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Abstract

Simplistically, compositional data are characterized by components representing propor-
tions or fractions of a whole. In this study, we aimed to apply a compositional regression
model using Additive Log-Ratio (ALR) transformation for the response variables and
assuming asymmetric errors, more specifically, the tilted normal distribution. This dis-
tribution is an alternative to the skew normal distribution. The inferential procedure is
based on the usual maximum likelihood estimation. A simulation study was performed
to verify the asymptotic properties of the maximum likelihood estimates. Real data set
on percentages of players’ points in the Brazilian Super League 2014/2015 was used to
illustrate the proposed methodology and also to compare our modeling with the skew
normal and normal distributions.

Keywords: Asymmetry · Compositional data · Tilted normal distribution
· Uncorrelated errors.
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1. Introduction

Compositional data consist of vectors whose components are non-negative and represent
proportions with unit-sum constraint. Such data have sample space called simplex SD,
defined as SD = {(x1, . . . , xD) : xj > 0 for j = 1, . . . , D and

∑D
j=1 xj = 1}, where D is the

number of variables (components).
Attempts of standard statistical methods applied for compositional data analysis, with-

out considering the simplex sample space, result in inappropriate inference. The suitable
methodology was developed with the contributions of Aitchison and Shen (1980) and
Aitchison (1982, 1986), which is based on transformations of compositional data from re-
stricted simplex sample space to well-defined real sample space R. These transformations
allow the use of standard statistical methods, with the possibility to back-transform to the
original space (Filzmoser et al., 2009). Aitchison and Shen (1980) developed the logistic-
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normal class of distributions by transforming the D-components vector x to a vector y
in RD−1 considering the Additive Log-Ratio (ALR) function. More recently, some con-
tributions on the theory and applications of compositional data have been developed, for
instance, in Pawlowsky (2011, 2015); van den Boogaart and Tolosana-Delgado (2013).

The use of multivariate normal distribution for compositional data can be found in
Hron et al. (2012) and Egozcue et al. (2011), among others. However, sometimes the
assumption of symmetry is violated and it is necessary to assume appropriate distributions
for the errors of the modeling. In this way, Azzalini (1985) developed the skew normal
univariate distribution, which has normal distribution as a special case. Since then, several
works have been developed to obtain more flexible classes. Some extensions, properties and
applications of the skew normal distribution were presented by Genton (2004). The skew
generalized normal distribution was proposed by Arellano et al. (2004).

In the context of the regression models, the skew normal distribution was introduced
by Azzalini (2005). Guedes et al. (2014) applied the regression model with skew normal
errors to data on the height of bedding plants, Arellano et al. (2005) proposed an alternative
method to linear mixed models by assuming that both the random effects and the model
errors follow a skew normal distribution. For the compositional data, Mateu-Figueras and
Pawlowsky-Glahn (2007) introduced the skew normal distribution on the simplex, while
Martins et al. (2014) presented an application of the bivariate skew normal model to
compositional data.

1.1 The Tilted Normal Distribution

The tilted nornal TN distribution was proposed by Maiti and Dey (2012) and it is defined
as follows. Let X be a normal random variable with mean µ and standard deviation σ.
Following Marshall and Olkin (1997), the TN probability density function (pdf) can be
written as

f(x|µ, σ, γ) =
γ
σφ(x−µσ )

[1− (1− γ){1− Φ(x−µσ )}]2
,

where −∞ < x, µ < ∞, γ, σ > 0, φ(·) is the pdf of a standard normal distribution, Φ(·)
is the cumulative distribution function of a standard normal distribution, and γ is the
skewness parameter such that the TN density is skewed to the left if γ > 1 and to the
right if 0 < γ < 1; if γ = 1, this indicates a standard normal density function (Maiti and
Dey, 2012). We will denote this extension by the notation X ∼ TN (µ, σ, γ).

Figure 1 shows the behavior of the TN distribution for different values of γ. As pointed
out in the Introduction section, it can accommodate both skewness to the left or right.

