be similarly obtained whenever it exists.
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Figure 2. Plots of the HEL HR for certain parameter values.

3. Statistical Functions of the HEL Distribution

In this section, we provide computable representations of certain statistical functions of
the HEL distribution. More specifically, we focus, in order, on the quantile function, some
useful expansions, the moments, including the incomplete ones, the moment generating
function and the order statistics. The derived expressions can be easily evaluated by most
symbolic computation software packages such as Maple, Mathematica and Matlab. These
platforms can process analytic expressions of great complexity. Whenever available, an ex-
plicit representation of a statistical function is preferable to its determination by numerical
integration.
The QF of a distribution has numerous uses in both statistical theory and applications.

In the case of the HEL distribution, its QF is obtained by inverting the HEL CDF and is
given by

Q(u) = �1� 1

�
� 1

�
W


�(1 + �)

1� ⌧

e1+�

�
, 0 < u < 1, (6)

where ⌧ = 1� (1�u)
⇥
✓ + ✓̄(1� u)↵

⇤�1/↵
and W (x) is the negative branch of the Lambert

W function, see Corless et al. (1996) and Jodrá (2010) for details on its properties. The
Lambert function cannot be expressed in terms of elementary functions. However, it is a-
nalytically di↵erentiable and integrable and its principal branch satisfies x = W (x ex), x �
�1. Furthermore, whenever |x|  e�1, W (x) =

P1
n=1(�n)n�1 xn/n. Clearly, if U has

a uniform distribution in the interval (0, 1), then X = Q(U) has the PDF specified in
Equation (5). The Lambert W function is implemented within various scientific libraries,
as for example, in the R software (by the lamW package), Mathematica (by the ProductLog
function), Matlab (by the lambertw function) and Maple (by the LambertW function), thus
allowing for e�cient evaluation of the QF of the HEL distribution.
Some useful expansions are now provided. Let ga(x) = a g(x)Ḡ(x)a�1 be the Lehmann

type-II-G (LII-G) PDF with power parameter a > 0. We demonstrate that the HEL PDF
can be expressed as a linear combination of LII-Lindley (LIIL) PDFs. First, for 0 < ✓ < 1,
we consider the negative binomial series

(1� z)�p =
1X

i=0

�(p+ i)

�(p) i!
zi,

which holds for |z| < 1 and any real number p > 0, where �(a) =
R1
0 za�1e�zdz is the
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complete gamma function. Using this power series in Equation (5), we have

f(x) = ✓1/↵ gL(x)
1X

j=0

✓̄j
�(↵�1 + 1 + j)

�(↵�1 + 1)j!
ḠL(x)

j ↵,

where ḠL(x) and gL(x) are the SF and PDF of the Lindley distribution as provided by
Equations (1) and (2). Note that for ✓ > 1, we can write

f(x) = ✓�1gL(x)
1X

j=0

1X

`=j

(�1)j
✓
✓ � 1

✓

◆` ✓`

j

◆
�(↵�1 + 1 + `)

�(↵�1 + 1)`!
ḠL(x)

j ↵.

On combining the last two expressions for f(x) in a single one, we have

f(x) =
1X

j=0

wj hj ↵+1(x), (7)

where hj ↵+1(x) = (j ↵+ 1) gL(x) ḠL(x)j ↵ is the LIIL PDF with power parameter j ↵+ 1
and

wj = wj(↵, ✓) =

8
><

>:

✓1/↵ ✓̄j �(↵�1+1+j)
(j ↵+1)�(↵�1+1)j! , 0 < ✓ < 1

(�1)j ✓�1

(j ↵+1)

P1
`=j(

✓�1
✓ )`

✓
`

j

◆
�(↵�1+1+`)
�(↵�1+1)`! , ✓ > 1.

Equation (7) reveals that the HEL PDF (for any ✓ > 0) can indeed be expressed as a linear
combination of LIIL PDFs. It can also be shown that the HEL PDF can be expressed as
a linear combination of gamma PDFs. Given Equations (1) and (2), it follows from the
representation of Equation (7) that

f(x) =
1X

j=0

wj (j ↵+ 1)

✓
�2

�+ 1

◆
(1 + x)

✓
1 +

�x

1 + �

◆j ↵

e�(j ↵+1)�x.

On expanding [1 + �x/(1 + �)]j ↵ and using the Taylor series z� =
P1

k=0(�)k (z�1)k/k!,
where (�)k = �(� � 1) · · · (� � k+ 1) is the falling factorial, after some algebra, we obtain

f(x) =
1X

i,j=0

vi,jx
i (1 + x) e�(j ↵+1)�x, (8)

where vi,j = (j ↵+ 1)wj
⇥
�2+i/(�+ 1)i+1

⇤
(j ↵)i/i! for i, j = 0, 1, 2, . . . .

Letting ⇡(x;↵,�) = �↵ x↵�1 e��x/�(↵) be the gamma PDF with shape parameter ↵ > 0
and rate parameter � > 0, we can then rewrite Equation (8) as

f(x) =
1X

i,j=0

h
v(1)i,j ⇡ (x; i+ 1, (j ↵+ 1)�) + v(2)i,j ⇡ (x; i+ 2, (j ↵+ 1)�)

i
, (9)

where v(1)i,j = i! vi,j/[(j ↵+ 1)�]i+1 and v(2)i,j = (i+ 1)! vi,j/[(j ↵+ 1)�]i+2.
Equation (9) indicates that the HEL PDF can also be expressed as a linear combination

of gamma PDFs. Thus, this representation can be used to obtain explicit expressions for
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the ordinary and incomplete moments and the MGF of the HEL distribution from the
corresponding quantities associated with the gamma distribution. Equations (7) and (9)
constitute the main results of this section.
Certain of the main characteristics of a distribution such as tendency, dispersion, skew-

ness and kurtosis can be investigated via its moments. We now establish that the ordinary
moments of the HEL distribution can be obtained as infinite power series. It follows from
Equation (7) that

µ0
r = E(Xr) =

�2

1 + �

1X

j=0

wj

Z 1

0
xr(1 + x)

✓
1 +

�x

1 + �

◆j ↵

e�� (j ↵+1)xdx,

or equivalently

µ0
r =

�2

1 + �

1X

j=0

wj

Z 1

0
xr(1 + x)

1X

i=0

✓
�

1 + �

◆i

xi
(j ↵)i
i!

e�� (j ↵+1)xdx.

After some algebra, we obtain

µ0
r =

�2

1 + �

1X

i,j=0

pi,j
�(r + i+ 1)

[�(j ↵+ 1)]r+i+1

✓
1 +

r + i+ 1

�(j ↵+ 1)

◆
, (10)

where pi,j = wj [(j ↵)i/i!] (�/(1 + �))i.
Table 1 includes numerical values for the first four ordinary moments of the HEL distri-

bution as evaluated from Equation (10) by truncating the series to 100 terms and computed
by numerical integration for some parameter values. We note that the numerical values
obtained from both approaches are consistently in close agreement.

Table 1. Ordinary moments of the HEL distribution for certain parameter values with � = 10.

↵ = 0.5 ↵ = 1.5
µ0
r Numerical Equation (10) Numerical Equation (10)

✓ = 0.5
µ0
1 0.0670906 0.0670905 0.0833919 0.08156687

µ0
2 0.0105268 0.01052653 0.0158697 0.01586975

µ0
3 0.00276376 0.002763106 0.00492889 0.004928885

µ0
4 0.0010382 0.001036676 0.0020813 0.002081299

✓ = 1.5
µ0
1 0.141446 0.1414455 0.127601 0.1276013

µ0
2 0.0364545 0.0364543 0.0295221 0.02952214

µ0
3 0.0132554 0.01325516 0.0098071 0.009807097

µ0
4 0.00616152 0.006160951 0.00425269 0.004252694

The rth incomplete moment of X is given by mr(y) =
R y
0 xr f(x)dx. On making use of

Equation (7) and proceeding as in the case of ordinary moments, we obtain

mr(y) =
�2

1 + �

1X

j,i=0

wj

✓
�

1 + �

◆i (j ↵)i
i!

Z y

0
xr+i(1 + x)e�� (j ↵+1)xdx. (11)

On expressing the integral in Equation (11) in terms of the incomplete gamma function
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�(a, y) =
R y
0 za�1 e�zdz, we have

mr(y) =
�2

1 + �

1X

i,j=0

Ki,j

⇢
� (r + i+ 1, (j ↵+ 1)�y)

[(j ↵+ 1)�]r+i+1
+

� (r + i+ 2, (j ↵+ 1)�y)

[(j ↵+ 1)�]r+i+2

�
, (12)

where Ki,j = wj [�/(1 + �)]i (j ↵)i/i! for i, j = 0, 1 . . ..
Bonferroni and Lorenz curves as well as mean deviations can be determined by letting r =

1 in Equation (12). The Bonferroni and Lorenz curves are defined (for a given probability
⇡) as B(⇡) = m1(q)/(⇡ µ0

1) and L(⇡) = m1(q)/µ0
1, respectively, where q = Q(⇡) may be

established from Equation (6). The mean deviations about the mean and about the median
are given by �1 = E(|X�µ0

1|) = 2µ0
1 F (µ0

1)�2m1(µ0
1) and �2 = E(|X�M |) = µ0

1�2m1(M),
where the median M and the mean µ0

1 can be evaluated from Equations (6) and (10),
respectively. We now provide a general formula for M(t) = E(etX), the MGF of X. The
MGF of the gamma PDF with parameters ↵ and � is (1� t/�)�↵ (t < �). Then, if follows
from Equation (9) that, for t < �,

M(t) =
1X

i,j=0

"
v(1)i,j

✓
1� t

(j ↵+ 1)�

◆�i�1

+ v(2)i,j

✓
1� t

(j ↵+ 1)�

◆�i�2
#
.

The last aspect being discussed in this section is the distribution of order statistics. Order
statistics appear in many areas of statistical theory and practice. Suppose X1, . . . , Xn is a
random sample from the HEL distribution and let Xi:n denote the ith order statistic. The
PDF of Xi:n can be expressed as

fi:n(x) = K
n�iX

k=0

(�1)k
✓
n� i

k

◆
f(x)F (x)k+i�1, (13)

where K = 1/B(i, n� i+ 1) and B(p, q) = �(p)�(q)/�(p+ q) is the beta function.
Consider the following representation available from Gradshteyn and Ryzhik (2000) for

a power series raised to a positive integer n:

0

@
1X

j=0

aj u
j

1

A
n

=
1X

j=0

bn,j u
j , (14)

where the coe�cients bn,j , for n = 1, 2, . . . and j = 1, 2, . . ., are obtained from the recursive
equation

bn,j = (j a0)
�1

jX

m=1

[m(n+ 1)� j] am bn,j�m,

with bn,0 = an0 . On integrating the right-hand side of Equation (7), we can write

F (x) = ḠL(x)
1X

j=0

wj ḠL(x)
j ↵,
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and then making use of Equation (14), we have

F (x)k+i�1 =
1X

j=0

tk+i�1,j ḠL(x)
j ↵+k+i�1,

where tk+i�1,j = (j w0)�1
Pj

m=1 [m(k + i) � j]wm tk+i�1,i�m for j � 1 and tk+i�1,0 =
wk+i�1
0 . Inserting the previous expression for F (x)k+i�1 and the representation of Equation

(7) of the PDF appearing in Equation (13) gives

fi:n(x) = K
1X

r,j=0

n�iX

k=0

vr,j,kh(r+j)↵+k+i(x), (15)

where

vr,j,k =
(�1)k (r ↵+ 1) wr tk+i�1,j

(r + j)↵+ k + i

✓
n� i

k

◆
.

Equation (15) reveals that the PDF of the HEL order statistics can be expressed as a
triple linear combination of LIIL PDFs. Accordingly, certain mathematical properties of
the HEL order statistics could be determined from those of the LIIL distribution.

4. Parameter Estimation

We now discuss the estimation of the model parameters using the ML method. There
exist several approaches for estimating parameters; however, the ML method is the most
commonly employed. The ML estimators enjoy several desirable properties and can be
utilized in the construction of confidence intervals for the model parameters. They also
appear in some test statistics. The normal approximation to the distribution of these
estimators follows from large sample distribution theory.
Let X1, . . . , Xn be a sample of size n from the HEL distribution whose associated PDF

is given in Equation (5). The log-likelihood function ` = `(⇥) of the vector of parameters
⇥ = (✓,↵,�)> is given by

` =
n

↵
log ✓+n log

✓
�2

1 + �

◆
+

nX

i=1

log(1+ xi)��xi � (1+
1

↵
)

nX

i=1

log[1� ✓̄ḠL(x)
↵]. (16)

The ML estimates b✓, b↵ and b� are determined by maximizing the log-likelihood function
of Equation (16) with respect to the parameters ✓, ↵ and �. In general, there is no closed-
form representation for these estimates, which are determined in practice the by making
use of numerical methods. Equation (16) can be maximized either directly by using the
R (optim function), SAS (NLMixed procedure) or Ox (MaxBFGS function), or by solving
the nonlinear likelihood equations obtained by equating the partial derivatives of ` with
respect to each parameter to zero.
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The components of the score vector U(⇥) are expressed as

U✓ =
n

↵ ✓
�
✓
1 +

1

↵

◆ nX

i=1

ḠL(x)↵

1� ✓̄ḠL(x)↵
,

U↵ = � n

↵2
log ✓ � 1

↵2

nX

i=1

ḠL(x)↵ log ḠL(x)

1� ✓̄ḠL(x)↵
,

U� =
n(2 + �)

�+ �2
+ xi +

✓
1 +

1

↵

◆ nX

i=1


↵ ✓̄ḠL(x)↵�1

(1 + �)2[1� ✓̄ḠL(x)↵]
�xi [2 + �+ (1 + �)xi] e

��xi

�
.

Setting these equations to zero and solving them simultaneously yields the ML estimates
of the model parameters.
We now assess the performance of the ML estimators of the model parameters by means

of Monte Carlo simulations. The simulations are replicated 1,000 times with samples of
sizes n = 50, 100, 200 and the following parameter values: I: ✓ = 0.5, ↵ = 0.5 and � = 1;
II: ✓ = 0.1, ↵ = 1.5 and � = 1; III: ✓ = 1.5, ↵ = 0.5 and � = 1; IV: ✓ = 1.5, ↵ = 1.5
and � = 1. Table 2 lists the average bias (Bias) of the ML estimators, mean squared
errors (MSE), coverage probabilities (CP) and average widths (AW) of the confidence
intervals for the parameters ✓, ↵ and � and the three sample sizes. From these results, we
conclude that the ML estimators perform well when it comes to estimating the parameters
of the HEL distribution. In general, the biases, MSEs and AWs decrease when the sample
size increases. Moreover, the CPs of the confidence intervals are quite close to the 95%
nominal level. Thus, the ML estimators and their asymptotic distributional properties can
be adopted for constructing approximate confidence intervals for the parameters of the
HEL distribution.

5. Empirical Illustrations with Hydrological Data

In this section, we fit the HEL model and some other competing models to two hydro-
logical data sets. We assess how well the HEL distribution performs as compared to the
beta-Lindley (BL) studied by Mervoci and Sharma (2014), exponentiated power Lindley
(EPL) due to Ashour and Eltehiwy (2015), beta-exponential (BE) proposed by Nadara-
jah and Kotz (2006), exponentiated Nadarajah and Haghighi (ENH) defined by Lemonte
(2013), Harris extended exponential (HEE) discussed by Pinho et al. (2015), exponenti-
ated Weibull (EW) studied by Mudholkar and Sharivastava (1993), power Lindley (PL)
introduced by Ghitany et al. (2013), exponentiated Lindley defined by Nadarajah et al.
(2007) and Lindley distributions. For each model, we estimated the parameters by the
ML method and assessed the goodness-of-fit by means of the Akaike information criterion
(AIC), Cramér-von Mises (W), Anderson-Darling (AD), Kolmogrov-Smirnov (KS) and
average scaled absolute error (ASAE) statistics. The ASAE is defined as (see Castilo and
Hadi, 2005)) ASAE = (1/n)

Pn
i=1(|x(i) � bx(i)|)/(x(n) � x(1)), where x(i) is the observed

value of ith order statistic, and bx(i) is obtained from the QF, Q(ui), wherein the ML esti-
mates are substituted to the parameters, with ui = i/(n+1). The ASAE statistic is useful
for measuring the accuracy of the fitted model. In general, the smaller values of the above
statistics indicate a better fit to the data.
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Table 2. Monte Carlo simulation results for the listed statistical indicator.

Parameter n Bias MSE CP AW

I

✓ 50 �0.044 0.112 0.92 1.483
100 �0.037 0.045 0.95 0.979
200 �0.037 0.033 0.98 0.749

↵ 50 0.626 1.690 0.96 2.079
100 0.419 0.429 0.95 0.983
200 0.314 0.110 0.95 0.799

� 50 �0.028 0.193 0.93 1.459
100 �0.042 0.111 0.96 1.154
200 �0.046 0.079 0.95 0.123

II

✓ 50 0.022 0.007 0.93 0.368
100 0.012 0.003 0.96 0.232
200 0.004 0.001 0.95 0.153

↵ 50 0.621 1.340 0.95 4.809
100 0.199 0.537 0.95 2.475
200 0.078 0.167 0.95 1.588

� 50 0.162 0.293 0.91 2.117
100 0.080 0.133 0.94 1.436
200 0.026 0.063 0.95 0.994

III

✓ 50 1.317 0.589 0.98 1.508
100 0.609 0.371 0.98 1.192
200 0.288 0.148 0.96 0.506

↵ 50 1.375 0.473 0.90 1.624
100 0.563 0.171 0.98 1.270
200 0.157 0.049 0.95 0.014

� 50 0.264 0.479 0.91 1.006
100 0.204 0.278 0.95 0.214
200 0.199 0.130 0.96 0.102

IV

✓ 50 0.638 3.602 0.90 2.835
100 0.237 1.276 0.91 1.401
200 0.141 0.629 0.94 0.038

↵ 50 �0.003 0.083 0.96 1.156
100 0.015 0.042 0.96 0.818
200 �0.001 0.021 0.95 0.571

� 50 0.117 0.255 0.96 1.977
100 0.035 0.104 0.96 1.323
200 0.024 0.055 0.96 0.923
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The CDFs of the BL, EPL, BE, ENH, HEE, EW, MOL, PL and EL distributions are
given by

FBL(x, a, b, ✓) = I
1�(1+

✓ x
1+✓ )e

�✓x
(a, b), x, ✓ > 0,

FEPL(x,↵,�, ✓) =
⇣
1� (1 + ✓ x�

1+✓ )e
�✓ x�

⌘↵
, x,↵,�, ✓ > 0,

FBE(x, a, b,�) = I1�e�� x(a, b), x, a, b,� > 0.

FENH(x,�,↵,�) =
⇣
1� e1�(1+�x)↵

⌘�
, x,�,↵,� > 0,

FHEE(x,�, k,�) =
�1/ke��x

[1� (1� �)e�� k x]1/k
, x,�, k,� > 0,

FEW(x; c,↵,�) =
⇣
1� e�(x/�)c

⌘↵
, x, c,↵,� > 0,

FMOL(x,↵,�) =
1� (1 + �)�1[1 + �+ �x]e��x

1� (1� ↵)(1 + �)�1[1 + �+ �x]e��x
, x,↵,� > 0,

FPL(x,�, ✓) = 1� (1 + ✓ x�

1+✓ )e
�✓ x�

, x,�, ✓ > 0,

FEL =


1�

✓
1 + ✓ + ✓ x

1 + ✓

◆
e�✓x

�↵
, x, ✓ > 0,

respectively, where Iz(p, q) denotes the incomplete beta function.
First, we consider a data set consisting of s exceedances (rounded to one decimal place)

of flood peaks (in m3/s) of the Wheaton river, which is located in the Yukon Territory,
Canada, for the years 1958-1984. The data set is the following: 1.7, 2.2, 14.4, 1.1, 0.4,
20.6, 5.3, 0.7, 1.9, 13.0, 12.0, 9.3, 1.4, 18.7, 8.5, 25.5, 11.6, 14.1, 22.1, 1.1, 2.5, 14.4, 1.7,
37.6, 0.6, 2.2, 39.0, 0.3, 15.0, 11.0, 7.3, 22.9, 1.7, 0.1, 1.1, 0.6, 9.0, 1.7, 7.0, 20.1, 0.4, 2.8,
14.1, 9.9, 10.4, 10.7, 30.0, 3.6, 5.6, 30.8, 13.3, 4.2, 25.5, 3.4, 11.9, 21.5, 27.6, 36.4, 2.7, 64.0,
1.5, 2.5, 27.4, 1.0, 27.1, 20.2, 16.8, 5.3, 9.7, 27.5, 2.5, 27.0. Some summary statistics of
these data are: n = 72, x̄ = 12.20417, s = 12.29722, coe�cient of skewness = 1.47251 and
coe�cient of kurtosis = 2.88955. The boxplot of these observations displayed in Figure
3(a) indicates that the distribution is right-skewed. The TTT (total time on test) plot
(see, e.g., Gill, 1986; Aarset, 1987) of these data is shown in Figure 3(b). It is first convex
and then concave, which suggests a bathtub-shaped failure rate. Accordingly, the HEL
distribution could, in principle, be appropriate for modeling these data. The ML estimates
(with the corresponding standard errors -SEs- in parentheses) as well as the ASAE, AIC,
KS, CM and AD statistics are given in Table 3. All five goodness-of-fit statistics indicate
that the HEL model provides the best fit. For a visual comparison, the empirical SF (ESF)
and estimated SF associated with the HEL model as well as a theoretical versus empirical
probability (PP) plot, which compares the empirical CDF of the data with the fitted CDF,
are respectively included in Figures 4(a) and 4(b). Clearly, the HEL model closely fits the
data distribution.
In this second illustration, the data set, which is freely available on the Korea Meteo-

rological Administration (KMA) website (http://www.kma.go.kr), represents the annual
maximum daily rainfall amounts in millimeters in Seoul (Korea) during the period 1961-
2002. Some summary statistics of these precipitation data are: n = 128, x̄ = 144.5991,
s = 66.17812, coe�cient of skewness = 0.94067 and coe�cient of kurtosis = 0.80435. The
boxplot of these observations that is displayed in Figure 5(a) indicates that the distribu-
tion is right-skewed. The TTT plot appearing in Figure 5(b) suggests an increasing failure
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Figure 3. Boxplot (a) and TTT plot (b) for the flood data.

Table 3. ML estimates, SEs (in parentheses) and goodness-of-fit measures for the flood data.

Distribution Estimates ASAE AIC KS CM AD

HEL(✓, ↵, �) 0.077 6.135 0.110 0.017 503.194 0.073 0.054 0.338
(0.038) (2.031) (0.014)

BL(a, b, ✓) 0.556 0.275 0.334 0.020 510.206 0.115 0.126 0.775
(0.098) (0.241) (0.273)

EPL(↵, �, ✓) 0.916 0.730 0.300 0.025 510.425 0.106 0.149 0.857
(0.595) (0.235) (0.279)

BE(a, b, �) 0.812 0.412 0.179 0.023 508.465 0.098 0.122 0.705
(0.137) (0.290) (0.131)

ENH(�, ↵, �) 0.732 1.675 0.032 0.019 507.850 0.106 0.104 0.632
(0.137) (0.143) (0.032)

HEE(�, k, �) 0.433 5.086 0.071 0.023 506.460 0.078 0.094 0.550
(0.193) (0.147) (0.011)

EW(c, ↵, �) 1.387 0.519 0.016 0.403 508.050 0.107 0.105 0.642
(0.587) (0.308) (0.036)

MOL(↵, �) 0.216 0.090 0.044 522.571 0.175 0.582 4.148
(0.128) (0.023)

PL(�, ✓) 0.700 0.339 0.026 508.444 0.105 0.154 0.877
(0.057) (0.056)

EL(↵, ✓) 0.509 0.104 0.021 509.349 0.117 0.135 0.833
(0.077) (0.015)

L(✓) 0.153 0.044 530.424 0.241 0.819 7.424
(0.013)

rate. The estimates of the parameters of the fitted distributions are listed in Table 4. We
note that the HEL model has the lowest ASAE, AIC, KS, CM and AD values, which
indicate that it provides the most accurate fit to the data. Furthermore, the ESF and
estimated SF and PP plots shown in Figures 6(a) and 6(b) also suggest a close fit to the
data distribution.
A likelihood ratio test can be utilized to compare a distribution having additional pa-

rameters with some of its sub-models. Accordingly, we made use of the likelihood ratio
test to assess the improvement in fit that the HEL distribution produces with respect to
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Figure 4. Empirical SF and estimated HEL SF (a) and PP plot (b) for the flood data.
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Figure 5. Boxplot (a) and TTT plot (b) for the precipitation data.
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Figure 6. Empirical SF and estimated HEL SF (a) and PP plot (b) for the precipitation data.
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Table 4. ML estimates, SEs (in parentheses) and goodness-of-fit measures for the precipitation data.

Distribution Estimates ASAE AIC KS CM AD

HEL(✓, ↵, �) 17.443 3.081 0.022 0.019 1165.064 0.077 0.077 0.490
(9.276) (1.069) (0.003)

BL(a, b, ✓) 2.776 1.117 0.020 0.022 1169.396 0.085 0.144 0.809
(0.622) (0.577) (0.007)

EPL(↵, �, ✓) 1.530 1.318 0.003 0.024 1168.717 0.097 0.150 0.862
(0.225) (0.025) (0.004)

BE(a, b, �) 4.433 1.448 0.012 0.029 1172.022 0.092 0.263 1.412
(0.685) (0.535) (0.003)

ENH(�, ↵, �) 4.183 1.694 0.006 0.024 1168.620 0.095 0.146 0.837
(0.687) (0.217) (0.001)

HEE(�, k, �) 1.535 1.860 0.008 0.137 1241.535 0.276 2.569 13.078
(0.299) (0.847) (0.001)

EW(c, ↵, �) 1.411 2.907 98.866 0.433 1168.586 0.093 0.142 0.821
(0.334) (1.519) (29.851)

MOL(↵, �) 10.455 0.029 0.032 1171.003 0.103 0.184 1.330
(4.118) (0.003)

PL(�, ✓) 0.014 16.182 1.433 4820.512 0.999 34.999 1631.130
(0.007) (2.037)

EL(↵, ✓) 2.871 0.022 0.022 1167.600 0.084 0.146 0.818
(0.501) (0.002)

L(✓) 0.014 0.584 1199.216 1.187 0.519 6.508
(0.001)

the Lindley and MOL distributions. It is known that, under the null hypothesis,

�2 log

✓
likelihood under the null hypothesis

likelihood in the whole parameter space

◆
⇠ �2(d),

where, asymptotically, �2(d) follows a chi-square distribution having d degrees of freedom,
d being equal to the number of additional parameters in the extended model. Using this
result and standard statistical tables, we can obtain critical values for the test statistic.
Table 5 includes the likelihood ratio statistics and corresponding p-values for the two data
sets. Given the values of these statistics and their associated p-values, we reject the null
hypotheses for both data sets and conclude that the HEL model provides a significantly
better representation of the distribution of these data than the Lindley or MOL distribu-
tions. The 95% bootstrap confidence intervals obtained for the parameters ✓, ↵ and � are
given in Table 6.

Table 5. Likelihood ratio statistics and their p-values.

Hypothesis Flood data Precipitation data

H0: ↵=1 (MOL) 21.377 (< 0.000) 7.939 (0.005)
H1: ↵ 6= 1 (HEL)

H0: ↵=✓=1 (L) 31.229 (< 0.000) 38.151 (<0.000)
H1: ↵ 6= 1, ✓ 6= 1 (HEL)



92 Cordeiro et al.

Table 6. 95% bootstrap confidence intervals for the parameters ✓, ↵ and �.

Data set ✓ ↵ �

Flood data (0.039, 0.225) (3.036, 10.429) (0.087, 0.146)
Precipitation data (8.243, 20.463) (1.378, 5.027) (0.018, 0.031)

Next, we present the concepts of return period, mean deviation about a return level
and the rth moment of the order statistics. For a given a data set, the return period can
be estimated by bT = 1/F̄ (x), where F̄ (x) = 1 � F (x) and F (x) denote the CDF of the
distribution. The estimated return periods (bT ) correspond to the return levels (xT ) for
each of these two data sets. They are reported in Table 7 and have been computed as
T = 1/F̄ (xT ), where F̄ (·) is as given in Equation (4). The mean deviation about a return
level which is the mean of the distances of the values from their return level is given by
⌘ = 2xTF (xT )� xT � µ+ 2

R1
xT

x f(x) dx, where f(·) and F (·) denote the HEL PDF and
CDF. Table 7 provides the mean deviations about certain values of the return levels (x̄T )
for both the flood and precipitation data sets.

Table 7. Estimated return periods ( bT ) and mean deviations about the return levels (⌘).

