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Abstract

Regression analysis, for prediction purposes, with compositional data is the subject of
this paper. We examine both cases when compositional data are either response or
predictor variables. A parametric model is assumed but the interest lies in the accuracy
of the predicted values. For this reason, a data based power transformation is employed
in both cases and the results are compared with the standard log-ratio approach. There
are some interesting results and one advantage of the methods proposed here is the
handling of the zero values.
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1. Introduction

Compositional data are positive multivariate data whose vector elements sum to the same
constant usually taken to be 1 for convenience purposes. Data of this type arise in many
disciplines, such as geology, ecology, archaeology, economics, geochemistry, biology, bioin-
formatics, political sciences and forensic sciences among others. In mathematical terms,
their sample space, called simplex, is given by

Sd =

{
(x1, ..., xD)T

∣∣∣∣xi ≥ 0,

D∑

i=1

xi = 1

}
, (1)

where D denotes the number of variables (better known as components) and d = D − 1.
There are various techniques for regression analysis with compositional data being the

response variables. See for example Aitchison (2003) who used classical methods on a log-
ratio transformed space and Stephens (1982) and Scealy and Welsh (2003) who trans-
formed the data on the surface of a unit hyper-sphere using the square root transformation.
Dirichlet regression models have been employed by Gueorguieva et al. (2008) and Maier
(2011).
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When zero values exist in data, Dirichlet models and the log-ratio transformation sug-
gested by Aitchison (1982, 2003) and Egozcue et al. (2003) will not work unless a zero
value imputation is applied first. The square root transformation on the other hand treats
them naturally (Scealy and Welsh , 2003), but the procedure is not easy to implement.

We propose the use of a newly suggested data based power transformation Tsagris et al.
(2011) to perform regression analysis. The multivariate logit link function is necessary to
ensure that the fitted values lie within the simplex. The free parameter of the power
transformation is chosen such that that the discrepancy between the observed and the
fitted values is minimized. This implies that the use of Kullback-Leibler divergence will be
of great importance in achieving this goal.

The big advantage of this type of regression is that a) zeros are handled naturally and
thus no zero imputation technique prior to the analysis is necessary and b) more accurate
fitted values can be obtained. The disadvantage on the other hand is that we loose in terms
of statistical properties of the estimated coefficients. Hence, this is more a data mining
procedure.

The inverse situation, where compositional data are in the predictor variables side has
not been looked at, thoroughly, in the literature as far as we are aware of. One possible
solution would be to apply the isometric log-ratio transformation (Egozcue et al. , 2003)
(see Equation (4)) and then standard techniques, see for example Egozcue et al. (2011)
and Hron et al. (2012). But this approach has two drawbacks: first it does not account for
any collinearity between the components and second it is not applicable when zero values
are present.

Collinearity problems can be attacked by principal component regression. Zero values
require imputation, so that the isometric log-ratio transformation can be applied. This
however means that the values of the rest components of each vector, which contains at
least one zero value, will have to change. In some data sets, there can be many zeros
spread in many observations. That would mean that many observations would have to
change values, even slightly. This adds extra variation to the data though.

In this paper we propose a novel parametric regression method whose ultimate purpose
is prediction inference. A data based power transformation (Tsagris et al. , 2011) involving
one free parameter, α is employed at first. We suggest a way to choose the value of α which
leads to the optimal results. The results show that prediction can be more accurate when
one uses a transformation other than the isometric (Egozcue et al. , 2003) or the additive
log-ratio (Aitchison , 1982).

A similar approach is exhibited when for the case of compositional data being predictor
variables. Thus, this extends the work by Hron et al. (2012) who used the isometric log-
ratio transformation only. However, our work focuses mainly on prediction and not on
inference regarding the regression coefficients.

Alternatively, if the number of explanatory variables is rather small, standard linear
regression analysis can be carried out. In either case, the α-transformation handles zero
values in the data naturally (if present) and principal component or k-NN regression
handles possible collinearity problems. The key message is that a transformation other
than the log-ratio family can lead to better results in terms of prediction accuracy.