1.2 Aim and Organization

The aim of this paper is to perform compositional regression modeling considering the
ALR transformation and assuming asymmetric and independent errors with tilted normal
(TN) distribution proposed by Maiti and Dey (2012) as an alternative to normal (N) and
skew normal (SN) distributions. The TN distribution is a unimodal density which is an
alternative model to SN distribution for left skewed data. According to Gupta and Gupta
(2008), the SN distribution is problematic when the sample size is not large enough for the
estimation of the skewness parameter. Whereas the TN distribution has the N distribution
as a special case and is capable of modeling both kind of skewed data (skewed to the left or
right) (Maiti and Dey, 2012). This fact is relevant because such distribution becomes more
flexible for modeling data, mainly when the data present skewness. Indeed, to the best
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Figure 1. The pdf of TN for different values of γ (µ = 0 and σ = 1).

of our knowledge this is the first paper considering compositional regression model with
ALR transformation, assuming asymmetric and independent errors with tilted Normal
distribution.

The paper is organized as follows. Section 2 introduces the formulation of the composi-
tional regression model applied through the ALR transformation and assuming uncorre-
lated errors with TN distribution. Section 3 presents the inferential procedures. Section 4
provides the results of the applications to an artificial data set and to a real data set related
to the Brazilian Men’s Volleyball Super League 2014/2015. Section 5 ends the paper with
some final remarks.

2. The New Compositional Regression Model

By definition, x = (x1, . . . , xD)′ is a compositional vector when xj is a non-negative

value and
∑D

j=1 xj = 1, for j = 1, . . . , D. The ALR transformation for the analysis of
compositional data is given by

ALR : S
D → R

D−1, yij = H

(
xij
xiD

)
= log

(
xij
xiD

)
,

where H(·) is the chosen transformation function that assures that the resulting vector
has real components, xij represents the i -th observation for the j -th component, such that

xi1 > 0, . . . , xiD > 0 and
∑D

j=1 xij = 1, for i = 1, . . . , n.
The regression model assuming an ALR transformation for the response variables is

given by

yi = z′iβ + εi,

where yi = (yi1, . . . , yid) is a vector (1 × d) of response variables with d = D − 1, z′i =
(zi1, . . . , zip) is a vector (1 × p) of known independent variables where, usually, zi1 = 1
(intercept term), β = [β1, . . . ,βd] is an unknown parameter matrix (p × d) with βj =
(β1j , . . . , βpj)

′, and εi = (εi1, . . . , εid) is a random errors vector (1×d) whose elements εij ∼
TN(0, σj , γj), for i = 1, . . . , n and j = 1, . . . , d. Such model represents a compositional
regression model with the TN distribution for the error terms.

In this work, we approached independence among the errors of the regression model,
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being that the marginal functions for εij are given by

f(εij |σj , γj) =

γj
σj
φ( εijσj

)

[1− (1− γj){1− Φ( εijσj
)}]2

, for j = 1, . . . , d.

3. Maximum Likelihood Estimation

The inferential procedure is based on the usual maximum likelihood estimators (MLEs).
In our case, the MLEs are applied for the estimation of the parameters of the TN regres-
sion model considering compositional data. It is worth pointing out that it is assumed
independence among the response variables yi.

Then, the logarithm of the likelihood function for θ = (β′1, . . . ,β
′
d, σ1, . . . , σd, γ1, . . . , γd)

′

is given by

l(θ) =

d∑
j=1

(
n log γj − n log σj +

n∑
i=1

log φ

(
yij − z′iβj

σj

)

− 2

n∑
i=1

log

[
1− (1− γj)

{
1− Φ

(
yij − z′iβj

σj

)}])
. (1)

Following Migon et al. (2014), approximate 100(1 − α)% confidence intervals for the

parameters βmj , σj and γj are given, respectively, by β̂mj ± ξδ/2

√
V ar(β̂mj), σ̂j ±

ξδ/2
√
V ar(σ̂j) and γ̂j ± ξδ/2

√
V ar(γ̂j), where the “hat” represents the MLE of the cor-

responding parameter, ξδ/2 is the upper δ/2 percentile of a standard normal distribution
and V ar(·) is the variance operator, for m = 1, . . . , p and j = 1, . . . , d.

