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Abstract

Bounded outcome scores are often encountered in health-related survey studies. Such
scores are usually bounded and discrete and are often treated as categorical or ordinal
data, which is not satisfactory in some scenarios. The binomial-logit-normal distribution,
as a parametric model, is a useful alternative for the bounded outcome scores. The
proposed model converges to the continuous logit-normal model and hence bridges the
gap between discrete modeling and continuous modeling. This result is useful when the
score is dense and smooth within its bounded support. A quality of life data is shown
as an application.

Keywords: health outcome · binomial-logit-normal · ordinal data · logistic regression
· quality of life.
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1. Introduction

Bounded outcome scores are encountered in many survey studies, especially in survey
studies involving health assessment. Examples are the Barthel index, drug compliance
studies, pain relief studies and quality of life (QOL) studies (Lesaffre et al., 2007). In this
paper, we present a QOL study as our motivation example. This is a survey study on
breast cancer survivors, investigating their health-related QOL and comparing their QOL
with that of community-dwelling women without any type of reportable cancer. With
declining breast cancer mortality rates and improved survival following breast cancer,
there is increasing focus on the QOL. The study was conducted in the State of Missouri.
QOL is defined as a multi-dimensional construct that includes the subjective evaluation
of several important aspects of a person’s situation, including physical well-being, disease
symptoms and treatment side effects, emotional well-being, physical functioning, and social
functioning. A common approach to assess QOL is to utilize the RAND 36-Item Health
Survey (Ware and Sherbourne, 1992). The QOL scores are summarized from item responses
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based on certain scoring processes.
Figure 1 shows four selected bounded outcome scores in the QOL study. The left panel

of the graph is for the case group and the right panel is for the control group. From top to
bottom, the graph shows “role emotional”, “role physical”, “emotional” and “physical”.
It is worth noting some characteristics of the data. First, they are all bounded between
0 and 100. In literature, they are usually referred as [0, 1] bounded outcome scores for
any bounded score can be standardized to be within [0, 1]. Second, they are, in nature, all
discrete. However, some scores are dense within the interval [0, 1], such as “emotional” and
“physical”. Third, most scores have smooth shapes and are equally distanced. Lesaffre et
al. (2007) described them “J-shaped” or “U-shaped”.
There are several possible choices of modeling bounded outcome scores. First, choose

a continuous model regardlessly. Two appropriate choices for [0, 1] data are the logit-
normal (LN) model and the beta model. Note that the LN model, initiated by Johnson
(1949), is different from the lognormal model, and its density function is given by (1).
The beta model can be found in Johnson et al. (1995). According to Aitchison and Begg
(1976), the beta model can be approximated by the LN model. In other words, the LN
model is more flexible for [0, 1] data due to a richer class of shapes. However, neither
the beta model nor the LN model is a good choice here because all scores are discrete
in nature, though some might look like continuous. Second, treat all scores categorical
and choose a discrete model, for instance, the proportional odds (PO) model introduced
by McCullagh (1980). The PO model may be appropriate for some sparse scores, such
as “role emotional” and “role physical”. However, it might be awkward to apply the PO
model to scores that are dense within the bounded support, such as “emotional” and
“physical”. The PO model assumes an underlying continuous model that can be chopped
into categories, and introduces cut points, ignoring the parametric shape of the underlying
distribution. It may be more natural to use a parametric continuous model for “emotional”
and “physical” rather than to determine cut points and group information between cut
points. Moreover, the PO model is usually for ordinal data where the distance between
categories is meaningless. However, it would be questionable to claim that distance does
not matter in our case. Third, propose a parametric discrete model on [0, 1] that converges
to a parametric continuous model as the variable becomes dense. Through fitting such
a model, the gap between continuous modeling and discrete modeling is eliminated. We
propose the third approach in this paper as an alternate choice to the second approach.
We do not claim that the third approach is superior to other approaches, but we argue
that it could be more effective sometimes.
The model that we propose in this paper is the binomial-logit-normal (BLN) model.

