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Abstract

In this paper we introduce a new bivariate log-exponentiated Kumaraswamy (Blog-
EK) distribution. This new singular distribution has univariate log-EK distributions
marginals. Some properties are studied; parameter estimation using maximum likelihood
estimators (MLEs) of the unknown parameters cannot be obtained in explicit forms. A
real data set and simulation study are used to obtain the parameters estimation, and
confidence intervals to study the behavior of the parameters.
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1. Introduction

Recently Lemonte et al. (2013) introduced a three-parameter log-EK distribution by ex-
ponentiating the Kumaraswamy distribution, and it can be used to analyze several life
time data. The log-EK distribution which extends the generalized exponential Gupta and
Kundu (1999) and double generalized exponential Barreto–Souza et al. (2010) distribu-
tions.
The main aim of this paper is to introduce a new bivariate log-EK distribution, whose

marginals are log-EK distributions. This new five-parameter Blog-EK distribution is ob-
tained using a method similar to that used to obtain the Marshall-Olkin bivariate expo-
nential model, Marshall and Olkin (1967), Sarhan and Balakrishnan (2007) and bivariate
generalized exponential model of Kundu and Gupta (2009) The proposed Blog-EK distri-
bution is constructed from three independent log-EK distributions using a maximization
process. it is not easy to compute the maximum likelihood estimators of the four unknown
parameters. Computation of the parameters involves solving a one dimensional optimiza-
tion problem, when a one parameter is known. The generation of random samples from
the Blog-EK is quite straight forward, which makes it very convenient to perform the
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simulation experiments.
Several properties of this new Blog-EK distribution are established. The joint proba-

bility density function (PDF) and the joint cumulative distribution function (CDF) are
expressed in explicit forms. The marginals of the Blog-EK distribution are univariate log-
EK distribution. the MLEs of the unknown parameters can be obtained by solving four
nonlinear equations. Simulations are performed for illustrative purpose.
The rest of the paper is organized as follows. In section 2, we define the Blog-EK distri-

bution and provide different properties of the proposed model. In section 3, we introduced
the marginal and joint moment generating function. In section 4, we discuss the maxi-
mum likelihood estimation procedure of the unknown parameters. In section 5, we present
the simulation and one data analysis results. Finally, a conclusion for the results given in
section 6.

2. The New Bivariate Log-exponentiated Kumaraswamy Distribution

It is assumed that the univariate log-EK distribution with parameters α, λ, γ > 0 has the
PDF and CDF given by

f(x;α, λ, γ) = αλγe−x(1− e−x)γ−1(1− (1− e−x)γ)λ−1(1− (1− (1− e−x)γ)λ)α−1 (1)

The corresponding CDF is

F (x;α, λ, γ) = (1− (1− (1− e−x)γ)λ)α (2)

2.1 The Joint Cumulative Distribution Function

Suppose U1 ∼ log-EK(α1, λ, γ), U2 ∼ log-EK(α2, λ, γ) and U3 ∼ log-EK(α3, λ, γ) and they
are independently distributed. Define X1 = max(U1, U3), and X2 = max(U2, U3).Then,
the bivariate vector (X1, X2) has Blog-EK distribution with parameters α1, α2, α3, λ, γ,
and will be denoted by Blog-EK(α1, α2, α3, λ, γ).
We now study the joint distribution of the random variables X1 and X2. The following

lemma gives the joint CDF of the Blog-EK(α1, α2, α3, λ, γ).

Lemma 2.1 The joint CDF of X1 and X2 is

FBlog-EK(x1, x2) = (1− (1− (1− e−x1)γ)λ)α1(1− (1− (1− e−x2)γ)λ)α2

× (1− (1− (1− e−z)γ)λ)α3

(3)

where z = min(x1, x2)

Proof. Since

F (x1, x2) = P (X1 ≤ x1, X2 ≤ x2)

we have

F (x1, x2) = P (max(U1, U3) ≤ x1, (max(U2, U3) ≤ x2)

= P (U1 ≤ x1, U3 ≤ x1, U2 ≤ x2, U3 ≤ x2)

= P (U1 ≤ x1, U2 ≤ x2, U3 ≤ min(x1, x2))
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As Ui(i = 1, 2, 3) are mutually independent, we readily obtain

FX1,X2
(x1, x2) = P (U1 ≤ x1)P (U2 ≤ x2)P (U3 ≤ min(x1, x2))

= Flog-EK(x1;α1, λ, γ)Flog-EK(x2;α2, λ, γ)Flog-EK(z;α3, λ, γ)
(4)

Substituting from (2) into (4), we obtain (3), which completes the proof of the lemma.2.1.

