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Abstract

We propose a hierarchical mixture dynamic model to investigate the performance of
schools in the Brazilian Mathematical Olympiads for Public Schools (OBMEP) across
different educational levels, from 2006 until 2013. As not necessarily all the schools
in the sample took part in the second phase of the OBMEP across all these years,
we propose a mixture dynamic hierarchical model. More specifically, we assume that
the score of a school j, in a particular year t, and educational level i, is a realization
from a mixture between a Bernoulli distribution with probability of success and a beta
distribution. This probability of success describes the probability of presence of a school
j, in educational level i and year t, in the second phase of the OBMEP. Inference
procedure follows the Bayesian paradigm, meaning that it is performed under a single
framework, and uncertainty about unknowns in the model are naturally accounted for.
We fit different versions of the proposed model. Our model is able to provide estimates
of the performance of a school in a particular year, even if it has not taken part in the
second phase of that year. It also provides the probability of presence in the second
phase as a function of covariates. Our study indicates that the performance of schools is
mainly affected by the school’s administrative level and the human development index
of the municipality the schools is located in.

Keywords: Bayesian inference · Dynamic linear models · Educational data
· Multilevel models · OBMEP.

1. Introduction

Our aim in this study is to understand the performance of schools, as a function of a set
of covariates, in the second phase of the Brazilian Mathematical Olympiads for Public
Schools (OBMEP). OBMEP has been promoted in Brazil, yearly, since 2005, for three
educational levels. To this end we propose a hierarchical beta mixture dynamic model
to investigate the performance of schools across different educational levels, from 2006
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until 2013. The mixing component is present because not necessarily all the schools in
the sample took part in the second phase of the OBMEP across all these years. More
specifically, we consider that the score of a school j, in a particular year t, and educational
level i, is a realization of a mixture between a Bernoulli distribution with probability of
success θtij , and a beta probability density function. In order to borrow strength across
different years and educational levels, we assume that the parameters involved in θtij , in the
mean, and scale of the beta distribution, follow hierarchical dynamic models. This allows
the coefficients of the covariates to evolve smoothly across years. The proposed model is
able to provide an estimate of the probability of presence of a school in the second phase
of the OBMEP in a given year and educational level. It also provides an estimate of a
school’s average score even if it has not taken part in the second phase of OBMEP in a
particular year and educational level. The data that motivated this study is described in
the following subsection.

1.1 The structure of OBMEP

Some authors claim that competitions can be used by educators to develop the talents
of the gifted. Campbell and Walberg (2010), for example, analyze data from the USA
that involve 345 adult Olympians from different fields that have assumed positions in
universities or research institutions and make important contributions to the productivity
of the USA. Losada and Rejali (2015) mention that in several countries of the Latin
America and Caribbean, the mathematical olympiads have been a very effective vehicle
for promoting mathematics and identifying highly talented students even in remote and
low-income areas.

The OBMEP has been promoted since 2005 by the Ministries of Science and Technol-
ogy, and of Education, and organized by Instituto Nacional de Matemática Pura e Aplicada
(IMPA). The OBMEP is focused on Brazilian public schools, wherein the Brazilian educa-
tional system faces serious challenges. The aims of the OBMEP are to stimulate the study
of mathematics by students in Brazilian public schools, develop and improve the train-
ing of teachers, influence the improvement of public education, in addition to discovering
young talents.

The OBMEP is held every year since 2005, when there were over 31,000 schools reg-
istered, comprising over 10.5 million students. In 2013 there were over 47,000 schools
registered, involving nearly 19.2 million students, covering approximately 99,5% of the
municipalities in Brazil.

The OBMEP is structured as follows. The educational school system in Brazil comprises
12 years of basic education, the first 9 years comprise the primary school and the remaining
3 are the secondary school. Compared to other countries, the first 5 years can be compared
to primary school, the next four grades can be compared to a low secondary school, and
the last three grades are the secondary school or high school (Biondi et al., 2012).

The Brazilian educational public system has three different types of administration:
municipal, state and federal. Any of these schools are allowed to register for the OBMEP.
The registration is done by the schools, and each school indicates how many students will
take part in the first phase of the OBMEP. The students are divided into three different
levels:

• Level 1: students in the 6th and 7th grades of the primary school;

• Level 2: students in the 8th and 9th grades of the primary school;

• Level 3: students in high school.

The OBMEP is performed in two phases: first, students take a multiple choice exam
with 20 questions for each educational level. The correction of the exams in the first phase



Chilean Journal of Statistics 5

is done locally, that is, they are corrected by the school’s own teachers. Approximately 5%
of students with the highest scores in each level of each school, are approved for the second
phase of the OBMEP. Students who obtained zero are not qualified for the second phase,
even if his/her school has not reached the proportion of students expected to be in the
second phase. In the second phase, students write a discursive examination comprising 6
questions. Each question is worth 20 points, so that the mark varies in the range (0, 120).
The questions have sub-items and the division of the 20 points among the sub-items is
decided by the organizing committee. In the second phase, the exams are also divided by
the level of education. The exams are corrected regionally by committees formed by the
OBMEP organizing committee whose members receive a scoring rubric for the questions.
Typically, the members of the committee are mathematical researchers from universities
in the region, who have experience with Mathematics Olympiads. For every edition, the
various regional committees define a cutoff point that will be considered to give the prizes.
The scores are reviewed by a national committee who establishes the prizes that will be
awarded in that edition.

We aim at studying the performance of schools across Brazil that have taken part in
the OBMEP from 2006 until 2013, the latest year that we have information available.
Understanding what covariates influence the performance of schools in the OBMEP is
important as it might help defining, or revising, strategies about teaching mathematics
and attract more students to the area.

