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Abstract

In this article, we will use the quadratic rank transmutation map (QRTM) in order
to generate a flexible family of probability distributions in which a three parameter
Dagum distribution is embedded. Various structural properties of the new distribution
including explicit expressions for the moments, random number generation and order
statistics are derived. Estimation by maximum likelihood and inference for large samples
are addressed. It will be shown that the analytical results are applicable to model the
real world data.
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1. Introduction

The quality of statistical analysis depends heavily on the underlying probability distribu-
tion. Because of this, considerable effort over the years has been expended in the devel-
opment of large classes of probability distributions along with relevant statistical method-
ologies. In fact, the statistics literature is filled with hundreds of continuous univariate
distributions but a real data set following the classical distributions are more often the
exception rather than the reality. Since there is a clear need for extended forms of these
distributions a significant progress has been made towards the generalization of some
well-known distributions and their successful application to problems in areas such as
engineering, finance, economics and biomedical sciences, among others.

In this article, we use the transmutation map method (Shaw and Buckley, 2009) to
develop the so-called transmuted Dagum (TD) distribution by embedding a three param-
eter Dagum distribution. A random variable X is said to have a transmuted probability
distribution with cdf F (x) if

F (x) = (1 + λ)G(x)− λG(x)2, |λ| ≤ 1 (1)
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where G(x) is the cdf of the base distribution.
This generalization method has been deployed for generalization of many distributions

by several authors including Aryal and Tsokos(2009, 2011), Aryal(2013), Ashour and Elte-
hiwy(2013a, 2013b), Elbatal(2013), Elbatal and Aryal(2013b), Elbatal and Elgarhy(2013c),
Eltehiwy and Ashour (2013), Khan and King(2013), Mahmoud et al.(2013), Merovci(2013a,
2013b, 2013c), Tian et al.(2014) among others.

Dagum (1977) proposed the Dagum distribution to fit empirical income and wealth
data, and also accommodate heavy tailed models. Dagum distribution has both Type-I
and Type-II specification, where Type-I is the three parameter specifications and Type-
II deals with four parameter specifications. Dagum motivated his model from empirical
observation that the income elasticity of the cumulative distribution function (cdf) F of
income into a decreasing and bounded function of F . In this context its features have been
extensively analyzed by many authors, for excellent survey on the genesis and on empirical
applications see (Kleiber et al.,2003) and (Kleiber, 2008). The cumulative distribution
function (cdf) and probability density function (pdf) of Dagum (Type-I) distribution are
given by

G(x, α, θ, β) =
(
1 + αx−θ

)−β
, (2)

with x > 0,and α > 0, θ > 0 and β > 0,and

g(x, α, θ, β) = αθβx−θ−1
(
1 + αx−θ

)−β−1
, (3)

respectively, where α is a scale parameter, while θ and β are shape parameters. Through-
out this paper, the Dagum distribution with parameters α, θ, and β will be denoted by
D(α, θ, β). The Dagum distribution has positive asymmetry, it is unimodal for θβ > 1
and zero-modal for θβ ≤ 1. Also, an important characteristic of the Dagum distribution is
that, according to the values of parameters, its hazard rate can be monotonically decreas-
ing, upside-down bathtub and, finally, bathtub and then upside-down bathtub (Domma,
2002). This behavior has led several authors to study the model in different fields. In fact,
recently, the Dagum distribution has been studied from a reliability point of view and used
to analyze survival data see (Domma et al., 2011). Dagum (1980) refers to his model as
the generalized logistic-Burr distribution. Actually when β = 1 Dagum distribution was
also referred to as the log-logistic distribution. Also, generalized log- logistic distributions
arise naturally in Burr’s system of distributions. The most popular Burr distributions are
Burr-XLL distribution, often called Burr distribution with cdf

F (x, θ, β) = 1−
(
1 + x−θ

)−β
, for x, θ, β > 0

and the Burr-III distribution with cdf

F (x, θ, β) =
(
1 + x−θ

)−β
, for x, θ, β > 0.