In this paper, we shall consider some model selection criteria, namely, the Akaike Infor-
mation Criterion (AIC) proposed by Akaike (1974) and the Bayesian Information Criterion
(BIC) proposed by Schwarz (1978). These criteria are defined by AIC = −2log(L) + 2k
and BIC = −2log(L) + klog(n), where k is the number of estimated parameters, n is the
sample size and L is the maximized value of the likelihood function.

4. Data Experiments

This section reports a simulation study for the compositional data and illustrates an ap-
plication of the proposed methodology through ALR transformation. We considered the R
software (R Core Team, 2013) with the package maxLik (Henningsen and Toomet, 2011)
for the applications shown below. Since the R package maxLik is useful to introduce in-
formation on the first and second derivatives of the log-likelihood function (2), we report
these quantities in the Appendix A.

4.1 Simulation Study

The simulation study was performed in order to verify the asymptotic properties of the
maximum likelihood estimates. The study was based on 1,000 samples generated from
the independent bivariate TN distribution with sample sizes n = 30, 50, 70, . . . , 250. A
dichotomized covariate z was generated through a Bernoulli distribution with probability
of success 0.5, i.e. z ∼ Ber(0.5).
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The fixed values considered for the parameters are the following ones:

i. β01 = 2, β02 = −8, β11 = β12 = 1, σ1 = 4, σ2 = 2, γ1 = 0.5, γ2 = 0.2;
ii. β01 = 2, β02 = −8, β11 = β12 = 1, σ1 = 4, σ2 = 2, γ1 = 0.5, γ2 = 1.5;

iii. β01 = 2, β02 = −8, β11 = β12 = 1, σ1 = 4, σ2 = 2, γ1 = 2.0, γ2 = 0.5;
iv. β01 = 2, β02 = −8, β11 = β12 = 1, σ1 = 4, σ2 = 2, γ1 = 2.0, γ2 = 2.0.

Figures 4 - 11 (see Appendix C) display the bias and mean square error (MSE) for the
parameter estimates according to the four scenarios presented above. We can observe that
the estimates are asymptotically unbiased for the parameters. Moreover, when the sample
size increases, the MSE values decrease.

4.2 Real Data Application

In this section, we consider a real data set to illustrate an application of the proposed
methodology, where the sample corresponds to 127 players extracted from the Brazilian
Volleyball Confederation (Portuguese: Confederação Brasileira de Voleibol, CBV) (CBV,
2016). The data related to proportions of the volleyball players who participated in the
Brazilian Men’s Volleyball Super League 2014/2015 are available in Appendix B. The
methodology of compositional data was applied to the points scored by the players during
all the League, in which the considered components are: attack (xi1), block (xi2) and serve
(xi3). The covariate associated to the model is z, where z = 1 when the player belongs
either to the first or second most efficient teams (i.e. the first and second teams with the
best results) at the League 2014/2015, and z = 0, otherwise.

Figure 2 presents a ternary diagram for the three compositions: attack, block and serve.
This type of graphic is similar to scatterplots, but representing a 3-part composition using
a 2-dimensional plot (van den Boogaart and Tolosana-Delgado, 2013). We can observe
that proportions of attack are higher than block and serve components. For both covariate
levels, it is observed a concentration of values in direction to the attack component, but
with more intensity to the players who belong to one of the two most efficient teams. On
the other hand, there are some values closer to the block component, corresponding to the
players who do not belong to the two most efficient teams. Some space values are tending
to the center of the triangle, showing a little variability.

We applied the ALR transformation to the response variables y1 and y2. Therefore, we
have yi1 = log (xi1/xi3) and yi2 = log (xi2/xi3), for i = 1, . . . , 127. Table 1 shows the
descriptive statistics for the data set.

Table 1. Summary statistics of ALR-transformed variables - points of the volleyball players.