Corollary 2.2 The joint CDF of the Blog-EK(α1, α2, α3, λ, γ) in (4) can also be written
as

FX1,X2
(x1, x2) =


Flog-EK(x1; (α1 + α3), λ, γ)Flog-EK(x2;α2, λ, γ) if x1 < x2

Flog-EK(x1;α1, λ, γ)Flog-EK(x2; (α2 + α3), λ, γ) if x2 < x1

Flog-EK(x; (α1 + α2 + α3), λ, γ) if x1 = x2 = x

2.2 The Joint Probability Density Function

The following theorem gives the joint PDF of the Blog-EK

Theorem 2.3 If the joint CDF of (X1, X2) is as in (3), the joint PDF of (X1, X2) is given
by

f(x1, x2) =


f1(x1, x2) if x1 < x2

f2(x1, x2) if x2 < x1

f3(x1, x2) if x1 = x2 = x

(5)

where

f1(x1, x2) = (α1 + α3)λ
2γ2e−x1(1− e−x1)γ−1(1− (1− e−x1)γ)λ−1

× (1− (1− (1− e−x1)γ)λ)α1+α3−1α2e
−x2(1− e−x2)γ−1

× (1− (1− e−x2)γ)λ−1(1− (1− (1− e−x2)γ)λ)α2−1

(6)

f2(x1, x2) = α1λ
2γ2e−x1(1− e−x1)γ−1(1− (1− e−x1)γ)λ−1(α2 + α3)

× (1− (1− (1− e−x1)γ)λ)α1−1e−x2(1− e−x2)γ−1

× (1− (1− e−x2)γ)λ−1(1− (1− (1− e−x2)γ)λ)α2+α3−1

(7)

f3(x, x) = α3λγe
−x(1− e−x)γ−1(1− (1− e−x)γ)λ−1

× (1− (1− (1− e−x)γ)λ)α1+α2+α3−1
(8)
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Proof. Let us first assume that x1 < x2. In this case, FBlog-EK(x1, x2) in (3) becomes

F1(x1, x2) = (1− (1− (1− e−x1)γ)λ)α1+α3(1− (1− (1− e−x2)γ)λ)α2

Then, upon differentiation, we obtain the expression of fBlog-EK(x1, x2) = ∂2F1(x1,x2)
∂x1∂x2

to be f1(x1, x2) given in (6). Similarly, we find the expression of fBlog-EK(x1, x2) to be
f2(x1, x2) given in (7) when x2 < x1. But, f3(x, x) can not be derived in a similar way.
For this reason, we use the identity∫ ∞

0

∫ x2

0
f1(x1, x2)dx1dx2 +

∫ ∞

0

∫ x1

0
f2(x1, x2)dx2dx1 +

∫ ∞

0
f3(x, x)dx = 1

One can verify that

I1 =

∫ ∞

0

∫ x2

0
f1(x1, x2)dx1dx2 and I2 =

∫ ∞

0

∫ x1

0
f2(x1, x2)dx2dx1

I1 =

∫ ∞

0
α2λγe

−x2(1− e−x2)γ−1(1− (1− e−x2)γ)λ−1 × (1− (1− (1− e−x2)γ)λ)α2−1

×
∫ x2

0
(α1 + α3)λγe

−x1(1− e−x1)γ−1(1− (1− e−x1)γ)λ−1

× (1− (1− (1− e−x1)γ)λ)α1+α3−1dx1dx2

then

I1 =

∫ ∞

0
α2λγe

−x2(1− e−x2)γ−1(1− (1− e−x2)γ)λ−1

× (1− (1− (1− e−x2)γ)λ)(α1+α2+α3)−1dx2

(9)

similarly

I2 =

∫ ∞

0
α1λγe

−x1(1− e−x1)γ−1(1− (1− e−x1)γ)λ−1

× (1− (1− (1− e−x1)γ)λ)(α1+α2+α3)−1dx1

(10)