Regression analysis when compositional data are the response variables is described in
Section 2. Simulation studies and a real data example illustrates the methodology. Section
3 describes the principal component regression when compositional data are the predictor
variables. A real data example shows interesting results. Finally, conclusions close this
paper.
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2. The α-transformation for compositional data

The α-transformation was proposed by Tsagris et al. (2011) as a more general than the
isometric log-ratio transformation (Egozcue et al. , 2003) and is a data based power trans-
formation involving one free power parameter, similarly to the Box-Cox transformation.
The power transformation suggested by Aitchison (2003) is

u =

(
xα

1∑D
j=1 xα

j

, . . . ,
xα

D∑D
j=1 xα

j

)
, (2)

and in terms of that define

z =
1
α
H (Du− jD) , (3)

where x ∈ Sd, H is the d ×D Helmert sub-matrix (the Helmert matrix Lancaster , 1965
without the first row) and jD is the D-dimensional vector of 1s. Note that the power trans-
formed vector u in Equation (2) remains in the simplex Sd, whereas z is mapped onto a
subset of Rd. Note also that Equation (3) is simply a linear transformation of Equa-
tion (2) and moreover as α → 0, (3) converges to the isometric log-ratio transformation
(Egozcue et al. , 2003) defined as

v = H


log x1 − 1

D

D∑

j=1

log xj , . . . , log xD − 1
D

D∑

j=1

log xj




T

. (4)

We can clearly see that when there are zero values in the compositional data the isometric
log-ratio transformation (4) is not applicable because the logarithm of zero is undefined.
For this reason, we will also examine the zero value imputation briefly mentioned in the
next Section.

2.1 The α-regression

We will use the inverse of the additive logistic transformation, combined with the α-
transformation, as a link function. This is a new regression using the α-transformation
defined in Equation (3) which allows for more flexibility even in the presence of zero
values. Another feature of this method is that the line is always curved (unless α is far
away from zero) and so it can be seen not only as a generalization of the log-ratio regression
but also as a flexible type compositional regression in the sense that the curvature of the
line is chosen based on some discrepancy criteria, examined later.

In order for the fitted values to satisfy the constraint imposed by the simplex we model
the inverse of the additive logistic transformation of the mean response. Hence, the fitted
values will always lie within Sd and we also retain the flexibility the α-transformation
offers.

We assume that the conditional mean of the observed composition can be written as a
non-linear function of some covariates

µ1 = 1

1+
∑d

j=1 exT βββj

µi = exT βββi

1+
∑d

j=1 exT βββj
for i = 2, ..., D,

(5)
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where

βββi = (β0i, β1i, ..., βpi)
T , i = 1, ..., d and p denotes the number of covariates.

Then a multivariate linear regression is applied to the α-transformed data

l (α) = −n

2
log

∣∣∣Σ̂ΣΣ
∣∣∣− 1

2
tr

[
(Yα −Mα) Σ̂ΣΣ

−1

α (Yα −Mα)T
]
, (6)

where Yα and Mα are the α-transformed response and fitted compositional vectors. We
have ignored the Jacobian determinant of the α-transformation since it plays no role in
the optimization process and the choice of α For each value of α we maximize the value of
this objective function (6). The Σ̂ΣΣ needs not be numerically estimated, since B̂, the matrix
of the estimates and Σ̂ΣΣ are statistically independent (Mardia et al. , 1979). The maximum
likelihood estimator of ΣΣΣ is (Mardia et al. , 1979)

Σ̂ΣΣα = n−1YT
αPYα,

where P = In−X
(
XTX

)−1 XT . But since this covariance is not unbiased we will use the
unbiased estimator

Σ̂ΣΣα = (n− p− 1)−1 YT
αPYα,

where X is the design matrix and p is the number of independent variables.
The consistency of the estimators of the parameters is not an issue in our case since we

focus on prediction inference. Since the estimation of the parameters depends upon the
value of α, the estimates will not be consistent, unless that is the true assumed model.
The multivariate normal is defined in the whole of Rd but the α-transformation maps the
data onto a subset of Rd. Thus, unless there is not too much probability left outside the
simplex, the multivariate normal distribution might not be the best option.

The α-transformation what it does essentially is to contract the simplex, center it to the
origin and then project it on a subspace of Rd by using the Helmert sub-matrix (Lancaster ,
1965). So if the fitted multivariate normal has high dispersion that will lead to probability
left outside the simplex. The multivariate t distribution was used by Lange et al. (1989)
as a more robust, in comparison to the multivariate normal, model but even so, it will not
be the best option, mainly for two reasons. Even if the multivariate t distribution could
provide flatter tails, there would still be some probability (even less than the normal) left
outside the simplex. Secondly, in a regression setting, the number of parameters we would
have to estimate numerically is increased and this would make the maximization process
more difficult.

A final key feature we have to note is that when α → 0 we end up with the additive
log-ratio regression (9).