Transformed Descriptive Statistics
Variable Min. 1st. Qu. Median Mean 3rd Qu. Max. S.D. Skewness

y1 = log(x1/x3) -0.693 1.990 2.522 2.461 3.135 4.852 1.094 -0.698
y2 = log(x2/x3) 0.837 0.405 0.898 0.918 1.478 3.258 0.837 0.047

For sake of comparison, the model with TN, SN and N errors were fitted to the data set.
Table 2 shows the estimation results of the fitted models. Note that the results present
similar values for the parameters, i.e. the parameters β01, β12, σ1, σ2 were significant for
all three models and, moreover, the skewness parameter γ1 was significant for the models
with SN and TN errors, indicating left skewness for the variable y1. The results of the
model comparison criteria, AIC and BIC, shown in Table 3, are suggesting that the fitted
regression model assuming (uncorrelated) errors with TN distribution is the adequate
choice, since it provides the lowest AIC and BIC values.
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Figure 2. Ternary diagram for the components: attack, block and serve.

Following the results of Table 3, it was performed an outlier detection procedure for
the TN model. According to Filzmoser et al. (2009), the Mahalanobis distance is one
of the multivariate outlier detection procedures based on the estimation of the covari-
ance structure. It can be defined for (D − 1)-dimensional real space RD−1 as MD(xi) =
[(xi − T )′C−1(xi − T )]1/2, for i = 1, . . . , n, where T and C are multivariate location and
covariance estimators, respectively. In the case of a multivariate normal distribution, the
best choices for T and C are the multivariate arithmetic mean and the sample covari-
ance matrix, respectively. Thus, the squared Mahalanobis distances follow approximately
a Chi-square distribution with (D − 1) degrees of freedom, i.e. [MD(xi)]

2 ∼ χ2
D−1, for

i = 1, . . . , n. Following Rousseeuw and van Zomeren (1990), data points with squared
Mahalanobis distance higher than the cut-off value, like the 97.5% quantile of χ2

D−1, are
considered as potential outliers. This approach is the generalization of the outlier detec-
tion procedure proposed by Rousseeuw and Leroy (2003) and by Filzmoser et al. (2009),
to compositional data. Thus, we note, through Figure 3, that #111 and #103 are poten-
tial influence points. The next step was to verify the impact of these observations on the
estimates of the parameters. First, we refitted the model after removal of the #111 and
#103 points individually, and also after both observations were removed from the set “A”,
that is, the original data set. The #111 point refers to a player who scored more on the
block (67,9%) than attack (10.7%) and he does not belong to one of the two most efficient
teams, i.e. an atypical player compared to the others who scored more on attack. And the
#103 point refers to a player who scored more on the attack (82.4%), block (2.9%) and
serve (14.7%).

We present the relative changes (in percentage) of each parameter estimate, defined by

RCθj
=
[
(θ̂j − θ̂j(i))/θ̂j

]
×100, where θ̂j(i) is the MLE of θj without the i-th observation,

the parameter estimates and the corresponding p-values in Table 4. One can observe from
this table that the estimates of parameters are sensitive under exclusion of the outstanding
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observations. Note that the significance of the parameter estimates does not alter after
discarding the observations #111 and #103 (at a level of 5%). The considerable variations
are present for the parameters β01, β02, γ1 and γ2 when the observations #111 and #103 are
removed from the data. Thus, we considered the model fitted without both observations.

Table 2. Maximum likelihood estimates, standard error estimates and 95% confidence intervals for the parameters

of the independent N, SN and TN distributions.