This terminology is not completely new. The BLN model was used by Coull and Agresti
(2000) and Lesaffre et al. (2007) for modeling binomial counts, because the lowest level in
this model is a binomial distribution. Though QOL scores are not binomial counts that are
induced from independent Bernoulli trials, the BLN distribution, as a bounded discrete
distribution, can still be a reasonable choice for QOL scores. We show that the application
of the BLN model can be more general than those in past literature. Indeed, one can
always assume an underlying Bernoulli process on a number of dichotomous items and a
bounded outcome score is an aggregation of those Bernoulli outcomes.
The paper is organized as follows. We introduce the BLN distribution and its properties,

followed by a logistic linear mixed model for QOL data, in Section 2. In Section 3, we
show two simulation studies with model comparisons. Data analysis for the QOL data is
in Section 4. A discussion is in Section 5.
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Figure 1. Distributions of Bounded Outcome Scores

2. Model Description

2.1 A Mixture Distribution

We start from reviewing the LN distribution which was initiated by Johnson (1949). Let
Z be a normal random variable, N(µ, σ2). Let Y = 1/(1+ e−Z). Then Y is an LN random
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variable, denoted by Y ∼ LN(µ, σ2). Its density function is given by

f(y | µ, σ2) =
1√

2πσy(1− y)
exp

{
− [logit(y)− µ]2

2σ2

}
, (1)

where logit(y) = log[y/(1− y)]. The LN distribution can take a variety of shapes on [0, 1]
by changing µ and σ2, including the “J-shape” and “U-shape”. It is widely used to model
continuous [0, 1] variables.
The BLN distribution is a discretized version of the LN distribution. It is defined her-

archically, {
(Yn | p) ∼ binomial(n, p);

(p | µ, σ2) ∼ LN(µ, σ2).
(2)

The distribution of Yn, clearly, is a mixture distribution whose probability mass function
can be obtained by integrating out the parameter p,

P (Yn = y | µ, σ2) =

∫ 1

0
P (Yn = y | p)f(p | µ, σ2)dp. (3)

Obviously, Yn is discrete on {0, 1, . . . , n} and Yn/n is discrete on [0, 1]. We denote this
distribution Yn ∼ BLNn(µ, σ

2). For any fixed n, the BLN distribution only depends on
µ and σ2. Figure 2 shows different shapes of the BLN distribution with different values
of µ and σ2. The parameter µ controls the location and skewness of the distribution. The
parameter σ2 controls the curvature of the distribution.

Theorem 2.1 Let {Y1, Y2, . . . , Yn} be a sequence of binomial-logit-normal random vari-
ables, i.e. Yi ∼ BLNi(µ, σ

2), i = 1, . . . , n. Then as n → ∞, Yn/n converges in law to a
logit-normal random variable LN(µ, σ2).

Yn
n

L−→ LN(µ, σ2). (4)

The proof of Theorem 2.1 is in Appendix A. We see that the BLN distribution is a
discretized version of the LN distribution while the LN is the limiting distribution of the
BLN. It is not difficult to obtain the following facts,

E

(
Yn
n

)
= E(Y ); (5)

V ar

(
Yn
n

)
= V ar(Y ) +

1

n
[E(Y )− E(Y 2)], (6)

where Yn ∼ BLNn(µ, σ
2) and Y ∼ LN(µ, σ2).

We want to further give some properties of the BLN distribution on its convergence rate.
This is done by investigating the Kolmogorov-Smirnov distance

dn = sup
q

|Gn(q)−G(q)| , (7)

where Gn(·) is the cumulative distribution function (CDF) of the BLN random variable
divided by n and G(·) is the CDF of the LN random variable.