Flood data Precipitation data

xT bT ⌘ xT bT ⌘

140 499147.836 127.800 410 315.215 265.623
100 8350.571 87.802 375.5 160.422 435.000
50 62.48360 38.135 315.5 50.389 172.849
30 10.375 19.949 260 17.693 121.247
10 2.265 9.337 210 7.093 80.513

In order to be able to plan for future emergencies in connection with various hydrological
events, it is useful to ascertain some distributional results on certain of the order statistics.
To that end, we determine the rth moment, for r = 1, 2, 3, 4, of some order statistics for
each data sets under the HEL model wherein the parameters are replaced by their ML
estimates. Those moments are included in Table 8 for each data set.

Table 8. Some numerical values of E(Xr
i:n) for the indicated data set.

Flood data Precipitation data
i r E(Xr

i:72) i r E(Xr
i:128)

1 1 0.097 1 1 21.409
2 0.019 2 585.869
3 0.006 3 18628.800
4 0.002 4 658641.210

20 1 2.868 15 1 77.111
2 8.962 2 5989.380
3 30.433 3 468486.450
4 111.999 4 3.689⇥ 104

60 1 22.898 30 1 98.427
2 543.677 2 9719.320
3 12726.600 3 962824.794
4 308653.083 4 9.568⇥ 107
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6. Concluding Remarks

We introduced a three-parameter extension of the Lindley distribution refereed to as the
Harris extended Lindley (HEL) distribution, which is obtained by applying the Harris
extended method to the Lindley distribution. The proposed model has two shape param-
eters and one scale parameter. It includes as sub-models the Marshall-Olkin Lindley and
Lindley distributions. The HEL PDF can be decreasing or unimodal. Moreover, the HEL
HR can be increasing, decreasing, unimodal (upside-down bathtub) or bathtub-shaped.
We gave explicit expressions for the ordinary and incomplete moments, mean deviations,
Bonferroni and Lorenz curves and order statistics associated with the proposed distribu-
tion. The estimation of the model parameters was successfully carried out by making use
of the maximum likelihood method. In conclusion, the HEL distribution provides a very
flexible model for fitting the wide spectrum of positive data sets arising in engineering, sur-
vival analysis, hydrology, economics, biology as well as numerous other fields of scientific
investigation. All the calculations were performed with the symbolic computing software
Mathematica, the code being available from the authors upon request.
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“Chilean Journal of Statistics”

Ten years after its launch:

A message from the new Editor-in-Chief

Welcome to the first issue of the tenth volume of the Chilean Journal of Statistics
(ChJS). Today, April 29, 2019, the ChJS celebrates ten years of life and begins leaving
its childhood, walking quickly to become a teenager. I remember perfectly well when the
baby ChJS was born. I was present at that birth and I accompanied the baby during its
first three years of life as its Executive Editor. The first volume of the ChJS had two
issues, published in April and September 2010, which paid tribute to Dr. Pilar Iglesias, a
beloved Chilean statistician. Pilar was the main motivation for the Chilean editorial board
to launch this journal, which has as its ancestor the Revista de la Sociedad Chilena de
Estad́ıstica, published in Spanish from 1984 to 2000. I would like to name its dearest uncles
who helped the ChJS to survive. Among them are Marcia Branco and Rosangela Loschi
from Brazil, Eduardo Gutiérrez-Peña and Manuel Mendoza from Mexico, Marc Genton
from Switzerland, as well as Guido del Pino, Manuel Galea, Ronny Vallejos, and Reinaldo
Arellano from Chile. I would like to take this opportunity to congratulate Reinaldo, who
has honored the Chilean statistical community as the recent winner of the “Mahalanobis
Prize 2019” awarded by the International Statistical Institute. Obviously, the ChJS would
be nothing without the valuable contributions of renowned international researchers who
have honored us by publishing their interesting works in our journal; all of these papers
are available for free at http://chjs.mat.utfsm.cl/issues.html. We also thank all the
anonymous reviewers who have contributed to keeping the top quality standards of the
ChJS.

Although the ChJS is published by the Chilean Statistical Society (www.soche.cl) and
belongs to the Chilean statistical community, our journal can be recognized as an inter-
national publication since its editorial board is composed of colleagues from practically
the five continents. Our Editors are from Argentina, Australia, Austria, Bulgaria, Brazil,
Canada, Chile, China, Colombia, Greece, India, Italy, Mexico, Netherlands, Peru, Portu-
gal, Romania, Saudi Arabia, Spain, Switzerland, UK, and US. Our current Editorial Board,
presented at http://chjs.mat.utfsm.cl/board.html, is a mixture of experienced edi-
tors and talented young researchers, the latter mainly from Chile and Brazil, who with
great interest and enthusiasm have honored us by accepting to be part of the ChJS. They
are having their first editorial experiences, although they all have extensive experience as
researchers as well as reviewers for prestigious international journals.

I would also like to thank the members of the Directory of the Chilean Statistical Society
(https://soche.cl/quienes-somos) headed by its President, Dr. Mauricio Castro, for
the trust placed in me to be the new Editor-in-Chief of the ChJS. They can rest assured
that, just as I did in the past as its Executive Editor, I will make my best e↵ort to bring
the ChJS to the highest standards of professionalism, impartiality and quality that all
scientific journals must strive for.
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In addition to this presentation note, the first issue of the tenth volume of the ChJS
comprises five papers. Jhonnata B. de Carvalho, Murilo C. Silva, George F. von Borries,
André L.S. de Pinho, and Ricardo F. von Borries, from Brazil and US, combined Fourier
analysis and support vector machines to conduct an interesting work for classification
of electroencephalograms, a relevant current theme related to data science. Luis Benites,
Roćıo Maehara, Vı́ctor H. Lachos, and Heleno Bolfarine, from Peru, US and Brazil, pro-
posed a regression model based on a finite mixture of skew heavy-tailed distributions, a
widely studied topic by Brazilian and Chilean researchers within the context of statistical
modeling. Ednário Mendonça, Michelli Barros, and Joelson Campos, from Brazil, derived
goodness-of-fit tests based on the Kullback-Leibler information for the Birnbaum-Saunders
model, a distribution which has had some of its more important developments in Chile and
Brazil. Nathalia L. Chaves, Caio L.N. Azevedo, Filidor Vilca, and Juvêncio S. Nobre, from
Brazil and Chile, introduced a new distribution to describe data with positive support and
asymmetry by combining the Birnbaum-Saunders and centered skew-normal models, pro-
viding di↵erent statistical and mathematical features for this new model. Finally, our fifth
paper is presented by Gauss M. Cordeiro, M. Mansoor, and Serge B. Provost, from Brazil,
Pakistan and Canada, who derived their work in the setting of distribution theory, an area
of wide development around the world, connecting the Harris and Lindley distributions to
perform an interesting study which was applied to the modeling of hydrological data.

As a final comment, I would like the Chilean statistical community, as well as the interna-
tional statistical community, our prestigious Editorial Board and past authors to champion
ChJS as an emerging international journal and to encourage others to submit new works
to the ChJS. Currently, we are indexed by several international systems, including the
Institute for Scientific Information (ISI) Web of Science in the Emerging Sources Cita-
tion Index. The ChJS faces important challenges for the near future, such as reaching the
Science Citation Index and looking for partnerships with prestigious publishers, societies
and associations. However, just as with statistics itself, our success will depend on a team
e↵ort. Each one of us is important in meeting these challenges. We need you all.

Vı́ctor Leiva
Editor-in-Chief
Chilean Journal of Statistics
http://www.victorleiva.cl

http://www.victorleiva.cl


Chilean Journal of Statistics
Vol. 10, No. 1, April 2019, 3–20

UNCORRECTED PROOFS
Data Science

Research Paper

A combined Fourier analysis and support vector

machine for EEG classification

Jhonnata B. de Carvalho1,⇤, Murilo C. Silva2, George F. von Borries2,
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Abstract

This paper introduces a method for the classification of electroencephalogram (EEG)
data combining Fourier analysis, support vector machine (SVM) and a weighting sys-
tem, called WFF-SVM, that provides high correct classification rates (accuracy) using
a small training data set. Basically, an SVM classifier is calculated for each frequency in
the periodogram and a proposed weighting system, based on the error rate of each SVM
classifier, is used to obtain a final decision value. Also, it is shown that principal com-
ponent analysis can be used to identify the best group of EEG channels to apply to the
classification method, improving the correct classification rate. Two applications with
real data are presented. The first application uses a public data set of epileptic patients
and compares the proposed method with other methods presented in the literature.
In this case, the correct classification rate obtained was 100%. The second application
consists of EEG data collected from a subject submitted to 10 visual stimuli and the
correct classification rate obtained was 95.31%. The classifier WFF-SVM combines mul-
tiple existing techniques, each one of them widely used in time series and dimensionality
reduction problems. Our paper combines standard signal processing techniques to obtain
high classification rates of EEG data.

Keywords: Epilepsy data · Periodogram · Principal components analysis · Simple
moving averages · Supervised learning.

Mathematics Subject Classification: Primary 62H25 · Secondary 68Q32.

1. Introduction

Machine learning (ML) techniques have been gaining prominence due to real-world prob-
lems as well as large databases. Basically, one can divide ML methods into two classes,
supervised learning and unsupervised learning. In unsupervised learning, the method has
to recognize the groups by existing standards with a certain criterion. This type of learning
tries to gain some understanding of the process that generated the data, e.g., the K-means
method applied in DNA gene expression and Internet newsgroups (Ding and He, 2004),

⇤Corresponding author. Email: jhon_dbz@yahoo.com.br
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clustering with hill-climbing optimization method applied to bee species (Friedman and
Rubin, 1967), botanical data (Rubin, 1967) and in clustering of plants, wines and heart
diseases (Souza et al., 2017). In supervised learning, groups (or classes) are known a priori
and it is necessary to provide examples for method training. These methods are often
used in classification and regression problems, e.g., logistic regression in the prediction
of a financial crisis in Latin American companies (Giampaoli et al., 2016), in the fault
diagnosis in chemical processes using Fisher discriminant analysis (Chiang et al., 2000),
SVM classification in validation of cancer tissue samples (Furey et al., 2000). However, our
interest is in the classification of electroencephalography signals.
An EEG are recordings of the electrical potentials produced by the brain (Bronzino,

1999; Buzsaki, 2006). Basically, the digital EEG is a time series containing information of
the electrical activity generated by the brain. EEG has vast application in areas such as
epilepsy detection (Andrzejak et al., 2001), emotion regulation using neurofeedback (Ruiz
et al., 2014), a↵ective neuroscience (Sitaram et al., 2011), and brain computer interface
(Kübler et al., 2001; Wolpaw et al., 2002). For an e�cient classification of EEG, an al-
gorithm should address two main problems: feature extraction and classification method.
Several methods have been used to extract features of EEG data, such as discrete wavelet
transforms (DWT) (Jahankhani et al., 2006; Subasi, 2007; Subasi and Gursoy, 2010),
amplitude values (Kaper et al., 2004), clustering techniques (Li and Wen, 2011), autore-
gressive and adaptive autoregressive parameters (Penny et al., 2000; Pfurtscheller et al.,
1998), wavelet packet decomposition and extracted eigenvalues from the resultant wavelet
coe�cients using principal component analysis (PCA) (Acharya et al., 2012), continu-
ous wavelet transform (CWT), higher order spectra (Acharya et al., 2013), approximate
entropy and DWT (Ocak, 2009), analytic time-frequency flexible wavelet transform and
fractal dimension (Sharma et al., 2017).
In order to classify a set of extracted features, several pattern recognition methods have

been used, such as artificial neural network (Guo et al., 2009; Jahankhani et al., 2006;
Nigam and Graupe, 2004; Subasi, 2007), mixture of expert model (Subasi, 2007), linear
discriminant analysis (Subasi and Gursoy, 2010), SVM (Chandaka et al., 2009; Subasi and
Gursoy, 2010), decision trees (Polat and Günes, 2007), least squares SVM (Li and Wen,
2011; Übeyli, 2010) and hidden markov models (Chiappa and Bengio, 2004). For a more
complete review refer to Lotte et al. (2007).
Recently several algorithms have been developed to classify EEG in a variety of applica-

tions, such as in Zhang et al. (2016), which proposed a linear Bayesian discriminant with
a Laplace prior, named sparse Bayesian method by exploiting a Laplace prior. A major
advantage of this method is that it estimates automatically all the parameters of the clas-
sifier, without the need to use cross-validation. However, we point out that any Bayesian
procedure needs a suitable prior distribution and although the Laplace distribution has
been suggested it is conceivable that for a particular application a better prior distribution
can be found. Wang et al. (2016) introduces a new approach that utilizes spatiotempo-
ral feature extraction with multivariate linear regression (MLR) to learn discriminative
of steady-state visual evoked potentials (SSVEP) features, for improving the detection
accuracy. SSVEP are signals that are natural responses to visual stimulation at specific
frequencies. MLR is implemented on dimensionality reduced EEG training data and a con-
structed label matrix to find optimally discriminative subspaces. Jiao et al. (2017) proposed
a method that is an extension of multiset canonical correlation analysis (MsetCCA), called
multilayer correlation maximization (MCM) model for further improving SSVEP recog-
nition accuracy. MCM combines advantages of both Canonical Correlation Analysis and
MsetCCA by carrying out three layers of correlation maximization processes. Zhang et al.
(2018) introduced a new method, called multi-kernel extreme learning machine (MKELM)
to EEG classification. Basically, this method transforms the EEG through the common
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spatial pattern (CSP) and inserts a kernel function in the extreme learning machine (ELM).
The MKELM provides a way to circumvent calculation of the hidden layer outputs and
inherently encode it in a kernel matrix.
The proposed WFF-SVM is a classifier based on the SVM and the Fourier transform,

providing the periodogram as feature extraction. In addition, it uses a weighting system
based on the error rate. Thus, we call this classifier weighted Fourier frequencies and SVM,
WFF-SVM for short. The WFF-SVM classifier di↵ers from the other methods because it
requires just one data transformation (Fourier), which leads to a good capacity to discrim-
inate among groups. The PCA is used to identify the most active regions of the brain,
providing the use of fewer electrodes and reducing the complexity of the data, since some
electrodes pick up only noises, whereas the other methods ended up losing information
by reducing the dimension based on the application of CSP or PCA. In relation to the
Fourier transform, we observed that analyzing the signals in the frequency domain (peri-
odogram), as shown in Figure 1, allows us to discriminate the signals for some frequencies.
Our classifier takes into account the most distinct frequencies for classification through
the weighting system. However, we point out that the choice of the kernel function is not
unique, but for our applications the results are virtually the same by considering di↵erent
kernels, suggesting a robust procedure.
Visual stimuli are commonly used to understand di↵erent components, such as color,

texture, motion, objects, readability (text versus nontext), and others (Thomas and Vinod,
2017). Moreover, visual stimuli are also used in biometric authentication (Zuquete et al.,
2010), emotion classification (Wang et al., 2014), person identification (Das et al., 2009),
and others. We tested our classification method using real-world EEG data of two main
applications: epilepsy and vision. The first application (described in Subsection 4.1) uses
a publicly available data set described in Andrzejak et al. (2001), already used in previous
works on EEG classification, and it allows a direct comparison of our classification method
to other methods presented in the literature. In this application, the proposed method
achieved a correct classification rate of 100.00% under a relatively simple model, showing
that the proposed method performs well compared to other methods in the literature. The
second application (described in Subsection 4.2) uses a data set collected in an experiment
conducted at the University of Texas at El Paso in which the EEG data are acquired while
the subject is submitted to visual stimuli. The proposed method showed a high correct
classification rate of 95.31% using only three signals from each class in the training phase.
This paper is organized as follows. Section 2 provides a brief review of the SVM classifier

relevant for our work and presents the periodogram, which is used for feature extraction.
Section 3 presents our classification method integrating Fourier data analysis, SVM and
a weighting system. Section 4 reports the performance of our method using real-world
data of two applications and compares it with concurrent methods found in the literature.
Section 5 provides some discussions, conclusions and recommendations for future work.

2. Background

In this section, the methods used in the WFF-SVM classifier are described. The first
method is the SVM and it includes three main blocks: the basic classifier, parameters
estimation and SVM with nonlinear functions. The other methods are the Fourier analysis,
periodogram, and the technique of simple moving averages.

2.1 Support vector machine

The SVM is a pattern recognition technique that has been widely used in problems
like regression and classification (Hastie et al., 2008; Hornik et al., 2006; Theodoridis
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and Koutroumbas, 2008; Vapnik, 1996). In classification problems the SVM technique
separates two classes (say W1 and W�1) by a hyperplane h�,xi + �0 = 0, where
h·, ·i is the inner product, x,� 2 RD and �0 2 R, corresponding to the decision function

f(x) = sign(h�,xi+ �0). (1)

The optimal hyperplane is defined as the one maximizing the margin of separation between
classes. Note that the optimal hyperplane does not necessarily guarantee a complete sepa-
ration of points from the two classes. This hyperplane can be constructed using Lagrange
multipliers and then solving a constrained convex optimization problem.
Consider a set of training samples xi with i = 1, 2, . . . , N , then the primal optimization

problem along with the soft margin method (Cortes and Vapnik, 1995) is given by

min
�,�0, ⇠i

1

2
k�k2 + c

NX

i=1

⇠i, (2)

subject to

⇢
yi (h�,xii+ �0) � 1� ⇠i,
⇠i � 0, for i = 1, . . . , N,

where the constant c is previously chosen and determines the influence of the two terms
in the minimization problem. The variables ⇠i are known as slack variables measuring the
proportional amount of predictions that fall on the wrong side of the margin, and yi is an
indicator variable defined by

yi =

⇢
+1, if xi 2 W1,
�1, if xi 2 W�1.

Using Lagrange multipliers (Hastie et al., 2008), one can obtain the Wolfe dual function
given by

LD =
NX

i=1

↵i �
1

2

NX

i=1

NX

k=1

↵i↵kyiykhxi,xki. (3)

The solution is obtained by maximizing LD, a simple convex optimization problem which
must satisfy the conditions 0  ↵i  c and

PN
i=1 ↵iyi = 0.

One can also generalize the SVM technique using a non-linear discriminant (unlike the
hyperplane). In this case, a mapping is used in a larger number of dimensions. It can
be shown (Theodoridis and Koutroumbas, 2008) that this mapping in a larger number of
dimensions can be implemented without increasing the computational demand by replacing
the inner product hxi,xki in Equation (3) by a kernel K(xi,xk) to compute the inner
product in a higher dimensional space. In this study, we consider two popularly used
kernels:

• Gaussian kernel: K1(xi,xj) = exp
�
��||xi � xj ||2

 
;

• Polynomial kernel: K2(xi,xj) = hxi,xjid;

where � and d are kernel width and polynomial degree, respectively. Note when d = 1, the
polynomial kernel is called linear kernel.



Chilean Journal of Statistics 7

2.2 Fourier analysis

Fourier frequency analysis is a very important tool in signal processing and the peri-
odogram is one of its subproducts (Fuller, 1996). The periodogram shows how the co-
variance of a time series is distributed in frequency. Any stationary time series can be
represented as a sum of sines and cosines (Fuller, 1996), that is, a discrete stationary time
series {Xt}, where t = 1, . . . , n, (n being odd) can be represented by

Xt =
a0
2

+

bn/2cX

j=1

ak cos(!kt) + bk sin(!kt),

where bn/2c is the largest integer less than or equal to n/2, ak and bk are parameters to
be estimated. Also, the Fourier frequencies are defined by

!k =
2⇡k

n
, k = 0, . . . ,

jn
2

k
.

The periodogram can be defined as the sequence {Jk}, where

Jk =
n

2

�
a2k + b2k

�
, (4)

and the sum of squares removed by cos(!kt) and sin(!kt) is

Jk =
2

n

2

4
 

nX

t=1

Xt cos(!kt)

!2

+

 
nX

t=1

Xt sin(!kt)

!2
3

5 .

Thus, the value of the periodogram at frequency !k is the contribution from this frequency
to the sum of squares of {Xt} or, equivalently, its energy.
Some periodograms shown in this paper are smoothed using a moving average technique

(Brockwell and Davis, 2002). Considering {Jk} a sequence of points in the periodogram,
for some ↵ 2 IN, we define the smoothing by

J↵
k =

1

↵

↵X

j=1

Jk+j�1, k = 0, 1, . . . ,
jn
2

k
+ 1� ↵, (5)

where J↵
k is the average of ↵ terms in sequence starting at the point Jk, meaning that each

point J↵
k is the average contribution of ↵ frequencies for the total energy of the series.

Let Xi,1 and Xi,2 2 RP⇥C EEG samples of two classes from the i-trial with C and P
being the number of channels and samples, respectively. The application of the Fourier
transform will be in each column (channel) of Xi,1 and Xi,2 from the i-trial, building a
vector

J↵
`,k = (J↵

`,ki,g
)>, (6)

with i = 1, . . . , Ng, Ng being the number of trials belonging to class g (g = 1, 2) and

` = 1, . . . ,C. These vectors together with the vector of labels y = (y1, y2, . . . , yN1+N2
)>

are the inputs of the classifier WFF-SVM.
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3. New Method for EEG Classification

The classification of EEG data is a di�cult task, with the analysis disturbed because most
of the EEG channels may not be relevant to the classification at hand. Usually, traditional
classification techniques alone do not provide good results when applied to EEG data.
Therefore, it is important to construct a new method able to distinguish important brain
regions and to capture the essential information contained in the data.

3.1 Motivation

The Fourier analysis, especially the periodogram, can reveal hidden patterns in signals.
Figure 1 has a set of 4 plots, all of which represent the signals generated by two di↵erent
stimuli and captured by a channel of the EEG data (red for W1 class and black for W�1

class) for a visual stimuli study (see Section 4.2). The top-left graph represents the super-
imposed plots of the original EEG signals. Note that it is di�cult to visually distinguish
two di↵erent classes in the time-domain plots presented in this graph. The top-right and
bottom-left graphs represent the periodogram and the smoothed periodogram (J4

k in Equa-
tion (5)) of the signals, respectively. Now, it is easier to notice hidden patterns revealed
by the periodograms of the data.
The plots indicate that the periodograms of W1 have higher values at central frequencies

than the periodograms of W�1. In fact, the bottom-right graph in Figure 1 shows a possible
discriminant (the dashed line) for these periodograms. Note that the periodograms of W1

always have values above this hypothetical discrimination line for the central frequencies of
the periodogram. However, it should be noted that this type of pattern does not occur for
all the channels nor in all regions of the brain. It is necessary to use methods that identify
both the relevant channels and the relevant frequencies in a set of periodograms, so that
in an application, such as epilepsy detection of signals can be automatically classified into
one of the expected classes.

3.2 Calculating the discriminant

The graphs in Figure 1 are revealing. It is easy to discriminate the periodograms for certain
frequencies, but this separation is not so clear for other frequencies. It is noticeable that
each frequency has its own importance and, therefore, could be evaluated individually and
not as a whole. Thus, this paper describes a method in which a di↵erent discriminant is
calculated for each frequency using the SVM classifier.
Considering the set of training J↵

`,k of Equation (6) and the label vector y with C chan-
nels, ` = 1, 2, . . . , C and a set of F frequencies, k = 0, 1, . . . , F (k-th point of the smoothed
periodogram and F = bn/2c), define SVM`,k[j↵`,k] as the discriminant function generated
by SVM, given by Equation (1), that classifies a new value j↵`,k of the periodogram for a
test signal into one of two classes, W1 or W�1, according to

SVM`,k[j
↵
`,k] =

⇢
+1, if j↵`,k is classified in W1,
�1, if j↵`,k is classified in W�1.

(7)

Then, each discriminant will classify a new signal between two classes depending on
whether the periodogram has higher or lower value at a particular frequency. Figure 2
shows an example of these discriminants. Note that each discriminant function SVM`,k[.]
could present a di↵erent decision. Thus, in order to unify these decisions, the next two
sections present a weighting system that generates a single answer to the decision problem.
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Figure 1. Representations of a set of signals generated by two stimuli. Each line is a signal from the W1 class
(red/lighter lines) or W�1 class (black/darker lines). Top-left: original signals. Top-right: periodogram of the signals.
Bottom-left: smoothed periodogram of the signals. Bottom-right: smoothed periodogram of the signals with a possible
naive discriminant (dashed line). These data are obtained at the Multi-Sensing-Processing and Learning Laboratory
(MSPL) at the University of Texas at El Paso (UTEP).
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Figure 2. Some discriminating points (dashed line) for some Fourier frequencies !k for classes W1 and W�1. Red
(lighter lines) represents class W1 and black (darker lines) represents class W�1.

3.3 Weighting system

Now, we have several discriminant functions, one for each EEG channel and each point in
frequency, with discriminant functions producing di↵erent decisions. However, it is clear
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that there are some discriminants more reliable than others and this reliability is de-
termined by the incorrect classification rate (or error rate) on the training phase of the
classification problem. For example, if for some channel ` and frequency k the discriminant
function SVM`,k[.] provides a low error rate on the training phase, then it is considered
more reliable than another discriminant function with a higher error rate. Having this in
mind, we introduce a weighting system based on the error rate for each discriminant.
The weight for channel ` and frequency k is defined as

 `,k = [1� 2 ·min(Error Rate, 0.5)]⇢̂`,k , (8)

where Error Rate 2 [0, 1] and ⇢̂`,k � 1 is a constant given by

⇢̂`,k =
SSTotal

SSTreatment
, (9)

where SSTotal =
Pnc

i=1

PNi

j=1(J
↵
i,j � J)2 and SSTreatment =

Pnc

i=1

PNi

j=1(J i. � J)2, with nc

representing the number of classes (in this case we have nc = 2), Ni is the number of
frequencies of the smoothed periodogram of the i-th class, J↵

i,j is the j-th smoothed peri-

odogram of the i-th class, J i. is the arithmetic mean of the i-th class and J is the mean
of all smoothed periodograms. The basic concept of our truncated weighting system is to
allocate 0 to the ones that have at least a 50% error rate, since min{0, 0.5} = 0 implies
zero weight. This is so because, based on our experience, it does not make sense to consider
classifiers that provide over 50% error rate. On the other hand, the weighting system is
an increasing function as the error rate tends to zero, achieving its maximum value when
the error rate is zero. Finally, the power ⇢̂`,k is used to penalize the classifiers that have
an error rate between 0 and 50%.
There are several advantages in the use of the exponent ⇢̂`,k in Equation (9) for the

weighting system. It only involves sums, is easy to implement, does not involve optimiza-
tion, has computational cost almost zero, it uses the data for calculation, it measures the
distance between the groups taking into account the variability between and within the
groups, and each frequency will have its own weight for SVM.
It is very important to use this kind of information to classify EEG data because much of

the data contain non-relevant information of non-activated brain regions such as artifacts
in EEG or noise. The next section will show how to use these weights to produce a single
decision between one of the two classes W1 or W�1 for new signals.
The implementation of the WFF-SVM method is presented in Algorithm 1. In Figure

3 we display a flowchart of the SVM framework that summarizes all the steps proposed.
This classifier is denominated weighted Fourier and support vector machine (WFF-SVM).

Algorithm 1 Training WFF-SVM algorithm.

1: Let X1,i 2 RP⇥C and X2,i 2 RP⇥C denote EEG samples of two classes recorded from
the i-th trial. Choose the SVM kernel, the value of c and ↵ smoothing parameter of
Equation (5);
2: Apply the Fourier transform of Equation (4) in each column (channel) of Xi,1 and
Xi,2 from the i-trial and use the moving average technique of Equation (5);
3: Use the SVM in the smoothed periodograms in step 2, totalizing C ⇥ F models;
4: Calculate the training error rate to each model in step 3 and the respective weight of
Equation (8).
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Figure 3. Flowchart for the training and classification phase of a new signal.

3.4 Test phase for practical application

On the test phase for a practical application, we have a new set of signals (one signal per
channel) to be classified as class W1 or W�1. This is done in two di↵erent ways (which will
be compared later in this paper) using the discriminant function of Equation (7) associated
with the weight of Equation (8).
The proposed classification method comprises the following main steps: first, consider a

new stimulus X 2 RP⇥C and for each channel `(` = 1, . . . ,C) calculate the periodogram
{J↵

`,k}. Then, for each channel ` and frequency k of the periodogram use the discriminant
function SVM`,k[J↵

`,k] given by Equation (7) to obtain a particular decision (+1 or -1).
Finally, using the weights, two decision methods are devised to classify the EEG signals.
In the first decision method, which we label as D1, each decision SVM`,k[J↵

`,k] is weighted
by  `,k and each channel has its own decision weighting as in

D1 = sign

(
CX

`=1

sign

(
FX

k=0

 `,k ⇥ SVM`,k[J
↵
`,k]

))
. (10)

In the second decision method, which we label as D2, each channel has its own decision
weighting SVM`,k[J↵

`,k] by  `,k, and the final decision is a pool between channels. Thus,
we define

D2 = sign

8
>>><

>>>:

CX

`=1

FP
k=0

SVM`,k[J↵
`,k]⇥ l,k

FP
k=0

 `,k

9
>>>=

>>>;
. (11)

Basically, this decision system takes into account the performance of the channel in the
training phase, because if there is a considerable disagreement regarding the classifiers in
a given channel, the contribution of this channel to the final classification will not have a



12 Carvalho et al.

great influence. Then, for both decision methods, we apply the criteria

Decision =

8
<

:

W1, if Dj = +1,
W�1, if Dj = �1,
None, if Dj = 0,

(12)

for j = 1, 2. The implementation of the classification of a new signal is presented in
Algorithm 2.