It is clear that the Dagum distribution is a Burr III distribution with an additional scale
parameter α.

The rest of the paper is organized as follows. In Section 2 we develop the expressions for
pdf,cdf and reliability function of transmuted Dagum probability distribution. In Section
3 we studied the statistical properties include quantile functions, moments, moment gener-
ating function. The minimum , maximum and median order statistics models are discussed
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in Section 4. The Rényi and Shannon entropies are determined in Sections 5. In Section 6
we demonstrate the maximum likelihood estimates and the asymptotic confidence intervals
of the unknown parameters. Finally, in Section 7 we present a real world data analysis to
illustrate the usefulness of the proposed distribution.

2. Transmuted Dagum Distribution

In this section we develop the expressions for the pdf and cdf of transmuted Dagum (TD)
distribution using the transmutation map. Using (1) and (2) we have the cdf of transmuted
Dagum distribution

FTD(x) =
[(

1 + αx−θ
)−β

] [
1 + λ− λ

(
1 + αx−θ

)−β
]

, (4)

where θ and β are the shape parameters representing different patterns of the transmuted
Dagum distribution and are positive, α is a scale parameter and λ is the transmuted
parameter. The restrictions on the values of the parameters α, θ, β, and λ described in in
equation (4) are always the same. The probability density function (pdf) of the transmuted
Dagum distribution is given by

fTD(x) = αθβx−θ−1
(
1 + αx−θ

)−β−1
(

1 + λ− 2λ
(
1 + αx−θ

)−β
)

. (5)

The transmuted Dagum distribution is very flexible model that approaches to different
distributions when its parameters are changed. For example, for λ = 0 we have the Dagum
distribution. Figure 1 illustrates the graphical behavior of the pdf of TD distribution for
selected values of the parameters.
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Figure 1. Probability density function of transmuted Dagum distribution for selected parameters

Note that the figure on the left exhibits the shape of the distribution for different choice
of all the parameters whereas the figure on the right exhibits the behavior as λ varies from
-1 to 1 while keeping all other three parameters fixed.
The cdf of transmuted Dagum distribution for selected values of the parameters are dis-
played in Figure 2.
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Figure 2. Cumulative distribution function of transmuted Dagum distribution for selected parameters

2.1 Reliability Analysis

The transmuted Dagum distribution can be a useful characterization of life time data
analysis. The reliability function (RF ) of the transmuted Dagum distribution is denoted
by RTD(x) also known as the survivor function and is defined as

RTD(x) = 1− FTD(x)

= 1−
[(

1 + αx−θ
)−β

] [
1 + λ− λ

(
1 + αx−θ

)−β
]

. (6)

It is important to note that RTD(x) + FTD(x) = 1 . One of the characteristic in reliability
analysis is the hazard rate function (hrf) defined by

hTD(x) =
fTD(x)

1− FTD(x)

=
αθβx−θ−1

(
1 + αx−θ

)−β−1
(
1 + λ− 2λ

(
1 + αx−θ

)−β
)

1−
[
(1 + αx−θ)−β

] [
1 + λ− λ (1 + αx−θ)−β

] . (7)

It is important to note that the units for hTD(x) is the probability of failure per unit of
time, distance or cycles. These failure rates are defined with different choices of parameters.

Figure 3 illustrates the graphical behavior of the hazard rate function of the transmuted
Dagum distribution for selected values of the parameters.

Note that the figure on the left displays the hazard rate function for different choice of
all parameters whereas the figure on the right exhibits the behavior of the hazard rate
function as λ varies from -1 to 1 while keeping all other three parameters fixed.

3. Statistical Properties

In this section we discuss the statistical properties of the transmuted Dagum distribution.
Specifically quantile and random number generation function , moments and moment
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Figure 3. hazard rate function of transmuted Dagum distribution

generating function.