Chilean Journal of Statistics 7

0 2 4 6 8

0.
00

0.
05

0.
10

0.
15

0.
20

µ=0

σ2=0.5
σ2=1

σ2=3
σ2=5

σ2=8

0 2 4 6 8

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

µ=0.5

σ2=0.5
σ2=1

σ2=3
σ2=5

σ2=8

0 2 4 6 8

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

µ=1

σ2=0.5
σ2=1

σ2=3
σ2=5

σ2=8

0 2 4 6 8

0.
0

0.
1

0.
2

0.
3

0.
4

µ=2

σ2=0.5
σ2=1

σ2=3
σ2=5

σ2=8

Figure 2. Probability Mass Functions of the Binomial-Logit-Normal Distribution

Theorem 2.2 Let dn be the distance defined by (7). Then

dn ≤ bn = M(µ, σ2)n−α + Cn− 1

2 +Φ(−2n
1

2
−α) for any α ∈ (0, 1/2), (8)

where M(µ, σ2) is the mode of LN(µ, σ2), C is the constant of Berry-Esseen theorem and
Φ(·) is the CDF of N(0, 1).

The proof of Theorem 2.2 is in Appendix B. The density function of LN(µ, σ2) shown
in (1) is proven to be bounded when y ∈ (0, 1), which guarantees the existence of its mode
M(µ, σ2). The constant C is from Berry-Esseen theorem, which is in the range of (0.4, 0.5)
according to Korolev and Shevtsova (2010). The value of α can be arbitrarily chosen from

0 to 1/2. However, among the three components of bn, Φ(−2n
1

2
−α) is typically small while

M(µ, σ2)n−α is relatively large. One could choose a value close to 1/2 for α to lower this
bound.
The BLN distribution is a discrete distribution on a bounded support. It has two free
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parameters and has a rich class of shapes. When the standardized (divided by n) BLN
random variable becomes dense within its support, it converges in law to the continuous
LN random variable. We shall mention that, later we will always refer to the standardized
BLN random variable which is on [0, 1].

2.2 A Logistic Linear Mixed Model

The QOL scores, described in Section 1, are discrete random variables distributed on
the same bounded support, either sparsely or densely. Their distributions are of smooth
shapes. The two-parameter BLN distribution, with a variety of shapes, is appropriate
to describe the QOL scores. More importantly, the BLN distribution eliminates the gap
between discrete modeling and continuous modeling because of the fact of convergence,
allowing modeling both sparse and dense scores in the same framework. Though the QOL
scores are not induced from independent Bernoulli trials, they can be explained by under-
lying Bernoulli processes. For example, the “role emotional” score has 4 levels. Imagine 3
independent underlying Bernoulli items Xl | p ∼ Ber(p), l = 1, 2, 3, measuring 3 latent
dichotomous traits, respectively. A subject can “succeed” in the l-th item if Xl = 1. The
eventual score of “role emotional” is the sum of all 3 items, Y =

∑
l Xl, measuring how

“successful” the subject is regarding the 3 underlying traits. The variation of the latent
Bernoulli probability p is described by an LN distribution.
We now specify the model for QOL scores. Let the index i = 1 for the case group and

i = 0 for the control group. Consider a QOL score yij , j = 1, . . . ,mi, where mi is the
number of subjects in group i. Specify the following model for i = 0 and 1, separately,

yij ∼ BLNn(µi, σ
2
i ), j = 1, . . . ,mi, (9)

which is equivalent to a hierarchical specification,
yij ∼ binomial(n, pij),

logit(pij) = µi + ϵij , j = 1, . . . ,mi.

ϵij ∼ N(0, σ2
i ).