2.1.1 Choosing the optimal α using the Kullback-Leibler divergence

The disadvantage of the profile log-likelihood, for choosing the value of α, is that it does
not allow zeros. On the other hand, it provides the maximum likelihood estimates which
are asymptotically normal. Furthermore, confidence intervals for the true value of α can
be constructed.

We suggest an alternative and perhaps better way of choosing the value of α. Better in
the sense that it is trying to take into account the proximity between the observed and the
fitted values. The criterion is to choose the α which minimizes twice the Kullback-Leibler
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divergence (Kullback , 1997)

KL = 2
n∑

j=1

D∑

i=1

yij log
yij

ŷij
, (7)

where yij is the observed compositional point and ŷij is the corresponding fitted value.
The form of the deviance for the log-linear models and the logistic regression has the same
expression as well. Hence, we transfer the same form of divergence to compositional data.
For every value of α we estimate the parameters of the regression and choose the value of
α which minimizes (7).

The number 2 is there because in the case of D = 2 we end up with the log-likelihood of
the binary logistic regression. The Kullback-Leibler divergence (7) takes into account the
divergence or the distance of each of the observed values from the fitted values.

Since we are interested in prediction analysis we should use cross-validation to choose
the value of α. The reason why we did not choose to go down this road is because of
time. The estimation of the parameters for a single value of α requires some seconds in
a fine desktop. The search over many possible values of α requires a few minutes. Thus,
even a 1-fold cross validation would require a few hours and as the number of independent
variables, and/or the sample size increase the computational time will increase as well. So,
for the shake of speed we avoided this way.

2.2 Additive log-ratio regression

The additive log-ratio transformation is defined as

zi = log
(

yi

yD

)
for i = 1, . . . , d, (8)

where d = D − 1, yD is the last component playing the role of the common divisor, but
by relabelling any component can play this role. We will now show the additive log-ratio
regression. At first we will see a nice property of the logarithms and its implications on
the additive log-ratio regression.

log
(

yi

yD

)
= xTβββi ⇔ log yi = log yD + xTβββi, i = 1, . . . , d (9)

where xT is a column vector of the design matrix X, D is the number of components and

βββi = (β0i, β1i, ..., βpi)
T , i = 1, ..., d

are the regression coefficients and p is the number of independent variables.
We see from Equation (9) that when the dependent variable is the logarithm of any

component, the logarithm of the common divisor component can be treated as an offset
variable; an independent variable with coefficient equal to 1.

The main disadvantage of this type of regression is that it does not allow zero values in
any of the components, unless a zero value imputation technique Martin et al. (2012) is
applied first. Its advantage though is that after the additive log-ratio transformation (8)
we can do the standard multivariate regression analysis. As for the fitted value they are
back transformed into the simplex using the inverse of (8).

Example 2.1 Foraminiferal compositions
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This data set consists of foraminiferal (marine plankton species) compositions at 30
different depths (1-30 metres) and can be found in (Aitchison , 2003, pg. 399). There are
5 compositions with a zero value, either in the third or the fourth component.

The data were analysed by Scealy and Welsh (2003) who performed regression by em-
ploying the Kent distribution using the logarithm of the depth as the independent variable.
Since the data contain zero values, the α-regression allows only strictly positive values for
α. Since the composition belongs to S3 we cannot use the ternary plot; we could though
use a 3-dimensional pyramid, but it would not show the structure of the data clearly. For
this reason we will use a barplot.
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Figure 1. The foraminiferal compositions as a function of the logarithm of the sea water depth.

A zero value imputation method suggested by Martin et al. (2012) can be briefly sum-
marised as follows: Replace the zero values by 65% of a threshold value using the non
parametric method described by (Martin et al. , 2003). The threshold value is different
for each component. We used the minimum, non zero, value of each component as that
threshold. Then the isometric log-ratio transformation (4) is applied. An E-M algorithm
substitutes the replaced values with a value less than the chosen threshold. In the end,
the data are transformed back to the simplex. This method, like all zero value imputation
methods, results in all the components of each compositional vector being changed, even
slightly. A tolerance value (say 0.01) is used as convergence criterion between successive
iterations.

We will use this method in order to allow for the additive log-ratio regression to be
performed. In this case the Kullback-Leibler divergence (7) will be calculated for the initial,
not the zero imputed data.