Algorithm 2 Classification of a new signal in WFF-SVM algorithm.

1: Let Xnew 2 RP⇥C denote EEG sample of a new recorded;
2: Apply the Fourier transform of Equation (4) in each column (channel) of Xnew and
use the moving average technique of Equation (5);
3: Apply the C ⇥ F SVM models calculated by Algorithm 1 in the smoothed peri-
odograms of step 2, totalizing C ⇥ F of values of Equation (7);
4: Use the C ⇥ F values calculated in the step 3 and use the decision weighting of
Equations (10) or (11).

The following sections present two applications with real EEG data. First the proposed
method is compared to other methods proposed in the literature, then we use it with a
new data set.

4. Applications and Results

This section presents two applications of our classification method. The first application
uses a publicly available data set described in Andrzejak et al. (2001) which is used in
several papers and is very useful to compare the proposed classification method with other
methods. The second application uses a data set collected in an experiment conducted by
the MSPL at UTEP. The classifier is implemented in the R software and to have access to
the respective code, visit https://carvalhomysearches.weebly.com; see R (2018).

4.1 Epilepsy data classification

The epilepsy data consists of five distinct sets each containing 100 single-channel EEG
segments (Andrzejak et al., 2001). Two of these sets, denoted A and B, are obtained from
EEG recordings from five healthy volunteers in an awake state with eyes open and eyes
closed, respectively. Sets C, D, and E originated from an EEG archive of pre-surgical
diagnosis. Segments in set D are recorded from within the epileptogenic zone, and those in
set C from the hippocampal formation of the opposite hemisphere of the brain. While sets
C and D contained only activity measured during seizure free intervals, set E only contained
seizure activity (for more details about these data sets see Andrzejak et al. (2001)). As in
previous studies (Nigam and Graupe, 2004; Subasi, 2007; Subasi and Gursoy, 2010), we
used only two datasets (A and E) to test the classifier.
Both sets A and E have 100 signals each, one signal for each channel and each signal

corresponding to 4097 samples. To perform the classification it is cut out the beginning and
the end of the signals and subsampled them into 20 signals (components) of 200 samples
each. Then, for each set A and E, we randomly selected 10 of the corresponding 20 signals
to use in the training phase. In the test phase we repeated this same subsampling process
to all the signals in both sets A and E. Thus, it is generated 2000 signals to use in the test
phase.

https://carvalhomysearches.weebly.com


Chilean Journal of Statistics 13

Many authors also proposed methods for the classification of EEG data using data sets
A and E to test their classifiers. Table 1 has a summary of the overall results and also the
result with the application of the proposed method, named WFF-SVM. In WFF-SVM is
used the linear kernel, c = 1, ↵ = 5 and D2 as described in Equations (2), (5) and (11),
respectively.
According to Zhang et al. (2018), the MKELM is more e�cient than the following meth-

ods: multilayer perceptron with a single hidden layer; the conventional SVM; SVM with
Gaussian and polynomial kernel; multi-kernel SVM using both Gaussian and polynomial
kernels; the conventional ELM; ELM with Gaussian kernel; ELM with polynomial kernel,
and finally, the multi-kernel ELM using both Gaussian and polynomial kernels. Therefore,
we also considered in the comparison the new classifier proposed by Zhang et al. (2018),
called MKELM, in both applications.

Table 1. Comparison of results for epilepsy data.

Reference % Accuracy Method

Subasi (2007)
94.50 ME
93.20 MLPNN

Subasi and Gursoy (2010)
98.75 DWT, PCA and SVM
99.50 DWT, ICA and SVM
100.00 DWT, LDA and SVM

Jahankhani et al. (2006) 98.00 NN
Guo et al. (2009) 95.00 RWE and NN

Nigam and Graupe (2004) 97.20 NN
Polat and Günes (2007) 98.72 TRF

Li and Wen (2011) 99.90 LS-SVM
Chandaka et al. (2009) 95.96 SVM

Übeyli (2010) 99.56 LS-SVM
Zhang et al. (2018) 100.00 MKELM
Proposed method 100.00 WFF-SVM

where ME is mixed of experts; MLPNN is multi-layer perceptron neural network; DWT is discrete wavelet transform;
LDA is linear discriminant analysis; ICA is independent component analysis; NN is neural networks; RWE is relative
wavelet energy; LS-SVM is least square support vector machine; MKELM is multi-kernel extreme learning machine
using both Gaussian and polynomial kernels with CSP feature.

Note that the proposed method is as e�cient as (or more e�cient than) the other
methods. A possible reason for this improvement is the weighting system capturing the
most important regions for classification, strengthening the process.
Despite the greater e�ciency of the proposed method, it can be noted that all methods

are very e�cient for this problem. The main reason for this result is that it is relatively easy
to classify the epilepsy data; in fact, neurologists can visually distinguish the EEG patterns
of epileptic patients and non-epileptics patients. For this reason, the following example
presents a more complex application that uses EEG data collected in an experiment based
on visual stimuli with a set of tasks to classify.

4.2 Classification of visual stimuli

In the visual stimuli application, the objective is to calculate the discriminant function so
that, given a new visual stimulus event, our classification method is capable of identifying
the slide presented to the subject from the EEG data recordings only. To do this, the
proposed method is used after a selection of activated channels using PCA.

Experimental Design The data set used in this application is acquired at the MSPL
at UTEP. The EEG data are recorded from a volunteer test subject using a Biosemi
EEG acquisition system with 128 channels. The acquisition system recorded EEG signals
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corresponding to 10 di↵erent visual stimuli, each one presented multiple times in random
order and during a regular interval of time. The visual stimuli used correspond to the
slides shown in Figure 4. Each stimulus is shown on a computer monitor screen 4 times
(in random order) with a five seconds break between each slide, corresponding to a blank
screen. An audible tone alerted the subject each time a new slide is about to be displayed.
Thus, the EEG data set of the second experiment comprised of 4 EEG signals for each one
of the 10 visual stimuli, acquired by 128 channels.

Figure 4. Ten visual stimuli shown to the test subject during EEG signal acquisition.

Using PCA for source localization The PCA is used to explain the variance-covariance
structure of a set of variables by a smaller set of variables formed by linear combinations
of the original ones (Johnson and Wichern, 2007). Generally, in databases that contain
strongly correlated variables (as in EEG data) the PCA is very useful to reduce the dimen-
sionality of the problem. In PCA, the first principal component is the linear combination
with the highest possible variance. This means, in the case of EEG data, that the most
important channels for the composition of the first principal component are the channels
that capture signals with higher variance (the channels corresponding to the activated
brain regions) as described in von Borries et al. (2013). Figure 5 shows contours obtained
for the first principal component when PCA is applied to EEG signals from 128 channels
of the visual stimuli experiment. One can observe that most of the variability in this ex-
periment is present in the channels located on the brain’s frontal lobe. The next sections
show that, in fact, this region is the most important for classification and the other regions
basically do not bring relevant information to the classification problem at hand. Actually,
our results show that the correct classification rate increases when the signals from those
regions are not included in classification.

Data analysis First, we train the classifier. Since the proposed method is a binary classi-
fier and we have 10 apparently di↵erent visual stimuli, the classification process is imple-
ment sequentially by pairs of visual stimuli. Moreover, as many images are very similar,
the classification is performed only with abstract images against images with arithmetic
operations, making a total of 16 discriminants (or 16 pairs). Cross-validation is used to ap-
proximate the correct classification rate of this method, as follows: for each pair of images
analyzed, the first repetition of each image (independent of the others) is excluded in the
training phase to be used in the testing phase. Then, the second repetition of each image
(independent of the others) is excluded in the training phase to be used in the testing
phase, and so on. Thus, 4⇥ 16⇥ 2 = 128 signals are used in the test phase. Note that the
signals used in the test phase are not used to build the discriminant, resulting in a reliable
analysis. The first test is done using the periodogram with the configurations ↵ = 1 and
4, linear kernel and using c = 1. Note in Table 2, the classification rates for each con-
figuration. There is an increase of around 10% for all configurations when the smoothed
periodogram (↵ = 4) is used, indicating that smoothing is a good option to improve the
classification rate. Furthermore, D1 method is better than the D2, but not having a very
large di↵erence between the rates. Figure 6 shows a contour plot of the accuracy of each
brain region. It should be noted that the EEG signals located at the brain’s frontal lobe
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had the best correct classification rates. The similarity between Figures 5 and 6 is remark-
able, indicating that the regions identified using PCA actually correspond to the regions
of higher correct classification rates. Therefore, one might think that the non-activated
regions contain non-relevant information that actually disturbs the classification. Thus,
the cross-validation process is repeated using 53 channels with the highest hit rates, where
most are from the front of the brain, with parameters c = 1, 10, 100. The results presented
in Table 3 indicate that the correct classification rates increase when using the smoothed
periodograms and specially when selecting only the most relevant channels. Therefore, it
appears to be extremely important, in a classification analysis of EEG data, to remove
from the analysis the channels that appear basically to capture non-relevant information.
However, the cost value does not seem to influence much on the results and the classifica-
tion rates are very similar for all values of c, so, for the analyzes that will be done from
now on, will be used c = 1.

Figure 5. Variability of signals through the Brain. Contours for the first principal component when PCA is applied
to EEG signals from 128 channels of the visual stimuli experiment. The front of the brain presents most of the signal
variability.

Figure 6. Contour lines for the correct classification rates by channel: new method with the smoothed periodogram,
↵ = 4 and c = 1.
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Table 2. Accuracy for some settings of smoothing parameter in the WFF-SVM algorithm.

Classifier ↵ Method % accuracy

WFF-SVM
1

D1 75.00
D2 73.44

4
D1 87.50
D2 84.37

Table 3. Results using ↵ = 4 for the accuracy using some values of cost (c), number of channels and type
of decision.

Cost Channel Method % accuracy

c = 1
128

D1 87.50
D2 84.37

53
D1 92.97
D2 92.97

c = 10
128

D1 85.94
D2 85.16

53
D1 92.97
D2 92.97

c = 100
128

D1 85.95
D2 85.16

53
D1 92.97
D2 92.97

After some ↵ variations, we obtained a classification rate of 95.31% with c = 1, ↵ = 5,
usingD2 with 53 channels, and 73.44% to MKELM using all the channels with CSP feature.
These are the best results found in this study. The non-requirement of an extensive training
data set constitutes an important characteristic of the proposed classification method since
in real-world applications the collection of signals available to train the classifier can be
limited to only a few cases.

5. Discussion and Conclusions

EEG technique is employed to help in a variety of diagnosis, such as posttraumatic stress,
human emotions and epilepsy. Regarding the latter one, there is a special interest to
detect as early as possible epilepsy in order to initiate the proper treatment and mitigate
this neurological disorder e↵ects. Several studies were conducted with this objective, such
as Fergus et al. (2015) who uses machine learning, whereas Thodoro↵ et al. (2016) and
Acharya et al. (2018) have used the deep learning (DL) approach. The DL method has
been used in several problems as in image recognition (Krizhevsky et al., 2012), diagnosis
of Alzheimer’s disease (Ortiz et al., 2016), prediction of sale prices of real estate units
(Rafiei and Adeli, 2015) and in the estimation of concrete compressive strength Rafiei et
al. (2017). There are examples in the literature that use SVM and DL, such as in Tang
(2013), who developed an approach in DL replacing the softmax layer by a linear SVM.
Erfani et al. (2016) used a hybrid model where an unsupervised deep belief networks is
trained to extract generic underlying features, and one class SVM is trained from the
features learned by the deep belief networks. Therefore, these works show that the use of
SVM in DL is not new and suggests that in future works WFF-SVM in DL can also be
contemplated in order to search for more e�cient methods. The WFF-SVM can be used in
any type of signal, EEG, electrocardiogram, electromyogram, etc. In order to accomplish
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that, it is su�cient to represent the data as a time series or in a certain proper order.
This proposed paper in based on a broader study found in Carvalho (2016), in which
electromyogram data were also considered. Furthermore, this classifier can be used in
clinical application or any other application. Regarding the computational intensive aspect,
with the rapidly increasing performance of new computers, including parallel programing
and the promising quantum programming the tendency is to be feasible. The application
using epilepsy data showed that the proposed method has no better competitor among
other methods presented in the literature. This paper presents a second and more complete
application. This application using EEG data captured during an experiment involving
visual stimuli showed a number of specific features for the classification of EEG data. In
particular, this application showed that the brain region identified using PCA was similar
to the region where the channels had the best individual correct classification rates. In fact,
the correct classification rate increased significantly by discarding the EEG channels that
had non-relevant information. The proposed method of using smoothed periodograms and
assigning weights to the channels based on their individual error rates resulted in higher
correct classification rates than other methods reported in the literature. It should be
noted that the proposed method showed a high correct classification rate of 95.31% using
only three signals from each class in the training phase. Thus, a topic for future research is
to extend the WFF-SVM to accept more than two groups for training and classification.
In addition, it would be important to propose some sort of threshold for decision-making,
in guiding the decision Equation (12) on how far it must be from zero to have a more
objective classification.
This paper presented a new method for classification of EEG data that uses Fourier

analysis and SVM. The proposed method employs a specific SVM decision value for each
frequency of the periodogram. In addition, a simple weighting system based on the perfor-
mance of the classifier, obtained in the training phase, is applied to the classification phase.
We used two data sets to test the performance of the proposed classifier. The first data set
referred to EEG of an epilepsy study and the second to EEG of a visual stimulation study.
Finally, one point for improvement include the extension of our classification method to
more than two classes and to expand the performance comparison with other methods.
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Abstract

In this paper, we propose a regression model based on the assumption that the error term
follows a mixture of normal distributions. Specifically, we consider a finite scale mix-
ture of skew-normal distributions, a rich family that contains the skew-normal, skew-t,
skew-slash and skew-contaminated normal distributions as members. This model allows
us to describe data with high flexibility, simultaneously accommodating multimodality,
skewness and heavy tails. We develop a simple EM-type algorithm to perform maximum
likelihood inference of the parameters of the proposed model with closed-form expres-
sions for both E- and M-steps. Furthermore, the observed information matrix is derived
analytically to account for the corresponding standard errors and a bootstrap procedure
is implemented to test the number of components in the mixture. The practical utility
of the new model is illustrated with a real dataset and several simulation studies. The
proposed algorithm and methods are implemented in an R package named FMsmsnReg.

Keywords: ECME algorithm · Mixture model · Non-normal error distribution
· Scale mixtures of skew-normal distributions
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1. Bibliographical Review and Motivating Example

1.1 Introduction

A basic assumption of the linear regression (LR) model is that the error term follows a
normal distribution. However, it is well known that data from some phenomena do not
always satisfy this assumption, instead having a distribution with heavy tails, skewness
or multimodality. Many extensions of this classic model have been proposed to broaden
the applicability of Gaussian linear regression (N-LR) analysis to situations where the
Gaussian error term assumption may be inadequate, such as, the use of the Student-t
distribution (Lange et al., 1989), which is appropriate for datasets involving errors with
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longer than normal tails. Other extensions include the use of the symmetrical class of
scale mixtures of normal (SMN) distributions (Andrews and Mallows, 1974; Lange and
Sinsheimer, 1993), as discussed in Galea et al. (1997), the asymmetrical class of skew-
normal (SMSN) distributions proposed by Branco and Dey (2001) or the unified skew-
elliptical distributions proposed by Arellano and Genton (2010). However, in practice when
nothing is known about the true distribution of the error terms, a risk exists that linear
regression analysis based on any of the above models will be performed using an incorrectly
specified model. There can also be situations where a single parametric family is unable
to provide a satisfactory model for local variations in the observed data.
To overcome these problems, solutions that use finite mixture (FM-LR) models have

been recently proposed. For instance, Bartolucci and Scaccia (2005), So↵ritti and Galim-
berti (2011) and Galimberti and So↵ritti (2014) developed methods for linear regression
analysis by assuming a finite mixture of Gaussian (FM-N-LR) and Student-t (FM-T-LR)
components for the error terms.
The classic approach to finite mixture modeling has several challenging aspects. There

are nontrivial issues, like non-identifiability and an unbounded likelihood. In this context,
Holzmann and Munk (2006) established the identifiability of finite mixtures of elliptical
distributions under conditions of the characteristic or probability density function (PDF)
generators. More recently, Otianiano et al. (2015) established the identifiability of finite
mixture of skew-normal (Azzalini, 1985) and skew-t (Azzalini and Genton, 2008) distribu-
tions.
The class of SMSN distributions, proposed by Branco and Dey (2001), is attractive

since it simultaneously models skewness with heavy tails (Prates et al., 2012) and con-
tains as proper elements distributions such as the skew-normal, skew-t, skew-slash, skew-
contaminated normal and all the symmetric class of scale mixtures of normal (SMN)
distributions defined by Andrews and Mallows (1974). Besides this, it has a stochastic
representation for easy implementation of the Expectation-Maximization (EM) algorithm
(Dempster et al., 1977) and it also facilitates the study of many useful properties. Thus,
this extension results in a flexible class of models for robust estimation and inference in
FM-LR models.
The objective of this paper is to propose a mixture regression model (and associated

likelihood inference) based on the mixtures of the class of scale mixtures of skew-normal
(SMSN) distributions, by extending the mixture model based on symmetrical distributions.
An advantage of this model is the possibility of fitting multimodality, heavy tails and
skewness simultaneously. We derive a mixture model for the random errors based on the
class of SMSN distributions (FM-SMSN-LR model) and evaluate the performance of the
FM-SMSN-LR model by simulations. In order to motivate our research, we describe the
following example with a dataset from the Australian Institute of Sport data (AIS).

1.2 Motivating example

Before discussing the goal of this work, we present a motivating example. More specifically,
we extend the linear regression model proposed by Bartolucci and Scaccia (2005), which
is defined as

Yi = �0 + xi
>
��� + "i, f("i) =

gX

j=1

pj�("i|µj ,�
2

j ), i = 1, . . . , n,

where Yi is the response of case i, xi = (xi1, . . . , xip)> is a vector of explanatory variable
values, ��� = (�1, . . . ,�p)> is a vector of unknown linear parameters, pj are positive weights
summing to 1, the µj terms satisfy the constraint

Pg
j=1

pjµj = 0, �(.;µj ,�
2

j ) denotes
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Figure 1. Histogram with a kernel PDF estimate superimposed (a) and the boxplot of ordinary residuals (b) with

AIS data.

the PDF of the normal distribution, by assuming that the distribution of the error terms
follows a finite mixture of SMSN distribution, so that the FM-SMSN-LR is defined. It is
important to stress that our proposal is di↵erent from that of Zeller et al. (2016), where
the linear regression is modeled with di↵erent regression functions, the so-called mixture
of regressions or switching regression (Quandt and Ramsey, 1978). An important question
that is addressed in this paper is whether a mixture model (g � 2) is needed instead of a
one-component model. Thus, we use the parametric bootstrap log-likelihood ratio statistic,
which was proposed by Turner (2000).
To test our proposed model, we use the AIS data available in an R package named

FMsmsnReg. Figure 1 (panels a and b) displays the histogram with a kernel PDF estimate
superimposed and the boxplot of ordinary residuals, respectively, obtained by fitting a
N-LR model to the AIS data. The plots reveal the existence of multimodal residuals, with
evident presence of outliers. In summary, it is necessary to consider a more robust structure
in the error. Therefore, this example serves as a motivation for the FM-SMSN-LR model.

1.3 Organization of the paper

The remainder of the paper is organized as follows. In Section 2, we briefly discuss some
properties of the univariate SMSN family. In Section 3, we present the FM-SMSN-LR
model, including the EM-type algorithm for maximum likelihood (ML) estimation, and
derive the empirical information matrix analytically to obtain the standard errors. In
Section 4, numerical samples using both simulated and real data are given to illustrate
the performance of the proposed model. Finally, some concluding remarks are presented
in Section 5.

2. Background

2.1 Scale mixtures of skew-normal distributions

Next, we start by defining the skew-normal (SN) distribution and then we introduce some
useful properties. As defined by Azzalini (1985), a random variable Z has a skew-normal
distribution with location parameter µ, scale parameter �2 and skewness parameter � 2 R,
denoted by Z ⇠ SN(µ,�2

,�), if its PDF is given by

�SN(z|µ,�2
,�) = 2�(z|µ,�2)�

�
�(z � µ)/�

�
.
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The relation between the SMSN class and the SN distribution is provided in the next
definition.

Definition 2.1 A random variable Y has an SMSN distribution with location parameter
µ, scale parameter �2 and skewness parameter �, denoted by SMSN(µ,�2

,�;H), if it has
the stochastic representation

Y = µ+ 
1/2(U)Z, U?Z,

where Z ⇠ SN(0,�2
,�), U is a positive random variable with cumulative distribution

function H( · |⌫) indexed by a scalar or vector parameter ⌫ and (u) is a positive function
of u.

The mean and variance of Y are given respectively by

E[Y ] = µ+

r
2

⇡
K1�, Var[Y ] = �

2

⇣
K2 �

2

⇡
K

2

1�
2

⌘
, (1)

where � = ��, with � = �/
p
1 + �2 and Kr = E[U�r/2], r = 1, 2, . . .. Although we can

deal with any (·) function, in this paper we restrict our attention to the case where
(u) = 1/u, since it leads to good mathematical properties. Given U = u, we have that
Y |U = u ⇠ SN(µ, u�1

�
2
,�). Thus, the PDF of Y is expressed as

f(y) = �SMSN(y|µ,�2
,�,⌫) = 2

Z 1

0

�(y|µ, u�1
�
2)�

⇣
u
1/2

�(y � µ)/�
⌘
dH(u|⌫). (2)

When H is degenerate, with u = 1, we obtain the SN(µ,�2
,�) distribution, and when � =

0, the SMSN distribution reduces to the class of scale-mixtures of the normal (SMN) dis-
tribution represented by the PDF f0(y) = �SMN(y|µ,�2

,⌫) =
R1
0

�(y|µ, u�1
�
2)dH(u|⌫).

2.2 Special cases of the SMSN distributions

Some special families of SMSN distributions are the following:

• The skew-t distribution with ⌫ degrees of freedom. In this case, the PDF of Y takes the
form

�T(y|µ,�2
,�, ⌫) =

�(⌫+1

2
)

�(⌫
2
)
p
⇡⌫�

✓
1 +

d

⌫

◆� ⌫+1
2

T

 r
⌫ + 1

d+ ⌫
A|⌫ + 1

!
, y 2 R,

where d = (y � µ)2/�2, A = �(y � µ)/� and T (·|⌫) denotes the distribution function
of the standard Student-t distribution, with location zero, scale one and ⌫ degrees of
freedom, namely t(0, 1, ⌫). We use the notation Y ⇠ ST(µ,�2

,�, ⌫).
• The skew-slash distribution. It is denoted by Y ⇠ SSL(µ,�2

,�, ⌫) and the associated
PDF is given by

�SL(y|µ,�2
,�, ⌫) = 2⌫

Z
1

0

u
⌫�1

�(y|µ, u�1
�
2)�(u1/2A)du, y 2 R.

The skew-slash is a heavy-tailed distribution having as limiting distribution the skew-
normal one (when ⌫ ! 1).
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• The skew contaminated normal distribution. We denote it by Y ⇠ SCN(µ,�2
,�, ⌫, �).

Its PDF is given by

�SCN(y|µ,�2
,�,⌫) = 2{⌫�(y|µ, ��1

�
2)�(�1/2A) + (1� ⌫)�(y|µ,�2)�(A)}, ⌫, � 2 (0, 1].

The parameters ⌫ and � can be interpreted as the proportion of outliers and a scale
factor, respectively. The skew contaminated normal distribution reduces to the skew-
normal distribution when � = 1.

2.3 Computational framework

The R software (R Core Team, 2016) produces statistical analyses, with its open
source codes. This non-commercial computational program may be downloaded from
http://www.r-project.org. Our method was implemented in R and its codes are avail-
able through the FMsmsnReg package (Benites et al., 2016). We use the mixmsmsn package,
which allows the simulation of mixture the class of scale mixture of skew-normal distribu-
tions, see Prates et al. (2013). This computational framework is useful for conducting the
simulation studies and the empirical illustration carried out in Section 4.

3. The linear regression model with FM-SMSN errors

3.1 General context

Next, we introduce the linear regression model using finite mixture of skew heavy tailed
distributions where the distribution of the error terms follows a finite mixture of scale
mixture of skew-normal distributions (FM-SMSN-LR), following a similar setup as that
developed by Bartolucci and Scaccia (2005). Consider the linear regression model expressed
as

Yi = �0 + x>
i ��� + "i, i = 1, . . . , n, (3)

where Yi is the response of case i, xi = (xi1, . . . , xip)> is a vector of explanatory vari-
ables of dimension (p + 1) ⇥ 1, and ��� = (�1, . . . ,�p)> is the regression parameter vector.
Furthermore, we assume that

f("i) =
gX

j=1

pj�SMSN

�
"i|µj + b�j ,�

2

j ,�j ,⌫j
�
, i = 1, . . . , n, (4)

where pj are positive weights summing to 1, the µj s satisfy the identifiability constraint
Pg

j=1
pjµj = 0, b = �

p
2/⇡K1, K1 = E[U�1/2], �j = �j�j with �j = �j/

q
1 + �

2

j . Then

from Equation (1), we have that E("i) = 0. Thus, for linearity of SMSN distributions, the
PDF of Yi is expressed as

f(yi|✓✓✓) =
gX

j=1

pj�SMSN(yi|µij + b�j ,�
2

j ,�j ,⌫j), µij = �0 + x>
i ��� + µj = #j + x>

i ���, (5)

where µij = x>
i ��� + #j , #j = �0 + µj and ✓✓✓ = (���>

, (p1, . . . , pg�1)>,#1, . . . ,#g, �
2

1
, . . . ,

�
2
g ,�1, . . . ,�g, ⌫1, . . . , ⌫g)> is the vector with all parameters. Concerning the parameter ⌫j

of the mixing distribution H(.|⌫j), for j = 1, . . . , g, it can be a vector of parameters, e.g.,
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the contaminated normal distribution. Thus, for computational convenience we assume
that ⌫1 = . . . = ⌫g = ⌫. This strategy works very well in the empirical studies that we
have conducted and greatly simplifies the optimization problem. For U = 1, Equations (3)
and (4) lead to the FM-N-LR defined by Bartolucci and Scaccia (2005). Moreover, when
g = 1 and a nonlinear function is used instead of x>

i ���, the FM-SMSN-LR framework
reduces to the model discussed by Garay et al. (2011). For each i and j, consider the
latent indicator variable Zij , such that

Zij =

(
1, if the ith subject is from the jth component;

0, otherwise.

Observe that Zij = 1 if and only if Zi = j. Then

P (Zij = 1) = 1� P (Zij = 0) = pj and yi|Zij = 1 ⇠ SMSN
�
µij + b�j ,�

2

j ,�j ;H(⌫)
�
.

(6)
Note that by integrating out Zi = (Zi1, . . . , Zig)>, we obtain the marginal PDF presented
in Equation (2) and Z1, . . . ,Zn are independent random vectors, each one having a multi-
nomial distribution with PDF defined as f(zi) = p

zi1
1

p
zi2
2

...(1 � p1 � . . . � pg�1)zig , which
we denote by Zi ⇠ M(1; p1 . . . , pg). These latent vectors appear in the hierarchical repre-
sentation given next, which is used to build the Expectation Conditional Maximization
Either (ECME) algorithm as proposed by Liu and Rubin (1994), which is a variant of the
EM algorithm Dempster et al. (1977). From Equation (6) along with Definition 2.1, the
FM-SMSN-LR model can be represented as

Yi|ui, ti, Zij = 1
IND⇠ N(µij +�jti, u

�1

i �j), (7)

Ti|ui, Zij = 1
IND⇠ TN

�
b, u

�1

i , (b,1)
�
,

Ui|Zij = 1
IND⇠ H(ui;⌫),

Zi
IID⇠ M(1; p1 . . . , pg), i = 1, . . . , n, j = 1, . . . , g, (8)

where IND denotes independent, whereas IID stands for independent and identically dis-

tributed, with �j = (1� �
2

j )�
2

j , �j = �j�j and �j = �j/

q
1 + �

2

j .