(10)

It is worth noting that the specification (10) is nothing but a special logistic linear mixed
model (LLMM). However, in a usual LLMM, n is nij instead of a common number, meaning
the number of Bernoulli trials. In our case, the common n for all subjects can be explained
as the number of underlying Bernoulli trials. In the hierarchical setting, one may further
consider modeling µ and σ2 with explanatory variables and other scientific models. We
only illustrate the simple model (9) in this paper.
Without further modeling for µ and σ2, statistical inference is rather easy for the BLN

model. Maximum likelihood estimate (MLE) can be numerically computed through rou-
tine algorithms. The only computational issue might be evaluating the integral (3). This
one-dimensional integral can be evaluated by numerical integration or Monte Carlo inte-
gration (it is easy to sample from the LN density). We did not experience any difficulty in
this simple scenario. It would be more complicated if µ and σ2 are modeled by higher hier-
archies. However, if a linear model is used for µ, the model still falls into the framework of
LLMM and hence inference can be done through standard packages in statistical software
such as SAS and R. Bayesian methods are also readily implementable by assigning prior
distributions to µ and σ2. Bayesian inference can be done by using Markov chain Monte
Carlo (MCMC). In particular, one can specify this model easily in the popular Bayesian
software WinBUGS, which is convenient for practitioners.
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Figure 3. Decay of The Average K-S Distance between BLN and LN Samples for Six Combinations of (µ, σ2).

3. Simulation Studies

We performed two simulation studies. In the first simulation study, we examined the
Kolmogorov-Smirnov distance between empirical distributions of BLN samples and LN
samples. The actual distance between BLN and LN is hard to evaluate, which is controlled
by a bound in Theorem 2.2. For this reason, we evaluated the distance in an indirect way.
Suppose y and y′ are samples from BLN and LN distributions, respectively. Let DKS be
the Kolmogorov-Smirnov distance defined by (7) between empirical distributions of y and
y′. We repeated sampling from BLN and LN and evaluating DKS , then we calculated the
average distance DKS . We picked six combinations of (µ, σ2): (0, .5), (0, 3), (0, 8), (1, .5),

(1, 3) and (1, 8) and computed DKS for increasing levels of n. The sample size was 1000

and the number of replications was 100. Figure 3 shows that DKS decays as n increases.
The distance is obviously affected by the values of µ and σ2.
The second simulation study is comparing three candidate models. Suppose the BLN

model is our underlying true model. We simulated data for both case group (with µ = 0
and σ2 = .5) and control group (with µ = 1 and σ2 = 1). The sample size was 100 for
each group. We simulated 4 datasets for n = 10, 20, 50 and 100. We considered three
candidate models: the BLN model, the continuous LN model and the proportional odds
(PO) model. To compare all three models, we computed the corrected Akaike information
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criterion (AICc) and the Bayesian information criterion (BIC). We repeated this procedure
for 100 times and calculated the average AICc and BIC. Results are reported in Table 1.
It is not surprising that both AICc and BIC prefer the BLN model which is the underlying
model. As n goes large, the difference becomes small between the BLN model and the LN
model. In other words, it is acceptable to treat a dense score continuously. On the other
hand, the PO model becomes less preferred as n goes large. This is because the PO model
is penalized for involving too many cut-points. It is known that the AICc is penalized less
strongly than does the BIC. Therefore, the difference of BIC is greater than of AICc.

Table 1. Simulation Study: The average AICc and BIC for BLN, LN and PO models. ∆ in the table is the average
difference.

AICc BIC
n BLN LN PO ∆B−L ∆B−P BLN LN PO ∆B−L ∆B−P

10 868 900 902 -32 -34 881 913 936 -32 -55
25 1179 1211 1250 -32 -71 1192 1224 1321 -32 -129
50 1432 1446 1498 -14 -66 1445 1459 1615 -14 -170
100 1699 1702 1830 -3 -131 1712 1715 1985 -3 -273

The simulation studies illustrate the fact of convergence proven in Section 2. The second
simulation also shows that the BLN model could be more effective in some scenarios.
In particular, if there is a good reason to believe that the data are from an underlying
parametric distribution, it would be wise to consider a parametric treatment.