The structure of the paper is as follows: next subsections describe the dataset available
and how the sample to be analyzed was obtained. Section 2 provides a brief literature
review of beta regression models and hierarchical dynamic models. Section 3 describes
the proposed model and the inference procedure. Section 4 presents the data analysis, by
describing the different fitted models we consider and the model comparison criteria used
to choose the best model among those fitted. Then, the results under the best model are
discussed. Finally, Section 5 discusses our findings and describes some possible avenues of
future research about the OBMEP.

1.2 Dataset description

We have information available from three different sources. The organizers of OBMEP
provided information on all the schools that registered for editions of OBMEP between
2005 and 2013. For each year, we have information on the performance of each stu-
dent within each school in both phases. We also have available the name and the na-
tional code of the schools. These can be linked to the schools’ census data, which is
collected nationwide, every year, by Instituto Nacional de Estudos e Pesquisas Educa-
cionais Ańısio Teixeira (INEP, http://portal.inep.gov.br/). The census data have
information about local characteristics of the schools. Previous studies about the OB-
MEP have suggested that the performance of students is strongly related to the geo-
graphical region the schools are located in. As in Brazil the geographical regions are
strongly related to the human development index (HDI), we also obtained information
about the 2010 HDI of each Brazilian municipality present in the data. This is available
from http://www.pnud.org.br/IDH/DH.aspx.

This initial study focuses on the average scores of the schools, in the different educational
levels, that took part in the second phase of the OBMEP between 2006 and 2013. The
population under study is relatively big. We aim at fitting highly structured stochastic
models to the data that are able to accommodate important features of the observations.
For this reason, we start by selecting a sample from the population under study, such
that we ease the computational burden when fitting the proposed model without loosing
important characteristics of the population.

http://portal.inep.gov.br/
http://www.pnud.org.br/IDH/DH.aspx
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The locations of the schools that take part in the OBMEP are divided between urban and
rural areas. In 2013, 70.1% of the schools that participated in the OBMEP are located in
urban areas, among these, 0.6% are federal, 42.8% are state and 26.6% are municipal. The
remaining 0.1% are private schools that incorporate some students from the public system
and offer a curriculum similar to the public one. These private schools are excluded from
this study. Throughout the years the distribution of urban and rural schools taking part in
the OBMEP follows similar patterns. As the rural schools involve too many particularities
we opted to focus only on schools located in urban areas.

Our aim is to model the average score of the schools in the second phase of the OBMEP.
In the Brazilian public educational system, schools do not necessarily have all educational
levels. Table 1 shows the number of schools, divided by educational level, registered for the
second phase of the OBMEP from 2006 until 2013. Although not shown here, the propor-
tion of schools in both phases tend to be around 90% every year. It is worth mentioning
that a single school might be registered in more than one level of the OBMEP. For this
reason, in Table 1, the column showing the total of schools registered is smaller than the
sum of the schools registered in the different educational levels, as schools might register
more than once, one for each educational level.

1.3 Reducing the size of the data to be analyzed

In order to minimize the variance of the mean average scores we propose a stratified random
sampling scheme with Neyman allocation (Thompson, 2012) based on the population of
schools that were registered in the second phase of the 2005 edition. This sample will be
considered throughout the years. Note that, not necessarily, schools which were present in
the second phase of the 2005 edition, will be present in the following years. Our proposed
model in Section 3 has a component that captures this feature of the data.

The strata are defined by the following three auxiliary variables: the educational level
(1, 2, and 3), the administrative level of the school (federal, state or municipal), and
different levels of the HDI. The behavior of the HDI across Brazil is strongly related to
the country geographical regions1, assuming high values in the south, and smaller values
in the north and north-east regions of the country. We expect this variable to capture
local characteristics of where the school is located in. We assume z = HDI ∈ (0, 1)
with probability density function f(z). Let z0 and zU be the smallest and largest values
of z in the population. We obtain stratum boundaries, z1, z2, · · · , zU−1, by minimizing

V (z) = 1
n

∑U
h=1WhS

2
h and ignoring the finite population correction factor (Dalenius and

Hodges, 1959). In the previous equation, Wh = Nh/N is the stratum weight, with N
denoting the population size, Nh the stratum size, and S2

h the true variance of the stratum.
Following this procedure, HDI was divided into 5 categories. When the ranges of the three
auxiliary variables are combined 45 strata result.

The sample was obtained by selecting approximately 5% of the schools that took part
in the 2005 edition of the OBMEP. This percentage showed to be adequate to attain
good precision for our inference procedure. The final sample size comprises n = 1, 501
schools, with 33 schools registered in at least two levels. This sample size was decided
after investigating the behaviour of the estimates of the mean performance of schools by
year and educational level. We noted that this sample size gave reasonable results when
compared to those obtained under bigger sample sizes.

As the information about the student’s gender only started to be collected from 2006
onwards, we do not include the data from 2005 in our sample. The last row of Table 1 shows

1See e.g. https://en.wikipedia.org/wiki/List_of_Brazilian_federative_units_by_Human_Development_Index.

https://en.wikipedia.org/wiki/List_of_Brazilian_federative_units_by_Human_Development_Index 
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the distribution of the number of schools in the sample, by educational level, whereas the
last three columns show the number of schools in the sample that actually took part in
the second phase in each year. Note that the sum of the schools in all educational levels
is greater than the total number of schools in the sample. This is because there are 33
schools in the sample that are registered in more than one educational level.