Model Parameter Estimate
Standard 95% Confidence

Error Interval
β01 2.522 0.106 (2.314, 2.730)
β02 0.992 0.080 (0.834, 1.149)

N β11 -0.341 0.249 (-0.829, 0.148)
β12 -0.407 0.189 (-0.777, -0.037)
σ1 1.082 0.068 (0.949, 1.215)
σ2 0.819 0.051 (0.718, 0.919)
β01 3.636 0.158 (3.327, 3.945)
β02 0.517 0.421 (-0.307, 1.341)
β11 -0.355 0.232 (-0.810, 0.099)
β12 -0.407 0.188 (-0.776, -0.038)

SN σ1 1.551 0.146 (1.265, 1.837)
σ2 0.947 0.219 (0.518, 1.375)
γ1 -2.179 0.563 (-3.283, -1.075)
γ2 0.808 0.866 (-0.890, 2.506)
β01 0.719 0.257 (0.215, 1.222)
β02 1.226 0.393 (0.456, 1.996)
β11 -0.390 0.214 (-0.809, 0.028)

TN β12 -0.405 0.186 (-0.770, -0.040)
σ1 1.218 0.093 (1.036, 1.400)
σ2 0.819 0.055 (0.713, 0.927)
γ1 16.745 3.773 (9.351; 24.139)
γ2 0.604 0.493 (-0.363, 1.572)

Table 3. Comparison of the models with N, SN and TN errors.

Model Log-likelihood AIC BIC
N -345.086 702.172 719.237
SN -340.391 696.782 719.536
TN -338.053 692.106 714.860

A detailed study of the fundamentals on the efficient players is essential in order to the
hole team becomes highly skilled, consequently, getting success in competitions. Based on
the estimated parameters of the model fitted without observations #111 and #103, we can
obtain the original proportions of the attack, block and serve for the players. The results
are presented in Table 5, which shows that the estimated proportions were different for the
three fitted models. For sake of comparison, for the TN distribution, the proportions of the
block presented higher values than under the other distributions, i.e. the TN distribution
pointed out that the most significant component was the block. The proportions of the
serve presented little difference in relation to the associated covariate (i.e. the players who
scored higher on serve belong to the first or second most efficient teams at the League).
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According to this result, the serve points are important to the team become efficient at
the League.

Figure 3. Mahalanobis distance for the model with TN errors.

Table 4. Estimates, relative changes [RC in %] and corresponding p-values (in parenthesis) for the parameters of

the model with TN errors.

Parameter A (Original data) A-{#111} A-{#103} A-{#111,#103}

β01
0.719 [-] 0.892 [-24] 0.702 [2] 0.867 [-21]
(0.005) (0.000) (0.018) (0.000)

β02
1.226 [-] 1.233 [-1] 1.417 [-16] 1.420 [-16]
(0.001) (0.002) (0.000) (0.000)

β11
-0.390 [-] -0.402 [-3] -0.400 [-3] -0.412 [-6]
(0.068) (0.057) (0.061) (0.050)

β12
-0.405 [-] -0.402 [1] -0.431 [-6] -0.429 [-6]
(0.030) (0.031) (0.015) (0.016)

σ1
1.218 [-] 1.174 [4] 1.221 [0] 1.178 [3]
(0.000) (0.000) (0.000) (0.000)

σ2
0.820 [-] 0.823 [0] 0.798 [3] 0.801 [2]
(0.000) (0.000) (0.000) (0.000)

γ1
16.745 [-] 14.288 [15] 17.408 [-4] 15.048 [10]
(0.000) (0.021) (0.001) (0.000)

γ2
0.604 [-] 0.594 [2] 0.407 [33] 0.404 [33]
(0.221) (0.221) (0.190) (0.188)

We can also observe that the values of the attack proportions were very different for
the three fitted models. The higher values of these proportions were observed for the SN
distribution.

Thus, the results shown in Table 5 pointed out that the choice of the adequate errors
distribution, in the case of regression modeling, can make the difference for coaching de-
cisions, for instance, in which fundamentals the players are more efficient to become an
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efficient team at the League. In our case, if we compare the principal fundamentals of
points scoring: attack, block and serve, there were differences among the fitted models.
The model that provided the best fit was considering the TN distribution for errors, and it
demonstrated that the points of block correspond to more than half (> 50%) to a volleyball
player be efficient, following by the fundamentals of attack and serve, respectively.