From (9) and (10), we then get∫ ∞

0
f3(x, x)dx =

∫ ∞

0
α3λγe

−x(1− e−x)γ−1(1− (1− e−x)γ)λ−1

× (1− (1− (1− e−x)γ)λ)(α1+α2+α3)−1dx

f3(x, x)dx = α3λγe
−x(1− e−x)γ−1(1− (1− e−x)γ)λ−1

× (1− (1− (1− e−x)γ)λ)(α1+α2+α3)−1
(11)

This completes the proof of the theorem.
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Corollary 2.4 The joint probability density function of X1 and X2 as provided in
Theorem 2.3, can also be expressed in the following form for z = min(x1, x2), and for
f1(., .), f2(., .) same as defined in (6) and (7) respectively;

f(x1, x2) =
α1 + α2

α1 + α2 + α3
fa(x1, x2) +

α3

α1 + α2 + α3
fs(x) (12)

where

fa(x1, x2) =
α1 + α2 + α3

α1 + α2

{
flog-EK(x1;α1 + α3, λ, γ)flog-EK(x2;α2, λ, γ) if x1 < x2

flog-EK(x1;α1, λ, γ)flog-EK(x2;α2 + α3, λ, γ) if x2 < x1

and

fs(x) = flog-EK(x;α1 + α2 + α3, λ, γ)

Clearly, here fa(x1, x2) and fs(x) are the absolute continuous part and singular part
respectively.

2.3 Marginal and Conditional Probability Density Functions

In this section, we derive the marginal density functions of Xi and the conditional density
functions of Xi|Xj , (i ̸= j = 1, 2). We also present the joint moment generating function
of X1 and X2.

Theorem 2.5 The marginal pdf of Xi(i = 1, 2) is given by

fXi
(xi) = (αi + α3)λγe

−xi(1− e−xi)γ−1(1− (1− e−xi)γ)λ−1

× (1− (1− (1− e−xi)γ)λ)αi+α3−1
(13)

Proof. The marginal pdf of Xi can be derived from the marginal cumulative distribution
function of Xi , say FXi

(xi), as follows:

FXi
(xi) = P (Xi ≤ xi) = P (max(Ui, U3) ≤ xi) = P (Ui ≤ xi, U3 ≤ xi)

and since Ui is independent of U3, we simply have

FXi
(xi) = (1− (1− (1− e−xi)γ)λ)αi+α3

from which we readily derive the pdf of Xi, f(xi) =
∂F (xi)
∂xi

, given in (13).

Corollary 2.6 Let (X1, X2) ∼ Blog-EK(α1 + α2 + α3, λ, γ), then

(1) X1 ∼ log-EK(x1;α1 + α3, λ, γ)
(2) X2 ∼ log-EK(x2;α2 + α3, λ, γ)
(3) X3 = max(X1, X2) ∼ log-EK(x3;α1 + α2 + α3, λ, γ)
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2.4 Conditional Probability Density Functions

Having obtained the marginal probability density functions of X1 and X2 we can now
derive the conditional probability density functions as presented in the following theorem.

Theorem 2.7 The conditional pdf of Xi, given Xj = xj , denoted by fi|j(xi|xj), (i ̸= j =
1, 2), is given by

fXi|Xj
(xi|xj) =


f
(1)
Xi|Xj

(xi|xj) if xi < xj

f
(2)
Xi|Xj

(xi|xj) if xj < xi

f
(3)
Xi|Xj

(xi|xj) if xi = xj = x

where

f
(1)
Xi|Xj

(xi|xj) =
(α1 + α3)α2λγe

−xi(1− e−xi)γ−1(1− (1− e−xi)γ)λ−1(1− (1− (1− e−xi)γ)λ)α1+α3−1

(α2 + α3)(1− (1− (1− e−xj )γ)λ)α3

f
(2)
Xi|Xj

(xi|xj) = α1λγe
−xi(1− e−xi)γ−1(1− (1− e−xi)γ)λ−1(1− (1− (1− e−xi)γ)λ)α1−1

f
(3)
Xi|Xj

(xi|xj) =
α3(1− (1− (1− e−xi)γ)λ)α1

(α2 + α3)

Proof. The theorem follows readily upon substituting for the joint pdf of (X1, X2) in (6),
(7) and (8) and the marginal pdf of of Xi(i = 1, 2) in (13), in the relation

fXi|Xj
(xi|xj) =

fXi,Xj
(xi, xj)

fXj
(xj)

3. Moment Generating Functions

We present the joint moment generating function of (X1, X2) and the marginal moment
generating function of Xi(i = 1, 2).