Population information Sample information
(in the 2nd Phase)

Distribution of schools by No. of schools Distribution of schools by educational
educational level (×103) registered level, registered for the 2nd phase

Year Level 1 Level 2 Level 3 (×103) Level 1 Level 2 Level 3
2006 26.9 26.2 13.2 29.6 517 421 219
2007 32.3 31.5 15.2 35.4 533 454 225
2008 32.6 32.1 15.5 35.9 548 437 215
2009 35.7 34.9 16.3 39.3 565 453 234
2010 36.0 35.5 16.6 39.9 538 433 233
2011 35.7 35.1 16.5 39.9 539 435 216
2012 36.2 35.8 16.7 40.7 506 430 209
2013 37.3 36.8 17.5 42.4 508 423 231

Distribution of schools
by educational level in all years

Level 1 Level 2 Level 3
674 568 259

Total no. of schools in the
sample in all years 1468

Table 1. Distribution of the number of schools in the population, and sample, registered in the second phase of the
OBMEP, by educational level and year, from 2006 until 2013. There are 33 schools in the sample that took part in

more than one educational level and, for this reason, the sum across the columns of the second last row is greater

than 1468.

Obtaining the schools average score Let Wtij be the average score of school j within

level i in year t, i = 1, 2, 3, j = 1, 2, · · · , ni, t = 1, 2, · · · , 8. Define Ytij = Wtij

120 ∈ (0, 1),
which is the response variable to be modelled in Section 4. Panels of Figure 1 show the
boxplots of Ytij as defined above, based on the sample that took part in the second phase of
OBMEP. The plots are divided by year and educational level (columns). From these panels
it is clear that the majority of schools have quite low scores, and that the distribution of
the average scores differ across years and educational levels. Next, we briefly review beta
regression models.

2. Literature review

From the panels of Figure 1 it is clear that our observations lie in the interval (0, 1). Also
the different boxplots do not seem to be symmetric. Two other important features of the
data are that they are observed across years, and not every school in the sample took part
in the second phase of all editions between 2006 and 2013. Based on these characteristics
we focus our attention on beta regressions, and hierarchical dynamic models.

The use of the beta distribution to model rates and proportions as a function of covariates
is relatively recent in the literature. Paolino (2001) proposes a beta regression model for
variables observed in a closed interval, and maximum likelihood estimation is performed
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Figure 1. Box plots of the average schools’ scores, Ytij = Wtij/120 in the sample, for each year t, and educational
level i = 1, 2, 3.

through Monte Carlo simulations. Ferrari and Cribari-Neto (2004) also propose a beta
regression model for rates and proportions. They provide closed-form expressions for the
score function, for the Fisher’s information matrix and perform hypothesis testing of the
coefficients using approximations based on the asymptotic normality of the maximum
likelihood estimator. In particular, Ferrari and Cribari-Neto (2004), assume that if Y ∼
beta(µ, φ) then f(y | µ, φ) = Γ(φ)

Γ(µφ)Γ((1−µ)φ)y
µφ−1(1− y)((1−µ)φ−1), such that E(Y ) = µ and

V ar(Y ) = µ(1−µ)
1+φ , for y ∈ (0, 1), µ ∈ (0, 1), and φ > 0. They focus on the modelling of

a transformation of µ as a function of covariates, and assume the precision as a nuisance
parameter.

On the other hand, Smithson and Verkuilen (2006) propose a beta regression model
wherein the mean and the precision parameters are described as functions of covariates
and estimation of the parameters is performed through maximum likelihood. Branscum
et al. (2007) discuss beta regression from a Bayesian point of view. In their model, the mean
depends on covariates through a logistic link function. They also propose a semiparametric
beta regression, and model fitting is performed using WinBUGS (Lunn et al., 2000). Zimprich
(2010) extend the beta regression model by including random effects in the model of the
mean and precision of the beta distribution.

Bayes et al. (2012) propose a beta rectangular regression model which allows more
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flexibility in the modelling of the tails and of the precision parameter when compared to
the beta regression model. The inference procedure follows the Bayesian paradigm and they
also use the software WinBUGS to obtain samples from the resultant posterior distribution
of the model parameters.

Beta regression models have already been used to model behavioral or educational data.
Smithson et al. (2011) propose a finite mixture of beta distributions to model response
styles, polarization and anchoring in probability judgements. Verkuilen and Smithson
(2012) extend the former model to accommodate discrete and continuous mixtures of beta
distributions, which enables modeling dependent data. Cepeda-Cuervo and Núñez Antón
(2013) propose a spatial double generalized beta regression model to describe the quality
of education in Colombia. As observations are obtained in the Departmental level of the
country, they propose that the mean and precision parameters of the beta distribution
include a spatial lag specification introduced as explanatory variable.

Our proposed model allows the parameters to borrow strength across years and educa-
tional levels. To this end we resort to dynamic linear models (West and Harrison, 1997).
Fernandes et al. (2009) propose a mixture dynamic linear model to account for zero in-
flation in spatio-temporal processes. Da-Silva et al. (2011) develop a Bayesian dynamic
beta regression model for time series of rates or proportions. They propose to approximate
the posterior distribution of the state parameters through Bayesian linear estimation and
Gaussian quadrature, avoiding the use of Markov chain Monte Carlo (MCMC) methods.

Because of the hierarchical structure present in the data, our proposed model is related
to the class of hierarchical dynamic model proposed by (Gamerman and Migon, 1993) and
extended by Da-Silva and Migon (2016) to accommodate beta distributed response vari-
ables. Our contribution lies in considering that our observations come from a hierarchical
mixture beta dynamic model.

3. Proposed model

As described in Section 1.3 the average scores of the schools were transformed to have
Ytij lying in the interval (0, 1). We assume the performance of school j = 1, 2, · · · , ni in
each level i = 1, 2, 3 and year t = 1, 2, · · · , T , is a realization from a mixture distribution.
Following the ideas on zero-inflated models, we assume that each observation is generated
from a random variable whose probability density function is given by

p(ytij | µtij , φtij) =

{
(1− θtij) , ytij = 0,
θtijp(ytij | µtij , φtij), 0 < ytij < 1.