Table 5. Estimated original proportions of the attack, block and serve for the players, according to the errors

distribution.

Component Covariate N SN TN

Attack
z = 0 0.771 0.934 0.317
z = 1 0.760 0.926 0.299

Block
z = 0 0.167 0.041 0.550
z = 1 0.154 0.039 0.511

Serve
z = 0 0.062 0.025 0.133
z = 1 0.086 0.035 0.190

5. Concluding Remarks

In this paper, we have introduced a new compositional regression model considering ALR
transformation and assuming independent errors with TN distribution. Inference is ap-
proached via maximum likelihood estimation. We have illustrated the proposed methodol-
ogy considering a simulated data set and also a real data set on the percentages of players’
points in the Brazilian Super League 2014/2015, in which it was considered a (indepen-
dent) multivariate data structure. Thus, the compositional regression model with TN errors
proved to be better than the SN and N distributions. Overall, the TN distribution showed
to be a good alternative when the data are asymmetric, taking into account the addition
of a parameter to the model. Moreover, the application of the adequate distribution for
the errors in a regression modeling is important in order to provide suitable conclusions,
such as the ones extracted from Table 5.

Our modeling assumes independence among the error components. However, future re-
search needs to address this issue by considering dependence among the error components
as pointed out by a referee. For instance, we could go in the direction of obtaining a mul-
tivariate extension of tilted normal distribution via from copulas (see Joe, 2014; Nelsen,
2006).
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Arellano-Valle, R.B., Gómez, H.W., and Quintana, F.A., 2004. A new class of skew normal
distributions. Communications in Statistics - Theory and Methods 33, 1465-1480.

Azzalini, A., 1985. A class of distributions which includes the normal ones. Scandinavian
Journal of Statistics 12, 171-178.

Azzalini, A., 2005. The skew-normal distribution and related multivariate families. Scan-
dinavian Journal of Statistics 32, 159-188.

Brazilian Volleyball Confederation (CBV). Data set of men’s volleyball super league.
Avaliable at: http://www.cbv.com.br/v1/superliga1415/estatisticas-novo.asp?gen=m.
Accessed January 20, 2016.

Egozcue, J.J., Daunis-I-Estadella, J., Pawlowsky-Glahn, V., Hron, K., and Filzmoser,
P., 2011. Simplicial regression. The normal model. Journal of Applied Probability and
Statistics 6, 87-108.

Filzmoser, P., Hron, K., and Reimann, C., 2009. Principal component analysis for compo-
sitional data with outliers. Environmetrics 20, 621-632.

Genton, M.G., 2004. Skew-elliptical distributions and their applications: A journey beyond
normality. Chapman & Hall, London.

Guedes, T.A., Rossi, R.M., Martins, A.B.T., Janeiro, V., Carneiro, J.W.P., 2014. Applying
regression models with skew-normal errors to the height of bedding plants of Stevia
rebaudiana (Bert) Bertoni. Acta Scientiarum. Technology 36, 463-468.

Gupta, R.D., and Gupta, R.C., 2008. Analyzing skewed data by power normal model. Test
17, 197-210.

Henningsen, A., Toomet, O., 2011. maxLik: a package for maximum likelihood estimation
in R. Computational Statistics 26, 443-458, doi: 10.1007/s00180-010-0217-1.

Hron, K., Filzmoser, P., and Thompson, K., 2012. Linear regression with compositional
explanatory variables. Journal of Applied Statistics 39, 1115-1128.

Joe, H., 2014. Dependence Modeling with Copulas. Chapman & Hall, London.
Maiti, S., and Dey, M., 2012. Tilted normal distribution and its survival properties. Journal

of Data Science 10, 225-240.
Marshall, A.W., and Olkin, I., 1997. A new method for adding a parameter to a family of

distributions with application to the exponential and Weibull families. Biometrika 84,
641-652.

Martins, A.B.T., Janeiro, V., Guedes, T.A., Rossi, R.M., and Gonçalves, A.C.A., 2014.
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Appendix A. Score Functions and Hessian Matrix

In this appendix, we first show the elements of the score function vector (i.e. the score
functions) of the log-likelihood function (1).