4. Data Analysis

The BLN model (9) was fitted for the data shown in Figure 1. Estimates and fitted models
are plotted in Figure 4. The model in general fits well for “emotional” (n = 25) and
“physical” (n = 20) except the “peak inflation” part on “emotional”. Both shapes are
sketched by a smooth curve, however, discretized. For “role emotional” (n = 3) and “role
physical” (n = 4), the model fitting is not as satisfactory as for the other two. It seems
unnecessary to use the parametric BLN distribution when n is small. Similar findings are
reported in Table 2. AICc and BIC were compared for the BLN model and the PO model.
The PO model is strongly preferred for small-n scores, but less preferred for large-n scores.
Note, the “emotional” score here is an exception due to its “peak inflation”. In general, if
scores are modeled separately, we may consider using different models for different scores.
However, if joint modeling is needed, using the BLN setting will be beneficial because it is
ready for a multivariate extension, for which references are Coull and Agresti (2000) and
Rabe-Hesketh and Skrondal (2001).

Table 2. Model Comparison for QOL Data: AICc and BIC for BLN and PO models. ∆ in the table is the difference.

Score n AICc(BLN) AICc(PO) ∆B−P BIC(BLN) BIC(PO) ∆B−P

role emotional 3 4745 4568 177 4767 4591 176
role physical 4 6313 6138 175 6336 6166 170
emotional 25 12323 12283 40 12346 12426 -80
physical 20 12341 12371 -30 12364 12491 -127

To test whether there is a difference between case and control groups, a likelihood ratio
test can be performed on H0 : µ0 = µ1, σ

2
0 = σ2

1. P-Values are .59, ≪ .01, .81 and ≪ .01
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Figure 4. Comparison of Data and Fitted BLN Models

for “role emotional”, “role physical”, “emotional” and “physical”, respectively. The test
results indicate that, for “role emotional” and “emotional”, there is little difference between
case group and control group, while for “role physical” and “physical”, the difference is
significant. This result is well caught by the estimates in Figure 4. The interpretation
of this finding also makes sense. The physical conditions of patients with breast cancer
should be different from those of normal people (worse, in fact). However, their emotional
conditions seem to be unaffected comparing with normal people. More interesting studies
could be conducted by introducing other explanatory variables into the model.
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5. Discussion

This paper provides an alternate model for the bounded outcome score which is a special
kind of ordinal data. The ordinal data has ordered categories where the distance between
categories is meaningless. A bounded outcome score, usually, is on an ordered discrete-
scale and hence is ordinal. However, it is debatable whether the distance should matter in
this case. On the other hand, treating a bounded outcome score categorical is inefficient
when it is dense (large n). Without grouping, the BLN model parameterizes the shape
of a score, and naturally handles the situation with large n. One drawback of the BLN
parameterization is that the class of shapes sometimes might be too limited with only
two free parameters. This problem could be alleviated by considering more generalized
parameterizations. Mead (1965) introduced a generalized LN distribution by adding a
power parameter, Y = [1/(1+e−Z)]1/θ where Z is normal. This leads to a generalized BLN
distribution which has a richer class of shapes. On extreme cases when the shape cannot
be parameterized or is not important, one may still consider categorizing or grouping data.
Nevertheless, the BLN approach has its unique advantage on certain datasets for which it
should be considered as a candidate model.

Appendix A. Proof of Theorem 2.1

Let Xn ∼ binomial(n, p). By the Weak Law of Large Numbers,

lim
n→∞

PX

(
Xn

n
≤ q

)
=

{
1 if p < q,

0 if p > q.

Suppose Yn ∼ BLNn(µ, σ
2), then by Fubini’s Theorem and the Dominated Convergence

Theorem,

lim
n→∞

PY

(
Yn
n

≤ q

)
= lim

n→∞

[nq]∑
y=0

∫ 1

0

n!

y!(n− y)!
py(1− p)n−yfLN (p | µ, σ2)dp

=

∫ 1

0
lim
n→∞

[nq]∑
y=0

n!

y!(n− y)!
py(1− p)n−yfLN (p | µ, σ2)dp

=

∫ 1

0
lim
n→∞

PX

(
Xn

n
≤ q

)
fLN (p | µ, σ2)dp

=

∫ q

0
fLN (p | µ, σ2)dp,

which implies that Yn/n converges in law to LN(µ, σ2).