3.2 Parameter estimation via the ECME algorithm

Next, we show how to implement the ECME algorithm for ML estimation of the parameters
of the FM-SMSN-LR model. By using Equations (7) to (8), we have that the complete-data
log-likelihood function is given by

`c(✓✓✓|y, t,u, z) = c+
nX

i=1

gX

j=1

Zij

n
log(pj)�

1

2
log(�j)�

ui

2�j
(yi � µij ��jti)

2

+ log(h(ui|⌫)) + log
⇥
�TN(ti|b, u�1

i , (b,1))
⇤o

,

where c is a constant that is independent of the parameter vector ✓✓✓. By defining the
quantities bzij = E[Zij |b✓✓✓, yi], bs1ij = E[ZijUi|b✓✓✓, yi], bs2ij = E[ZijUiTi|b✓✓✓, yi] and bs3ij =
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E[ZijUiT
2

i |b✓✓✓, yi], as having known properties of conditional expectation, we obtain

bzij =
bpj�SMSN(yi|µij + b�j ,�

2

j ,�j ,⌫)Pg
j=1

bpj�SMSN(yi|µij + b�j ,�
2

j ,�j ,⌫)
,

bs1ij = bzijbuij , bs2ij = bzij(buijbµTij
+cMTj

b⌧1ij ) and bs3ij = bzij(buijbµ2

Tij
+cM2

Tj
+cMTj

(bµTij
+b)b⌧1ij ),

where

b⌧1ij = E

"
U

1/2
i W�1

 
U

1/2
i bµTij

)

cMTj

!
| b✓✓✓, yi, Zij = 1

#
, i = 1, . . . , n, j = 1, . . . , g,

cM2

Tj
=

�j

�j +�2

j

, bµTij
= b+

�j

�j +�2

j

(yi � µij ��b) and buij = E[Uj |b✓✓✓, yi, Zij = 1].

Once again, at each step the conditional expectations buij and b⌧1ij can be easily derived
from the results given in Basso et al. (2010). Thus, the Q�function is given by

Q(✓✓✓|b✓✓✓
(k)

) = c+
nX

i=1

gX

j=1

✓
bz(k)ij (log(pj)�

1

2
log(�j)�

1

2�j

⇣
bs(k)
1ij(yi � µij)

2 � 2(yi � µij)�jbs(k)2ij

+ �2

jbs
(k)
3ij

⌘
+ E[Zij log(h(Ui|⌫))|b✓✓✓

(k)
, yi] + E[Zij log(�TN(Ti|b, u�1

i , (b,1)))|b✓✓✓
(k)

, yi]

◆
.

In the CML-step we update the estimate of ⌫ by direct maximization of the marginal
log-likelihood, circumventing the computation of the conditional expectations bs4ij =

E[Zij log(h(Ui|⌫))|b✓✓✓, yi] and bs5ij = E[Zij log(�TN(Ti|b, u�1

i , (b,1)))|b✓✓✓
(k)

, yi]. Thus, the
ECME algorithm for ML estimation of ✓✓✓ is defined as follows:

E-step: Given a current estimate b✓✓✓
(k)

, compute bzij , bs1ij , bs2ij , bs3ij , for i = 1, . . . , n and
j = 1, . . . , g.

CM-steps: Update b✓✓✓
(k)

by maximizing Q(✓✓✓|b✓✓✓
(k)

) = E[`c(✓✓✓)|y,b✓✓✓
(k)

] over ✓✓✓, which leads to
the closed-form expressions given by

bp(k+1)

j = n
�1

nX

i=1

bz(k)ij ,

b#(k+1)

j =

 
nX

i=1

�
bs(k)
1ij(yi � x>

i
b���)� b�(k)

j bs
(k)
2ij

�
!
/

nX

i=1

bs(k)
1ij ,

b���
(k+1)

=

0

@
nX

i=1

gX

j=1

bs(k)
1ijxix>

i

b�(k)
j

1

A
�1

nX

i=1

gX

j=1

1

b�(k)
j

[bs(k)
1ij(yi � b#

(k+1)

j )� b�(k)
j bs

(k)
2ij ]xi,

b�(k+1)

j =

 
nX

i=1

(yi � bµ(k+1)

ij )bs(k)
2ij

!
/

nX

i=1

bs(k)
3ij

b�(k+1)

j =
nX

i=1

⇣
bs(k)
1ij(yi � bµ

(k+1)

ij )2 � 2(yi � bµ(k+1)

ij )b�(k+1)

j s
(k)
2ij +

b�2(k+1)

j bs(k)
3ij

⌘
/

nX

i=1

bz(k)ij .
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CML-step: Update b⌫(k) by maximizing the current marginal log-likelihood function, ob-
taining

⌫(k+1) = argmax⌫

nX

i=1

log

0

@
gX

j=1

p
(k+1)

j �SMSN

⇣
yi|µ(k+1)

ij + b(⌫)�(k+1)

j ,�
2(k+1)

j ,�
(k+1)

j ,⌫
⌘
1

A.

Through constraint
Pg

j=1
pjµj = 0 (Bartolucci and Scaccia, 2005), we obtain the estimates

of �0 and µj as

b�(k+1)

0
=

gX

j=1

bp(k+1)

j
b#(k+1)

j and bµ(k+1)

j = b#(k+1)

j � b�(k+1)

0
,

respectively, for j = 1, . . . , g. This process is iterated until a suitable stopping criterion is
satisfied. To avoid an indication of lack of progress of the algorithm (McNicholas et al.,
2010), we adopted the Aitken acceleration method as the stopping criterion. At iteration k,
we first compute the Aitken acceleration factor c(k) = (`(k+1) � `

(k))/(`(k) � `
(k�1)), where

following Böhning et al. (1994), the asymptotic estimate of the log-likelihood at iteration
k + 1 is given by

`
(k+1)

1 = `
(k) +

1

1� c(k)

h
`
(k+1) � `

(k)
i
. (9)

As pointed out by Lindsay (1995), the algorithm is considered to reach convergence when

`
(k+1)

1 � `
(k+1)

< ", where " is the desired tolerance (we use " = 10�6). A usual criticism
is that EM-type procedures tend to get stuck in local modes. A convenient way to avoid
this limitation is to try several EM iterations with a variety of starting values. If there
are several modes, one can find the global mode by comparing their relative masses and
log-likelihood values. We suggest the following strategy: For �0 and ��� use the ordinary least-
squares (OLS) estimate. Initial values for pj , µj ,�

2

j , �j and ⌫, j = 1, . . . , g, are obtained
by fitting the mixture model given in Equation (3) to the OLS residuals (Bartolucci and
Scaccia, 2005), which can be done through the FMsmsnReg package (Benites et al., 2016).

3.3 Model selection and approximate standard errors

Consider the problem of comparing several FM-SMSN-LR models, with di↵erent numbers
of component PDFs. Here, we use two model selection criteria, the Akaike information
criterion plus a bias correction term (Hurvich and Tsai, 1989), denoted by (AICc), and the
adjusted Bayesian information criterion (Sclove, 1987), denoted by (BICa). These criteria
are defined as

AICc = �2`(b✓✓✓) + 2n⇢

n� ⇢� 1
and BICa = �2`(b✓✓✓) + ⇢ log

✓
n+ 2

2

◆
,

where `(✓✓✓) is the actual log-likelihood, ⇢ is the number of free parameters that have to be
estimated in the model, and n is the sample size.
A simple way of obtaining the standard errors of ML estimators of mixture model pa-

rameters is to approximate the asymptotic covariance matrix of b✓✓✓ by the inverse of the
observed information matrix. Let Io(✓✓✓) = �@

2
`(✓✓✓|y)/@✓✓✓@✓✓✓> be the observed information

matrix, where `(✓✓✓|y) is the observed log-likelihood function, which is obtained using Equa-
tion (5). In this work we use the alternative method suggested by Basford et al. (1997),
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which consists of approximating the inverse of the covariance matrix by

Io(b✓✓✓) =
nX

i=1

bsibs>i , where bsi =
@

@✓✓✓
log [f(yi|✓)]

����
✓✓✓=b✓✓✓

, (10)

where bsi = (bs>i,��� , bsi,p1 , . . . , bsi,pg�1 , bsi,#1
, . . . , bsi,#g

, bsi,�2
1
, . . . , bsi,�2

g
, bsi,�1

, . . . , bsi,�g
, bsi,⌫)>. It is

important to stress that the standard error of ⌫, obtained from bsi,⌫ , depends heavily on the

calculation of conditional expectation E[log(Ui)|yobsi ,b✓✓✓], which relies on computationally
intensive Monte Carlo integrations, since no analytical expression for this expected value
exists. Therefore, the expressions for the elements bs>i,��� , bsi,pj , bsi,#j

, bsi,�2
j
, bsi,�j

, for j = 1, . . . , g,
are given as

bs>i,��� =

PG
j=1

pjD���(yi;✓✓✓j)

f(yi;✓✓✓)
, bsi,#j

=
pjD#j

(yi;✓✓✓j)

f(yi;✓✓✓)
, bsi,�2

j
+

pjD�2
j
(yi;✓✓✓j)

f(yi;✓✓✓)
, bsi,�j

=
pjD�j

(yi;✓✓✓j)

f(yi;✓✓✓)
,

bsi,pj =
1

f(yi;✓✓✓)

⇥
�SMSN(yi|µij + b�j ,�

2

j ,�j ,⌫)� �SMSN(yi|µig + b�g,�
2

g ,�g,⌫)
⇤
,

with

D#j
(yi;✓✓✓j) =

@

@#j

⇣
�SMSN(yi|µij + b�j ,�

2

j ,�j ,⌫)
⌘
.

After some algebraic manipulation, we obtain

D���(yi;✓✓✓j) =
2q
2⇡�2

j

h
�
�2(yi � µij � b�j)I

�

ij(3/2)� �
�1

j �jI
�
ij(1)

i
xi,

D#j
(yi;✓✓✓j) =

2q
2⇡�2

j

h
�
�2

j (yi � µij � b�j)I
�

ij(3/2)� �
�1

j �jI
�
ij(1)

i
,

D�j
(yi;✓✓✓j) =

2p
2⇡�2

j

"
(yi � µij � b�j)b

(1 + �
2

j )
(3/2)

I
�

ij(3/2) +

 
(yi � µij � b�j)�

b�j

1 + �
2

j

I
�
ij(1)

!#
,

D�2
j
(yi;✓✓✓j) =

1q
2⇡�2

j

h
��

�2

j I
�

ij(1/2) + �
�4

j (yi � µij � b�j)
2
I
�

ij(3/2)

+ �
�4

j (yi � µij � b�j)b�jI
�

ij(3/2)� �j�
�3

j (yi � µij)I
�
ij(1)

i

where the expressions I�ij(w) and I
�
ij(w) are given in Basso et al. (2010). The information-

based approximation defined in Equation (10) is asymptotically applicable. However, it is
less reliable unless the sample size is su�ciently large. Observe that the asymptotic covari-
ance matrix of the ML estimates, that is, the inverse of Equation (10), was obtained using
the parametrization 'j = �0 + µj , j = 1, . . . , g. We can use the traditional delta method
(see Rao, 1973, Sec. 6a.2), to obtain standard errors using the original parameterization.
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Figure 2. Target mixture PDFs from simulated data in Scenario 1 (a) and Scenario 2 (b).

4. Numerical Studies

4.1 Parameter recovery (simulation study I)

We conduct three simulation studies to illustrate the performance of our proposed model.
The first simulation presented below reports the consistency of the approximate standard
errors for the ML estimators of parameters through the EM algorithm with each sample
under the stopping criterion in Equation (9), whereas the contents of the second and third
simulations are described in the corresponding subsections. In addition, we finish this
section of numerical studies with an empirical illustration based on real data.
Here, we consider two scenarios for simulation in order to verify if we can estimate the

true parameter values accurately by using the proposed ECME algorithm. This is the first
step to ensure that the estimation procedure works satisfactorily. We fit data that were
artificially generated from the following model with two components

f(yi|✓✓✓) =
2X

j=1

pj�SMSN(yi|µij + b�j ,�
2

j ,�j ,⌫), i = 1, . . . , n,

where Zij is a component indicator of Yi with P (Zij = 1) = pj , j = 1, 2, x
>
i = (xi1, xi2),

such that xi1 ⇠ U(0, 1) and xi2 ⇠ U(0, 1), for i = 1, . . . , n, and "1 and "2 follow a distri-
bution as in the assumption given in Equation (3). We consider the following parameter
values: �0 = �1, ��� = (�1,�2)> = (�4,�3)>, µ1 = �4, µ2 = 1, �1 = 1, �2 = �4 and
p1 = 0.2. In addition, we consider the following scenarios (depicted in Figure 2): scenario 1
(well separated components) with �

2

1
= 0.2 and �

2

2
= 0.4, and scenario 2 (poorly separated

components) with �
2

1
= 2 and �

2

2
= 2. For each combination of parameters, we gener-

ated 1000 Monte Carlo samples of size n = 1000 from the FM-SMSN-LR models, under
four di↵erent situations: FM-SN-LR, FM-ST-LR (⌫ = 3), FM-SSL-LR (⌫ = 3) and FM-
SCN-LR (⌫> = (0.1, 0.1)). The average values and standard deviations (MC SD) of the
estimators across the 1000 Monte Carlo samples were computed, along with the average
(IM SE) values of the approximate standard deviations of the estimates obtained through
the method described in the Subsection 3.3. Moreover, we compute coverage probability of
each parameter (COV), which is defined by COV(b✓) = (1/m)

Pm
j=1

I(✓ 2 [b✓L, b✓U]), where
I is the indicator function such that ✓ lies in the interval [b✓L, b✓U], with b✓L and b✓U being
estimated lower and upper bounds of the 95% CI, respectively. The results are presented
in Table 1. Note that under both scenarios (well and poorly separated components), the
results suggest that the proposed FM-SMSN-LR model produces satisfactory estimates.
It can bee seen from this table that the estimation method of the standard errors provides

relatively close results (IM SE and MC SD), indicating that the proposed asymptotic
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Table 1. Simulation study I: mean and MC SD are the respective estimated means and standard deviations

from fitting a FM-SMSN-LR model based on 1000 samples. IM SE is the average value of the approximate

standard error obtained through the information-based method. COV is the coverage probability. True

values of parameters are in parentheses.

Scenario 1: �2
1 = 0.2, �2

2 = 0.4 Scenario 2: �2
1 = �2

2 = 2

Parameter SN ST(⌫ = 3) SCN (⌫ = 0.1) SSL(⌫ = 3) SN ST(⌫ = 3) SCN (⌫ = 0.1) SSL(⌫ = 3)

�0(�1) Mean -0.9971 -1.0038 -0.9953 -0.9989 -1.0119 -1.0070 -0.9965 -1.0413

IM SE 0.0602 0.0859 0.0777 0.0883 0.1928 0.3345 0.2369 0.3238

MC SD 0.0698 0.0755 0.0713 0.0770 0.0925 0.1214 0.1324 0.1284

COV 90.6% 96.7% 96.6% 96.0% 99.4% 95.7% 91.8% 95.8%

�1(�4) Mean -4.0002 -3.9985 -3.9996 -3.9947 -3.9949 -3.9958 -3.9963 -4.0005

IM SE 0.0368 0.0418 0.0402 0.0423 0.0889 0.1021 0.0974 0.0985

MC SD 0.0365 0.0426 0.0403 0.0449 0.0899 0.1076 0.0950 0.1031

COV 94.7% 94.2% 95.5% 95.0% 95.0% 92.9% 95.4% 93.3%

�2(�3) Mean -3.0012 -2.9998 -3.0014 -2.9938 -2.9994 -2.9989 -2.9967 -3.0013

IM SE 0.0374 0.0424 0.0410 0.0432 0.0859 0.1005 0.0975 0.1020

MC SD 0.0370 0.0442 0.0413 0.0430 0.0836 0.1046 0.0977 0.1109

COV 95.6% 93.7% 94.0% 96.0% 96.2% 94.4% 94.2% 92.0%

µ1(�4) Mean -4.0026 -3.9945 -4.0040 -4.0166 -4.0295 -3.9806 -4.0899 -3.9924

IM SE 0.0853 0.0800 0.0894 0.0854 0.1396 0.2782 0.1896 0.2531

MC SD 0.0691 0.0876 0.0744 0.0859 0.1111 0.3161 0.2483 0.2202

COV 98.2% 99.8% 98.6% 98.6% 97.3% 92.3% 84.5% 94.8 %

µ2(1) Mean 0.9992 1.0012 1.0007 0.9945 0.9990 1.0103 1.0391 0.9955

IM SE 0.0837 0.0878 0.0862 0.0873 0.0744 0.1098 0.0861 0.0983

MC SD 0.0630 0.0625 0.0656 0.0625 0.0692 0.1000 0.1060 0.0813

COV 98.3% 99.7% 98.4% 99.0% 96.7% 96.7% 86.4% 97.7%

�2
1 Mean 0.2097 0.2089 0.2084 0.1946 2.0069 2.2009 1.9385 1.9221

IM SE 0.0680 0.0575 0.0643 0.0543 1.4238 0.9880 0.7385 1.5234

MC SD 0.0427 0.0639 0.0644 0.0539 0.5626 1.0118 0.8238 0.9698

COV 88.7% 89.8% 88.9% 89.0% 99.6% 87.3% 83.3% 89.1%

�2
2 Mean 0.3991 0.4026 0.3940 0.3988 2.0452 1.9839 1.8290 2.1521

IM SE 0.0274 0.0385 0.0343 0.0381 0.1978 0.3796 0.1898 0.2758

MC SD 0.0283 0.0501 0.0423 0.0463 0.1816 0.2642 0.3309 0.3109

COV 94.0% 85.9% 85.5% 88.0% 95.9% 93.7% 72.5% 89.2%

�1(1) Mean 1.0916 1.0534 1.0894 0.9679 1.1614 1.0068 0.6175 0.8514

IM SE 0.7420 0.4956 0.6466 0.4814 1.4279 1.0923 1.2206 2.7316

MC SD 0.8216 0.4983 0.6441 0.4385 0.4974 0.7792 1.3124 1.1426

COV 94.3% 96.3% 95.9% 98.0% 99.6% 96.9% 88.4% 92.4%

�2(�4) Mean -4.0874 -4.1108 -4.0739 -4.1418 -4.2153 -4.0168 -3.7773 -4.0682

IM SE 0.5446 0.5969 0.5971 0.6086 0.6299 0.8950 0.6262 0.6219

MC SD 0.5406 0.6141 0.6007 0.5477 0.5967 0.6555 0.8671 0.6494

COV 96.8% 95.5% 94.3% 96.0% 96.8% 94.5% 86.8% 93.6%

p1(0.2) Mean 0.1998 0.2004 0.1999 0.1985 0.1987 0.2033 0.2028 0.2000

IM SE 0.0126 0.0131 0.0130 0.0131 0.0146 0.2218 0.0159 0.0204

MC SD 0.0126 0.0125 0.0129 0.0127 0.0138 0.0235 0.0213 0.0191

COV 95.3% 95.8% 95.0% 94.0% 96.3% 92.9% 87.3% 94.6%

⌫ Mean - 3.0735 0.1070 2.9791 - 3.2216 0.1342 4.4543

�(0.1) Mean - - 0.1098 - - - 0.1415 -

approximation for the variances of the ML estimates of Equation (10) is reliable. Note
also that the coverage probability (COV) for the regression parameters is quite stable for
two scenarios, indicating that the proposed asymptotic approximation for the variance
estimates of the ML estimates is reliable.

4.2 Asymptotic properties of the EM estimates (simulation study II)

The main focus in this simulation study is to show the asymptotic properties of the EM
estimates. Our strategy is to generate artificial samples from the FM-SMSN-LR model
with x

>
i = (xi1, xi1), such that xi1 ⇠ U(0, 1) and xi2 ⇠ U(0, 1), for i = 1, . . . , n. We choose

sample sizes n = 100, 250, 500, 1000, 2500 and 5000. The true values of the parameters
were taken as �0 = �1, ��� = (�1,�2)> = (�4,�3)>, µ1 = �4, µ2 = 1, �2

1
= 0.2, �2

2
= 0.4

and p1 = 0.2. For each combination of parameters and sample sizes, we generated 1000
random samples from the FM-SMSN-LR models, under three di↵erent situations: FM-
SN-LR, FM-ST-LR (⌫ = 3), FM-SSL-LR (⌫ = 3) and FM-SCN-LR (⌫> = (0.1, 0.1)).
In order to analyze asymptotic properties of the EM estimates, we computed the bias
and the relative root mean square error (RMSE) for each combination of sample size and



32 Benites et al.

parameter values. For ✓i, they are given by

Bias(✓i) =
1

1000

1000X

i=1

(✓(j)i � ✓i) and RMSE(✓i) =

vuut 1

1000

1000X

i=1

(✓(j)i � ✓i)2,

where b✓(j)i is the estimate of ✓i for the jth sample. The results for �0, �1 and �2 are shown
in Figure 3; the results for µ1, �1 and �1 are shown in Figure 4; the results for µ2, �2, �2

are shown in Figure 5; and the results for p1 are shown in Figure 6. One can see a pattern
of convergence to zero of the bias and RMSE when n increases for all the parameters. As a
general rule, we can say that Bias and RMSE tend to approach zero when the sample size
increases, indicating that the estimates based on the proposed EM-type algorithm under
the FM-SMSN-LR model do provide good asymptotic properties.
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Figure 3. Average bias (1st row) and average RMSE (2nd row) of the estimators of �0,�1, �2 for simulation II.

4.3 Robustness of the EM estimates (simulation study III)

The purpose of this simulation study is to compare the e↵ect of the robustness of the
estimates of the FM-SMSN-LR models in the presence of outliers on the response variable.
We compare the FM-SN-LR, FM-ST-LR (⌫ = 3), FM-SSL-LR (⌫ = 3) and the FM-CN-
LR ((⌫, �) = (0.1, 0.1)) models. In this scenario, we generated 500 samples of size n = 500
of the FM-SMSN-LR model with f("i) =

P
2

j=1
pj�SMSN("i|µj + b�j ,�

2

j ,�j ,⌫). The true

values of the parameters were taken as �0 = �1, ��� = (�1,�2)> = (�4,�3)>, µ1 = �4,
µ2 = 1, �2

1
= 0.2, �2

2
= 0.4 and p1 = 0.2. To assess how much the EM estimates are

influenced by the presence of outliers, we replaced observation y150 by y150(�) = y150 + �,
with � = 1, 2, . . . , 10. For each replication, we obtained the parameter estimates with and
without outliers, with the three FM-SMSN-LR models.
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Figure 4. Average bias (1st row) and average RMSE (2nd row) of the estimators of µ1,�1, �1 for simulation II.
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Figure 5. Average bias (1st row) and average RMSE (2nd row) of the estimators of µ2,�2, �2 for simulation II.
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Figure 6. Average bias (1st row) and average RMSE (2nd row) of the estimators of p1 for simulation II.

We are interested in evaluating the relative change (RC) in the estimates as a function
of �. Given ⇥⇥⇥ = (�1,�2, p1, p2,✓✓✓1,✓✓✓2), with ✓✓✓j = (�0, µj ,�

2

j ,�j), j = 1, 2, the RC is defined
by

RC
⇣
b⇥⇥⇥i(�)

⌘
=

�����
b⇥⇥⇥i(�)� b⇥⇥⇥i

b⇥⇥⇥i

����� ,

where b⇥⇥⇥i(�) and b⇥⇥⇥i denote the EM estimates of ⇥⇥⇥i with and without perturbation, re-
spectively.
Figure 7 shows the average values of the relative changes undergone by all the parame-

ters. We note that for all parameters, the average RCs suddenly increase under FM-SN-LR
model as the � value grows. In contrast, for the FM-SMSN-LR models with heavy tails,
namely the FM-ST-LR (⌫ = 3) and FM-SCN-LR(⌫ = (0.1, 0.1)), the measures vary little,
indicating they are more robust than the FM-SN-LR model in the ability to accommodate
discrepant observations.

4.4 Empirical illustration

Next, the proposed techniques are illustrated with the analysis a real dataset, the one
previously analyzed by Cook and Weisberg (1982) in a normal regression setting. The
dataset comes from the Australian Institute of Sport (AIS) and consists of measurements
of 202 athletes. Here, we focus on percent body fat (Bfat), which is assumed to be explained
by the sum of skin folds (ssf) and height in cm (Ht). Thus, we consider the FM-SMSN-LR
model given by

Bfati = �0 + �1ssfi + �2Hti + "i, i = 1, . . . , 202,

where "i belongs to the FM-SMSN family.
By using the FMsmsnReg package (see the appendix), we fit the FM-SMSN-LR models as

was described in Section 3. Table 2 compares the fit of various mixture models for g = 1
to 5 components, using the model selection criteria discussed in Subsection 3.3. Note from
this table that, as expected, the heavy-tailed models perform significantly better than the
SN model (and the symmetric counterparts such as the normal and Student-t models),
with mixtures of two (g = 2) components being significantly better in all cases, except for
the normal case (FM-N), where a mixture of g = 3 is needed.
Moreover, the 2-component FM-ST-LR model fits the data substantially better. This

conclusion also is verified through a hypotheses procedure for testing the number of com-
ponents in the FM-ST-LR model. As reported by Turner (2000), we can use parametric
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Figure 7. Average RCs of estimates with di↵erent perturbations � for simulation study III.

Table 2. Comparison of maximum log-likelihood, AICc and BICA for fitted FM-SMSN-LR models using

the AIS data. The number of parameters is denoted by m.

Model g m log-lik AICc BICa

FM-N 1 5 -367.2395 744.7850 745.1792

FM-N 2 8 -359.2902 735.3265 735.7009

FM-N 3 11 -355.2892 733.9679 734.1192

FM-T 1 6 -363.9525 738.2111 738.6053

FM-T 2 9 -358.2494 733.2449 733.6194

FM-T 3 12 -356.3237 736.0369 736.1881

FM-SN 1 6 -363.0346 738.5001 738.9097

FM-SN 2 10 -356.3079 733.7675 734.0164

FM-SN 3 14 -354.1438 738.5336 738.2486

FM-SN 4 18 -353.1388 746.0152 744.7987

FM-SN 5 22 -352.2579 754.1695 751.5973

FM-ST 1 7 -360.7632 736.1038 736.5070

FM-ST 2 11 -353.9696 731.3286 731.4799

FM-ST 3 15 -353.8492 740.2790 739.7994

FM-ST 4 19 -352.3138 746.8034 745.2888

FM-ST 5 23 -351.7865 755.7752 752.7944

FM-SCN 1 8 -357.0375 738.5001 738.9097

FM-SCN 2 12 -353.7235 733.0978 733.1278

FM-SCN 3 16 -354.1656 743.2717 742.5722

FM-SCN 4 20 -352.0380 748.7169 746.8773

FM-SCN 5 24 -352.8184 760.4164 756.9983

FM-SSL 1 7 -362.3246 739.2264 739.6296

FM-SSL 2 11 -354.1580 731.7054 731.8566

FM-SSL 3 15 -354.1941 740.9689 740.4892

FM-SSL 4 19 -352.2586 746.6930 745.1785

FM-SSL 5 23 -352.3504 756.9031 753.9224
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Table 3. AIS data. Parameter estimates of the FM-SMSN- LR models with g = 2. SE denotes the corre-

sponding standard errors obtained via the information-based matrix.

Parameter FM-SN FM-ST FM-SCN FM-SSL

ML SE ML SE ML SE ML SE

�0 14.7241 0.0001 14.51593 0.00253 14.6622 0.0025 14.7475 0.0025

�1 0.1799 0.0012 0.17972 0.00850 0.1805 0.0089 0.1796 0.0091

�2 -0.0757 0.1302 -0.07536 0.19264 -0.0757 0.1458 -0.0754 0.1513

p1 0.1543 0.9295 0.15418 1.04192 0.1483 1.0841 0.1514 1.0393

µ1 2.5504 2.2932 1.93244 4.00942 2.3654 3.8355 2.3891 3.9553

µ2 -0.4652 1.8546 -0.35226 2.94875 -0.4120 2.5091 -0.4263 2.6266

�2
1 0.8483 0.5074 3.80681 1.57056 2.2957 1.6255 2.3158 1.6615

�2
2 2.2793 0.4021 1.06550 11.56693 1.1240 7.1021 0.9740 7.0029

�1 0.1624 0.8467 -5.70438 0.52991 -3.5415 0.4408 -4.8612 0.3724

�2 -2.2318 1.7509 -0.62860 9.52263 -1.0111 7.9389 -1.0144 11.9961

⌫ - - 7.45874 - 0.2270 - 2.3036 -

� - - - 0.3075 - -
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Figure 8. Panels (a) and (b) display the histogram ordinary residuals superimposed on the FM-SMSN-LR residual

PDF for g = 1 and g = 2 components, respectively with AIS dataset.

or semiparametric bootstrap to test hypotheses concerning the number of components in
the mixture. Following the method proposed by Turner (2000), we considered 1000 boot-
strap statistics for testing g = 1 versus g = 2, in which case the p-value was 0.027 for the
parametric bootstrap. Accordingly, there is strong evidence that at least two components
are needed. For testing g = 2 versus g = 3, the bootstrap p-value was 0.984, so there is no
evidence that more than two components are required to model the AIS dataset.
Table 3 presents the ML estimates of the parameters considering the four models with

g = 2, say FM-SN-LR, FM-ST-LR, FM-SCN-LR and the FM-SSL-LR, along with the cor-
responding standard errors (SE), obtained via the information-based procedure presented
in Subsection 3.3. Notice from Table 3 that the small value of the estimate of ⌫ for the
FM-ST-LR and FM-SSL-LR models indicates a lack of adequacy of the SN assumption.
In Figure 8, we plot the histogram of OLS residuals and then display the residual PDFs

for the four FM-SMSN-LR models superimposed on a single set of coordinate axes, with
g = 1 and g = 2 components respectively. Additional results related to g = 3 and g = 4
components are given in Figure 10. Based on this graphical representation, it appears once
again that the FM-ST-LR, FT-SCN-LR and the FT-SSL-LR models have quite reasonable
and better fit than the FM-SN-LR model with g = 2 components.
In order to detect incorrect specification of the error distribution for our best model

(FM-ST-LR), we present quantile versus quantile (QQ) plots and simulated envelopes for
the residuals (y� ŷ) in Figure 9. The QQ plots for the other models are given in Figure 11.
This figure provides strong evidence that the FM-ST-LR (with g = 2 components) yields
a better fit to the current data than the ST-LR model (with g = 1 component), since there
are no observations falling outside the envelope.
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Figure 9. Panels (a) and (b) display the QQ plots and simulated envelopes for the residual (y � by) with for g = 1

and g = 2 components, respectively with AIS dataset.
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Figure 10. Panels (a) and (b) display the histogram of ordinary residuals with FM-SMSN-LR residual with for

g = 3 and g = 4 components, respectively with AIS dataset.
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Figure 11. Panels (a), (b) and (c) display the QQ plots and simulated envelopes for the residual (y � by) for g = 2

components based on FM-SN, FM-SCN and FM-SSL distributions, respectively with AIS dataset.