3.1 Marginal Moment Generating Functions

We discuss the marginal moment generating function of Xi(i = 1, 2).

Lemma 3.1 If Xi ∼ log-EK(αi+α3, λ, γ), then the moment generating function of Xi(i =
1, 2) is given by

MXi
(ti) = (αi + α3)λγ

∞∑
s=0

∞∑
j=0

∞∑
k=0

(
γ(j + 1)− 1

k

)(
λ(s+ 1)− 1

j

)

×
(
αi + α3 − 1

s

)
(−1)s+j+k

ti + 1 + k

(14)
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Proof. Starting with

MXi
(ti) = E(e−tixi) =

∫ ∞

i=0
e−tixif(xi)dxi

and substituting for fXi
(xi) from (13), we get

MXi
(ti) = (αi + α3)λγ

∫ ∞

i=0
e−tixie−xi(1− e−xi)γ−1(1− (1− e−xi)γ)λ−1

× (1− (1− (1− e−xi)γ)λ)αi+α3−1dxi

(15)

using the binomial series expansion we have

(1− (1− (1− e−xi)γ)λ)αi+α3−1 =

∞∑
s=0

(
αi + α3 − 1

s

)
× (−1)s(1− (1− e−xi)γ)sλ (16)

Substituting from (16) into (15) we get

MXi
(ti) = (αi + α3)λγ

∞∑
s=0

(
αi + α3 − 1

s

)
(−1)s

∫ ∞

i=0
e−tixi

× e−xi(1− e−xi)γ−1(1− (1− e−xi)γ)λ(s+1)−1dxi

(17)

Substituting from the relation in (16) into (17) we get

MXi
(ti) = (αi + α3)λγ

∞∑
s=0

∞∑
j=0

∞∑
k=0

(
γ(j + 1)− 1

k

)(
λ(s+ 1)− 1

j

)

×
(
αi + α3 − 1

s

)
(−1)s+j+k

∫ ∞

i=0
e−(ti+1+k)xidxi

from which we readily derive the expression of MXi
(ti) given in (14).

Note that the moment generating function MXi
(ti) can be used, instead of the marginal

pdf f(xi), to derive the marginal expectation of Xi as

E(Xi) = − d

dti
MXi

(ti)

∣∣∣∣
ti=0

From (14), we obtain

− d

dti
MXi

(ti) = (αi + α3)λγ

∞∑
s=0

∞∑
j=0

∞∑
k=0

(
γ(j + 1)− 1

k

)(
λ(s+ 1)− 1

j

)

×
(
αi + α3 − 1

s

)
(−1)s+j+k

(ti + 1 + k)2

in which if we set ti = 0, we obtain E(Xi).
Similarly, the second moment of Xi can be derived from MXi

(ti) as its second derivative
at ti = 0. The expression for the function MXi

(ti) in (14) can be used to derive the rth
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moment of Xi as given below

E(Xr
i ) = − dr

dtri
MXi

(ti) = (αi + α3)λγ

∞∑
s=0

∞∑
j=0

∞∑
k=0

(
γ(j + 1)− 1

k

)(
λ(s+ 1)− 1

j

)

×
(
αi + α3 − 1

s

)
r(−1)s+j+k

(ti + 1 + k)r+1

3.2 The Joint Moment Generating Function

The joint moment generating function of (X1, X2) can be derived as follows:

Theorem 3.2 If (X1, X2) ∼ Blog-EK (α1, α2, α3, λ, γ), then the joint moment generating
function of (X1, X2) is given by

M(t1, t2) =
AB

(t2 + d+ 1)
− AB

(t1 + t2 + k + d+ 2)
+

A1B1

(t1 + d+ 1)

− A1B1

(t1 + t2 + k + d+ 2)
+

A2

(t1 + t2 + k + 1)