For ease of notation the equation above assumes that ytij = 0 represents that educational
level i of school j did not take part in the second phase of OBMEP in year t. Now let Ztij
be an indicator variable being equal to 1 if school j, within educational level i took part
in the second phase of OBMEP in year t, and 0 otherwise. Conditioned on Ztij = 1, let
Ytij be the score as computed in the previous section. Then the joint distribution of Ytij
and Ztij , conditional on a set of parameters, is written as

p(ytij , ztij | θtij , µtij , φtij) = [θtijp(ytij | µtij , φtij)]ztij [1− θtij ](1−ztij), (1)

where θtij is the probability that school j, within educational level i, takes part in the
second phase of OBMEP in year t, such that Ztij | θtij ∼ Bernoulli(θtij), with 0 < θtij < 1.
If a school takes part in the second phase of OBMEP, that is, if Ztij = 1, then we assume the
average score of school j, within educational level i, and year t, follows a beta distribution
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with probability density function (pdf) p(ytij | ztij = 1, µtij , φtij), where µtij represents
the mean of Ytij | Ztij = 1, and φtij > 0 is a scale parameter (Ferrari and Cribari-Neto,
2004). In what follows we describe the proposed model for the components θtij , µtij and
φtij .

3.1 Dynamic Hierarchical prior specification

Following the model in equation (1) we propose a hierarchical dynamic linear (Gamerman
and Migon, 1993) prior specification for each of the parameters that are involved in the
joint distribution of Ytij and Ztij , that is, θtij , the probability of presence in the second
phase, µtij the mean of the average score, and φtij the precision of the distribution of Ytij
(conditioned on Ztij = 1), of school j, in educational level i and year t.

Let ηtij = (η1, η2, η3)′tij = (g1(θtij), g2(µtij), g3(φtij))
′ be a three-dimensional vector,

such that gk(·) represents a transformation of the parameter of interest to the real line.

As θtij ∈ (0, 1) one can assume g1(θtij) = log θtij
1−θtij . As p(. | µtij , φtij) is the pdf of a

beta distribution, then µtij ∈ (0, 1), and we assume g2(µtij) = log µtij

1−µtij
. As we assume

φtij to be the precision parameter of the beta distribution, a natural choice is to assume
g3(φtij) = log φtij . We assume the k − th component of ηtij is modelled as

(ηk)tij = gk(·) = βktiX
k
tij + δkj , with (2a)

βkti = F′kα
k
t + vkti, vkti ∼ Npk(0,Vk

i ), t = 1, · · · , T, (2b)

αkt = Gkα
k
t−1 + ωkt , ωkt ∼ Npk(0,Wk) (2c)

αk0 ∼ N(mk
0,C

k
0), (2d)

where Xk
tij is a pk-dimensional vector of covariates that affect a known transformation of

the k − th component of ηtij , and δkj is a random effect associated with the j−th school,
that captures unobserved school’s characteristics, after adjusting (ηk)tij to the covariate
vector Xk

tij . As we observe a short period of time, we assume this random effect fixed across

the years. The coefficients βkti in equation (2a) vary with the educational level i, and year
t. Equation (2b) describes the hierarchical structure of the coefficients βkti, as schools
belonging to the same educational level follow the same prior distribution. In particular, a
priori, the coefficients βkti follow a dynamic linear model (West and Harrison, 1997). That
is, Fk is a qk-dimensional vector, and Gk is a qk-dimensional matrix. Equations (2b) and
(2c) and, in particular, Fk and Gk allow the model to accommodate different temporal
structures, such as a linear trend and/or a seasonal pattern, to describe the behaviour of
the coefficients βkti. The parameter vector αkt = (αk0t, · · · , αk(qk−1)t)

′ is a qk−dimensional

vector, with each component representing the overall effect of the lthk component of Xk
tij on

the transformation of parameter (ηk)tij . The components vkti and ωkt are assumed mutually
and internally independent, for all k, i and t, each following a pk-dimensional multivariate
normal distribution. The covariance matrix of the prior distribution of the coefficients, Vk

i ,
also varies with the educational level i, such that Vk

i is a qk-dimensional diagonal matrix,
with elements V k

im, m = 0, 1, 2, · · · , qk − 1. And Wk is a qk-dimensional diagonal matrix,
with each element of the diagonal representing the variance of the evolution in time of
component αktm, m = 0, · · · , qk−1. The vector αk0 represents the initial information of the
overall effect vector αkt , and a priori, it follows a multivariate normal distribution with
known mean vector mk

0 and covariance matrix Ck
0. Figure A1 in the Appendix, depicts a

directed acyclic graph of the proposed model for δ3
j = 0.
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3.2 Likelihood function, prior specification and inference procedure

We follow the Bayesian paradigm to perform the inference procedure. One of the main
advantages is that it is performed under a single framework and uncertainty about pa-
rameters’ estimates is naturally obtained. To complete model specification and following
equations (2) we are left to assign the prior distribution of the hyperparameters δkj , the

diagonal elements of Vk
i , and of Wk

i for i, k = 1, 2, 3. We assume prior independence
among the hyperparameters. For the school’s random effects we assume independent, zero
mean, normal distributions with unknown variance σ2

k. For the variances, we assign inde-
pendent, inverse gamma prior distributions with infinite variance and prior mean fixed at
some reasonable value, e.g. the maximum likelihood estimate based on independent fits
for each year, and educational level. In other words, following the DAG in Figure A1, we
fix c = aW = aj = 2, for j = 1, 2, 3, and bj is based on previous estimates obtained from
independent fits for each year and educational level, such that we have a prior distribution
with infinite variance and location fixed at a reasonable value.