3.1 Quantile and Random Number Generation

The quantile xq of the TD (α, β, θ, λ, x) is real solution of the following equation

xq = α
1
θ



−1 +

[
(1 + λ)−

√
(1 + λ)2 − 4λq

2λ

]−1
β





− 1
θ

. (8)

In particular, the median of the transmuted Dagum distribution is

x0.5 = α
1
θ



−1 + 2

1
β

[
(1 + λ)−√1 + λ2

λ

]−1
β





− 1
θ

. (9)

In order to generate random numbers from the TD distribution we can use the inversion
method so we generate ϕ as uniform random variables from U(0,1) and use the relationship
below.

x = α
1
θ



−1 +

[
(1 + λ)−

√
(1 + λ)2 − 4λϕ

2λ

]−1
β





− 1
θ

.

3.2 Moments & Moment Generating Function

Moments are necessary and important in any statistical analysis, especially in applications.
It can be used to study the most important features and characteristics of a distribution
(e.g., tendency, dispersion, skewness and kurtosis). If X has the TD (α, β, θ, λ, x) then the
rth moment of X are given by the following

E(Xr) = α
r

θ β
{

(1 + λ) B
(
β +

r

θ
, 1− r

θ

)
− 2λB

(
2β +

r

θ
, 1− r

θ

)}
, (10)
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where B(., .) is the beta function defined by

B(x, y) =
∫ 1

0
tx−1(1− t)y−1dt.

Using the functional relationship between the beta and gamma function as given below

B(x, y) =
Γ(x)Γ(y)
Γ(x + y)

we have the rth order moments are givable by

E(Xr) = α
r

θ

{
(1 + λ)

Γ
(
β + r

θ

)
Γ

(
1− r

θ

)

Γ(β)
− 2λ

Γ
(
2β + r

θ

)
Γ

(
1− r

θ

)

2Γ(2β)

}
.

It should be noted that the gamma function is defined everywhere except negative integers
and zero. Therefore the rth order moment will be defined only when θ > r. In particular,

E(X) =





α
1
θ

[
(1 + λ)

Γ
(
β + 1

θ

)
Γ

(
1− 1

θ

)

Γ(β)
− 2λ

Γ
(
2β + 1

θ

)
Γ

(
1− 1

θ

)

2Γ(2β)

]
, if θ > 1,

indeterminate, Otherwise

The variance, skewness and kurtosis of the TD distribution can be calculated from (10)
using the relations given below.

V ariance(X) = E(X2)− [E(X)]2,

Skewness(X) =
E(X3)− 3E(X)E(X2) + 2E3(X)

V ar3/2(X)
,

Kurtosis(X) =
E(X4)− 4E(X)E(X3) + 6E(X2)E2(X)− 3E4(X)

V ar2(X)
.

To illustrate the effect of the parameter λ on skewness and kurtosis we consider measures
based on quantiles. The shortcomings of the classical kurtosis measure are well known.
There are many heavy-tailed distributions for which this measure is infinite, so it be-
comes uninformative. The Bowleys skewness (Kenney, 1962) is one of the earliest skewness
measures defined by the average of the quartiles minus the median, divided by half the
interquartile range, given by

B =
Q3 + Q1 − 2Q2

Q3 −Q1
=

Q(3/4) + Q(1/4)− 2Q(2/4)
Q(3/4)−Q(1/4)

and the Moors kurtosis (Moors, 1998) is based on octiles and is given by

M =
(O3 −O1) + (O7 −O5)

O6 −O2
=

Q(3/8)−Q(1/8) + Q(7/8)−Q(5/8)
Q(6/8)−Q(2/8)

.