(18)

where

A =

∞∑
i=0

∞∑
j=0

∞∑
k=0

(
α1 + α3 − 1

i

)(
λ(i+ 1)− 1

j

)(
γ(j + 1)− 1

k

)
(α1 + α3)λγ(−1)i+j+k

t1 + k + 1

B =

∞∑
m=0

∞∑
s=0

∞∑
d=0

(
α2 − 1

m

)(
λ(m+ 1)− 1

s

)(
γ(s+ 1)− 1

d

)
(−1)m+s+dα2λγ

A1 =

∞∑
i=0

∞∑
j=0

∞∑
k=0

(
α2 + α3 − 1

i

)(
λ(i+ 1)− 1

j

)(
γ(j + 1)− 1

k

)
(α2 + α3)λγ(−1)i+j+k

t2 + k + 1

B1 =

∞∑
m=0

∞∑
s=0

∞∑
d=0

(
α1 − 1

m

)(
λ(m+ 1)− 1

s

)(
γ(s+ 1)− 1

d

)
(−1)m+s+dα1λγ

A2 =

∞∑
i=0

∞∑
j=0

∞∑
k=0

(
α1 + α2 + α3 − 1

i

)(
λ(i+ 1)− 1

j

)(
γ(j + 1)− 1

k

)
(−1)i+j+kα3λγ

Proof. The joint moment generating function of (X1, X2) is given as follows

M(t1, t2) = E(e−(t1x1+t2x2)) =

∫ ∞

0

∫ ∞

0
e−(t1x1+t2x2)f(x1, x2)dx1dx2

M(t1, t2) =

∫ ∞

0

∫ x2

0
e−(t1x1+t2x2)f1(x1, x2)dx1dx2 +

∫ ∞

0

∫ x1

0
e−(t1x1+t2x2)f2(x1, x2)dx2dx1

+

∫ ∞

0
e−(t1+t2)xf3(x, x)dx
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Let

J1 =

∫ ∞

0

∫ x2

0
e−(t1x1+t2x2)f1(x1, x2)dx1dx2

J2 =

∫ ∞

0

∫ x1

0
e−(t1x1+t2x2)f2(x1, x2)dx2dx1

J3 =

∫ ∞

0
e−(t1+t2)xf3(x, x)dx

Substituting from (6) into J1 we get

J1 =

∫ ∞

0
α2λγe

−x2(1− e−x2)γ−1(1− (1− e−x2)γ)λ−1(1− (1− (1− e−x2)γ)λ)α2−1

×
∫ x2

0
(α1 + α3)λγe

−x1(1− e−x1)γ−1(1− (1− e−x1)γ)λ−1(1− (1− (1− e−x1)γ)λ)α1+α3−1dx1dx2

using the relation in (16) we obtain

J1 =
AB

(t2 + d+ 1)
− AB

(t1 + t2 + k + d+ 2)

Similarly we can obtain J2 as follows

J2 =
A1B1

(t1 + d+ 1)
− A1B1

(t1 + t2 + k + d+ 2)

And we can obtain J3 as follows

J3 =
A2

(t1 + t2 + k + 1)

Then we can obtain the joint moment generating function M(t1, t2) = J1+J2+J3 given
in (18).

4. Maximum Likelihood Estimation

Suppose((x11, x12), . . . , (x1n, x2n)) is a random sample from Blog-EK(α1, α2, α3, λ, γ) dis-
tribution. Consider the following notation n1 = (i;X1i < X2i), n2 = (i;X1i > X2i),
n3 = (i;X1i = X2i = Xi) and n = n1 + n2 + n3. The likelihood function for the vector of
parameters θ = (α1, α2, α3, λ, γ)

⊤ can be expressed as

l(θ) =

n1∏
i=1

f1(x1i, x2i)

n2∏
i=1

f2(x1i, x2i)

n3∏
i=1

f3(x1i, x2i)

Based on the observations, and using the density functions (6), (7) and (8) the likelihood
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function becomes:

l(θ) = ((α1 + α3)α2λ
2γ2)n1

n1∏
i=1

e−x1iν1i(η1i)
λ−1(1− (η1i)

λ)α1+α3−1e−x2iν2i(η2i)
λ−1

× (1− (η2i)
λ)α2−1((α2 + α3)α1λ

2γ2)n2

n2∏
i=1

e−x1iν1i(η1i)
λ−1(1− (η1i)

λ)α1−1e−x2i

× ν2i(η2i)
λ−1(1− (η2i)

λ)α2+α3−1(α3λγ)
n3

n3∏
i=1

e−xiνi(ηi)
λ−1(1− (ηi)

λ)α1+α2+α3−1

The log-likelihood function can be written as

L(θ) = n1 ln((α1 + α3)α2λ
2γ2)−

n1∑
i=1

x1i +

n1∑
i=1

ln(ν1i) + (λ− 1)

n1∑
i=1

ln(η1i)

+ (α1 + α3 − 1)

n1∑
i=1

ln(1− (η1i)
λ)−

n1∑
i=1

x2i +

n1∑
i=1

ln(ν2i) + (λ− 1)

n1∑
i=1

ln(η2i)