Likelihood function Let y be the vector comprising the average scores of the schools
stacked across the different educational levels and years, z a vector of 0s and 1s indicating
if school j, within educational level i, took part in the second phase of OBMEP in year t.
And let Θ be the parameter vector comprising all the parameters and hyperparameters in
equation (2). As we assume that (Ytij | Ztij = 1) follows a beta distribution, the likelihood
function, f(y | Θ), is given by

f(y, z | Θ) =

T∏
t=1

I∏
i=1

ni∏
j=1

{
θtij

Γ(φtij)

Γ(µtijφtij)Γ ((1− µtij)φtij)
y

[µtijφtij−1]
tij (1− ytij)[(1−µtij)φtij−1]

}ztij
× [1− θtij ](1−ztij)

,

where Γ(·) is the usual Gamma function.

Following the Bayes’ theorem, the posterior distribution of Θ, p(Θ | y, z), is proportional
to the likelihood function times the prior distribution. As we assume independence among
the hyperparameters, it follows that

p(Θ | y, z) ∝ f(y, z | Θ)

3∏
k=1


I∏

i=1

T∏
t=1

[
p(βk

it | αk
t , V

k
i )p(αk

t | αk
t−1,W

k)
]pk−1∏

m=0

p(V k
im) p(Wk

m)

 p(αk
0 |mk

0 , C
k
0 )

 ,

which does not have a closed analytical form. We make use of MCMC methods to obtain
samples from the posterior distribution above. In particular we use a hybrid Gibbs sampler
with some steps of the Metropolis-Hastings algorithm. The resultant posterior full condi-
tional distributions of βit and δit do not have a closed form, and are sampled using the
Metropolis-Hastings algorithm. In particular, the MCMC algorithm is implemented using
the JAGS software (Plummer, 2003).

4. Data Analysis

We fit 3 different versions of the proposed model in Section 3 that assume different
structures in the mean of the beta distribution, and in the probability of presence
θtij . As mentioned in Section 1.2, we had available information on different schools’
characteristics (covariates) through the census data made available by INEP. The co-
variates that enter in the models fitted below were chosen after performing a thor-
ough exploratory data analysis based on independent fits of beta regression models
per year and educational level. All 3 models consider the same set of covariates for
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the different parameters, such that X1
tij = (1, ADM,HDI,LIB,LAB,NEL)′tij , X2

tij =

(1, ADM,HDI,LIB,LAB,BOY S,NEL)′tij , and X3
tij = (1, nstudent)′tij , where 1 repre-

sents an intercept, which captures a yearly-varying level for each of the parameters, θtij ,
µtij , and φtij . The symbols for the covariates represent the following:

• ADM is a dummy covariate equals 1 if the school is under the federal administration,
and 0 otherwise;

• HDI is the standardized human development index of the municipality the school be-
longs to;

• LIB is a dummy variable being 1 if the school has a library, and 0 otherwise;

• LAB is another dummy variable indicating the presence of a laboratory in the school;

• NEL is a dummy variable equals 1 if the school has more than one educational level;

• BOY S is the standardized number of boys present in the second phase of the OBMEP
in educational level i of school j in year t;

• nstudent is the number of students in school j, in educational level i, and year t, present
in the second phase of the OBMEP.

We assume a dynamic regression model such that in equations (2b) and (2c), we have
that F′1 = I6, F′2 = I7, F′3 = I2, and G1 = I6, G2 = I7, G3 = I2, where Ip is the
p-dimensional identity matrix. For the initial instant in time, αk0, the prior distribution
follows a zero mean multivariate normal distribution, with Ck

0 = 100 Ipk . Note that because
of the structure of Gk, the evolution of the coefficients across time is through a random
walk, which is the simplest structure of a DLM. This is because we only have 8 observations
in time, therefore we do not have temporal information to capture more complex structures
from the data.

Table 2 describes the 3 models we fit to the data. For each model we run two parallel
chains starting from different starting points. We let each of the chains run for 45,000
iterations, considered the first 5,000 iterations as burn in, and stored every 40th iteration
from each chain to avoid possible autocorrelation among the sampled values. The final
sample size is 2,000. Convergence was checked using the diagnostic tools in the R package
coda (Plummer et al., 2006). In particular, we used the criteria proposed by Geweke (1992)
and Gelman and Rubin (1992).

Model g1(θtij) g2(µtij) g3(φtij)

M1 logit(θtij) = X1
tijβ

1
ti logit(µtij) = X2

tijβ
2
ti log(φtij) = X3

tijβ
3
ti

M2 logit(θtij) = X1
tijβ

1
ti logit(µtij) = X2

tijβ
2
ti + δ2j log(φtij) = X3

tijβ
3
ti

M3 logit(θtij) = X1
tijβ

1
ti + δ1j logit(µtij) = X2

tijβ
2
ti + δ2j log(φtij) = X3

tijβ
3
ti

Table 2. Summary of the fitted models. All of them consider the same set of covariates in the proba-
bility of presence, the mean and precision parameters of the beta distribution, and these are, respectively,

X1
tij = (1, ADM,HDI,LIB,LAB,NEL)′tij , X2

tij = (1, ADM,HDI,LIB,LAB,BOY S,NEL)′tij , and X3
tij =

(1, nstudenttij)′. Index t indicates the year, j the school, and i the educational level.

4.1 Model comparison

In this Section we describe the different model comparison criteria used to compare the
different fitted models. In particular we use the deviance information criterion proposed
by Spiegelhalter et al. (2002), and three other criteria based on proper scoring rules.

Deviance Information Criterion (DIC) The DIC is a generalization of the AIC based
on the posterior distribution of the deviance, D(Θ) = −2 log p(y, z | Θ) (Spiegelhalter
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et al., 2002). More formally, the DIC is defined as

DIC = D + pD = 2D −D(Θ),

where D defines the posterior expectation of the deviance, D = EΘ|y,z(D), pD is the

effective number of parameters, with pD = D − D(Θ), and Θ represents the posterior
mean of the parameters. D might be seen as a goodness of fit measurement, whereas
pD indicates the complexity of the model. Smaller values of DIC indicate better fitting
models.