The value of the divergence (7) when regression is applied to the original data with
α = 1 is equal to 6.123. The value of the divergence (7) when regression is applied to the
zero imputed data data with α = 0 is equal to 7.112 and when α = 1 is equal to 6.123.
Thus a value of α other than zero leads to better predictions with without zero value
imputation. Scealy and Welsh (2003) used the same dataset treating the compositional
data as directional by applying the square root transformation. Their suggested Kent
regression (no zero imputation is necessary) produced a divergence value equal to 6.344,
still lower than the additive log-ratio regression.

As earlier stated, the purpose of this regression is to provide better fittings to the ob-
served data. It is more a data mining procedure than it is a statistical one, from the
point of view that we are interested in estimating/predicting future observations with as
high accuracy as possible. We are not interested in making inference about the regression
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Figure 2. Twice the Kullback-Leibler divergence (7) as a function of α. Graph (a) refers to the original data and
graph (b) refers to the zero imputed data.

coefficients.
In the next Section, the reverse scenario is of interest, that of the compositional data

(containing zero values again) playing the role of the covariates.

3. Principal component regression with compositional data being the
predictor variables

As the title of this Section suggests we will focus only in the principal component regression,
even though we could mention regression analysis in general. The reason for not doing
so is because Hron et al. (2012) has already covered this case and we are interested in
generalising this idea to cover the case of multicollinearity as well.

Principal component regression is based on principal component analysis and hence we
will not spend too much time. The algorithm to perform principal component regression
(PCR) can be described as follows

(1) At first standardize the independent variables. This way, XTX (the n × p design
matrix, which includes the p independent variables but not the intercept term) is
proportional to the correlation matrix for the predictor variables (Jolliffe , 2005).
The n stands for the sample size.

(2) Perform eigen analysis on XTX and calculate the matrix of the eigenvectors V
and the scores Z = XV.

(3) Estimate the regression coefficients by

B̂ = V
(
ZTZ

)−1
ZTy,

where y is the vector containing the values of the dependent variable.
(4) Estimate the covariance matrix of the estimated regression coefficients by

V ar
(
B̂

)
= σ2V

(
ZTZ

)−1
VT ,

where σ2 is the conditional variance of the dependent variable calculated from
the classical multiple regression analysis based upon the given number of principal
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components. It is the error variance, whose estimate is the (unbiased) mean squared
error.

The key point is that we can have p different sets of estimated regression coefficients,
since we can use the first eigenvector (or principal component), the first two eigenvectors
or all of them. If we use all p of them, then we end up with the same regression coefficients
as if we performed a classical multiple regression analysis.

Since we are not interested in statistical inference regarding the coefficients of the prin-
cipal components we can ignore their variance matrix. Another key point that is worthy
to mention is that we can also use the principal scores as the new predictor variables and
do the classical regression. The fitted values will be exactly the same.

The idea here is simple, apply the α-transformation (3) to the compositional data and
then perform principal component regression. The value of α and the number of principal
components which lead to the optimal results are chosen via cross validation. The optimal
results in our case will refer to minimization of the mean squared error of prediction.

Example 3.1 Glass data and refractive index

In optics the refractive index of a substance (optical medium) is a ”clean” number that
describes how light, or any other radiation, propagates through that medium. It is defined
as RI = c

v , where c is the speed of light in vacuum and v is the speed of light in the
substance. The refractive index of water, for example, is 1.33. This means that the speed
of light in water is reduced by 24.8%

[(
1− 1

1.33

)
%

]
.

Surprisingly enough, negative refractive values are also possible, when if permittivity and
permeability have simultaneous negative values. This can be achieved with periodically
constructed metamaterials. The negative refraction index (a reversal of Snell’s law) offers
the possibility of the superlens and other exotic phenomena.

The glass dataset available from UC Irvine Machine Learning Repository contains 214
observations regarding glass material from crime scenes. with information about 8 chemical
elements, in percentage form. These chemical elements are sodium (Na), Magnesium (Mg),
aluminium (Al), silicon (Si), potassium (K), calcium (Ca), barium (Ba) and iron (Fe). The
variable whose values we wish to predict based on knowledge of the chemical composition
is the refractive index (RI) of each glass.

The category of glass is also available (for example vehicle headlamps, vehicle window
glass, tableware et cetera). This extra information can be taken into account by principal
component regression easily. For the kernel regression though, an extra kernel for this
discrete variable has to be fitted and the final kernel is the product of the two kernels (one
for the continuous variables and one for this discrete variable). So, the inclusion of non
continuous or different types of continuous data is not an easy task when kernel regression
is to be used.