5. Conclusions

In this paper we consider a regression model whose error term follows a finite mixture of
SMSN distributions, which is a rich class of distributions that contains the skew-normal,
skew-t, skew-slash and skew-contaminated normal distributions as proper elements. This



38 Benites et al.

approach allows us to model data with great flexibility, simultaneously accommodating
multimodality, skewness and heavy tails for the random error in linear regression models.
It is important to stress that our proposal is di↵erent from that of Zeller et al. (2016), where
they use a finite mixture of linear regression models, the so-called switching regression.
In this paper, instead of mixtures of regressions, mixtures are exploited as a convenient
semiparametric method, which lies between parametric models and kernel PDF estimators,
to model the unknown distributional shape of the errors. For this structure we developed
a simple EM-type algorithm to perform ML inference of the parameters with closed-form
expression at the E-step. The proposed methods are implemented using the FMsmsnReg

package, providing practitioners with a convenient tool for further applications in their
domain. The practical utility of the new method is illustrated with the analysis of a real
dataset and several simulation studies.
The proposed methods can be extended to multivariate settings using the multivariate

SMSN class of distributions (Cabral et al., 2012), such as the recent proposals of Sof-
fritti and Galimberti (2011) and Galimberti and So↵ritti (2014). Due to the popularity of
Markov chain Monte Carlo techniques, another potential work is to pursue a fully Bayesian
treatment in this context for producing posterior inference. The method can also be ex-
tended to mixtures of regressions with skewed and heavy-tailed censored responses, based
on recent approaches by Caudill (2012) and Karlsson and Laitila (2014).

Appendix: Sample output from the FMsmsnReg package

------------------------------

Finite Mixture of Scale Mixture Skew Normal Regression Model

------------------------------

Observations = 202

Family = Skew.t

------

Estimates

------

Estimate SE

beta0 14.51593 0.00253

beta1 0.17972 0.00850

beta2 -0.07536 0.19264

mu1 1.93244 4.00942

mu2 -0.35226 2.94875

sigma1 3.80681 1.57056

sigma2 1.06550 11.5669

shape1 -5.70438 0.52991

shape2 -0.62860 9.52263

pii1 0.15418 1.04192

nu 7.45874 NA

------------

Model selection criteria

------------

Loglik AIC BIC EDC ICL

Value -357.030 730.235 766.626 739.502 2916.687

----

Details

----

Convergence reached? = TRUE

EM iterations = 147 / 500

Criteria = 1e-07

Processing time = 27.11465 secs
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Abstract

In this work, we propose a goodness-of-fit test based on the Kullback-Leibler information
for the Birnbaum-Saunders distribution. We use Monte Carlo simulations to evaluate
the size and power of the proposed test for several alternative hypotheses under di↵erent
sample sizes. We compare the powers with standard goodness-of-fit tests based as the
Anderson-Darling and Cramér-von Mises tests. Finally, we illustrate the proposed test
with a real data set to show its potential applications.

Keywords: Anderson-Darling and Cramér-von Mises tests · Information measures
· Maximum likelihood estimation · Monte Carlo method · Power test · R software

Mathematics Subject Classification: Primary 62J20 · Secondary 62J99.

1. Introduction

The Birnbaum-Saunders (BS) model, proposed by Birnbaum and Saunders (1969), is a
life distribution originating from a material fatigue problem, which relates the time to
the occurrence of failure with some cumulative damage that is assumed to be Gaussian
distributed. The BS model has received much attention in the last decades due to its wide
applicability. Based on to its genesis from material fatigue, di↵erent cumulative damage
processes can be modeled by this distribution, including natural engineering applications,
but the BS model can also be applied to other areas as: medicine (Leiva et al., 2007;
Barros et al., 2008; Azevedo et al., 2012; Gomes et al., 2012; Desousa et al., 2018; Leao
et al., 2018), atmospheric contamination (Leiva et al., 2008, 2010, 2015a; Vilca et al.,
2011; Ferreira, 2013; Marchant et al., 2018, 2019), water quality (Leiva et al., 2009; Vilca
et al., 2010), neuronal sciences (Leiva et al., 2015b), human aging (Leiva and Saunders,
2015), and earthquakes (Lillo et al., 2018), among others. However, because the BS model
is a statistical distribution, we can apply it to several other fields, for example, business,
finance, industry, science management, and quality control. For more details about various
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developments on the BS distribution, see Leiva (2016) and references cited therein. The
BS model has also been used to construct new more flexible models having heavier and
lighter tails than the standard BS distribution, as well as in the construction of models in
the unit interval; see Barros et al. (2008), Azevedo et al. (2012), Mazucheli et al. (2018)
and Athayde et al. (2019).
In statistics, it is of great interest to determine whether a probabilistic model fits a

data set well or not, which could indicate whether these data may have been generated
from this model or not. In this sense, several goodness-of-fit tests have been proposed
for di↵erent probability distributions. Since goodness-of-fit tests measure the discrepancy
between a theoretical model and a data set, they can be done in a variety of ways, such
as, for example, formulated by chi-squared type tests, by statistics based on the empirical
cumulative distribution function or empirical characteristic function. Further details on
goodness-of-fit tests can be found in D’Agostino and Stephens (1986), Castro-Kuriss (2011)
and Barros et al. (2014).
The Anderson-Darling (AD) and Cramér-von Mises (CM) statistics are often used to test

normality. These statistics are based on the distance between the empirical distribution
function and the theoretical distribution function. Chen and Balakrishnam (1995) pro-
posed a general purpose approximate goodness-of-fit test based on these statistics which
may be used to test the validity of di↵erent families of skew distributions. Note that the
Kullback-Leibler (KL) criterion is an information measure, which can be used to evaluate
the discrepancy between two distribution functions. Such a measure of information has
shown good results in testing fitting of models to data sets, in the sense of obtaining more
powerfull tests than the standard tests; see Park (2005) and Rad et al. (2011). Then, due
to the wide applicability of the BS distribution, the objective of this paper is to propose
a goodness-of-fit test for the BS distribution based on the KL information and investigate
if the proposed test is most powerful than in the case of standard AD and CM tests.
The rest of this paper is organized as follows. In Section 2, we present the methodology

with the definitions of entropy, KL information, and a brief review of the BS distribution,
as well as an estimation method of its parameters. In addition, in this section, goodness-
of-fit test for the BS distribution based on KL information are derived. In Section 3, a
simulation study based on the Monte Carlo method is conducted to evaluate the size and
power of the proposed test. Also in this section, we illustrate the proposed methodology
with a real data set. Finally, Section 4 provides the conclusions of this work and some
comments on future research related to this topic.

2. Methodology

2.1 Entropy and Kullback-Leibler information

In order to quantify the degree of disorder in a physical system the German Rudfold
Clausius introduced in Clausius (1867) a new quantity in thermodynamics which he called
entropy. Since this concept was introduced in studies of information theory by Shannon
(1948). Shannon’s idea was to measure the degree of disorder of the occurrence of the
values of a random variable (RV) in the sense that the more distinct rare events occurr.
Let X be an RV with cumulative distribution function (CDF) F and probability density

function (PDF) f. The di↵erential entropy H(f) of X is defined in Shannon (1948) by

H(f) = �
Z 1

�1
f(x) log(f(x))dx.

Let X1, . . . , Xn, with n � 3, be a sample from the distribution F , and let X(1)  · · ·  X(n)
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be their corresponding order statistics. A nonparametric estimator of H(f), proposed by
Vasicek (1976), is given by

Hmn =
1

n

nX

i=1

log
n

n

2m
(x(i+m) � x(i�m))

o
, (1)

where the window m is a positive integer less than n/2 and x(i�m) = x(1), for i �m < 1
and x(i+m) = x(n), for i+m > n, such that x(i) is i-th observed value of the corresponding
order statistic.
Let f(x) and g(x) be PDFs. The KL information is defined in Kullback and Leibler

(1951) as

I(f : g) =

Z 1

�1
f(x) log


f(x)

g(x)

�
dx, (2)

so that I(f : g) measures the divergence between the PDFs f and g. By using the Gibbs
inequality, we can show that I(f : g) � 0 and I(f : g) = 0 if and only if f(x) = g(x). Thus,
the sample estimate of the KL information can also be considered for goodness of fit.

2.2 The Birnbaum-Saunders distribution

Let X be a nonnegative RV. Then, X follows a BS distribution with shape parameter
↵ > 0 and scale parameter � > 0, if the CDF of X is given by

F (x) = �

"
1

↵

 r
x

�
�
r

�

x

!#
, x > 0.

We use the notation X ⇠ BS(↵,�) for indicating an RV X with BS distribution of shape
and scale parameters ↵ and �, respectively. Consequently, the PDF of X is given by

f(x) =
1p
2⇡

exp


� 1

2↵2

✓
x

�
+

�

x
� 2

◆�
x
�3/2(x+ �)

2↵
p
�

, x > 0. (3)

If X ⇠ BS(↵,�), then the following properties are satisfied:

(i) The parameter � is also the median of the distribution.

(ii) If Z ⇠ N(0, 1), then X and Z are related by X = �(↵Z + (↵2
Z

2 + 4)1/2)2/4. Thus,
Z = (1/↵)[(X/�)1/2 � (�/X)1/2] ⇠ N(0, 1).

(iii) cX ⇠ BS(↵, c�), if c > 0 and 1/X ⇠ BS(↵, 1/�).

(iv) E(X) = �(1 + ↵
2
/2) and Var(X) = �

2
↵
2(1 + 5↵2

/4).

(v) The qth quantile ofX is given by xq = �(↵zq + (↵2
z
2
q + 4)1/2)2/4, where zq = ��1(q),

N(0, 1) qth quantile.

(vi) The survival function is expressed as S(x;↵,�) = �{(1/↵)[(�/x)1/2 � (x/�)1/2]}.

For estimation of the model parameters, we consider the maximum likelihood (ML)
method. Let X1, . . . , Xn be a random sample of size n from X ⇠ BS(↵,�) with PDF
given by Equation PDF), so that x1, . . . , xn are their respective observed values. Then,
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the log-likelihood function for ✓ = (↵,�)> is given by

`(✓) = K � 1

2↵2

nX

i=1

✓
xi

�
+

�

xi
� 2

◆
+

nX

i=1

log(xi + �)� n log(↵)� n

2
log(�),

where K = n(log(1/
p
2⇡)� log(2))�3/2

Pn
i=1 log(xi). The ML estimate of ↵ is defined as

b↵ =

vuut 1

n

nX

i=1

 
xi

b�
+
b�
xi

� 2

!
.

In the case of the parameter �, the ML estimate do not have closed form requiring the
use of a numerical method. Under regularity conditions (see Cox and Hinkley, 1974), the

estimators b↵ and b� are consistent and have a bivariate normal joint asymptotic distribution
with asymptotic means ↵ and �, respectively, and an asymptotic covariance matrix ⌃b✓
that can obtained from the inverse of the Fisher information matrix given by

I(✓) =
✓ 2n

↵2 0
0 n

�2 (14 + 1
↵2 + I(↵))

◆
,

where

I(↵) = 2

Z 1

0

 
1

1 + 1
⇠(az)

� 1

2

!2

�(z)dz,

with � being the PDF of Z ⇠ N(0, 1) and ⇠(u) = u
1/2 � u

�1/2. For more details, see Leiva
(2016).

2.3 Goodness-of-fit tests for the BS distribution

Given a random sample X1, . . . , Xn of the RV X, we are interested in testing H0: the RV
X follows the BS(↵, �) distribution with PDF given in Equation (3) against H1: the RV
X does not follow the BS distribution. Note that Equation (2) can be written as

I(f : g) =

Z 1

�1
f(x)[log(f(x))� log(g(x))]dx

= �H(f)�
Z 1

�1
f(x) log(g(x))dx. (4)

Then, from Equation (4), an estimate of the KL information can be obtained. For doing
this, we replace H(f) by its estimate given in Equation (1) and we use the estimated values
of the parameters in f . Thus, under the null hypothesis that f(x) = g(x), we can estimate
the information of KL using

Imn = �Hmn �
Z 1

�1
f(x; b✓) log(f(x; b✓))dx,

where b✓ is a consistent estimator for ✓. Therefore, Imn is a test statistic to verify the
suitability of a continuous probabilistic model with PDF given by f to a data set.
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For X ⇠ BS(↵,�) and f given in Equation (3), we obtain

Imn = �Hmn � log
1p
2⇡

� 1

b↵2
+ log

✓
2b↵
q
b�
◆
+

1

b↵2

✓
1 +

b↵2

2

◆

+
3

2n

nX

i=1

log(x(i))�
1

n

nX

i=1

log(x(i) + b�),

where b↵ and b� are the ML estimates of ↵ and �, respectively. Thus, following Arizono and
Ohta (1989), we introduce the statistic

KLmn =
1

exp(Imn)
,

with 0  KLmn  1 since Imn 2 [0,1). Note that KLmn can be used as test statistic
for testing the goodness-of-fit of the BS distribuion to a data set. The decision rule is to
reject the hypothesis H0 if KLmn  KL⇤

mn(⇢), where KL⇤
mn(⇢) is the critical value for a

significance level ⇢. As we do not have an exact distribution of KLmn, then we obtain
KL⇤

mn(⇢) through Monte Carlo simulations.

3. Numerical Studies

3.1 Critical values for the simulations

To obtain the critical values of the proposed test, we conduct Monte Carlo simulation
studies with R = 10, 000 replications each. These studies are based on n 2 {10, 30, 50, 100},
↵ 2 {0.5, 1.0, 1.5}, and significance level ⇢ = 0.05. In addition, we fix, without loss of
generality, � = 1, since this is a scale parameter. The values considered for the window m

are those returned the maximum critical value, according to Arizono and Ohta (1989). This
procedure is described in Algorithm 1. All simulations are obtained from implementations
in the R statistical software, which is freely distributed from www.R-project.org. For
parameters estimation we use the maxLik package.

Algorithm 1: Obtaining the critical values of the proposed test.

1: Fix n, ↵ and �;
2: Generate 10,000 random samples of size n from X ⇠ BS(↵,�);
3: For each sample, estimate the parameter vector ✓ = (↵,�)> consistently, through

the ML method;
4: For each sample, obtain the values of the test statistic KLmn;
5: Sort the test statistic values obtained in the previous step and determine the 5th

quantile and then obtain the critical values for the respective significance level.

The critical values obtained, considering the BS(0.5,1), BS(1,1) and BS(1.5,1) distributions
are presented in Tables 1-3.

3.2 Evaluating the empirical size and power of the test

Next, the empirical size and power of the proposed test are evaluated for di↵erent sample
sizes based on the Monte Carlo method. We make a comparison among the AD, CM and
KL tests, whose statistics are denoted by A

2
,W

2, KL, and verify in what situations the
test based on the KL information is better, in the sense of being most powerful.
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Table 1. Critical values for the statistic KLmn considering the BS(0.5,1) distribution and significance
level 5%.

m

n 1 2 3 4 5 6 7 8 9 10

3 0.2462
4 0.2577
5 0.2925 0.4221
6 0.3256 0.4404
7 0.3544 0.4620 0.4835
8 0.3866 0.4935 0.5083
9 0.4054 0.5102 0.5319 0.5168
10 0.4250 0.5340 0.5481 0.5401
12 0.4614 0.5689 0.5840 0.5760 0.5625
14 0.4911 0.5908 0.6114 0.6072 0.5973 0.5771
16 0.5159 0.6207 0.6383 0.6354 0.6227 0.6069 0.5880
18 0.5308 0.6396 0.6597 0.6605 0.6461 0.6331 0.6184 0.5980
20 0.5499 0.6564 0.6820 0.6796 0.6674 0.6542 0.6428 0.6250 0.6082
25 0.5754 0.6871 0.7176 0.7194 0.7124 0.7042 0.6905 0.6769 0.6617 0.6489
30 0.5976 0.7132 0.7421 0.7474 0.7481 0.7384 0.7280 0.7153 0.7036 0.6899
35 0.6122 0.7297 0.7593 0.7699 0.7707 0.7655 0.7577 0.7473 0.7352 0.7254
40 0.6243 0.7423 0.7766 0.7904 0.7900 0.7860 0.7789 0.7720 0.7620 0.7527
45 0.6343 0.7547 0.7887 0.8007 0.8053 0.8034 0.7975 0.7917 0.7832 0.7765
50 0.6426 0.7634 0.7982 0.8129 0.8165 0.8142 0.8146 0.8062 0.8027 0.7935
60 0.6568 0.7755 0.8135 0.8291 0.8350 0.8368 0.8355 0.8330 0.8274 0.8235
70 0.6646 0.7854 0.8251 0.8421 0.8498 0.8515 0.8522 0.8501 0.8476 0.8435
80 0.6751 0.7959 0.8349 0.8514 0.8596 0.8641 0.8644 0.8649 0.8628 0.8595
90 0.6804 0.8012 0.8408 0.8598 0.8687 0.8735 0.8758 0.8742 0.8733 0.8718
100 0.6858 0.8075 0.8471 0.8656 0.8760 0.8818 0.8833 0.8841 0.8826 0.8813

Under same the conditions of the obtained critical values, we calculate the empirical
size of the test. Algorithm 2 displays this procedure. The results of our simulation study
are presented in Table 4. Note that the empirical size is close to the nominal level for all
situations considered, indicating that the test is controlled.

Algorithm 2: Obtaining the empirical size of the proposed test.

1: Fix n, ↵ and �;
2: Generate 10,000 random samples of size n from X ⇠ BS(↵,�);
3: For each sample, estimate the parameter vector ✓ = (↵,�)> consistently, through

the ML method;
4: For each sample, obtain the values of the test statistic KLmn;
5: Obtain the empirical size of the test by calculating the proportion of replications

that present test statistic value less than the critical value for the corresponding
values of n and m.

To determine the empirical power, we consider some probability distributions for the
alternative hypothesis. These distributions are chosen and grouped into classes to be an-
alyzed according to the shape of their hazard function: increasing, decreasing and non-
monotonous. The probability distributions considered in the evaluation of the power test
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Table 2. Critical values for the statistic KLmn considering the BS(1,1) distribution and significance level
5%.

m

n 1 2 3 4 5 6 7 8 9 10

3 0.2618
4 0.2724
5 0.3066 0.4446
6 0.3369 0.4698
7 0.3653 0.4947 0.5095
8 0.3974 0.5215 0.5398
9 0.4132 0.5349 0.5650 0.5420
10 0.4350 0.5575 0.5809 0.5691
12 0.4681 0.5870 0.6143 0.6133 0.5941
14 0.4960 0.6066 0.6390 0.6408 0.6338 0.6115
16 0.5202 0.6338 0.6610 0.6654 0.6591 0.6464 0.6292
18 0.5342 0.6508 0.6803 0.6871 0.6807 0.6709 0.6592 0.6416
20 0.5539 0.6671 0.6974 0.7049 0.6989 0.6923 0.6854 0.6683 0.6558
25 0.5778 0.6946 0.7299 0.7387 0.7371 0.7358 0.7279 0.7177 0.7056 0.6986
30 0.5987 0.7193 0.7525 0.7621 0.7686 0.7639 0.7587 0.7502 0.7436 0.7357
35 0.6140 0.7341 0.7680 0.7823 0.7863 0.7856 0.7827 0.7776 0.7709 0.7651
40 0.6258 0.7460 0.7830 0.7990 0.8038 0.8031 0.7997 0.7968 0.7911 0.7869
45 0.6355 0.7572 0.7942 0.8089 0.8156 0.8169 0.8157 0.8122 0.8085 0.8053
50 0.6436 0.7663 0.8028 0.8196 0.8261 0.8261 0.8289 0.8249 0.8231 0.8175
60 0.6575 0.7776 0.8169 0.8338 0.8422 0.8453 0.8471 0.8463 0.8431 0.8427
70 0.6651 0.7872 0.8279 0.8461 0.8555 0.8583 0.8603 0.8606 0.8596 0.8577
80 0.6753 0.7967 0.8375 0.8546 0.8637 0.8694 0.8717 0.8730 0.8727 0.8716
90 0.6806 0.8024 0.8429 0.8621 0.8722 0.8781 0.8815 0.8809 0.8816 0.8809
100 0.6859 0.8084 0.8484 0.8675 0.8789 0.8850 0.8877 0.8898 0.8895 0.8895

are: gamma, generalized exponential, beta, Pareto type I, Weibull, and half-normal, whose
PDFs are the following:

• Gamma(; ✓) with PDF

f1(x;, ✓) =
1

�()✓
x
�1 exp

⇣
�x

✓

⌘
, x > 0, , ✓ > 0

and CDF denoted by F1.
• GExp(; ✓) with PDF

f2(x;, ✓) = ✓x exp{�✓x}[1� exp(�✓x)]�1
, x > 0,

, ✓ > 0, and CDF denoted by F2.
• Beta(; ✓), with PDF

f3(x;, ✓) =
�(+ ✓)

�()�(✓)
x
�1(1� x)✓�1

, 0 < x < 1,

, ✓ > 0, and CDF denoted by F3.
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Table 3. Critical values for the statistic KLmn considering the BS(1.5,1) distribution and significance level
5%.

m

n 1 2 3 4 5 6 7 8 9 10

3 0.2819
4 0.2911
5 0.3237 0.4760
6 0.3514 0.5053
7 0.3796 0.5303 0.5440
8 0.4102 0.5547 0.5791
9 0.4256 0.5665 0.6065 0.5852
10 0.4449 0.5865 0.6206 0.6114
12 0.4763 0.6121 0.6529 0.6591 0.6446
14 0.5036 0.6274 0.6734 0.6850 0.6848 0.6684
16 0.5270 0.6509 0.6916 0.7056 0.7080 0.7029 0.6938
18 0.5385 0.6651 0.7067 0.7234 0.7267 0.7247 0.7198 0.7136
20 0.5564 0.6787 0.7191 0.7371 0.7430 0.7454 0.7462 0.7343 0.7317
25 0.5806 0.7025 0.7460 0.7630 0.7704 0.7791 0.7791 0.7785 0.7741 0.7770
30 0.6010 0.7260 0.7643 0.7816 0.7940 0.7992 0.8004 0.8024 0.8021 0.8048
35 0.6149 0.7396 0.7777 0.7984 0.8080 0.8131 0.8167 0.8198 0.8209 0.8238
40 0.6273 0.7499 0.7900 0.8116 0.8210 0.8254 0.8293 0.8318 0.8340 0.8349
45 0.6365 0.7602 0.8008 0.8193 0.8298 0.8358 0.8404 0.8425 0.8447 0.8478
50 0.6443 0.7685 0.8080 0.8285 0.8385 0.8425 0.8496 0.8507 0.8541 0.8544
60 0.6581 0.7794 0.8206 0.8402 0.8507 0.8572 0.8614 0.8645 0.8661 0.8708
70 0.6657 0.7884 0.8309 0.8506 0.8618 0.8677 0.8720 0.8749 0.8778 0.8789
80 0.6758 0.7977 0.8397 0.8580 0.8694 0.8761 0.8808 0.8847 0.8867 0.8886
90 0.6807 0.8026 0.8449 0.8652 0.8760 0.8838 0.8891 0.8904 0.8934 0.8946
100 0.6856 0.8089 0.8502 0.8699 0.8824 0.8895 0.8936 0.8972 0.8988 0.9012

Table 4. Empirical size for di↵erent sample size and values of the parameter ↵ indicated.

n m BS(0.5,1) BS(1,1) BS(1.5,1)

10 3 0.0473 0.0588 0.0494
30 5 0.0564 0.0563 0.0513
50 7 0.0520 0.0514 0.0454
100 8 0.0504 0.0515 0.0482

• Pareto(; ✓), with PDF

f4(x;, ✓) =
✓



x+1
, x 2 [✓,1), , ✓ > 0,

and CDF denoted by F4.
• Weibull(; ✓), with PDF

f5(x;, ✓) =


✓

⇣
x

✓

⌘�1
exp

n
�
⇣
x

✓

⌘o
, x > 0,

, ✓ > 0 and CDF denoted by F5.
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• HN(✓), with PDF

f6(x; ✓) =
2✓

⇡
exp

✓
�x

2
✓
2

⇡

◆
, x � 0, ✓ > 0,

and CDF denoted by F6.

The power of the test is calculated based on testing the hypotheses

⇢
H0: X ⇠ BS(↵,�), for some ↵ > 0 and � > 0;
H1: X ⇠ Fi(✓), with ✓ > 0 and i = 1, . . . , 6.

In the procedure, 10,000 Monte Carlo replications and sample sizes n = 10, 30, 50, 100 are
considered. The powers of the tests are obtained at the significance level ⇢ = 0.05. For
each value of n and each distribution in H1, with di↵erent parameters, the 10,000 samples
are generated and the respective values of the test statistic are calculated. Based on the
critical values presented in Tables 1-3, we obtain the rejection proportions based on the
10,000 simulated samples. In addition, the power of the test is evaluated based on the
CM and AD statistics using the procedure proposed by Chen and Balakrishnam (1995).
We make a comparison among the tests and verify in what situations the test based on
the KL information is better, in the sense of being most powerful. Tables 5-8 present the
powers for the test in question with sample sizes of n = 10, n = 30, n = 50 and n = 100,
respectively.

Table 5. Empirical power for di↵erent forms of hazard functions and di↵erent distributions considering
sample size n = 10.

Hazard function Alternatives KLmn W
2

A
2

Increasing
Gamma(3; 1) 0.1534 0.0873 0.0937
GExp(3; 1) 0.1288 0.0805 0.0825
Beta(2; 1) 0.6841 0.3970 0.4282

Decreasing
Gamma(0.5; 1) 0.0376 0.0890 0.0959
GExp(0.5; 1) 0.0428 0.0938 0.1025

Nonmonotone
Pareto(2; 1) 0.4748 0.4070 0.4342
Weibull(2; 1) 0.2405 0.1507 0.1617
HN(3) 0.2434 0.2096 0.2298

Table 6. Empirical power for di↵erent forms of hazard functions and di↵erent distributions considering
sample size n = 30.

Hazard function Alternatives KLmn W
2

A
2

Increasing
Gamma(3; 1) 0.2656 0.1856 0.2082
GExp(3; 1) 0.2050 0.1544 0.1719
Beta(2; 1) 0.9970 0.9053 0.9388

Decreasing
Gamma(0.5; 1) 0.3465 0.3959 0.5343
GExp(0.5; 1) 0.3638 0.3937 0.5442

Nonmonotone
Pareto(2; 1) 0.9767 0.9039 0.9365
Weibull(2; 1) 0.5458 0.4172 0.4559
HN(3) 0.7164 0.6576 0.6987
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Table 7. Empirical power for di↵erent forms of hazard functions and di↵erent distributions considering
sample size n = 50.

Hazard function Alternatives KLmn W
2

A
2

Increasing
Gamma(3; 1) 0.3575 0.2774 0.3099
GExp(3; 1) 0.2716 0.2187 0.2498
Beta(2; 1) 1.0000 0.9905 0.9965

Decreasing
Gamma(0.5; 1) 0.6622 0.7369 0.8711
GExp(0.5; 1) 0.6779 0.7394 0.8748

Nonmonotone
Pareto(2; 1) 0.9993 0.9922 0.9970
Weibull(2; 1) 0.7317 0.6190 0.6671
HN(3) 0.9026 0.8701 0.8999

Table 8. Empirical power for di↵erent forms of hazard functions and di↵erent distributions considering
sample size n = 100.