Gneiting and Raftery (2007) consider proper scoring rules for assessing the quality of
probabilistic forecasts. Following Gschlößl and Czado (2008), we use the same data for
estimation and computation of the scores, as our focus is on understanding the relationship
between the schools’ performance and the covariates other than prediction. We use three
different scoring rules:

Continuous ranked probability score (CRPS) For each ytij , the CRPS can be ex-
pressed as

CRPS(ytij) = E|yreptij − ytij | −
1

2
E|yreptij − ỹ

rep
tij |,

where ytij is the observed average score of the jth school within level i in year t, yreptij and

ỹreptij are independent replicates from the posterior predictive distribution of the respective
model.

Assuming there is a sample of size L from the posterior distribution of the parameters
in the model, we can obtain roughly independent replicates, yreptij and ỹreptij , from the re-

spective posterior predictive distribution. The components E|yreptij −ytij | and E|yreptij − ỹ
rep
tij |

can be approximated using Monte Carlo integration through 1
L

∑L
l=1 |y

rep(l)

tij − ytij | and
1
L

∑L
l=1 |y

rep(l)

tij − ỹrep(l)tij |, and

CRPS =
1

n

T∑
t=1

I∑
i=1

ni∑
j=1

RPS(ytij),

where n is the total number of schools across all the years and educational levels. Smaller
values of CRPS indicate the best model among the fitted ones. In the implementation of
CRPS for the mixture model we considered in its computation only sampled values that
returned Ztij = 1. This avoids the use of the missing values, which occur when schools are
not present in the second phase of OBMEP.

Logarithmic score (LogS) The logarithmic score is defined as − log p(ytij , ztij), where
p(ytij , ztij) is the probability density function at the observed average score of school j in
the ith level and year t. Considering the observed sample y, LogS is computed as

LogS =
1

n

T∑
t=1

I∑
i=1

ni∑
j=1

− log p(ytij , ztij),
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where n is the total number of schools across all the years and educational levels. Smaller
values of LogS indicate the best model among the fitted ones.

Assuming there is a sample from the posterior distribution of the parameters of size L
available, the predictive distribution p(ytij) is approximated using Monte Carlo integration,
that is,

p(ytij , ztij) =

∫
Θ
p(ytij , ztij | Θ)p(Θ | y, z)dΘ ≈ 1

L

L∑
l=1

p(ytij , ztij | Θ(l)),

where p(ytij , ztij | Θ(l)) is the probability density function shown in equation (1), condi-
tioned on the respective lth sampled value of the parameter vector Θ, evaluated at ytij
and ztij .

Dawid-Sebastiani score (DSS) This scoring rule is defined as

DSS(ytij) =

(
ytij − µptij

σptij

)2

+ 2 log σptij ,

where µptij and σ2
ptij denote the mean and variance of the predictive distribution p(ytij , ztij)

for year t, school j and educational level i.

Assuming there is available a sample of size L from the posterior distribution of the
parameter vector Θ, samples from the posterior predictive distribution for each school can
be obtained, and these provide an estimate of µptij and σptij , say µ̂ptij and σ̂ptij . Then

DSS(ytij) =
(
ytij−µ̂ptij

σ̂ptij

)2
+ 2 log σ̂ptij , and

DSS =
1

n

T∑
t=1

I∑
i=1

ni∑
j=1

DSS(ytij),

where n is the total number of schools across all years and educational levels.

For all scoring rules, smaller values indicate better fitting models. See Gschlößl and Czado
(2007) and Czado et al. (2009) for further details on the properties and implementation of
CRPS, LogS, DSS, and other criteria based on proper scoring rules.

Table 3 shows the values of the different model comparison criteria obtained under each
fitted model. Different criteria point to different models, but in general, they suggest that

Fitted Inclusion of School
Model random effect (νkj ) pD DIC CRPS LogS DSS

M1 - 92.55 219692.1 0.025 -7.34 -5.38
M2 logit(µtij) 1957.90 210004.4 0.033 -8.81 -4.68
M3 logit(θtij), logit(µtij) 3625.36 203785.8 0.025 -7.96 -5.43

Table 3. Model comparison criteria, DIC and its component, pD, RPS, LogS, and DSS, under each fitted model.
Numbers in italics indicate best model under the respective criterion.

the inclusion of school random effects in the mean µtij , and/or in the logit of the probability
of presence, θtij , improves model performance. The results shown next are based on model
M3.
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4.2 Posterior predictive distribution of the scores for unobserved
schools

Assume that one wants to perform some sort of cross validation, and forecast the perfor-
mance of a set of schools in the second phase of OBMEP for year 2013 that were not used
in the model fitting step. If the covariates of these set of schools are available, following
the Bayesian framework, the prediction is performed by obtaining summaries from the
predictive posterior distribution. Let ynew be the score of a school in the second phase of
OBMEP in 2013 that was not present in the sample. We are interested on the distribution
of p(ynew | y), which is given by

p(ynew, znew | y) =

∫
Θ

p(ynew, znew | Θ,y) p(Θ | y, z) dΘ =

∫
Θ

p(ynew | Θ) p(Θ | y, z) dΘ, (3)

as given Θ, y, z and ynew, znew are independent. Note that p(ynew, znew | Θ,y) is the
probability density function shown in equation (1). As we have available a sample of
size L from the posterior distribution of Θ, the posterior predictive density above can
be approximated through Monte Carlo integration by assuming p(ynew, znew | y, z) ≈
1
L

∑L
l=1 p(y

new, znew | Θ(l)). Samples from the predictive posterior distribution can be
generated by drawing samples from each realization of the posterior distribution, that is,
from p(ynew, znew | Θ(l)). With samples from this distribution we can obtain summaries
for the distribution in equation (3). As conditional on the parameter vector Θ, the scores
of different schools are independent, this process can be repeated for a set of different
schools.