We have also included a second PCR model which includes the extra information about
the data, the category of the glass. The difference from the PCR described is that now we
will use the scores of the principal component analysis (see the second key point in Section
3) to do regression. In this way we will also add the categorical variable indicating the
category of each glass measurement. Table 1 summarizes the results of the five regression
models.

We can see from Table 1 that even if we replace the zero values the result is the same. The
isometric log-ratio transformation when applied to the zero imputed data does not lead
to the optimal results. A value of α far from zero led to much better results, the adjusted
R2 increased from 0.772 to 0.89 and the mean squared error of prediction was less than
half. Martin et al. (2012) also used a robust E-M algorithm by employing MM estimators
(Maronna et al. , 2006). The results (not presented here) when robust imputation was
performed were slightly worse than the ones presented in Table (1).
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Table 1. Mean squared error of prediction (MSPE) for each regression model applied to the glass data. The adjusted
coefficient of determination (R2) is calculated using the fitted values from principal component regression.

Regression model for the original data
Method Chosen parameters MSPE Adjusted R2

PCR α = 1 and 7 PCs 1.237 0.891
PCR with the glass
category α = 1 and 7 PCs 1.02 0.903

Regression model for the zero value imputed data
Method Chosen parameters MSPE Adjusted R2

PCR α = 0 and 7 PCs 2.403 0.784
PCR α = 0.95 and 7 PCs 1.239 0.890
PCR with the glass
category α = 1 and 6 PCs 1.016 0.863

Even if we impute the zero values, the estimated MSPE, when the isometric log-ratio
transformation is used (α = 0), is much higher than with a value of α close to 1 and the
value of the adjusted R2 is lower.
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Figure 3. Observed versus estimated refractive indices. Plots (a) and (b) correspond to α = 1 with 7 PCs without
and with information about the glass category, using in the original data. The third plot (c) corresponds to α = 0
with 7 PCs using the zero imputed data.

We also used kernel regression and k-NN regression using many different metrics or
distances with and without the α-transformation but none of them was as successful as
the principal component regression. We also tried robust principal component regression
for the second example but the results were not better either.

The best model is the one using all 7 principal components coming from the α-
transformed data with α = 1 and using the information about the category of glass as we
can see in Table 1. In mathematical terms it is written as

R̂I = 1.345− 0.081S1 + 1.368S2 + 0.161S3 − 0.801S4 + 2.533S5 − 1.618S6 − 1.329S7

−1.567WinF− 1.460WinNF− 2.445Veh− 1.165Con− 1.177Tabl,

where Si, for i = 1, . . . , 7 stands for the scores of each principal component and WinF and
WinNF stand for the window float and window non-float glass respectively. Veh stands
for vehicle window glass, Con for containers, Tabl for tableware. The vehicle headlamps
is the reference glass category. We do not show the standard errors since the choice of
the number of principal components, and the inclusion of the information about the glass
categories was based on the MSPE (Table 1).

The normality of the residuals was rejected according to the Shapiro test (p-value<
0.001). As for the independence assumption by looking at Figure 4 we can see that it looks
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acceptable. There are a few outliers in the residuals space as we can see from Figure 4.
The α used in this model was equal to 1 as we mentioned before. Different values of α will
lead to different values bering detected as potential outliers. In addition, we detected some
outliers in the residuals space and not in the space spanned by the 7 principal components.
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Figure 4. Fitted values versus the standardised residuals for the model. The two horizontal lines indicate the region
of outliers in the residuals space.

4. Conclusions

There are two key messages this paper tries to convey. The first is that a transformation
other than the isometric of the additive log-ratio transformation should be considered for
compositional data analysis. It was evident from the example that when the data contain
zero values the α-transformation handles the data naturally without changing their values
even to the slightest. The log-ratio transformations require zero value imputation prior to
their applications, a requirement not met by the α-transformation.

One can argue though that in both examples values of α close to 1 produced similar
results as α = 1. This was something to be expected for the data in the first example,
but even then, this discourages the use of log-ratio as the panacea for all compositional
data analysis. We do not disqualify though the use of log-ratio but rather try to show
that this very popular transformation for compositional data has some drawbacks and in
some cases other transformations could be applied. In both examples, the differences in
the Kulback-Leibler divergence or the MSPE were small, but still indicative.

The second key message is that when compositional data analysis are on the covariates
side standard regression techniques after the α-transformation should be used with caution.
Since the data represent percentage allocation, it is very natural that correlations exist even
after the transformation and thus, multicollinearity should be examined first. In addition,
if there are many components then variable selection could be applied. These are some
reasons why we preferred to perform principal component regression.
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