Appendix B. Proof of Theorem 2.2

Let Xn ∼ binomial(n, p) and Φ(·) be the CDF of N(0, 1). By the Berry-Esseen Theorem,

sup
q

∣∣∣∣∣PX

(
Xn

n
≤ q

)
− Φ

(√
n(q − p)√
p(1− p)

)∣∣∣∣∣ ≤ C√
n

{
p2 + (1− p)2

}
,
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where C is a constant.
Suppose Yn ∼ BLNn(µ, σ

2) and Y ∼ LN(µ, σ2). Let Gn(·) be the CDF of Yn/n and
G(·) be the CDF of Y .

dn = sup
q

|Gn(q)−G(q)|

= sup
q

∣∣∣∣∫ 1

0
PX

(
Xn

n
≤ q

)
fLN (p | µ, σ2)dp−

∫ q

0
fLN (p | µ, σ2)dp

∣∣∣∣
≤ sup

q

∣∣∣∣∣
∫ 1

0

{
PX

(
Xn

n
≤ q

)
− Φ

(√
n(q − p)√
p(1− p)

)}
fLN (p | µ, σ2)dp

∣∣∣∣∣
+sup

q

∣∣∣∣∣
∫ 1

0
Φ

(√
n(q − p)√
p(1− p)

)
fLN (p | µ, σ2)dp−

∫ q

0
fLN (p | µ, σ2)dp

∣∣∣∣∣ .
Let the first term of above be T1 and the second term be T2. Use fLN for fLN (p | µ, σ2)
for simplicity. Then

T1 ≤
∫ 1

0

C√
n

{
p2 + (1− p)2

}
fLNdp ≤ C√

n

and

T2 = sup
q

{∫ q

0

{
1− Φ

(√
n(q − p)√
p(1− p)

)}
fLNdp+

∫ 1

q
Φ

(√
n(q − p)√
p(1− p)

)
fLNdp

}
.

Let α ∈ (0, 1/2). Since
√

p(1− p) ≤ 1/2,

T22 =

∫ 1

q
Φ

(√
n(q − p)√
p(1− p)

)
fLNdp

≤
∫ 1

q
Φ
(
2
√
n(q − p)

)
fLNdp

=

∫ 1

q+n−α

Φ
(
2
√
n(q − p)

)
fLNdp+

∫ q+n−α

q
Φ
(
2
√
n(q − p)

)
fLNdp

≤ Φ
(
−2n

1

2
−α
)∫ 1

q+n−α

fLNdp+Φ(0)

∫ q+n−α

q
fLNdp.

Similarly,

T21 =

∫ q

0

{
1− Φ

(√
n(q − p)√
p(1− p)

)}
fLNdp

≤ Φ
(
−2n

1

2
−α
)∫ q−n−α

0
fLNdp+Φ(0)

∫ q

q−n−α

fLNdp.
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Hence

T2 ≤ Φ
(
−2n

1

2
−α
)∫ 1

0
fLNdp+Φ(0) sup

q

{∫ q+n−α

q−n−α

fLNdp

}

= Φ
(
−2n

1

2
−α
)
+

1

2
sup
q

{∫ q+n−α

q−n−α

fLNdp

}
.

It is not difficult to show that the density function fLN (p | µ, σ2) is bounded in (0, 1).
Therefore the mode of LN(µ, σ2) exists. Denote the mode M(µ, σ2). Then

sup
q

{∫ q+n−α

q−n−α

fLNdp

}
≤ 2M(µ, σ2)n−α.

Finally,

dn ≤ T1 + T2

≤ C√
n
+Φ

(
−2n

1

2
−α
)
+M(µ, σ2)n−α,

which completes the proof.
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