Under model M3, there are also the school’s random effects. When predicting for schools
that were left out from the inference procedure, as they are not present in the likelihood
function, their posterior distribution are equal to their respective prior distribution. Then,
samples from these school’s random effects, that enter in the equations for θjnew

and

µjnew
, are obtained by sampling, for each iteration l, from δ1(l)

jnew
∼ N(0, σ2(l)

1 ), and δ2(l)

jnew
∼

N(0, σ2(l)

2 ), respectively; note that σ2(l)

1 and σ2(l)

2 are samples from the posterior distribution
of σ2

1 and σ2
2, respectively.

Panels of Figure 2 show the summary (mean and 95% credible intervals) of the posterior
predictive distribution of the scores for 90 schools that were left out from the inference
procedure under models M3, and all took part in the second phase of OBMEP in 2013.
These schools were randomly chosen among the different administrative and educational
levels. We picked 10 schools in each combination of administrative and educational levels.
Among the 90 schools, for only 6, the observed value of the score did not fall within the
95% posterior predictive credible intervals.

4.3 Analysis of the results

Panels of Figure 3 show the posterior summary of the coefficients of the covariate effects
(rows) present in the equation for the probability of presence in the 2nd phase of OBMEP,

log θtij
1−θtij , under the different educational levels (columns) and across the years. The es-

timated values of the intercept across time for levels 1 and 2 show a smoother behavior
when compared to the one for level 3. The 95% posterior credible interval of the coefficient
of HDI in level 3 includes 0 across the years, indicating that for level 3, HDI does not
affect the logit of the probability of presence of a school in the second phase. On the other
hand, for levels 1 and 2, the coefficient of HDI is estimated at around −1, suggesting that
one standard deviation increase in HDI, increases the probability of presence of a school
in the second phase by approximately 0.27(=exp(−1)/(1 + exp(−1)) if all the other co-
variates are held fixed. The coefficients of ADM are estimated at high values indicating
that federal schools have the probability of presence greatly increased in the second phase
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Figure 2. Posterior summary (mean: solid circle, and limits of the 95% credible intervals, under model M3): solid
lines of the predictive distribution of the scores of 90 schools that actually took part in the 2nd phase in 2013, and
were left out from the inference procedure for predictive purposes. The crosses represent the observed scores. The
results are shown by administrative (columns) and educational levels (rows 1, 2 and 3).

of OBMEP when compared to state or municipal schools. Also, the presence of a library
or a laboratory, increases the probability of presence of a school in any year in the second
phase of OBMEP. The 95% posterior credible interval of the coefficient for NEL includes
zero for all educational levels and years. This suggests that the presence of more than one
educational level in a school does not influence the probability of presence in the second
phase, after adjusting for all the other covariates.

Figure 4 shows the posterior summary of the coefficients of the covariates in the mean
of the beta distribution, µtij . The covariate with the highest effect on the logit µtij is the
administrative level (ADM) followed by HDI, LIB, LAB. That is, federal schools have
their mean scores increased across the years. HDI has a positive effect for all the years
and educational levels. The coefficient of the proportion of boys (BOYS) is estimated at
relatively small values, being different from zero for some years and educational levels. The
posterior summary of the coefficient for the presence of more than one educational level in
a school (NEL) includes zero for all years and educational levels, suggesting this covariate
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is not important to explain the logit µtij .
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Figure 3. Posterior summary (mean: solid line, and limits of the 95% credible intervals: shaded area) of the coef-
ficients β1

lit, for the intercept, HDI, ADM, LAB, LIB, and NEL (rows) by educational level (columns 1, 2 and 3)
l = 0, 1, 2, 3, 4, 5. The horizontal dotted line when present, represents the value 0.

Panels of Figure 5 show the posterior summary of the coefficients of the covariates in
the logarithm of the precision φtij , grouped by educational level (columns 1 to 3), together
with the overall effect α3

t (4th column). Clearly, the number of students in the second
phase of OBMEP has a positive effect on the logarithm of the precision for all years and
educational levels. Also, regardless of the educational level, the precision of ytij is estimated
at high values, as the intercept is estimated at relatively high values.
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Figure 4. Posterior summary (mean: solid line, and limits of the 95% credible intervals: shaded area) of the coef-
ficients β2

lit, of the covariates (intercept, HDI, ADM, LAB, LIB, BOYS, and NEL, rows) in the mean of ytij , by
educational level (columns 1, 2 and 3) l = 0, 1, 2, 3, 4, 5, 6. The horizontal dotted line when present, represents the
value 0.
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Panels of Figure 6 show the posterior summary of the coefficients of the covariates in
the lower level of hierarchy for the probability of presence in the second phase, α1

t (see
equation (2)). HDI has an overall negative effect, whereas ADM, LAB, and LIB have a
positive effect. And, for all years, 0 falls within the 95% posterior credible interval of the
coefficient for NEL, suggesting that it does not make a difference in the probability of
presence if a school has available more than one educational level or not.
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Figure 5. Posterior summary (mean: solid line, and limits of the 95% credible intervals: shaded area) of the co-
efficients of the covariates in the precision, β3

ti, the intercept, nstudent. The horizontal dotted line when present,
represents the value 0.
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Figure 6. Posterior summary (mean: solid line, and limits of the 95% credible intervals: shaded area) of the overall
coefficients (α1

t ) in the probability of presence, for the intercept, HDI, ADM, LAB, LIB, and NEL. The horizontal
dotted line when present, represents the value 0.

Panels of Figure 7 show the posterior summary of the coefficients of the covariates in the
lower level of hierarchy for the mean, coefficients α2

t . Clearly the coefficients for ADM ,
HDI, LIB, assume positive values across the years, whereas the posterior summary of
the coefficient for LAB includes zero for 2010 and 2012. On the other hand, the posterior
summary for the coefficients of BOY S and NEL include zero for all years.