From (1), we obtain the following quantities:

U(β1j) =
∂l(θ)

∂β1j
=

1

σj

n∑
i=1

[wij + 2(1− γj)kijφ(wij)] zi1,

...

U(βpj) =
∂l(θ)

∂βpj
=

1

σj

n∑
i=1

[wij + 2(1− γj)kijφ(wij)] zip,

U(σj) =
∂l(θ)

∂σj
= − 1

σj

n∑
i=1

[
1− w2

ij − 2(1− γj)kijφ(wij)wij

]
,

U(γj) =
∂l(θ)

∂γj
=

n

γj
− 2

n∑
i=1

kij [1− Φ(wij)] ,

where wij = (yij − z′iβj) /σj and kij = [1 − (1 − γj){1 − Φ(wij)}]−1, for i = 1, . . . , n and
j = 1, . . . , d.

Finally, the elements of Hessian matrix, which are computed by second derivatives of
the log-likelihood function (1), are given by

∂2l(θ)

∂β2
1j

=
1

σ2
j

n∑
i=1

{−1 + 2(1− γj)φ(wij)kij [wij + kij(1− γj)φ(wij)]} z2
i1,

...

∂2l(θ)

∂β2
pj

=
1

σ2
j

n∑
i=1

{−1 + 2(1− γj)φ(wij)kij [wij + kij(1− γj)φ(wij)]} z2
ip,

∂2l(θ)

∂β1j∂σj
= − 2

σ2
j

n∑
i=1

{
wij − (1− γj)kijφ(wij)

[
kij(1− γj)φ(wij)wij + w2

ij − 1
]}
zi1,

...

∂2l(θ)

∂βpj∂σj
= − 2

σ2
j

n∑
i=1

{
wij − (1− γj)kijφ(wij)

[
kij(1− γj)φ(wij)wij + w2

ij − 1
]}
zip,

∂2l(θ)

∂β1j∂γj
= − 2

σj

n∑
i=1

kijφ(wij) [kij(1− γj){1− Φ(wij)}+ 1] zi1,

...

∂2l(θ)

∂βpj∂γj
= − 2

σj

n∑
i=1

kijφ(wij) [kij(1− γj){1− Φ(wij)}+ 1] zip,

∂2l(θ)

∂γj∂σj
= − 2

σj

n∑
i=1

kijφ(wij)wij {1 + (1− γj)kij [1− Φ(wij)]} ,
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∂2l(θ)

∂γ2
j

= − n

γ2
j

+ 2

n∑
i=1

[kij{1− Φ(wij)}]2 ,

∂2l(θ)

∂σ2
j

=
1

σ2
j

n∑
i=1

{
1− 3w2

ij + 2(1− γj)kijφ(wij)wij
[
kij(1− γj)φ(wij)wij + w2

ij − 2
]}
.

Hence, the elements of the observed information matrix can be calculated by considering
the Hessian matrix H, i.e. I(θ) = −H.

Appendix B. Data Set of Players’ Points at the Brazilian Men’s
Volleyball Super League 2014/2015