Figure 4 displays the Bowley (B) and Moors (M) kurtosis as a function of the parameter
λ for α = 2, θ = 10 and β = 3. It is evident that both measures depend on the parameter
λ.
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Figure 4. Behavior of Bowley(B) and Moors(M) kurtosis for transmuted Dagum distribution

The moment generating function, MGF, of a random variable X is defined by MX(t) =
E(exp(tX)). When X has the TD (α, β, θ, λ, x) then the MGF of X is given by

MX(t) =
∫ ∞

0
exp(tx)f(x)dx

=
∑∞

r=0

tr

r!
α

r

θ β
{

(1 + λ)B
(
β +

r

θ
, 1− r

θ

)
− 2λB

(
2β +

r

θ
, 1− r

θ

)}
(11)

which can be expressed in terms of the gamma function as

MX(t) =
∑∞

r=0

tr

r!
α

r

θ

{
(1 + λ)

Γ
(
β + r

θ

)
Γ

(
1− r

θ

)

Γ(β)
− 2λ

Γ
(
2β + r

θ

)
Γ

(
1− r

θ

)

2Γ(2β)

}
.

As discussed above it should be noted that the MGF exists only if θ > r.

4. Order Statistics

Let X1, X2, ..., Xn be a simple random sample from TD distribution with cumulative
distribution function and probability density function as in (4) and (5), respectively. Let
X(1:n) ≤ X(2:n) ≤, · · · ,≤ X(n:n) denote the order statistics obtained from this sample. In
reliability literature, X(i:n) denote the lifetime of an (n− i + 1)−out−of−n system which
consists of n independent and identically components. When i = 1, and when i = n,
such systems are better known as series, and parallel systems, respectively. Considerable
attention has been given to establish several reliability properties of such systems. It is
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well known that the cdf and pdf of X(i:n) for , 1 ≤ i ≤ n are, respectively, given by

Fi:n(x) =
n∑

k=i

(
n

k

)
[F (x)]k [1− F (x)]n−k

=
∫ F (x)

0

n!
(i− 1)!(n− i)!

ti−1(1− t)n−idt. (12)

and

fi:n(x) =
n!

(i− 1)!(n− i)!
[F (x)]i−1 [1− F (x)]n−i f(x). (13)

We define the smallest order statistic X(1) = Min(X1, X2, ..., Xn), the largest order
statistic as X(n) = Max(X1, X2, ..., Xn) and median order statistic Xm+1 where m = bn

2 c.
Also note that in (13) 0 < F (x) < 1 for x > 0, so by using the binomial series expansion

we have

[1− F (x)]n−i =
n−i∑

k=0

(−1)k

(
n− i

k

)
[F (x)]k.

Therefore, the pdf of the order statistic (13) can be expressed as

fi:n(x) =
n−i∑

k=0

(−1)k n!
(n− i− k)!(i− 1)!k!

[F (x)]k+i−1 f(x)

Also note that the joint distribution of the the ith and jth order statistics for 1 ≤ i <
j ≤ n is given by

fi:j:n(xi, xj) = C [F (xi)]
i−1 [F (xj)− F (xi)]

j−i−1 [1− F (xj)]
n−j f(xi)f(xj), (14)

where C = n!
(i−1)!(j−i−1)!(n−j)! .

4.1 Distribution of Minimum, Maximum and Median

Let X1, X2, · · · , Xn be a random sample from the transmuted Dagum distribution then
the pdf the smallest order statistic X(1) is given by

f1:n(x) = n [1− F (x)]n−1 f(x)

= nαθβx−θ−1
(
1 + αx−θ

)−β−1
{

1 + λ− 2λ
(
1 + αx−θ

)−β
}

×
{

1−
[(

1 + αx−θ
)−β

] [
1 + λ− λ

(
1 + αx−θ

)−β
]}n−1

(15)
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and the pdf of the largest order statistic X(n) is given by

fn:n(x) = n [F (x)]n−1 f(x)