Hazard function Alternatives KLmn W
2

A
2

Increasing
Gamma(3; 1) 0.4937 0.4829 0.5364
GExp(3; 1) 0.3744 0.3807 0.4276
Beta(2; 1) 1.0000 1.0000 1.0000

Decreasing
Gamma(0.5; 1) 0.9861 0.9786 0.9969
GExp(0.5; 1) 0.9882 0.9772 0.9957

Nonmonotone
Pareto(2; 1) 1.0000 1.0000 1.0000
Weibull(2; 1) 0.9134 0.8922 0.9256
HN(3) 0.9948 0.9915 0.9958

According to our simulation study, we conclude that the goodness-of-fit test based on the
KL information, in general, presents greater powers when compared to standard AD and
CM tests, for small sample size. When the hazard function under alternative hypothesis
is decreasing, the proposed test has di�culties in discriminating the models, leading to
powers close to nominal levels. This is because the hazard functions considered under the
alternative hypothesis closely approximate the hazard function of the BS distribution. In
addition, as the sample size increases, the power of the test also increases, as expected.

3.3 Empirical illustration

Next, we consider a set of data related to fatigue life cycles of samples of 6061-T6 aluminum
presented in Birnbaum and Saunders (1969). These specimens were cut at an angle parallel
to the direction of rotation, oscillating at 18 cycles per second. They were exposed to a
pressure with a maximum stress of 26000 psi (pounds per square inch). The data are
presented in Table 9.
We want to test the null hypothesis that the sample presented in Table 9 follows the

BS distribution.The model parameter estimates are b↵ = 0.1614 and b� = 392.7622. The
value observed for the test statistic is klmn = 0.9270, and the critical value for this case is
KL⇤

mn(⇢) = 0.8834, at the 5% significance level. Therefore, we do not reject the hypothesis
that the data follow the BS distribution. Figure 1 compares the empirical distribution
function with the theoretical one. We can observe from this figure that the empirical and
theoretical distribution functions are very close, which reinforces the conclusion reached
by the test.
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Figure 1. Empirical and theoretical distribution functions BS for aluminum data.

Table 9. Data set of aluminum lifetimes (26.000 psi).

233 258 268 276 290 310 312 315 318 321
321 329 335 336 338 338 342 342 342 344
349 350 350 351 351 352 352 356 358 358
360 362 363 366 367 370 370 372 372 374
375 376 379 379 380 382 389 389 395 396
400 400 400 403 404 406 408 408 410 412
414 416 416 416 420 422 423 426 428 432
432 433 433 437 438 439 439 443 445 445
452 456 456 460 464 466 468 470 470 473
474 476 476 486 488 489 490 491 503 517
540 560

4. Conclusions and Future Research

In this paper, we proposed a goodness-of-fit test for the Birnbaum-Saunders distribution
based on the Kullback-Leibler information. The proposed goodness-of-fit test performed
better than the standard Anderson-Darling and Cramér-von Mises tests, in the sense that
the proposed test had greater power for the alternatives considered with increasing and
nonmonotone hazard functions. When the distribution of the alternative hypothesis had
a decreasing hazard function, the test based in KL information presented less power than
the Anderson-Darling and Cramér-von Mises tests. In general, the proposed test proved to
be a good alternative to the standard Anderson-Darling and Cramér-von Mises tests. As
future research, we hope to obtain new tests for the Birnbaum-Saunders distribution based
on information measures for censored data, more specifically, for type II and progressively
Type-II censored samples.
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Abstract

In this paper, we introduce a new distribution for positively skewed data by combining
the Birnbaum-Saunders and centered skew-normal distributions. Several of its proper-
ties are developed. Our model accommodates both positively and negatively skewed
data. Also, we show that our proposal circumvents some problems related to another
Birnbaum-Saunders distribution based on the usual skew-normal model, previously pre-
sented in the literature. We derive both maximum likelihood and Bayesian inference,
comparing them through a suitable simulation study. The convergence of the expectation
conditional maximization (for maximum likelihood inference) and MCMC algorithms
(for Bayesian inference) are verified and several factors of interest are compared. In
general, as the sample size increases, the results indicate that the Bayesian approach
provided the most accurate estimates. Our model accommodates the asymmetry of the
data more properly than the usual Birnbaum-Saunders distribution, which is illustrated
through real data analysis.

Keywords: Bayesian inference · Birnbaum-Saunders distribution · ECM algorithm
· Frequentist inference · MCMC algorithms · R software
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1. Introduction

The Birnbaum-Saunders (BS) distribution is characterized by two parameters and de-
fined in terms of the standard normal distribution. The BS distribution has been received
considerable attention over the past few years, since it has been used quite e↵ectively to
model positively skewed data, especially lifetime and crack growth data. Since the pio-
neering work of Birnbaum and Saunders (1969a) was published, several extensions of the
BS distribution have been proposed in the literature and its parameters estimated under
both frequentist and Bayesian paradigms.
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From a frequentist viewpoint, Birnbaum and Saunders (1969b) presented a discussion on
the maximum likelihood (ML) parameter estimation. Mann et al. (1974) showed that the
BS distribution is unimodal. Engelhardt et al. (1981) developed confidence intervals and
hypothesis tests for both parameters. Desmond (1985) developed a BS-type distribution
based on a biological model. Desmond (1986) investigated the relationship between the BS
distribution and the inverse Gaussian distribution. Lu and Chang (1997) used bootstrap
methods to construct prediction intervals for future observations. In the linear regression
context, Rieck and Nedelman (1991) developed a related log-linear model and showed
that it can be used for modeling accelerated life tests and to compare average lifetime of
di↵erent populations.
From a Bayesian perspective, there are few works on the BS distribution. The first one is

due to Achcar (1993) who developed Bayesian estimation using numerical approximations
for the marginal posterior distributions of interest based on the Laplace approximation.
Also, Xu and Tang (2011) presented a Bayesian study with partial information, while
Wang et al. (2016) assumed that the two parameters follow mutually independently in-
verse gamma distributions. All these results were studied under a normal distribution for
generating the BS distribution.
In terms of modeling, most of the generalizations of the BS distribution are based on

elliptical and skew-elliptical laws, in order to obtain more robust and flexible models.
Some works developed extensions based on symmetric distributions as Diaz-Garcia and
Leiva (2005) who generalized the BS model using elliptical distributions that includes the
Cauchy, Laplace, logistic, normal and Student-t distributions as particular cases. Other
works are: the generalized BS distribution (Leiva et al., 2007), the Student-t BS distribution
(Barros et al., 2008), and the scale-mixture of normal BS distribution (Balakrishnan et
al., 2009), among others. More information can be found in Leiva (2016), who presented a
review on the BS distribution. Other generalizations have been obtained in di↵erent ways
to those aforementioned, as Owen and Padgett (1999), who developed a three-parameter
BS distribution and the �-BS distribution presented in Cordeiro and Lemonte (2011).
Also, Ferreira (2013) proposed a based BS distribution useful for modeling tail events
and Mazucheli et al. (2018) presented a distribution on the unit interval based on the BS
model. In addition, Balakrishnan et al. (2017) and Maehara (2018) provided new families
of BS distribution based on the skew scale mixture of normal models. Also, extensions of
the BS distribution based on the skew-elliptical models can be found in Vilca and Leiva
(2006), Leiva et al. (2007, 2008) and Vilca et al. (2011). In these works, theoretical results
were obtained, extending the properties of the BS and log-BS distributions.
A Bayesian perspective for the BS distributions based on skew-normal (SN) distribution

did not receive much attention in the literature. Indeed, Vilca et al. (2011) considered,
under a frequentist perspective, the BS distribution based on the SN model. However,
even though the SN distribution has been applied with success in several fields, when the
related asymmetry parameter is equals to zero, the associated Fisher information matrix
is singular. Recently, to overcome this problem, Arellano and Azzalini (2008) and Azzalini
(2013) explored a SN distribution under a convenient parameterization (proposed by Azza-
lini (1985) and deeper explored by Pewsey (2000)), the so-called centered parametrization
(CP), which leads to a non-singular Fisher information matrix. Moreover, the relative
profile log-likelihood function (RPLL) for the Pearson index of skewness exhibits a more
regular behavior, closer to a quadratic function, and without a stationary point under null
asymmetry . The resulting empirical distributions of the estimators under the CP, named
CP estimators, are much closer to the normality than those obtained under the usual SN
distribution, which is named direct parametrization estimators. All these desirable prop-
erties, related to the the CP, may be transferred to the respective BS distribution based
on the centered SN (CSN) model. It is worthwhile to mention that all the aforementioned
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BS models (that consider the SN model) used the direct parametrization that is, likely,
they inherit the above problems.
The main objective of this work is to propose an alternative to the skew-normal BS

(SNBS) distribution proposed by Vilca et al. (2011), considering the CSN distribution,
as the generator variable. The resulting BS-type distribution has advantages, in inference
terms, over the SNBS distributions (including those obtained as particular cases of the
more general families as those of Balakrishnan et al. (2009) and Maehara (2018)), similarly
to those related to the CSN distribution, compared with the SN distribution. The specific
objectives of this work are: to develop a BS distribution based on the CSN model, named
centered skew-normal BS (CSNBS) distribution, highlighting its advantages over the SNBS
distribution proposed by Vilca et al. (2011), and its main properties. Also, estimation
procedures under both frequentist and Bayesian approaches are developed and compared,
considering di↵erent scenarios. In addition, some model comparison statistics are studied.
Finally, two real data sets are analyzed showing some advantages of the CSNBS model
compared to the usual BS distribution.
The paper is outlined as follows. In Section 2, we present our distribution and some

motivation for its development. In Section 3, the estimation methods are proposed and
some statistics of model comparison are presented. In Section 4, some simulation studies
are presented and two real data sets are analyzed. Finally, in Section 5, some additional
comments and conclusions are provided.

2. The Centered Skew-normal BS Distribution

2.1 The centered skew-normal distribution

A random variable Y is said to have a CSN distribution, denoted by Y ⇠ CSN(µ,�, �),
where µ, � and � are the mean, the standard deviation and the Pearson coe�cient of
skewness, respectively, if its density is given by

fY (y) = 2
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z = 1 � µ

2
z, � = �

1/3
s/

p
r2 + s2�2/3(r2 � 1), r =

p
2/⇡, � = r�

3(4/⇡ �
1)(1�µ

2
z)
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p
1 + �2, ⇠ = µ���

1/3
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p
1 + �2/3s2, and s = [2/(4� ⇡)]1/3.

The quantity � is the asymmetry parameter, see Azzalini (1985). For µ = 0 and � = 1, we
have the standard CSN distribution, denoted by Y ⇠ CSN(0, 1, �), whose density is given
by

fY (y) =
2

!
�

⇣
y � ⇠

!

⌘
�
h
�

⇣
y � ⇠

!

⌘i
, y 2 R,

where ⇠ = ��
1/3

s and ! =
p

1 + �2/3s2. For inferential purposes, a useful stochastic
representation of Y is given by

Y =
1

�z

�
� |X0|+ (1� �

2)X1 � µz

 
, (2)

where Xi ⇠ N(0, 1), for i = 0, 1, are independent and so H = |X0| follows a half-normal
(HN) distribution, denoted by HN(0, 1).
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2.2 The proposed distribution

Here, we present the CSNBS distribution, which is defined similarly to the usual BS and
the SNBS distributions by

T = �

2

4↵Y

2
+

s✓
↵Y

2

◆2

+ 1

3

5
2

, (3)

where Y ⇠ CSN(0, 1, �), ↵ is the shape parameter, � is the location parameter, and � is
the asymmetry parameter. We use the following notation T ⇠ CSNBS(↵,�, �). The vector
(↵,�, �)> is called centered parameter and based on the SN distribution, that is, (↵,�,�)>

is named direct parameters. Following the same steps as in the usual BS distribution, we
have that its density is given by

fT (t) = 2� [at;µ,�(↵,�)]� [� at;µ,�(↵,�)]At;�(↵,�), t > 0, (4)

where at;µ,�(↵,�) = µz+�z at(↵,�), At;�(↵,�) = �zAt(↵,�), at(↵,�) = (
p

t/��
p

�/t) /↵,
At(↵,�) = dat(↵,�)/dt = t

�3/2(t+ �)/(2↵�1/2), and the other quantities are previously
defined. Note that for � = 0, we have the usual BS distribution. The mean and variance
of T (see Appendix A for more details) are given, respectively, by

E(T ) = �

✓
1 +

↵
2

2

◆
and Var(T ) = (↵�)2

⇢
1 +

↵
2

4

h
2�� 1

i�
,

where � = 2(⇡ � 3)(4/⇡2)�4[1� (2�2/⇡)]�2 + 3.
The following theorem is very useful to develop both classical and Bayesian approaches

since they lead to conditional distributions that allow us to implement, more easily, the
EM algorithm, and simplify the Bayesian developments. For the use of standard MCMC
software, such as WinBUGS, OpenBUGS, JAGS or Stan, see Lunn et al. (2000), Lunn et
al. (2009), Depaoli et al. (2016) and Carpenter et al. (2016).

Theorem 2.1 Let T ⇠ CSNBS(↵,�, �) as in Equation (3), and Y and H as defined in
Equation (2). Then,

(i) The conditional density of T , given H = h, can be expressed as

fT |H(t|h) = �(⌫h + at(↵�,�))At(↵�,�),

where ↵� = ↵

p
(1� �2)/(1� r2�2) and ⌫h = �(�(h� r))/

p
1� �2.

(ii) fH|T (h|t) =
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h | �

p
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�
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�
,1��

2
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��z
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1�r2�2

�⌘ , h > 0. Moreover,

E(H|T = t) = ⌘t +W�

⇣
⌘t

⌧

⌘
⌧ and E(H2|T = t) = ⌘

2
t + ⌧

2 +W�
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⌧

⌘
⌘t⌧,

where ⌘t = �
p
1� r2�2

�
ati(↵,�) + (r�)/

p
1� r2�2

�
.

The density in Theorem 2.1 corresponds to the extended Birnbaum-Saunders (EBS)
discussed in Leiva et al. (2008) and denoted by EBS(↵�,�,� = 2, ⌫h). The proof of Theorem
2.1 is in the Appendix B.
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Figures 1-3 present the density of the CSNBS distribution for di↵erent values of ↵, �
and �. From Figure 1, we have that for ↵ = 0.2 the density is concentrated around �

(� = 1), and for ↵ = 0.8 the density is more asymmetric, with a higher variability. As
↵ increases, the density becomes more flat, positively skewed and more dispersed, as it
can be seen in Figure 2, for di↵erent values of ↵, fixing the other parameters. In addition,
Figure 3 shows densities more concentrated around � for di↵erent values of ↵ and �, with
� = 0.9. It is also possible to see that for large values of �, the density is more negatively
skewed. Note that the distribution tends to be symmetric around �, for � = 0 (the usual BS
distribution) and/or for small values of ↵. Positive asymmetry is observed as ↵ increases,
� decreases and/or � assumes positive values. In addition, negative asymmetry is observed
as ↵ decreases, � increases and/or � assumes negative values. Another interesting point is
that the CSNBS distribution may be negatively skewed, which is an unusual behavior for
positive random variables. This feature makes our distribution a very useful alternative
for modeling positive skewed data.
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Figure 1. CSNBS density for di↵erent values of �, with � = 1, ↵ = 0.2 (a)-(b) and ↵ = 0.8 (c)-(d).
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Figure 2. CSNBS density for di↵erent values of ↵, with � = 1, � = 0.9 (a) and � = �0.9 (b).
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Figure 3. CSNBS density with � = 2 (a), � = 3 (b), � = 4 (c), and � = 5 (d) for indicated ↵ and � = 0.9.

2.3 Some motivational remarks on the proposal

(i) It is well known that there is some di�culty in estimating the parameters of the SN
distribution by the ML approach, when the asymmetry parameter is close to zero. Some
problems seem to persist even if one switched to the Bayesian inference, unless a strongly
informative prior is considered, as pointed out by Arellano and Azzalini (2008). The
SNBS distribution seems to inherit such problems. Thus, the proposed CSNBS distri-
bution can circumvents these problems, since it is based on the CSN model.

(ii) When the asymmetry parameter is equals to zero, the Fisher information matrix is
singular, even if all parameters are identifiable. This a↵ects the behavior of the empir-
ical distributions of the ML estimators and the Bayesian estimators. To get a direct
perception of the problem, we generated 100 samples of size n = 200, from the SNBS
distribution and for each sample, the ML and Bayesian estimates (b↵, b�, b�) have been
computed. In this case, we fix ↵ = 0.5, � = 1 and � = 1, which induces a strong
positively skewed behavior of the SNBS distribution. Figures 4 and 5 display the corre-
sponding empirical distribution of b↵ and (b↵, b�), through a histogram and scatter plot,
respectively. Moreover, 100 samples of size n = 200 are generated from the CSNBS dis-
tribution, and the respective ML and Bayesian estimates (b↵, b�, b�) have been computed.
In this case, we fix ↵ = 0.5, � = 1 and � = 0.137, which induces a strong positively
skewed behavior of the CSNBS model. The empirical distributions of b↵ and (b↵, b�) are
shown in Figures 6 and 7, respectively. Clearly these empirical distributions are much
closer to normality than those in Figures 4 and 5. In fact, it can be shown that the
singularity of the expected Fisher information matrix, when the asymmetry parameter
is null, no longer occurs.

(iii) The CP circumvents the problem concerning the existence of an inflection point in the
RPLL of this parameter. This can be seen in Figure 8, which refers to the plots of
twice the RPLL function for �, the asymmetry parameter of the SNBS distribution (left
panel), and the for �, the asymmetry parameter of the CSNBS distribution (right panel).

The RPLL corresponds to `(b↵(�), b�(�), �) � `(b↵(�), b�(�), b�), where `(·) represents the
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log-likelihood function. The respective plots are constructed by considering a random
sample of both SNBS and CSBNS distributions, under suitable values of ↵, � and �. We
can notice a non-quadratic form of the log-likelihood function under the SNBS model,
induced by the existence of an inflection point when the asymmetry parameter is very
close to zero, making it di�cult the obtaining of the ML estimates. However, the log-
likelihood function of the CSNBS distribution presents a concave shape. Also, there is
no inflection point when the asymmetry parameter is equals zero.

(iv) The posterior distribution of � for the SNBS distribution has a non-quadratic form, as
it can be seen in Figure 9 (a), and this occurs even if we consider an informative prior.
However, the posterior distribution of � for the CSNBS distribution is well-behaved,
presenting a concave shape, as it can be seen in Figure 9 (b).
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Figure 4. Estimated distributions of the ML estimates when samples of size n = 200 are drawn from SNBS; the
left panel displays the histogram of b↵, the right panel displays the scatter plot of (b↵, b�).
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Figure 5. Estimated distributions of the Bayesian estimates when samples of size n = 200 are drawn from SNBS
distribution; the left panel displays the histogram of b↵, the right panel displays the scatter plot of (b↵, b�).
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Figure 7. Estimated distributions of the Bayesian estimates when samples of size n = 200 are drawn from CSNBS
distribution; histogram of b↵ (left) and scatter plot of (b↵, b�) (right).
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Figure 9. Posterior distribution of � for the SNBS distribution (left) and of � for the CSNBS distribution (right).

3. Estimation and Inference

3.1 General context

We present the ML estimation, based on the expectation conditional maximization (ECM)
algorithm as in Meng and Rubin (1993), and the Bayesian approach, through MCMC algo-
rithms. Let T ⇠ CSNBS(↵,�, �) and then, recall that, from Theorem 2.1, we have T |(H =
h) ⇠ EBS(↵�,�,� = 2, ⌫h), where H = |X0| ⇠ HN(0, 1), ↵� = ↵

p
(1� �2)/(1� r2�2)

and ⌫h = ��(h� r)/
p
1� �2. In Appendix B, we present some results that are useful for

obtaining the ML estimators. For both methods, we consider a random sample T1, . . . , Tn

from T ⇠ SNBS(↵,�, �), where ✓ = (↵,�, �)>.
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3.2 The ECM algorithm and ML estimation

Here, we discuss the ML estimation through the ECM algorithm. The log-likelihood func-
tion for ✓ is given by `(✓|t) =

P
n

i=1 `i(✓|ti), where

`i(✓|ti) = log(2) + log {� [ati;µ,�(↵,�)]}+ log {� [� ati;µ,�(↵,�)]}+ log [Ati;�(↵,�)] , (5)

and ati;µ,�(↵,�) and Ati;�(↵,�) are given in Equation (4). Instead of considering the direct
maximization of Equation (5), we obtain the ML estimates through the ECM algorithm,
since it allows for a more tractable optimization process. In this case, we need to work with
the so-called augmented likelihood function. Also, instead of working with ✓⇤ = (↵,�, �)>,
we estimate ✓ = (↵,�, �)>, where � is defined in Equation (1). Then, we recover � through
the invariance principle related to the ML estimators. This is performed since the related
expressions (both analytically and computationally) are more tractable for ✓.

Recall that, From Theorem 2.1, we have Ti|Hi = hi
IND⇠ EBS(↵�,�,� = 2, ⌫hi

) andHi

IND⇠
HN(0, 1); i = 1, . . . , n, where “IND” denotes “independent”, ↵� = ↵

p
(1� �2)/(1� r2�2)

and ⌫hi
= �(�(hi � r))

p
1� �2. Then, defining tc = (t>,h>)>, with t = (t1, . . . , tn)> and

h = (h1, . . . , hn)>, the augmented log-likelihood function can be written as

`(✓|tc) =
nX

i=1

log[fT |H(ti|hi)] +
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For a current value of ✓, say b✓, the E-step requires the evaluation of Q(✓|b✓) =

E[`(✓|tc)|t, b✓], where the expectation is taken with respect to the conditional distribution

H|(T = t), evaluated at b✓. For a estimate of ✓ at r-th iteration, say ✓(r) = (↵(r)
,�

(r)
, �

(r))>,

consider bhi = E[Hi|✓ = b✓, ti] and bh2
i
= E[H2

i
|✓ = b✓, ti], given in Theorem 2.1, that is,

bhi = b⌘ti +W�

✓
b⌘ti
b⌧

◆
b⌧ and bh2i = b⌘2ti + b⌧2 +W�

✓
b⌘ti
b⌧

◆
(b⌘tib⌧) , (6)

respectively, where b⌘ti = b�
p

1� r2b�2
�
ati(b↵, b�) + rb�/

p
1� r2b�2

�
, b⌧ =

p
1� b�2 and

W�(z) = �(z)/�(z), z 2 R. Then, let ✓(r) = (↵(r)
,�

(r)
, �

(r))> be the estimate of ✓ at the
k-th iteration. By considering Equation (6), we have that the augmented log-likelihood

function becomes Q(✓|✓(r)) = E[`(✓|tc)|t, b✓(r)], where
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Hence, the ECM algorithm corresponds to iterate the following steps:

E-step: Given ✓ = b✓(r), compute bhi and bh2
i
, for i = 1, . . . , n by using Equation (6);

CM-step 1: Fix � = b�(r) and � = b�(r) and update b↵(r) through the positive root of
b↵2 + b̂

(r)b↵+ ĉ
(r) = 0, where

b̂
(r) =

1

(1� b�2(r))

h
b�(r)

q
1� r2b�2(r) 1

n

nX

i=1

bhiati(1, b�(r))� rb�(r)
q

1� r2b�2(r) 1
n

nX

i=1

ati(1, b�(r))
i
.

ĉ
(r) = �(1� r

2b�2(r))
(1� b�2(r))

1

n

nX

i=1

bhi
h
ati(1, b�(r))

i2
,

that is, b↵(r+1) = (�b(r + 1) +
p

b2(r+1) � 4c(r + 1))/2;

CM-step 2: Fix ↵ = b↵(r+1) and update b�(r) and b�(r) using

b�(r+1) = argmax
�

Q

⇣
b↵(r+1)

,�, b�(r)
⌘

and b�(r+1) = argmax
�

Q

⇣
b↵(r+1)

, b�(r+1)
, �

⌘
.

The updating of b�(r+1) and b�(r+1) needs to be done through some numerical optimiza-
tion method. In this work we use the function optim, available on the R software (see R
Development Core Team, 2017), considering the L-BFGS-B optimization algorithm (see

Byrd et al., 1995)). Also, we start the ECM algorithm with initial values, say, b↵(0), b�(0)

and b�(0), using: b↵(0) = [2(s/v) � 1]1/2 and b�(0) = (sv)1/2, where s = (1/n)
P

n

i=1 ti and

v = [(1/n)
P

n

i=1 1/ti]
�1, as in Vilca et al. (2011). After obtaining b↵(0) and b�(0), we can

define zi = (1/b↵(0))[(ti/b�(0))1/2 � (b�(0)
/ti)1/2], for i = 1, . . . , n, which are observations

related to a CSN distribution. Thus, b�(0) can be obtained by maximizing (numerically) the
log-likelihood function of a SN distribution with respect to �, which is given by

`(✓) =
nX

i=1

h
log(2) + log(�z) + log [� (µz + �zyi)] + log {� [�(µz + �zyi)]}

i
.

According to Vilca et al. (2011), for ensuring that the true ML estimates are obtained,
it is recommended to run the ECM algorithm using a range of di↵erent starting val-
ues and checking whether all of them result in similar estimates. The steps of the
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ECM algorithm are repeated until a suitable convergence is attained, for example, us-
ing k✓(r) � ✓(r�1)k < ", with " > 0. It is worthwhile to mention, under certain regularity

conditions, that b✓ converges in distribution to N3(✓,⌃b✓), as n ! 1. We approximate ⌃b✓
by I

�1(✓), where I(✓) = �῭, ῭ = [῭✓1✓2 ], ✓1, ✓2 = ↵,� or � is the Hessian matrix, and
῭
✓1✓2

= ῭
✓2✓1

= @
2
`(✓)/@✓1✓2 =

P
n

i=1 @
2
`i(✓)/@✓1✓2. The second derivatives of `i(✓) are

provided in Appendix C. The approximate standard errors (SE) of b✓ can be estimated

with the square roots of the diagonal elements of I�1(✓), replacing ✓ by b✓.

3.3 Bayesian inference

Next, we present the developments related to the Bayesian inference through MCMC
algorithms. We present the prior and the respective posterior distributions, along with
suitable MCMC algorithms to sample from the respective marginal posterior distributions
of interest. Consider both original and augmented likelihood functions (in order to compare
them). The first of them is given by

L(✓|t) =
nY

i=1

2� [ati;µ,�(↵,�)]� [� ati;µ,�(↵,�)]Ati;�(↵,�).

We assume the following prior distributions: ↵ ⇠ gamma(r↵;�↵), � ⇠ gamma(r� ;��) and
� ⇠ U(a; b), mutually independent, where gamma(r,�) stands for a gamma distribution
such that E(↵) = r/� and Var(↵) = r/�

2 and U(a; b) stands for a continuous uniform
distribution over the interval [a, b]. Combining the likelihood function with the prior dis-
tribution, we have that the joint posterior distribution is given by

⇡(✓|t) / ↵
r↵�1

�
r��1 exp [�(↵�↵ + ���)]

nY

i=1

� [ati;µ,�(↵,�)]� [� ati;µ,�(↵,�)]Ati;�(↵,�),

and the respective full conditional distributions, given by

⇡(↵|�, �, t) / ↵
r↵�1 exp(�↵�↵)

nY

i=1

� [ati;µ,�(↵,�)]� [� ati;µ,�(↵,�)]Ati;�(↵,�),

⇡(�|↵, �, t) / �
r��1 exp(����)

nY

i=1

� [ati;µ,�(↵,�)]� [� ati;µ,�(↵,�)]Ati;�(↵,�),

⇡(�|↵,�, t) /
nY

i=1

� [ati;µ,�(↵,�)]� [� ati;µ,�(↵,�)]Ati;�(↵,�).

In addition, the augmented likelihood function is given by

L(✓|tc) =
nY

i=1

p
2/⇡� [⌫hi

+ ati(↵,�)]Ati(↵,�) exp

✓
�h

2
i

2

◆
.

Similarly, combining the augmented likelihood function with the above prior distribution,
we have that the posterior distribution is expressed as

⇡(✓,h|t) / ↵
r↵�1

�
r��1

nY

i=1

� [ati,hi
(↵,�)]Ati(↵,�) exp


�1

2

�
h
2
i + 2↵�↵ + 2���

��
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and the respective full conditional distributions are given by

⇡(h|↵,�, �, tc) /
nY

i=1

� [ati,hi
(↵,�)]Ati(↵,�) exp

✓
�h

2
i

2

◆
,
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i=1

� [ati,hi
(↵,�)]Ati(↵,�) exp
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2
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� [ati,hi
(↵,�)]Ati(↵,�) exp

✓
�h

2
i

2

◆
,

where ati,hi
(↵,�) = ⌫hi

+ ati(↵,�). We can see that both posterior distributions are not
analytically tractable. Therefore, some numerical method must be employed to obtain
suitable numerical approximations for the respective marginal posterior distributions. The
above full conditional distributions do not correspond to known distributions, but they
can be simulated through some auxiliary algorithm such as the Metropolis-Hastings, slice
sampling or adaptive rejection. All these algorithms can be easily implemented in the R

program. In addition, which is the approach pursued here, we can use a general MCMC
computational framework, such OpenBUGS, see Lunn et al. (2009). In this case, it is nec-
essary to provide the original or the augmented likelihood function, along with the prior
distributions, such that the full conditional distributions are simulated through suitable
algorithms, following a pre-defined hierarchy available on the OpenBUGS. We made all sim-
ulations using the R package R2OpenBUGS.