Player Attack Block Serve z Player Attack Block Serve z
1 383 37 13 0 65 89 14 1 0
2 352 35 15 1 66 58 35 7 0
3 315 37 29 1 67 72 18 9 0
4 260 73 39 1 68 69 18 11 0
5 331 20 10 0 69 56 36 6 0
6 281 19 22 0 70 67 27 3 0
7 251 32 38 1 71 79 11 5 0
8 249 32 20 0 72 69 19 7 0
9 228 31 40 0 73 78 11 6 1
10 238 16 11 1 74 63 26 4 0
11 243 9 13 0 75 82 5 4 0
12 226 21 8 1 76 84 2 3 0
13 226 25 4 0 77 80 4 4 1
14 219 21 15 0 78 73 11 3 0
15 148 87 18 1 79 64 12 5 1
16 225 17 10 0 80 68 8 4 0
17 224 16 8 0 81 52 22 4 0
18 216 16 9 0 82 64 8 3 0
19 197 28 16 0 83 61 4 5 0
20 203 23 8 1 84 63 3 1 0
21 193 27 11 0 85 25 29 12 0
22 156 49 21 0 86 48 8 7 1
23 200 22 4 0 87 52 8 2 1
24 177 25 17 0 88 56 4 1 0
25 160 35 22 1 89 55 5 1 0
26 139 58 9 0 90 31 21 4 0
27 137 58 11 0 91 39 14 1 1
28 143 37 24 0 92 33 14 6 1
29 151 37 15 1 93 37 9 2 1
30 129 51 19 1 94 37 8 1 0
31 163 29 4 0 95 22 15 8 0
32 135 45 12 0 96 39 3 3 1
33 126 47 11 0 97 38 4 2 0
34 147 12 19 0 98 38 2 1 0
35 160 13 5 1 99 22 13 4 0
36 140 18 18 1 100 22 15 2 0
37 122 45 9 0 101 25 7 4 1
38 150 21 3 0 102 16 14 5 0
39 124 37 13 0 103 28 1 5 1
40 113 54 3 0 104 24 7 2 0
41 144 16 9 0 105 11 5 16 1
42 98 60 8 0 106 26 4 2 0
43 130 21 13 0 107 13 12 6 0
44 134 14 13 1 108 26 4 1 0
45 141 17 3 0 109 20 7 2 0
46 133 18 6 0 110 21 5 2 0
47 95 40 18 0 111 3 19 6 0
48 125 10 17 0 112 22 3 2 0
49 107 36 5 0 113 9 7 7 0
50 133 10 3 0 114 10 10 2 1
51 128 14 1 0 115 5 13 4 0
52 124 8 6 1 116 15 5 2 0
53 95 21 19 0 117 15 4 1 0
54 97 29 4 1 118 5 8 5 0
55 90 26 9 0 119 14 1 1 0
56 108 14 1 1 120 8 4 3 1
57 109 6 8 0 121 4 6 5 0
58 104 11 2 0 122 8 3 3 0
59 68 40 6 0 123 8 3 1 0
60 98 9 6 0 124 3 3 5 0
61 97 11 3 0 125 3 5 3 0
62 74 31 4 0 126 4 3 2 0
63 70 29 10 0 127 3 2 4 1
64 77 26 1 1
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Appendix C. Graphs of Simulations
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Figure 4. MSE for the estimates of β01 = 2, β02 = −8, β11 = β12 = 1, σ1 = 4, σ2 = 2, γ1 = 0.5, γ2 = 0.2.
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Figure 5. Bias for the estimates of β01 = 2, β02 = −8, β11 = β12 = 1, σ1 = 4, σ2 = 2, γ1 = 0.5, γ2 = 0.2.
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Figure 6. MSE for the estimates of β01 = 2, β02 = −8, β11 = β12 = 1, σ1 = 4, σ2 = 2, γ1 = 0.5, γ2 = 1.5.
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Figure 7. Bias for the estimates of β01 = 2, β02 = −8, β11 = β12 = 1, σ1 = 4, σ2 = 2, γ1 = 0.5, γ2 = 1.5.
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Figure 8. MSE for the estimates of β01 = 2, β02 = −8, β11 = β12 = 1, σ1 = 4, σ2 = 2, γ1 = 2, γ2 = 0.5.
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Figure 9. Bias for the estimates of β01 = 2, β02 = −8, β11 = β12 = 1, σ1 = 4, σ2 = 2, γ1 = 2, γ2 = 0.5.
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Figure 10. MSE for the estimates of β01 = 2, β02 = −8, β11 = β12 = 1, σ1 = 4, σ2 = 2, γ1 = 2, γ2 = 2.
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Figure 11. Bias for the estimates of β01 = 2, β02 = −8, β11 = β12 = 1, σ1 = 4, σ2 = 2, γ1 = 2, γ2 = 2.