Panels of Figure 8 show the posterior summary of the fitted values (mean: black solid
line; ranges of the 95% posterior credible interval: dotted lines) together with the posterior
summary (mean: gray cross, 95% credible interval: gray vertical solid line) of the probability
of presence for 9 schools, chosen to depict specific situations observed in the sample. The
solid circle in each panel represents the observed value when the school actually took part
in the second phase of the OBMEP. If the solid circle is missing for a particular school in a
year, then that school did not take part in the second phase of OBMEP. Overall, it is clear
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that the probability of presence is able to capture the presence of the school in the second
phase. In general, the probability of presence correctly decreases if the school did not take
part in the second phase of a given year. Also, the fitted values are close to the observed
ones. This panel makes it clear that even if the school did not take part in the second
phase of OBMEP, our model provides an estimate of its performance (see, e.g., panel for
School 963). This is because the summaries of the predictive distribution are computed
based on the posterior samples for which we obtained zltij = 1, with l representing the l-th

sampled value of z
(l)
tij .
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Figure 7. Posterior summary (mean: solid line, and limits of the 95% credible intervals: shaded area) of the overall
coefficients (α2

t ), for the intercept, HDI, ADM, LAB, LIB, BOYS, and NEL.
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5. Discussion and future work

This paper proposes a hierarchical dynamic beta mixture model for the analysis of the
performance of schools across eight editions of the second phase of the OBMEP, from 2006
until 2013. As not necessarily all the schools in the sample took part in the second phase
of the OBMEP across these years, we propose a mixture dynamic hierarchical model that
allows to estimate the probability of presence of a school in year t. And given that the
school is present, it provides estimates of the mean and precision of the distribution of the
score for a particular year and educational level. All the coefficients of the probability of
presence, the mean and precision of the underlying distribution of the score are allowed to
evolve with time according to a hierarchical dynamic model.

We fit different versions of the proposed model. Inference procedure is performed under
the Bayesian paradigm and uncertainty about parameters’ estimates are obtained in a
straightforward fashion. A sample from the posterior distribution of the parameters was
obtained through MCMC. Implementation of the MCMC algorithm was done using the
software JAGS. Model comparison criteria suggest model M3 (which includes school’s ran-
dom effects both in the probability of presence and in the mean) is the best among those
fitted.

Important conclusions are drawn from this study. Overall, the mean performance of
schools tend to be low. Results show that, in general, federal schools perform better than
state or municipal ones. In general, the difference between federal, and state and municipal
schools tend to be greater in the first and second levels of the OBMEP. The human
development index (HDI) also has a positive effect on the mean of the scores, but smaller
than that of the administrative level. This suggests that federal schools in regions with
higher values of HDI tend to perform slightly better than those with smaller values of
the HDI, when all the other covariates are held fixed. The proportion of boys present
in the second phase of the OBMEP has a very small positive effect for some years for all
educational levels. The possible difference in performance of boys and girls in mathematics
exams has been the object of interest in different studies, see e.g. Hyde and Mertz (2009),
Liu (2009), and references therein. The analysis of the results of PISA 2009 show that
boys outperformed girls in mathematics in 35 out of the 65 countries and economies that
took part in PISA 2009. On the other hand, for 25 countries no significant difference
was observed between the genders, whereas for 5 countries girls outperformed boys in the
mathematics exam of PISA 2009 (OECD, 2011).

Our model naturally provides forecasts of the scores for schools that were not included
in the sample. Under the Bayesian framework this is done through the posterior predictive
distribution, and as shown in equation (3) it naturally accounts for the uncertainty in esti-
mating the parameter vector Θ. Although it is not our interest to perform any prediction,
we showed the results of the prediction for the scores of 90 schools that were not included
in the model fitting step but were actually present in the second phase of OBMEP. The
results were quite satisfactory, as only approximately 7% of the schools did not have their
observed score falling within their respective 95% posterior predictive credible interval
(Figure 2).

Note that the coefficients of the covariates in the mean and precision of the beta distri-
bution (Figures 4 and 5) do not have a smooth pattern across the years. This is probably
happening because we do not have any information on the level of difficulty of the different
exams across the years. It would have been better if organizers of the OBMEP used some
tool from item response theory (van der Linden and Hambleton, 2013) to standardize the
level of difficulty of the exams across years. This is an issue that should be tackled in the
next editions of the OBMEP.

Our current interest is to investigate what kind of impact the OBMEP has on the
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Brazilian educational system. Biondi et al. (2012) quantify the effects of the 2007 edition of
the OBMEP on the average math scores of the ninth-graders participating in Prova Brasil,
which is a national exam applied by INEP to all Brazilian students in the 8th and 9th grades
of publich schools. We plan to focus on students in the last year of high school. Considering
different years we plan to use causal inference and propensity score methods (Hirano and
Imbens, 2004) to investigate the effect of the OBMEP on the performance of students in
different editions of the High School Brazilian National Exam (Exame Nacional do Ensino
Médio, ENEM). Every year, results of the ENEM are used by nearly 500 universities in
Brazil as a selection criterion for admission to higher education.

Acknowledgements

This work is part of Moraes’ M.Sc. Dissertartion under the supervision of A.M. Schmidt
and H. S. Migon. The authors thank the financial support from CNPq (Schmidt and Migon)
and FAPERJ (Schmidt), Brazil, and CAPES, Brazil (scholarship to Moraes). The authors
also thank Professor Claudio Landim (IMPA, Brazil), Monica Souza (OBMEP) and Luiz L.
R. da Conceição (OBMEP) for introducing the problem and making the dataset available.

References
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Appendix A. Directed acyclic graph of the proposed model
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Figure A1. Directed acyclic graph of the hierarchical model proposed in equations (1) and (2), without school
random effect in the precision equation of p(.|µtij , φtij), that is δ3j = 0, ∀j.