= nαθβx−θ−1
(
1 + αx−θ

)−nβ−1
{

1 + λ− 2λ
(
1 + αx−θ

)−β
}

×
{

1 + λ− λ
(
1 + αx−θ

)−β
}n−1

. (16)

and the pdf of median order statistic is

fm+1:n(x) =
(2m + 1)!

m!m!
[F (x)]m[1− F (x)]mf(x)

=
(2m + 1)!

m!m!
αθβx−θ−1

(
1 + αx−θ

)−(mβ+β+1)
{

1 + λ− 2λ
(
1 + αx−θ

)−β
}

×
{

1 + λ− λ
(
1 + αx−θ

)−β
}m {

1−
[(

1 + αx−θ
)−β

] [
1 + λ− λ

(
1 + αx−θ

)−β
]}m

.

Similarly, using (14) the joint distribution of the the ith and jth order Statistics for
1 ≤ i < j ≤ n from transmuted Dagum distribution is

fi:j:n(xi, xj) = Cα2θ2β2
[
x(i)x(j)

]−(θ+1) [
h(i)h(j)

]−(β+1)
{[

h−β
(i)

] [
1 + λ− λh−β

(i)

]}i−1

×
{

1−
[
h−β

(j)

] [
1 + λ− λh−β

(j)

]}n−j {(
1 + λ− 2λh−β

(i)

)(
1 + λ− 2λh−β

(j)

)}

×
{[

h−β
(j)

] [
1 + λ− λh−β

(j)

]
−

[
h−β

(i)

] [
1 + λ− λh−β

(i)

]}j−i−1
,

where, h(i) =
(
1 + αx−θ

(i)

)
, h(j) =

(
1 + αx−θ

(j)

)
and C = n!

(i−1)!(j−i−1)!(n−j)! . In a special
case when i = 1 and j = n we get the joint distribution of the minimum and maximum of
order statistics and is given by

f1:n:n(x1, xn) = n(n− 1)
[
F (x(n))− F (x(1))

]n−2
f(x(1))f(x(n))

= n(n− 1)α2θ2β2
(
x(1)x(n)

)−(θ+1) (
h(1)h(n)

)−(β+1)
{(

1 + λ− 2λh−β
(1)

)(
1 + λ− 2λh−β

(n)

)}

×
{[

h−β
(n)

] [
1 + λ− λh−β

(n)

]
−

[
h−β

(1)

] [
1 + λ− λh−β

(1)

]}n−2
,

where, h(1) =
(
1 + αx−θ

(1)

)
and h(n) =

(
1 + αx−θ

(n)

)
.

5. Entropy

In this section, we discuss the Rényi entropy and Shannon entropy for transmuted Dagum
distribution. The concept of entropy plays a vital role in information theory (Rényi, 1961).
The entropy of a random variable X is defined in terms of its probability distribution
and can be shown to be a good measure of randomness or a measure of variation of the



40 I. Elbatal and G. Aryal

uncertainty. For a pdf f(x), Rényi entropy is given by

HR(f) =
log

1− δ

∫ ∞

0
f δ(x)dx, δ > 0, δ 6= 1. (17)

As δ → 1, we obtain the Shanon entropy. Note that for a transmuted Dagum distribution

∫ ∞

0
f δ

TD(x)dx =
{

[(1 + λ) αθβ]δ
∫ ∞

0
x−δ(θ+1)

(
1 + αx−θ

)−δ(β+1)
dx

− [2λαθβ]δ
∫ ∞

0
αθβx−δ(θ+1)

(
1 + αx−θ

)−δ(2β+1)
dx

}
.

Setting t =
(
1 + αx−θ

)−1 we get x = (αt)
1
θ (1− t)

−1
θ and we have

∫ ∞

0
f δ

TD(x)dx =
[(1 + λ) θβ]δ

θα
δ

θ

B

(
βδ +

1− δ

θ
, δ +

δ − 1
θ

)
.