+ (α2 − 1)

n1∑
i=1

ln(1− (η2i)
λ) + n2ln((α2 + α3)α1λ

2γ2)−
n2∑
i=1

x1i +

n2∑
i=1

ln(ν1i)

+ (λ− 1)

n2∑
i=1

ln(η1i) + (α1 − 1)

n2∑
i=1

ln(1− (η1i)
λ)−

n2∑
i=1

x2i +

n2∑
i=1

ln(ν2i)

+ (λ− 1)

n2∑
i=1

ln(η2i) + (α2 + α3 − 1)

n2∑
i=1

ln(1− (η2i)
λ) + n3ln(α3λγ)−

n3∑
i=1

xi

+

n3∑
i=1

ln(νi) + (λ− 1)

n3∑
i=1

ln(ηi) + (α1 + α2 + α3 − 1)

n3∑
i=1

ln(1− (ηi)
λ)

(19)

Computing the first partial derivatives of (19) with respect to α1, α2, α3 and λ, and
setting the results equal zeros, we get the likelihood equations as in the following form

∂L(θ)

∂α1
=

n1

(α1 + α3)
+

n2

α1
+

n1∑
i=1

ln(1− (η1i)
λ) +

n2∑
i=1

ln(1− (η1i)
λ) +

n3∑
i=1

ln(1− (ηi)
λ)

(20)

∂L(θ)

∂α2
=

n1

α2
+

n2

(α2 + α3)
+

n1∑
i=1

ln(1− (η2i)
λ) +

n2∑
i=1

ln(1− (η2i)
λ) +

n3∑
i=1

ln(1− (ηi)
λ)

(21)

∂L(θ)

∂α3
=

n1

(α1 + α3)
+

n2

(α2 + α3)
+

n3

α3
+

n1∑
i=1

ln(1− (η1i)
λ) +

n2∑
i=1

ln(1− (η2i)
λ)

+

n3∑
i=1

ln(1− (ηi)
λ)

(22)
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∂L(θ)

∂λ
=

2n1

λ
+

n1∑
i=1

ln(η1i)− (α1 + α3 − 1)

n1∑
i=1

(η1i)
λln(η1i)

(1− (η1i)λ)
+

n1∑
i=1

ln(η2i)

− (α2 − 1)

n1∑
i=1

(η2i)
λln(η2i)

(1− (η2i)λ)
+

2n2

λ
+

n2∑
i=1

ln(η1i)− (α1 − 1)

n2∑
i=1

(η1i)
λln(η1i)

(1− (η1i)λ)

+

n2∑
i=1

ln(η2i)− (α2 + α3 − 1)

n2∑
i=1

(η2i)
λln(η2i)

(1− (η2i)λ)
+

n3

λ
+

n3∑
i=1

ln(ηi)

− (α1 + α2 + α3 − 1)

n3∑
i=1

(ηi)
λln(ηi)

(1− (ηi)λ)

(23)

To get the MLEs of the parameters α1, α2, α3 and λ, we have to solve the above system
of four non-linear equations with respect to α1, α2, α3 and λ. The solution of equations
(20), (21), (22) and (23) is not possible in closed form, so numerical technique is needed
to get the MLEs.
The approximate confidence intervals of the parameters based on the asymptotic distri-

butions of their MLEs are derived. For the observed information matrix of α1, α2, α3 and
λ, we find the second partial derivatives as follows

∂2L(θ)

∂α2
1

= I11 = − n1

(α1 + α3)2
− n2

α2
1

∂2L(θ)

∂α1∂α2
= I12 = 0

∂2L(θ)

∂α1∂α3
= I13 = − n1

(α1 + α3)2

∂2L(θ)

∂α1∂λ
= I14 = −

n1∑
i=1

(η1i)
λln(η1i)

(1− (η1i)λ)
−

n2∑
i=1

(η1i)
λln(η1i)

(1− (η1i)λ)
−

n3∑
i=1

(ηi)
λln(ηi)

(1− (ηi)λ)

∂2L(θ)

∂α2
2

= I22 = − n1

(α2)2
− n2

(α2 + α3)2

∂2L(θ)

∂α2∂α3
= I23 = − n2

(α2 + α3)2

∂2L(θ)

∂α2∂λ
= I24 = −

n1∑
i=1

(η2i)
λln(η2i)