4. Numerical Aspects

4.1 Simulation study I

A simulation study is conducted to assess the behavior of the ECM algorithm, in terms
of parameter recovery, and the accuracy of the corresponding SEs, calculated through
the observed Fisher information matrix. For that, N = 1, 000 replications are generated
considering n = 500 and ✓> = (↵,�, �) = (0.5, 1.0, 0.67), which induces a strong positively
skewed behavior of the SNBS distribution. In Table 1 we can see the mean of the estimates
( b̄✓), the mean of the theoretical (asymptotic) SE (SE(b✓)) and the empirical SE (SEemp).
We can notice that the parameters are well recovered and that the empirical SE are close
to the theoretical ones, which indicates that the use of the observed Fisher information
matrix, to obtain the corresponding SE, is appropriate.

Table 1. Results of the simulation study I.

b̄✓ SE(b✓) SEemp

b↵ 0.495 0.019 0.021
b� 1.003 0.032 0.028
b� 0.667 0.015 0.012
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4.2 Simulation study II

We consider a total of 30 scenarios, resulting from the combination of the levels of:
three di↵erent sample sizes (n) (10, 50, 200), under ↵ 2 (0.5; 1.5), � = 1 and � 2
(�0.67;�0.45; 0; 0.45; 0.67). The sample sizes are chosen in order to verify the proper-
ties of the estimators, as consistency, and to compare their behavior, in terms of accuracy.
The values of ↵ and � are chosen in order to induce di↵erent shapes and small variabil-
ity, whereas the values of � induce from null to high positive/negative asymmetry. We
calculated the usual statistics to measure the accuracy of the estimates: bias, variance
(Var), root mean squared error (RMSE) and absolute value of the relative bias (AVRB).

Let ✓ be the parameter of interest, b✓r be some estimate related to the replica r and b✓ =

(1/R)
P

R

r=1
b✓r. The adopted statistics are: Bias = b✓� ✓, Variance = (1/R)

P
R

r=1(
b✓r � b✓)2,

RMSE = ((1/R)
P

R

r=1(✓ � b✓r)2)1/2, AVRB = |b✓ � ✓|/|✓|.
The usual tools for monitoring the convergence of the MCMC algorithms, see Gamer-

man and Lopes (2006), indicate that a burn-in of 4,000, a thin of 100, simulating a total of
100,000 values, are enough to produce valid MCMC samples of size 1,000 for each parame-
ter. Since the other results are similar (they are omitted here but they are available under
request from the authors), we present only those related to the scenario where ↵ = 0.5,
� = 1, � = �0.67, varying the sample size. We used (< 0.001) to represent positive val-
ues (statistics and/or estimates) and (> �0.001) to denote negative values, when they
are close to zero. In addition, we refer the Bayesian estimates as “augmented”, when the
augmented likelihood function is used, and “original”, whenever the original likelihood
function is considered. The selected results can be seen in Table 2. In general, we can see
that, as the sample size increases, the estimates obtained by the three approaches tend
to the correspondent the respective true values. When ↵ = 0.5, the ML estimates are
more accurate than the Bayesian ones, especially considering the bias and AVRB met-
rics. In other scenarios (not shown), when ↵ = 1.5, the opposite occurs for all sample
sizes. Concerning � and �, it is possible to notice that, under the smallest sample size
(n = 10), the ML approach presents more accurate estimates than the Bayesian ones. In
addition, for n = 50 and n = 200, Bayesian estimates, for both parameters, are closer
to the respective true values. In conclusion, we can say that all estimators, mainly the
Bayesian ones, are consistent, since both bias and RMSE tend to decrease, as the sample
size increases. Furthermore, the results indicate (including those not shown here) that the
Bayesian approach provided the most accurate estimates. Moreover, we can notice that
the original and augmented approaches, performed quite similarly. Therefore, we decide to
use the original likelihood function) approach, since it is easier to implement and faster.

4.3 Real data analysis I

We analyze a data set corresponding to self-e�cacy, which is available in the R software
and can be accessed from the EstCRM package through the command data(SelfEff). A
group of 307 pre-service teachers, graduated from various departments in the college of
education, are asked to check on a 11 cm line segment with two end points (can not do at
all, highly certain can do) using their own judgment for the 10 items that measure teacher
self-e�cacy on di↵erent activities. We take, as response variable, the teacher self-e�cacy
in the creation of learning environments in which students can e↵ectively express them-
selves. Table 3 presents some descriptive statistics, including location measures, standard
deviation (SD), coe�cient of skewness (CS), and kurtosis (CK). We can notice that the
distribution is strongly negatively skewed. We fit the CSNBS and BS distributions, using
the Bayesian augmented and the ML method, to the data. The results obtained consider-
ing the frequentist approach are omitted here but they are available under request from
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Table 2. Results of simulation study II with � = �0.67.

Parameter n Method Mean Variance Bias RMSE AVRB

Augmented 0.577 < 0.001 0.077 0.081 0.154
10 Original 0.578 0.001 0.078 0.082 0.156

ML 0.520 0.071 0.020 0.267 0.040
↵ Augmented 0.511 < 0.001 0.011 0.016 0.022

50 Original 0.511 < 0.001 0.011 0.015 0.021
ML 0.498 0.001 -0.002 0.033 0.004

Augmented 0.502 < 0.001 0.002 0.005 0.004
200 Original 0.502 < 0.001 0.002 0.005 0.004

ML 0.490 < 0.001 -0.010 0.012 0.019
Augmented 1.006 < 0.001 0.006 0.023 0.006

10 Original 1.004 < 0.001 0.004 0.021 0.004
ML 1.105 0.214 0.105 0.474 0.105

� Augmented 0.996 < 0.001 -0.004 0.009 0.004
50 Original 0.997 < 0.001 -0.003 0.009 0.003

ML 1.039 0.018 0.039 0.140 0.039
Augmented 0.999 < 0.001 -0.001 0.005 0.001

200 Original 0.999 < 0.001 -0.001 0.005 0.001
ML 0.997 < 0.001 -0.003 0.004 0.003

Augmented -0.157 0.067 0.513 0.575 0.766
10 Original -0.182 0.054 0.488 0.540 0.728

ML -0.603 0.028 0.067 0.179 0.100
� Augmented -0.493 0.059 0.177 0.301 0.264

50 Original -0.505 0.049 0.165 0.276 0.247
ML -0.569 0.012 0.101 0.148 0.150

Augmented -0.614 0.017 0.056 0.142 0.083
200 Original -0.601 0.015 0.069 0.141 0.103

ML -0.523 0.002 0.147 0.153 0.220

the authors. The prior distributions are the same used in Section 3. In Table 4, in ad-
dition to the posterior expectations (PE), the posterior standard deviations (PSD) and
the 95% equi-tailed credibility intervals (CI), we also present the model selection criteria.
We consider the usual statistics of model comparison for both frequentist (AIC, BIC) and
Bayesian (DIC, EAIC, EBIC and LPLM) see, respectively (Akaike, 1974; Schwarz, 1978;
Spiegelhalter et al., 2014). The smaller values of AIC and BIC indicates the model that
fits the data better. In addition, the smaller the values of DIC, EAIC, EBIC, the better
the model fit, occurring the opposite with the LPML. We can notice that the estimates
of ↵ and � (under the CSNBS model) indicate that the distribution is strongly negatively
skewed. Notice also that we have indications that the asymmetry parameter is di↵erent
from zero, since this value does not belong to the CI. Moreover, the criteria indicated the
CSNBS model is the best. Figure 10 (left) presents the histogram of the observations and
estimated densities. We can notice that the CSNBS distribution presents an advantage
over the BS model. From Figure 10, we can notice that the CSNBS distribution predicts
better the observations than the BS distribution. In conclusion, we can say that the CSNBS
model is preferable to the BS model.

Table 3. Descriptive statistics for the teacher self-e�cacy data.

Mean Median Minimum Maximum SD Asymmetry Kurtosis

9.205 9.700 1.650 10.900 1.365 -1.752 7.781

4.4 Real data analysis II

We analyze now a data set corresponding to prices of bottles of Barolo wine and discussed
in Azzalini (2013). It concerns the price (in euros) of bottles (75 cl) of Barolo wine. The
data have been obtained in July 2010 from the websites of four Italian wine resellers,
selecting only quotations of Barolo wine, which is produced in the Piedmont region of
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Table 4. Posterior expectations (PE), posterior standard deviations (PSD), equi-tailed 95% CI and model
selection criteria.

Parameter PE PSD CI95%

CSNBS

↵ 0.154 0.002 [0.151; 0.157]
� 8.871 0.016 [8.836; 8.903]
� -0.971 0.003 [-0.978; -0.966]
EAIC 1,021.912
EBIC 1,033.093
DIC 3,047.154
LPML -508.531

BS

↵ 0.205 0.008 [0.190; 0.222]
� 9.016 0.105 [8.815; 9.229]
EAIC 1,252.772
EBIC 1,260.226
DIC 3,744.335
LPML -632.9564
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Figure 10. Histogram of the observations and estimated densities (left), histogram of the predicted and observed
distributions for the CSNBS (center) and BS (right) models.

Italy. The price does not include the delivery charge. In Table 5 and Figure 11 (left), we
present a descriptive analysis. It is possible to see that the distribution is positively skewed
and more concentrated in the first class [0,100]. We fit the CSNBS and BS distributions,
using the Bayesian augmented and the ML method, to the data. The results obtained
considering the frequentist approach are omitted here but they are available under request
from the authors. The prior distributions are the same used in Section 3. In Table 6,
in addition to the posterior expectations (PE), the posterior standard deviations (PSD)
and the 95% equi-tailed CI, we also present the Bayesian criteria. Table 6 shows that the
estimates of ↵ and � (under the CSNBS model) indicate that the distribution of the prices
is strongly positively skewed. Notice also that we have indications that the asymmetry
parameter is di↵erent from zero, since this value does not belong to the CI. Moreover,
the criteria indicated the CSNBS model is the best. Also, we construct QQ plots with
simulated envelopes. Similar to Vilca et al. (2011), we considered the Bayesian estimates
of ↵ and � in d(↵,�) = (1/↵2)(T/� + �/T � 2). When T ⇠ BS(↵,�), it is know that

d(↵,�) ⇠ N(0, 1). Since the observations d(b↵, b�) are expected to follow a standard normal
distribution, under the well fit of the model, the envelopes are simulated from the standard
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normal distribution, as described in Atkinson (1985). Similarly, if T ⇠ CSNBS(↵,�, �),

thus d(↵,�) ⇠ CSN(0, 1, �). Since the observations d(b↵, b�) are expected to follow a CSN
distribution, under the well fit of the model, the envelopes are simulated from the CSN
distribution. These plots are presented in Figure 11 (lines represent the 5th percentile, the
mean, and the 95th percentile of 100 simulated points). From those figures, we conclude
that the CSNBS distribution provides a better fit than the BS model. Specifically, from
the QQ plot shown in Figure 11 (a), we notice that the observations appear to form a
slight upward-facing concave. However, the QQ plot shown in Figures 11 (b) indicate that
the CSNBS distribution o↵ers an excellent fit, provided that the majority of observations
are inside of the envelope.

Table 5. Descriptive statistics for the prices of bottles of Barolo wine.

Mean Median Minimum Maximum SD Asymmetry Kurtosis

124.617 72 14 1000 37.041 2.903 12.982

Table 6. Posterior expectations (PE), posterior standard deviations (PSD), equi-tailed 95% CI and model
selection criteria.

Parameter PE PSD CI95%

CSNBS

↵ 0.844 0.037 [0.775; 0.917]
� 89.576 3.911 [82.260; 97.871]
� 0.690 0.070 [0.541; 0.809]
EAIC 3,437.879
EBIC 3,449.060
DIC 10,292.690
LPML -1,718.110

BS

↵ 0.858 0.035 [0.794; 0.929]
� 92.444 4.264 [84.778; 101.302]
EAIC 3,474.893
EBIC 3,482.346
DIC 10,410.620
LPML -1,736.669
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Figure 11. Histogram of the prices of bottles of Barolo wine (left), QQ plots with envelopes for BS (center) and
CSNBS (right) distributions for the data of Barolo wine bottle prices.
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5. Concluding Remarks

In this paper, we introduced a new distribution for modeling positive data which can
present both positive and negative asymmetry, by combining the Birnbaum-Saunders
and the centered skew normal distributions. We developed both maximum likelihood and
Bayesian estimation procedures, comparing them through a suitable simulation study. The
convergence of the conditional expectation maximization and MCMC algorithms were ver-
ified and several factors of interest were compared in the parameter recovery study. In
general, as the sample size increases, the results indicated that the Bayesian approach
provided the most accurate estimates. In future works we can consider the development
of predictive posterior checking to detect the goodness of fit. Furthermore, we suggest the
use of Je↵reys-rule prior and independence Je↵reys prior. Other auxiliary algorithms as
the Hamiltonian Monte Carlo (see Homand and Gelman, 2014; Carpenter et al., 2016)),
adaptive reject sampling and slice sampling (see Gamerman and Lopes, 2006) can be used
and compared. Other family of distributions could be used instead of the centered skew
normal distribution, as the scale mixture of the SN distributions, to generate new family
of Birnbaum-Saunders-type distributions. Finally, other numerical methods to obtain ap-
proximation for the marginal posterior distributions, such as the INLA algorithm, can be
considered (see Rue and Martino, 2009).

6. Appendix

Appendix A. Moments of the CSNBS Distribution

Theorem A.1 Let T ⇠ CSNBS(↵,�, �) and Y ⇠ CSN(0, 1, �). If E
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From the binomial theorem again, we have
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From Equation (A1), we get
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For j = 0, the first term of the sum in Equation (A1) is equal to �E(Y 2)(↵/2)2. For j = 1,
the second term of the sum in Equation (A1) is equal to �
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where � = E(Y 4) = 2(⇡ � 3)(4/⇡2)�4[1� (2�2/⇡)]�2 + 3.
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Appendix B. The ECM Algorithm

The following result is used in the proof of Theorem 2.1.

Lemma 1. Let X ⇠ N(⌘, ⌧2), thus 8a 2 R

E(X|X > a) = ⌘ +
�
�
a�⌘

⌧

�

1� �
�
a�⌘

⌧

�⌧ ; E(X2|X > a) = ⌘
2 + ⌧

2 +
�
�
a�⌘

⌧

�

1� �
�
a�⌘

⌧

�(⌘ + a)⌧.

Proof of Theorem 2.1

(i) Since Y ⇠ CSN(0, 1, �), using the stochastic representation given by Equation (2), we
can define

Y =
1

�z

h
�H +

p
1� �2X1 � µz

i
=

1

↵

hp
T/� �

p
�/T

i
.

Therefore,

Y |(H = h) =
1

↵

⇣p
T/� �

p
�/T

⌘���� (H = h) ⇠ N(µh,�
2),

where µh = �(h� r)/(1� r
2
�
2)1/2 and �

2 = (1� �
2)/(1� r

2
�
2). Then,

W |(H = h) = �µh

�
+

1

�↵

⇣p
T/� �

p
�/T

⌘ ���(H = h) ⇠ N(0, 1)

and

T = �

"
↵

2
(�W + µh) +

rh
↵

2
(�W + µh)

i2
+ 1

#
.

From the above result, the proof is completed.
(ii) As fH(h) = 2�(h|0, 1), h > 0 and

�(⌫h + at(↵�,�)) =

p
1� �2p
1� r2�2

�

✓
at(↵,�)

����
�(h� r)p
1� r2�2

,
1� �

2

1� r2�2

◆
.

Then, we have
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�
, 1� �

2
⌘
.

Therefore, the proof of (i) follows directly from that fH|T (h|t) = fT |H(t|h)fH(h)/fT (t). To
demonstrate (ii)-(iii), notice, for k = 1, 2, we have that

E
h
H

k|T
i
=

1

�
⇣
��z

�
at(↵,�) +

r�p
1�r2�2

�⌘
Z 1

0
h
k
�
�
h

��⌘t, 1� �
2
 
dh = E(Xk|X > 0).

Then, using some properties of the HN distribution from Lemma 1, the proof is com-
pleted.
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Appendix C. The Observed Fisher Information Matrix

The necessary expressions are given below. For the sake of simplicity, we consider the
following notation to obtain the necessary expressions, ati;µ,� = ati;µ,�(↵,�) and Ati;� =
Ati;�(↵,�).
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where W
0

�(x) = �W�(x)[x+W�(x)] is the derivative of W�(x) with respect to x, see Vilca
et al. (2011), and the other quantities are as before defined.
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Abstract

We introduce a three-parameter extension of the Lindley distribution, which has as
sub-models the Lindley and Marshall-Olkin Lindley distributions. The proposed model
turns out to be quite flexible: its probability density function can be decreasing or
unimodal and its associated hazard rate may be increasing, decreasing, unimodal or
bathtub-shaped. Since this new distribution has a survival function and a hazard rate
that can be expressed in closed form, it can readily be simulated and used to analyze
censored data. Computable expressions are obtained for certain statistical functions
such as its quantile function, ordinary and incomplete moments, moment generating
function, order statistics and reliability function. The maximum likelihood method is
utilized to obtain estimates of the model parameters and a simulation study is carried
out to assess the performance of the corresponding maximum likelihood estimators. Two
illustrative examples involving hydrological data sets are presented.

Keywords: Data modeling · Extended distributions · Hazard rate · Maximum
likelihood estimation · Monte Carlo simulations · Precipitation data.
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1. Introduction

Lindley (1958) introduced a one-parameter distribution in the context of fiducial and
Bayesian statistics, which is obtained as a mixture of exponential(�) and gamma(2, �)
probability density functions (PDFs), as defined in Equation (2). Aly and Benkherouf
(2011) recently proposed a convenient method for adding two parameters to a baseline
distribution, which gives rise to what is referred to as the Harris extended (HE) family
of distributions. This family includes the baseline distribution itself as a basic exemplar
and provides more flexibility for modeling various types of data. This novel approach is
based on the probability generating function of a discrete distribution introduced by Harris
(1948). In this paper, we define a three-parameter generalization of the Lindley distribution
by applying to it the HE generator, the resulting model being named the Harris extended
Lindley (HEL) distribution. This distribution is in fact an extension of the Marshall-Olkin
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extended Lindley (MOL) distribution that was proposed by Ghitany et al. (2012), and
its additional shape parameter ↵ ought to provide an improved fit related to the MOL
distribution. This extra parameter helps in controlling the shape of the HE PDF and
enables us to model heavy-tailed distributions which are fairly common in hydrology; see,
e.g., Li et al. (2013) and Ashkar and El Adlouni (2014). Moreover, the new distribution
has an interesting physical interpretation when ↵ is a positive integer and 0 < ✓ < 1:
it is indeed the distribution of the time until failure of a device composed of N serial
components having constant failure rate, where N is a random variable which arises from
a branching process such as that described in Harris (1948). This distribution can be
utilized for modeling purposes in research fields such as hydrology, engineering, insurance,
biology and epidemiology wherein skewed positive data are frequently encountered.
One of the most crucial aspects of hydrological data analysis consists in achieving a close

fit to the experimental data by employing proper statistical models. The Gumbel, Weibull,
gamma, generalized logistic as well as other well-known distributions have been extensively
utilized for modeling hydrological observations such as rainfall, flood, precipitation and
stream flow data; see, e.g., Zelenhasic (1970), Chadwick et al. (2004), Heo and Boes (2011),
Bhunya et al. (2012) and Kang et al. (2015). Yet, there exists a need for developing more
flexible statistical models that would be applicable to data sets related to hydrological
structures and phenomena or water resource planning and management, and the proposed
three-parameter generalization of the Lindley distribution fits the purpose.
Although little attention has been paid to the Lindley distribution, there has recently

been a surge of interest in this model, generalizations thereof and related applications.
Nadarajah et al. (2007) introduced the exponentiated Lindley distribution as an alterna-
tive to the gamma, log-normal, Weibull and exponentiated exponential distributions; see
also Cordeiro et al. (2016). Several properties of the Lindley distribution have been studied
by Ghitany et al. (2008) who have shown that, for instance, it can provide a better fit than
the exponential distribution. Ghitany et al. (2011) studied another two parameter exten-
sion of Lindley distribution and called it the weighted Lindley distribution. By making
use of the Marshall-Olkin method, Ghitany et al. (2012) introduced and studied another
extension of the Lindley model called the Marshall-Olkin extended Lindley (MOL) distri-
bution. Ghitany et al. (2013) introduced a two-parameter power Lindley distribution and
discussed its properties. A three-parameter generalization of the Lindley model was intro-
duced by Mervoci and Sharma (2014). This extension, referred to as the beta Lindley (BL)
distribution, is generated from the logit of a beta random variable. Ghitany et al. (2015)
considered the problem of estimating the stress-strength parameter of the power Lindley
distribution. Mazucheli et al. (2016) developed some statistical for testing hypotheses on
the parameters of the weighted Lindley distribution. Alizadeh et al. (2017) introduced
another extension of the power Lindley distribution.
The objective of this work is to derive the HEL distribution focusing on its probabilistic

and statistics aspects, as well as applications in hydrology.
The remainder of the paper is organized as follows. We define the new distribution

in Section 2. In Section 3, we provide computable expressions for some of its statistical
functions such as its quantile function (QF), ordinary and incomplete moments, mean
deviations, moment generating function (MGF) and order statistics. In Section 4, the
model parameters are estimated by making use of the maximum likelihood (ML) method
and a simulation study is carried out. In Section 5, we illustrate the usefulness of the
proposed distribution by modeling two hydrological data sets. Finally, Section 6 o↵ers
some concluding remarks.
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2. The HEL Distribution

In this section, we provide probabilistic aspects of the HEL distribution. The survival
function (SF) and PDF of the distribution introduced by Lindley (1958) are respectively
given by

ḠL(x) =

✓
1 + �+ �x

1 + �

◆
e��x, x > 0, (1)

and

gL(x) =
�2

�+ 1
(1 + x) e��x, x > 0, (2)

where the parameter � is assumed to be positive. We now describe a technique whereby
the so-called Harris extended family of distributions can be generated and apply it to
the Lindley distribution. The resulting distribution is referred to as the Harris extended
Lindley (HEL) distribution. Let G(x) = G(x; ⇠) be a baseline cumulative distribution
function (CDF) and

Ḡ(x) = Ḡ(x; ⇠) = 1�G(x; ⇠)

be the corresponding SF of a lifetime random variable W , where ⇠ = (⇠1, . . . , ⇠q) is a
parameter vector of dimension q. Furthermore, let g(x) = g(x; ⇠) be the PDF of W . The
SF of the HE family is then defined by

F̄HE(x) =
✓1/↵ Ḡ(x)

⇥
1� ✓̄Ḡ(x)↵

⇤1/↵ , x > 0, (3)

where ✓̄ = 1� ✓, the parameters ✓ > 0 and ↵ > 0 being additional shape parameters that
allow for greater flexibility. Thereupon, the HE PDF has the form

fHE(x) =
✓1/↵ g(x)

⇥
1� ✓̄Ḡ(x)↵

⇤1+1/↵
, x > 0.

Aly and Benkherouf (2011) pointed out that when ↵ > 0 is a positive integer, the HE
family can be looked upon as resulting from examining a simple discrete branching process
where a particle either splits into (↵ + 1) identical branches or remains the same during
a short interval. Clearly, Equation (3) constitutes a flexible generator for obtaining new
parametric distributions from existing ones. For ✓ = 1, F̄ (x) = Ḡ(x) and Ḡ(x) is thus a
basic exemplar of the distribution. Additionally, the Marshall and Olkin (1997) extended
(MOE) family arises from Equation (3) by letting ↵ = 1. Accordingly, the HE family can
be viewed as a generalization of the MOE family.
The SF of the HEL distribution is defined as

F̄ (x) =
✓1/↵ḠL(x)

⇥
1� ✓̄ḠL(x)↵

⇤1/↵ , x > 0, (4)

for ↵ > 0, ✓ > 0, � > 0, where ḠL(x) is given in Equation (1), with its PDF corresponding
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to Equation (4) being

f(x) =
✓1/↵ �2 (1 + x) e��x

(1 + �)
⇥
1� ✓̄ ḠL(x)↵

⇤1+1/↵
, x > 0. (5)

Henceforth, a random variable X having the PDF specified in Equation (5) is denoted by
X ⇠ HEL(✓,↵,�). This three-parameter PDF has two shape parameters and one scale
parameter, and it can be either decreasing or unimodal. The two main special cases of the
HEL model are: (i) the MOL distribution in which case ↵ = 1; (ii) the Lindley distribution
which is obtained by letting ↵ = ✓ = 1. The hazard rate (HR) associated with HEL model
is given by

h(x) =
�2 (1 + x)

(�+ 1 + �x)

⇥
1� ✓̄ ḠL(x)

↵
⇤�1

, x > 0.

This HR can assume the four principal shapes associated with increasing, decreasing,
bathtub-shaped or upside-down bathtub-shaped HRs. The HEL model is thus most ap-
propriate to analyze a variety of hydrological and lifetime data sets. We note that there
appears to be very few three-parameter distributions in the literature whose HR can take
on the four main shapes of an HR. Moreover, the SF and HR of the HEL distribution have
closed-form representations. Accordingly, this model can readily be utilized to analyze
censored data sets. As well, simulating it is straightforward.
Figures 1 and 2 display some plots of the PDF and HR of the HEL distribution for

certain parameter values. Figure 1 indicates that the HEL PDF can be right-skewed and
reversed-J shaped. Figure 2 reveals that the HEL HR can be increasing (IFR), decreasing
(DFR), upside-down bathtub (UBT) or bathtub-shaped (BT).
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Figure 1. Plots of the HEL PDF for certain parameter values.

Given the functional form of the HEL PDF denoted by f(x), a general representation
of the mode that would be expressible in terms of the parameters of the distribution
does not appear to be tractable. However, for a specific set of parameters, the command
NSolve[f’[x]==0,x,Reals] in Mathematica can readily be utilized to determine the
mode. If the solution happens to be greater than zero, then the PDF has a mode at
that point; otherwise, it is strictly decreasing on the positive half-line. The extremum of
the HR can be similarly obtained whenever it exists.
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Figure 2. Plots of the HEL HR for certain parameter values.

3. Statistical Functions of the HEL Distribution

In this section, we provide computable representations of certain statistical functions of
the HEL distribution. More specifically, we focus, in order, on the quantile function, some
useful expansions, the moments, including the incomplete ones, the moment generating
function and the order statistics. The derived expressions can be easily evaluated by most
symbolic computation software packages such as Maple, Mathematica and Matlab. These
platforms can process analytic expressions of great complexity. Whenever available, an ex-
plicit representation of a statistical function is preferable to its determination by numerical
integration.
The QF of a distribution has numerous uses in both statistical theory and applications.

In the case of the HEL distribution, its QF is obtained by inverting the HEL CDF and is
given by

Q(u) = �1� 1

�
� 1

�
W


�(1 + �)

1� ⌧

e1+�

�
, 0 < u < 1, (6)

where ⌧ = 1� (1�u)
⇥
✓ + ✓̄(1� u)↵

⇤�1/↵
and W (x) is the negative branch of the Lambert

W function, see Corless et al. (1996) and Jodrá (2010) for details on its properties. The
Lambert function cannot be expressed in terms of elementary functions. However, it is a-
nalytically di↵erentiable and integrable and its principal branch satisfies x = W (x ex), x �
�1. Furthermore, whenever |x|  e�1, W (x) =

P1
n=1(�n)n�1 xn/n. Clearly, if U has

a uniform distribution in the interval (0, 1), then X = Q(U) has the PDF specified in
Equation (5). The Lambert W function is implemented within various scientific libraries,
as for example, in the R software (by the lamW package), Mathematica (by the ProductLog
function), Matlab (by the lambertw function) and Maple (by the LambertW function), thus
allowing for e�cient evaluation of the QF of the HEL distribution.
Some useful expansions are now provided. Let ga(x) = a g(x)Ḡ(x)a�1 be the Lehmann

type-II-G (LII-G) PDF with power parameter a > 0. We demonstrate that the HEL PDF
can be expressed as a linear combination of LII-Lindley (LIIL) PDFs. First, for 0 < ✓ < 1,
we consider the negative binomial series

(1� z)�p =
1X

i=0

�(p+ i)

�(p) i!
zi,

which holds for |z| < 1 and any real number p > 0, where �(a) =
R1
0 za�1e�zdz is the
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complete gamma function. Using this power series in Equation (5), we have

f(x) = ✓1/↵ gL(x)
1X

j=0

✓̄j
�(↵�1 + 1 + j)

�(↵�1 + 1)j!
ḠL(x)

j ↵,

where ḠL(x) and gL(x) are the SF and PDF of the Lindley distribution as provided by
Equations (1) and (2). Note that for ✓ > 1, we can write

f(x) = ✓�1gL(x)
1X

j=0

1X

`=j

(�1)j
✓
✓ � 1

✓

◆` ✓`

j

◆
�(↵�1 + 1 + `)

�(↵�1 + 1)`!
ḠL(x)

j ↵.