Therefore,

HR(f) =
1

1− δ
log

{
[(1 + λ) θβ]δ

θα
δ

θ

B(βδ +
1− δ

θ
, δ +

δ − 1
θ

)

}
.

6. Estimation and Inference

In this section we will discuss about the method of parameter estimation of the transmuted
Dagum distribution. The Maximum Likelihood Estimation is one of the most widely used
estimation method for finding the unknown parameters. Here we find the estimators for
the TD . Let X1, X2, ..., Xn be a random sample from X ∼ TD(α, θ, β, λ) with observed
values x1, x2, ..., xn then the likelihood function L ≡ L(α, θ, β, λ : xi)can be written as

L =
n∏

i=1

{
αθβx−θ−1

i

(
1 + αx−θ

i

)−β−1
(

1 + λ− 2λ
(
1 + αx−θ

i

)−β
)}

. (18)

By taking logarithm of equation (18), the log-likelihood function ` = lnL can be written
as

` = n ln α + n ln θ + n ln β − (θ + 1)
n∑

i=1

lnxi − (β + 1)
n∑

i=1

ln
(
1 + αx−θ

i

)

+
n∑

i=1

ln
[
1 + λ− 2λ

(
1 + αx−θ

i

)−β
]

. (19)

The components of the score vector are obtained by differentiating (19) with respect to
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each parameter α, θ, β and λ as below:

∂`

∂α
=

n

α
− (β + 1)

n∑

i=1

x−θ
i(

1 + αx−θ
i

) + 2λβ
n∑

i=1

(
1 + αx−θ

i

)−β−1

xθ
i

[
1 + λ− 2λ

(
1 + αx−θ

i

)−β
] ,

∂`

∂θ
=

n

θ
−

n∑

i=1

ln xi + α(β + 1)
n∑

i=1

ln xi

xθ
i

(
1 + αx−θ

i

) − 2αλβ
n∑

i=1

lnxi

(
1 + αx−θ

i

)−β−1

xθ
i

[
1 + λ− 2λ

(
1 + αx−θ

i

)−β
] ,

∂`

∂β
=

n

β
−

n∑

i=1

ln
(
1 + αx−θ

i

)
+ 2λ

n∑

i=1

(
1 + αx−θ

i

)−β
ln

(
1 + αx−θ

i

)
[
1 + λ− 2λ

(
1 + αx−θ

i

)−β
] ,

∂`

∂λ
=

n∑

i=1

1− 2
(
1 + αx−θ

i

)−β

[
1 + λ− 2λ

(
1 + αx−θ

i

)−β
] .

The maximum likelihood estimators α̂, θ̂, β̂ and λ̂ of α, θ, β, and λ are obtained by setting
the score vector to zero and solving the system of nonlinear equations. It is usually more
convenient to use nonlinear optimization algorithms such as the quasi- Newton algorithm
to numerically maximize the log-likelihood function given in (19). It should be noted that
(19) can be written as

`(φ) =
n∑

i=1

`i(φ)

where, φ = (α, θ, β, λ)T .
So, the score function takes the form

U(φ) =
∂`(φ)
∂φ

=
n∑

i=1

Ui(φ),

where, Ui(φ) =
(

∂`i(φ)
∂α , ∂`i(φ)

∂θ , ∂`i(φ)
∂β , ∂`i(φ)

∂λ

)T
for i = 1, 2, · · · , n.

The Fisher information matrix, I(φ), can be estimated by

I(φ̂) =
1
n

n∑

i=1

Ui(φ̂)UT
i (φ̂).

We can compute the maximum values of the unrestricted and restricted log-likelihood
functions to obtain likelihood ratio (LR) statistics for testing the sub-model of the new
distribution. For example, we can use the LR statistic to check whether the fitted trans-
muted Dagum distribution is statistically “superior” to a fitted Dagum distribution for a
given data set. In this case we can compare the first model against the second model by
testing H0 : λ = 0 versus Ha : λ 6= 0.
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7. Applications

In this section, we provide a data analysis in order to assess the goodness-of-fit of the
model. The data set consists of the duration of time between successive failures of the air
conditioning system of each member of a fleet of 13 Boeing 720 jet airplanes (Proschan,
1963). This data has been referenced by several authors including recently by Huang and
Oluyede (2014). The descriptive summary of the data is provided in table 1.