On combining the last two expressions for f(x) in a single one, we have

f(x) =
1X

j=0

wj hj ↵+1(x), (7)

where hj ↵+1(x) = (j ↵+ 1) gL(x) ḠL(x)j ↵ is the LIIL PDF with power parameter j ↵+ 1
and

wj = wj(↵, ✓) =

8
><

>:

✓1/↵ ✓̄j �(↵�1+1+j)
(j ↵+1)�(↵�1+1)j! , 0 < ✓ < 1

(�1)j ✓�1

(j ↵+1)

P1
`=j(

✓�1
✓ )`

✓
`

j

◆
�(↵�1+1+`)
�(↵�1+1)`! , ✓ > 1.

Equation (7) reveals that the HEL PDF (for any ✓ > 0) can indeed be expressed as a linear
combination of LIIL PDFs. It can also be shown that the HEL PDF can be expressed as
a linear combination of gamma PDFs. Given Equations (1) and (2), it follows from the
representation of Equation (7) that

f(x) =
1X

j=0

wj (j ↵+ 1)

✓
�2

�+ 1

◆
(1 + x)

✓
1 +

�x

1 + �

◆j ↵

e�(j ↵+1)�x.

On expanding [1 + �x/(1 + �)]j ↵ and using the Taylor series z� =
P1

k=0(�)k (z�1)k/k!,
where (�)k = �(� � 1) · · · (� � k+ 1) is the falling factorial, after some algebra, we obtain

f(x) =
1X

i,j=0

vi,jx
i (1 + x) e�(j ↵+1)�x, (8)

where vi,j = (j ↵+ 1)wj
⇥
�2+i/(�+ 1)i+1

⇤
(j ↵)i/i! for i, j = 0, 1, 2, . . . .

Letting ⇡(x;↵,�) = �↵ x↵�1 e��x/�(↵) be the gamma PDF with shape parameter ↵ > 0
and rate parameter � > 0, we can then rewrite Equation (8) as

f(x) =
1X

i,j=0

h
v(1)i,j ⇡ (x; i+ 1, (j ↵+ 1)�) + v(2)i,j ⇡ (x; i+ 2, (j ↵+ 1)�)

i
, (9)

where v(1)i,j = i! vi,j/[(j ↵+ 1)�]i+1 and v(2)i,j = (i+ 1)! vi,j/[(j ↵+ 1)�]i+2.
Equation (9) indicates that the HEL PDF can also be expressed as a linear combination

of gamma PDFs. Thus, this representation can be used to obtain explicit expressions for
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the ordinary and incomplete moments and the MGF of the HEL distribution from the
corresponding quantities associated with the gamma distribution. Equations (7) and (9)
constitute the main results of this section.
Certain of the main characteristics of a distribution such as tendency, dispersion, skew-

ness and kurtosis can be investigated via its moments. We now establish that the ordinary
moments of the HEL distribution can be obtained as infinite power series. It follows from
Equation (7) that

µ0
r = E(Xr) =

�2

1 + �

1X

j=0

wj

Z 1

0
xr(1 + x)

✓
1 +

�x

1 + �

◆j ↵

e�� (j ↵+1)xdx,

or equivalently

µ0
r =

�2

1 + �

1X

j=0

wj

Z 1

0
xr(1 + x)

1X

i=0

✓
�

1 + �

◆i

xi
(j ↵)i
i!

e�� (j ↵+1)xdx.

After some algebra, we obtain

µ0
r =

�2

1 + �

1X

i,j=0

pi,j
�(r + i+ 1)

[�(j ↵+ 1)]r+i+1

✓
1 +

r + i+ 1

�(j ↵+ 1)

◆
, (10)

where pi,j = wj [(j ↵)i/i!] (�/(1 + �))i.
Table 1 includes numerical values for the first four ordinary moments of the HEL distri-

bution as evaluated from Equation (10) by truncating the series to 100 terms and computed
by numerical integration for some parameter values. We note that the numerical values
obtained from both approaches are consistently in close agreement.

Table 1. Ordinary moments of the HEL distribution for certain parameter values with � = 10.

↵ = 0.5 ↵ = 1.5
µ0
r Numerical Equation (10) Numerical Equation (10)

✓ = 0.5
µ0
1 0.0670906 0.0670905 0.0833919 0.08156687

µ0
2 0.0105268 0.01052653 0.0158697 0.01586975

µ0
3 0.00276376 0.002763106 0.00492889 0.004928885

µ0
4 0.0010382 0.001036676 0.0020813 0.002081299

✓ = 1.5
µ0
1 0.141446 0.1414455 0.127601 0.1276013

µ0
2 0.0364545 0.0364543 0.0295221 0.02952214

µ0
3 0.0132554 0.01325516 0.0098071 0.009807097

µ0
4 0.00616152 0.006160951 0.00425269 0.004252694

The rth incomplete moment of X is given by mr(y) =
R y
0 xr f(x)dx. On making use of

Equation (7) and proceeding as in the case of ordinary moments, we obtain

mr(y) =
�2

1 + �

1X

j,i=0

wj

✓
�

1 + �

◆i (j ↵)i
i!

Z y

0
xr+i(1 + x)e�� (j ↵+1)xdx. (11)

On expressing the integral in Equation (11) in terms of the incomplete gamma function
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�(a, y) =
R y
0 za�1 e�zdz, we have

mr(y) =
�2

1 + �

1X

i,j=0

Ki,j

⇢
� (r + i+ 1, (j ↵+ 1)�y)

[(j ↵+ 1)�]r+i+1
+

� (r + i+ 2, (j ↵+ 1)�y)

[(j ↵+ 1)�]r+i+2

�
, (12)

where Ki,j = wj [�/(1 + �)]i (j ↵)i/i! for i, j = 0, 1 . . ..
Bonferroni and Lorenz curves as well as mean deviations can be determined by letting r =

1 in Equation (12). The Bonferroni and Lorenz curves are defined (for a given probability
⇡) as B(⇡) = m1(q)/(⇡ µ0

1) and L(⇡) = m1(q)/µ0
1, respectively, where q = Q(⇡) may be

established from Equation (6). The mean deviations about the mean and about the median
are given by �1 = E(|X�µ0

1|) = 2µ0
1 F (µ0

1)�2m1(µ0
1) and �2 = E(|X�M |) = µ0

1�2m1(M),
where the median M and the mean µ0

1 can be evaluated from Equations (6) and (10),
respectively. We now provide a general formula for M(t) = E(etX), the MGF of X. The
MGF of the gamma PDF with parameters ↵ and � is (1� t/�)�↵ (t < �). Then, if follows
from Equation (9) that, for t < �,

M(t) =
1X

i,j=0

"
v(1)i,j

✓
1� t

(j ↵+ 1)�

◆�i�1

+ v(2)i,j

✓
1� t

(j ↵+ 1)�

◆�i�2
#
.

The last aspect being discussed in this section is the distribution of order statistics. Order
statistics appear in many areas of statistical theory and practice. Suppose X1, . . . , Xn is a
random sample from the HEL distribution and let Xi:n denote the ith order statistic. The
PDF of Xi:n can be expressed as

fi:n(x) = K
n�iX

k=0

(�1)k
✓
n� i

k

◆
f(x)F (x)k+i�1, (13)

where K = 1/B(i, n� i+ 1) and B(p, q) = �(p)�(q)/�(p+ q) is the beta function.
Consider the following representation available from Gradshteyn and Ryzhik (2000) for

a power series raised to a positive integer n:

0

@
1X

j=0

aj u
j

1

A
n

=
1X

j=0

bn,j u
j , (14)

where the coe�cients bn,j , for n = 1, 2, . . . and j = 1, 2, . . ., are obtained from the recursive
equation

bn,j = (j a0)
�1

jX

m=1

[m(n+ 1)� j] am bn,j�m,

with bn,0 = an0 . On integrating the right-hand side of Equation (7), we can write

F (x) = ḠL(x)
1X

j=0

wj ḠL(x)
j ↵,
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and then making use of Equation (14), we have

F (x)k+i�1 =
1X

j=0

tk+i�1,j ḠL(x)
j ↵+k+i�1,

where tk+i�1,j = (j w0)�1
Pj

m=1 [m(k + i) � j]wm tk+i�1,i�m for j � 1 and tk+i�1,0 =
wk+i�1
0 . Inserting the previous expression for F (x)k+i�1 and the representation of Equation

(7) of the PDF appearing in Equation (13) gives

fi:n(x) = K
1X

r,j=0

n�iX

k=0

vr,j,kh(r+j)↵+k+i(x), (15)

where

vr,j,k =
(�1)k (r ↵+ 1) wr tk+i�1,j

(r + j)↵+ k + i

✓
n� i

k

◆
.

Equation (15) reveals that the PDF of the HEL order statistics can be expressed as a
triple linear combination of LIIL PDFs. Accordingly, certain mathematical properties of
the HEL order statistics could be determined from those of the LIIL distribution.

4. Parameter Estimation

We now discuss the estimation of the model parameters using the ML method. There
exist several approaches for estimating parameters; however, the ML method is the most
commonly employed. The ML estimators enjoy several desirable properties and can be
utilized in the construction of confidence intervals for the model parameters. They also
appear in some test statistics. The normal approximation to the distribution of these
estimators follows from large sample distribution theory.
Let X1, . . . , Xn be a sample of size n from the HEL distribution whose associated PDF

is given in Equation (5). The log-likelihood function ` = `(⇥) of the vector of parameters
⇥ = (✓,↵,�)> is given by

` =
n

↵
log ✓+n log

✓
�2

1 + �

◆
+

nX

i=1

log(1+ xi)��xi � (1+
1

↵
)

nX

i=1

log[1� ✓̄ḠL(x)
↵]. (16)

The ML estimates b✓, b↵ and b� are determined by maximizing the log-likelihood function
of Equation (16) with respect to the parameters ✓, ↵ and �. In general, there is no closed-
form representation for these estimates, which are determined in practice the by making
use of numerical methods. Equation (16) can be maximized either directly by using the
R (optim function), SAS (NLMixed procedure) or Ox (MaxBFGS function), or by solving
the nonlinear likelihood equations obtained by equating the partial derivatives of ` with
respect to each parameter to zero.
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The components of the score vector U(⇥) are expressed as

U✓ =
n

↵ ✓
�
✓
1 +

1

↵

◆ nX

i=1

ḠL(x)↵

1� ✓̄ḠL(x)↵
,

U↵ = � n

↵2
log ✓ � 1

↵2

nX

i=1

ḠL(x)↵ log ḠL(x)

1� ✓̄ḠL(x)↵
,

U� =
n(2 + �)

�+ �2
+ xi +

✓
1 +

1

↵

◆ nX

i=1


↵ ✓̄ḠL(x)↵�1

(1 + �)2[1� ✓̄ḠL(x)↵]
�xi [2 + �+ (1 + �)xi] e

��xi

�
.

Setting these equations to zero and solving them simultaneously yields the ML estimates
of the model parameters.
We now assess the performance of the ML estimators of the model parameters by means

of Monte Carlo simulations. The simulations are replicated 1,000 times with samples of
sizes n = 50, 100, 200 and the following parameter values: I: ✓ = 0.5, ↵ = 0.5 and � = 1;
II: ✓ = 0.1, ↵ = 1.5 and � = 1; III: ✓ = 1.5, ↵ = 0.5 and � = 1; IV: ✓ = 1.5, ↵ = 1.5
and � = 1. Table 2 lists the average bias (Bias) of the ML estimators, mean squared
errors (MSE), coverage probabilities (CP) and average widths (AW) of the confidence
intervals for the parameters ✓, ↵ and � and the three sample sizes. From these results, we
conclude that the ML estimators perform well when it comes to estimating the parameters
of the HEL distribution. In general, the biases, MSEs and AWs decrease when the sample
size increases. Moreover, the CPs of the confidence intervals are quite close to the 95%
nominal level. Thus, the ML estimators and their asymptotic distributional properties can
be adopted for constructing approximate confidence intervals for the parameters of the
HEL distribution.

5. Empirical Illustrations with Hydrological Data

In this section, we fit the HEL model and some other competing models to two hydro-
logical data sets. We assess how well the HEL distribution performs as compared to the
beta-Lindley (BL) studied by Mervoci and Sharma (2014), exponentiated power Lindley
(EPL) due to Ashour and Eltehiwy (2015), beta-exponential (BE) proposed by Nadara-
jah and Kotz (2006), exponentiated Nadarajah and Haghighi (ENH) defined by Lemonte
(2013), Harris extended exponential (HEE) discussed by Pinho et al. (2015), exponenti-
ated Weibull (EW) studied by Mudholkar and Sharivastava (1993), power Lindley (PL)
introduced by Ghitany et al. (2013), exponentiated Lindley defined by Nadarajah et al.
(2007) and Lindley distributions. For each model, we estimated the parameters by the
ML method and assessed the goodness-of-fit by means of the Akaike information criterion
(AIC), Cramér-von Mises (W), Anderson-Darling (AD), Kolmogrov-Smirnov (KS) and
average scaled absolute error (ASAE) statistics. The ASAE is defined as (see Castilo and
Hadi, 2005)) ASAE = (1/n)

Pn
i=1(|x(i) � bx(i)|)/(x(n) � x(1)), where x(i) is the observed

value of ith order statistic, and bx(i) is obtained from the QF, Q(ui), wherein the ML esti-
mates are substituted to the parameters, with ui = i/(n+1). The ASAE statistic is useful
for measuring the accuracy of the fitted model. In general, the smaller values of the above
statistics indicate a better fit to the data.
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Table 2. Monte Carlo simulation results for the listed statistical indicator.

Parameter n Bias MSE CP AW

I

✓ 50 �0.044 0.112 0.92 1.483
100 �0.037 0.045 0.95 0.979
200 �0.037 0.033 0.98 0.749

↵ 50 0.626 1.690 0.96 2.079
100 0.419 0.429 0.95 0.983
200 0.314 0.110 0.95 0.799

� 50 �0.028 0.193 0.93 1.459
100 �0.042 0.111 0.96 1.154
200 �0.046 0.079 0.95 0.123

II

✓ 50 0.022 0.007 0.93 0.368
100 0.012 0.003 0.96 0.232
200 0.004 0.001 0.95 0.153

↵ 50 0.621 1.340 0.95 4.809
100 0.199 0.537 0.95 2.475
200 0.078 0.167 0.95 1.588

� 50 0.162 0.293 0.91 2.117
100 0.080 0.133 0.94 1.436
200 0.026 0.063 0.95 0.994

III

✓ 50 1.317 0.589 0.98 1.508
100 0.609 0.371 0.98 1.192
200 0.288 0.148 0.96 0.506

↵ 50 1.375 0.473 0.90 1.624
100 0.563 0.171 0.98 1.270
200 0.157 0.049 0.95 0.014

� 50 0.264 0.479 0.91 1.006
100 0.204 0.278 0.95 0.214
200 0.199 0.130 0.96 0.102

IV

✓ 50 0.638 3.602 0.90 2.835
100 0.237 1.276 0.91 1.401
200 0.141 0.629 0.94 0.038

↵ 50 �0.003 0.083 0.96 1.156
100 0.015 0.042 0.96 0.818
200 �0.001 0.021 0.95 0.571

� 50 0.117 0.255 0.96 1.977
100 0.035 0.104 0.96 1.323
200 0.024 0.055 0.96 0.923
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The CDFs of the BL, EPL, BE, ENH, HEE, EW, MOL, PL and EL distributions are
given by

FBL(x, a, b, ✓) = I
1�(1+

✓ x
1+✓ )e

�✓x
(a, b), x, ✓ > 0,

FEPL(x,↵,�, ✓) =
⇣
1� (1 + ✓ x�

1+✓ )e
�✓ x�

⌘↵
, x,↵,�, ✓ > 0,

FBE(x, a, b,�) = I1�e�� x(a, b), x, a, b,� > 0.

FENH(x,�,↵,�) =
⇣
1� e1�(1+�x)↵

⌘�
, x,�,↵,� > 0,

FHEE(x,�, k,�) =
�1/ke��x

[1� (1� �)e�� k x]1/k
, x,�, k,� > 0,

FEW(x; c,↵,�) =
⇣
1� e�(x/�)c

⌘↵
, x, c,↵,� > 0,

FMOL(x,↵,�) =
1� (1 + �)�1[1 + �+ �x]e��x

1� (1� ↵)(1 + �)�1[1 + �+ �x]e��x
, x,↵,� > 0,

FPL(x,�, ✓) = 1� (1 + ✓ x�

1+✓ )e
�✓ x�

, x,�, ✓ > 0,

FEL =


1�

✓
1 + ✓ + ✓ x

1 + ✓

◆
e�✓x

�↵
, x, ✓ > 0,

respectively, where Iz(p, q) denotes the incomplete beta function.
First, we consider a data set consisting of s exceedances (rounded to one decimal place)

of flood peaks (in m3/s) of the Wheaton river, which is located in the Yukon Territory,
Canada, for the years 1958-1984. The data set is the following: 1.7, 2.2, 14.4, 1.1, 0.4,
20.6, 5.3, 0.7, 1.9, 13.0, 12.0, 9.3, 1.4, 18.7, 8.5, 25.5, 11.6, 14.1, 22.1, 1.1, 2.5, 14.4, 1.7,
37.6, 0.6, 2.2, 39.0, 0.3, 15.0, 11.0, 7.3, 22.9, 1.7, 0.1, 1.1, 0.6, 9.0, 1.7, 7.0, 20.1, 0.4, 2.8,
14.1, 9.9, 10.4, 10.7, 30.0, 3.6, 5.6, 30.8, 13.3, 4.2, 25.5, 3.4, 11.9, 21.5, 27.6, 36.4, 2.7, 64.0,
1.5, 2.5, 27.4, 1.0, 27.1, 20.2, 16.8, 5.3, 9.7, 27.5, 2.5, 27.0. Some summary statistics of
these data are: n = 72, x̄ = 12.20417, s = 12.29722, coe�cient of skewness = 1.47251 and
coe�cient of kurtosis = 2.88955. The boxplot of these observations displayed in Figure
3(a) indicates that the distribution is right-skewed. The TTT (total time on test) plot
(see, e.g., Gill, 1986; Aarset, 1987) of these data is shown in Figure 3(b). It is first convex
and then concave, which suggests a bathtub-shaped failure rate. Accordingly, the HEL
distribution could, in principle, be appropriate for modeling these data. The ML estimates
(with the corresponding standard errors -SEs- in parentheses) as well as the ASAE, AIC,
KS, CM and AD statistics are given in Table 3. All five goodness-of-fit statistics indicate
that the HEL model provides the best fit. For a visual comparison, the empirical SF (ESF)
and estimated SF associated with the HEL model as well as a theoretical versus empirical
probability (PP) plot, which compares the empirical CDF of the data with the fitted CDF,
are respectively included in Figures 4(a) and 4(b). Clearly, the HEL model closely fits the
data distribution.
In this second illustration, the data set, which is freely available on the Korea Meteo-

rological Administration (KMA) website (http://www.kma.go.kr), represents the annual
maximum daily rainfall amounts in millimeters in Seoul (Korea) during the period 1961-
2002. Some summary statistics of these precipitation data are: n = 128, x̄ = 144.5991,
s = 66.17812, coe�cient of skewness = 0.94067 and coe�cient of kurtosis = 0.80435. The
boxplot of these observations that is displayed in Figure 5(a) indicates that the distribu-
tion is right-skewed. The TTT plot appearing in Figure 5(b) suggests an increasing failure
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Figure 3. Boxplot (a) and TTT plot (b) for the flood data.

Table 3. ML estimates, SEs (in parentheses) and goodness-of-fit measures for the flood data.

Distribution Estimates ASAE AIC KS CM AD

HEL(✓, ↵, �) 0.077 6.135 0.110 0.017 503.194 0.073 0.054 0.338
(0.038) (2.031) (0.014)

BL(a, b, ✓) 0.556 0.275 0.334 0.020 510.206 0.115 0.126 0.775
(0.098) (0.241) (0.273)

EPL(↵, �, ✓) 0.916 0.730 0.300 0.025 510.425 0.106 0.149 0.857
(0.595) (0.235) (0.279)

BE(a, b, �) 0.812 0.412 0.179 0.023 508.465 0.098 0.122 0.705
(0.137) (0.290) (0.131)

ENH(�, ↵, �) 0.732 1.675 0.032 0.019 507.850 0.106 0.104 0.632
(0.137) (0.143) (0.032)

HEE(�, k, �) 0.433 5.086 0.071 0.023 506.460 0.078 0.094 0.550
(0.193) (0.147) (0.011)

EW(c, ↵, �) 1.387 0.519 0.016 0.403 508.050 0.107 0.105 0.642
(0.587) (0.308) (0.036)

MOL(↵, �) 0.216 0.090 0.044 522.571 0.175 0.582 4.148
(0.128) (0.023)

PL(�, ✓) 0.700 0.339 0.026 508.444 0.105 0.154 0.877
(0.057) (0.056)

EL(↵, ✓) 0.509 0.104 0.021 509.349 0.117 0.135 0.833
(0.077) (0.015)

L(✓) 0.153 0.044 530.424 0.241 0.819 7.424
(0.013)

rate. The estimates of the parameters of the fitted distributions are listed in Table 4. We
note that the HEL model has the lowest ASAE, AIC, KS, CM and AD values, which
indicate that it provides the most accurate fit to the data. Furthermore, the ESF and
estimated SF and PP plots shown in Figures 6(a) and 6(b) also suggest a close fit to the
data distribution.
A likelihood ratio test can be utilized to compare a distribution having additional pa-

rameters with some of its sub-models. Accordingly, we made use of the likelihood ratio
test to assess the improvement in fit that the HEL distribution produces with respect to
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Figure 4. Empirical SF and estimated HEL SF (a) and PP plot (b) for the flood data.
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Figure 5. Boxplot (a) and TTT plot (b) for the precipitation data.

0 50 100 150 200 250 300 350

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Maximum rainfall

S
F

ESF

HEL

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Theoretical Probability

E
m

p
e
ri

ca
l P

ro
b
a
b
ili

ty

(b)

Figure 6. Empirical SF and estimated HEL SF (a) and PP plot (b) for the precipitation data.
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Table 4. ML estimates, SEs (in parentheses) and goodness-of-fit measures for the precipitation data.

Distribution Estimates ASAE AIC KS CM AD

HEL(✓, ↵, �) 17.443 3.081 0.022 0.019 1165.064 0.077 0.077 0.490
(9.276) (1.069) (0.003)

BL(a, b, ✓) 2.776 1.117 0.020 0.022 1169.396 0.085 0.144 0.809
(0.622) (0.577) (0.007)

EPL(↵, �, ✓) 1.530 1.318 0.003 0.024 1168.717 0.097 0.150 0.862
(0.225) (0.025) (0.004)

BE(a, b, �) 4.433 1.448 0.012 0.029 1172.022 0.092 0.263 1.412
(0.685) (0.535) (0.003)

ENH(�, ↵, �) 4.183 1.694 0.006 0.024 1168.620 0.095 0.146 0.837
(0.687) (0.217) (0.001)

HEE(�, k, �) 1.535 1.860 0.008 0.137 1241.535 0.276 2.569 13.078
(0.299) (0.847) (0.001)

EW(c, ↵, �) 1.411 2.907 98.866 0.433 1168.586 0.093 0.142 0.821
(0.334) (1.519) (29.851)

MOL(↵, �) 10.455 0.029 0.032 1171.003 0.103 0.184 1.330
(4.118) (0.003)

PL(�, ✓) 0.014 16.182 1.433 4820.512 0.999 34.999 1631.130
(0.007) (2.037)

EL(↵, ✓) 2.871 0.022 0.022 1167.600 0.084 0.146 0.818
(0.501) (0.002)

L(✓) 0.014 0.584 1199.216 1.187 0.519 6.508
(0.001)

the Lindley and MOL distributions. It is known that, under the null hypothesis,

�2 log

✓
likelihood under the null hypothesis

likelihood in the whole parameter space

◆
⇠ �2(d),

where, asymptotically, �2(d) follows a chi-square distribution having d degrees of freedom,
d being equal to the number of additional parameters in the extended model. Using this
result and standard statistical tables, we can obtain critical values for the test statistic.
Table 5 includes the likelihood ratio statistics and corresponding p-values for the two data
sets. Given the values of these statistics and their associated p-values, we reject the null
hypotheses for both data sets and conclude that the HEL model provides a significantly
better representation of the distribution of these data than the Lindley or MOL distribu-
tions. The 95% bootstrap confidence intervals obtained for the parameters ✓, ↵ and � are
given in Table 6.

Table 5. Likelihood ratio statistics and their p-values.

Hypothesis Flood data Precipitation data

H0: ↵=1 (MOL) 21.377 (< 0.000) 7.939 (0.005)
H1: ↵ 6= 1 (HEL)

H0: ↵=✓=1 (L) 31.229 (< 0.000) 38.151 (<0.000)
H1: ↵ 6= 1, ✓ 6= 1 (HEL)
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Table 6. 95% bootstrap confidence intervals for the parameters ✓, ↵ and �.

Data set ✓ ↵ �

Flood data (0.039, 0.225) (3.036, 10.429) (0.087, 0.146)
Precipitation data (8.243, 20.463) (1.378, 5.027) (0.018, 0.031)

Next, we present the concepts of return period, mean deviation about a return level
and the rth moment of the order statistics. For a given a data set, the return period can
be estimated by bT = 1/F̄ (x), where F̄ (x) = 1 � F (x) and F (x) denote the CDF of the
distribution. The estimated return periods (bT ) correspond to the return levels (xT ) for
each of these two data sets. They are reported in Table 7 and have been computed as
T = 1/F̄ (xT ), where F̄ (·) is as given in Equation (4). The mean deviation about a return
level which is the mean of the distances of the values from their return level is given by
⌘ = 2xTF (xT )� xT � µ+ 2

R1
xT

x f(x) dx, where f(·) and F (·) denote the HEL PDF and
CDF. Table 7 provides the mean deviations about certain values of the return levels (x̄T )
for both the flood and precipitation data sets.

Table 7. Estimated return periods ( bT ) and mean deviations about the return levels (⌘).

Flood data Precipitation data

xT bT ⌘ xT bT ⌘

140 499147.836 127.800 410 315.215 265.623
100 8350.571 87.802 375.5 160.422 435.000
50 62.48360 38.135 315.5 50.389 172.849
30 10.375 19.949 260 17.693 121.247
10 2.265 9.337 210 7.093 80.513

In order to be able to plan for future emergencies in connection with various hydrological
events, it is useful to ascertain some distributional results on certain of the order statistics.
To that end, we determine the rth moment, for r = 1, 2, 3, 4, of some order statistics for
each data sets under the HEL model wherein the parameters are replaced by their ML
estimates. Those moments are included in Table 8 for each data set.

Table 8. Some numerical values of E(Xr
i:n) for the indicated data set.

Flood data Precipitation data
i r E(Xr

i:72) i r E(Xr
i:128)

1 1 0.097 1 1 21.409
2 0.019 2 585.869
3 0.006 3 18628.800
4 0.002 4 658641.210

20 1 2.868 15 1 77.111
2 8.962 2 5989.380
3 30.433 3 468486.450
4 111.999 4 3.689⇥ 104

60 1 22.898 30 1 98.427
2 543.677 2 9719.320
3 12726.600 3 962824.794
4 308653.083 4 9.568⇥ 107
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6. Concluding Remarks

We introduced a three-parameter extension of the Lindley distribution refereed to as the
Harris extended Lindley (HEL) distribution, which is obtained by applying the Harris
extended method to the Lindley distribution. The proposed model has two shape param-
eters and one scale parameter. It includes as sub-models the Marshall-Olkin Lindley and
Lindley distributions. The HEL PDF can be decreasing or unimodal. Moreover, the HEL
HR can be increasing, decreasing, unimodal (upside-down bathtub) or bathtub-shaped.
We gave explicit expressions for the ordinary and incomplete moments, mean deviations,
Bonferroni and Lorenz curves and order statistics associated with the proposed distribu-
tion. The estimation of the model parameters was successfully carried out by making use
of the maximum likelihood method. In conclusion, the HEL distribution provides a very
flexible model for fitting the wide spectrum of positive data sets arising in engineering, sur-
vival analysis, hydrology, economics, biology as well as numerous other fields of scientific
investigation. All the calculations were performed with the symbolic computing software
Mathematica, the code being available from the authors upon request.
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