Table 1. Descriptive statistics of the air conditioning

n Mean Median Variance Minimum Maximum Skewness Kurtosis
188 92.0745 54 11645.93 1.00 603.00 2.139 8.023

We estimate the unknown parameters of the transmuted Dagum distribution using the
method of maximum likelihood. There exists many maximization methods in R pack-
ages (The R Project). We will compute the maximum likelihood estimates (MLEs) using
Limited- Memory quasi-Newton code for Bound-constrained optimization (L-BFGS-B).
Table 2 lists the MLEs of the model parameters along with their errors provided in the he
parentheses.

Table 2. Estimated Parameters for the air conditioning data

Model α θ β λ
TDD 1574.6018 1.6594 0.6749 0.1678

(3913.96) (0.3462) (0.2718) (0.5259)
DD* 94.1526 1.2626 1.2390 –

(33.7549) (0.0663) (0.1749) –
*Parameter estimates as of (Huang et al.)

The model selection is carried out using the AIC (Akaike information criterion), the
BIC (Bayesian information criterion), the CAIC (consistent Akaike information criteria)
and the HQIC (Hannan-Quinn information criterion). Note that the smaller the values of
goodness-of-fit measures better the fit of the data. These measures are defined as

AIC = −2`(φ̂) + 2q

BIC = −2`(φ̂) + q log(n)

HQIC = −2`(φ̂) + 2q log(log(n))

CAIC = −2`(φ̂) +
2qn

n− q − 1

where `(φ̂) denotes the log-likelihood function evaluated at the maximum likelihood es-
timates, q is the number of parameters, and n is the sample size. Here φ denotes the
parameters. The AIC, BIC, HQIC and CAIC values for each model is provided in table 3.

Table 3. The AIC, BIC, HQIC and CAIC values for failure times

Model −`(φ̂) AIC BIC HQIC CAIC
Transmuted Dagum 1037.05 2082.09 2095.04 2087.34 2082.31
Dagum 1039.20 2084.40 2094.11 2088.33 2084.53

Note that the LR test statistic for testing H0 : λ = 0 versus Ha : λ 6= 0 is ω =
2(`(φ̂)− `(φ̂0)) = 4.3 with 1 degrees of freedom. Also note that χ2

0.05,1 = 3.84. Therefore,
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at 5% level of significance we reject the null hypothesis and conclude that the subject data
set can be modeled using the transmuted Dagum distribution.

The plots comparing the exact transmuted Dagum, Dagum and empirical cdf along with
the P-P plot for this data is given in Figure 5. These plots indicate that the transmuted
Dagum distribution fits the subject data well. Also note that for the subject data the
Kolmogorov-Smirnov (KS) test statistic is D = 0.0483 with p-value= 0.7732. Similarly,
Anderson-Darling (A) and Cramér-von Mises (W) statistic values are 0.596 and 0.083
respectively. These statistic values also support that the transmuted Dagum distribution
fits the subject data well.
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Figure 5. Fitted cdf and P-P plot of Dagum and transmuted Dagum distribution
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8. Concluding Remarks

In the present study, we have introduced a new generalization of the Dagum distribution
so-called the transmuted Dagum distribution. The 3-parameter Dagum distribution is em-
bedded in the proposed distribution by introducing a shape parameter. Some mathematical
properties along with estimation issues are addressed. We have presented an example where
the transmuted Dagum distribution fits better than the Dagum distribution. We believe
that the subject distribution can be used in several different areas. We also believe this
study will serve as a reference to advance future research in the subject area.
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