(1− (η2i)λ)
−

n2∑
i=1

(η2i)
λln(η2i)

(1− (η2i)λ)
−

n3∑
i=1

(ηi)
λln(ηi)

(1− (ηi)λ)

∂2L(θ)

∂α2
3

= I33 = − n1

(α1 + α3)2
− n2

(α2 + α3)2
− n3

(α3)2

∂2L(θ)

∂α3∂λ
= I34 = −

n1∑
i=1

(η1i)
λln(η1i)

(1− (η1i)λ)
−

n2∑
i=1

(η2i)
λln(η2i)

(1− (η2i)λ)
−

n3∑
i=1

(ηi)
λln(ηi)

(1− (ηi)λ)

∂2L(θ)

∂λ2
= I44 = −2n1

λ2
− (α1 + α3 − 1)

n1∑
i=1

(η1i)
λ(ln(η1i))

2

(1− (η1i)λ)2
− (α2 − 1)

n1∑
i=1

(η2i)
λ(ln(η2i))

2

(1− (η2i)λ)2

− 2n2

λ2
− (α1 − 1)

n2∑
i=1

(η1i)
λ(ln(η1i))

2

(1− (η1i)λ)2
− (α2 + α3 − 1)

n2∑
i=1

(η2i)
λ(ln(η2i))

2

(1− (η2i)λ)2
− n3

λ2

− (α1 + α2 + α3 − 1)

n3∑
i=1

(ηi)
λ(ln(ηi))

2

(1− (ηi)λ)2

where ν1 = (1− e−x1)γ−1, η1 = 1− (1− e−x1)γ , ν2 = (1− e−x2)γ−1, η2 = 1− (1− e−x2)γ ,
ν = (1− e−x)γ−1, η = 1− (1− e−x1)γ .
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Then the observed information matrix is given by

I = −


I11 I12 I13 I14
I21 I22 I23 I24
I31 I32 I33 I34
I41 I42 I43 I44


so the variance-covariance matrix may be approximated as

V = −


I11 I12 I13 I14
I21 I22 I23 I24
I31 I32 I33 I34
I41 I42 I43 I44


−1

=


V11 V12 V13 V14

V21 V22 V23 V24

V31 V32 V33 V34

V41 V42 V43 V44



5. Simulation and Data Analysis

In this section first we present Monte Carlo simulation results to study the behavior of the
MLEs and then present one data analysis results mainly for illustrative purpose.

5.1 Simulation Results

In this subsection we present some simulation results to see how the MLEs behave for
different sample sizes and for different initial parameter values. We have used different
sample sizes namely n = 20, 40, 60, 80 and 100 and two different sets of parameter values:
Set 1: α1 = 1.1, α2 = 1.2, α3 = 1.3, λ = 1 and Set 2: α1 = 1.12, α2 = 1.23, α3 = 1.34, λ = 1.
In each case we have computed the MLEs of the unknown parameters by maximizing the
log-likelihood function (19). We compute the average estimates and mean square error
over 1000 replications and the results are reported in Table 1.

Table 1. The average of MLEs and the associated mean square errors (within brackets below).

Set:1 Set:2
n α1 α2 α3 λ α1 α2 α3 λ
n = 20 1.321 1.435 1.455 1.087 1.319 1.439 1.549 1.069

(0.536) (0.682) (0.735) (0.055) (0.508) (0.638) (0.757) (0.051)
n = 40 1.199 1.298 1.392 1.036 1.225 1.333 1.441 1.037

(0.183) (0.246) (0.294) (0.021) (0.220) (0.298) (0.346) (0.023)
n = 60 1.167 1.282 1.358 1.029 1.191 1.292 1.426 1.026

(0.119) (0.182) (0.222) (0.014) (0.134) (0.193) (0.281) (0.013)
n = 80 1.146 1.255 1.345 1.019 1.168 1.288 1.386 1.019

(0.091) (0.147) (0.186) (0.011) (0.106) (0.163) (0.215) (0.010)
n = 100 1.137 1.252 1.338 1.017 1.163 1.283 1.380 1.017

(0.068) (0.124) (0.167) (0.008) (0.079) (0.144) (0.198) (0.008)

Some of the points are quite clear from Table 1. In all the cases the performances of
the maximum likelihood estimate are quite satisfactory. It is observed that as sample size
increases the average estimates and the mean squared error decrease for all the parameters,
as expected.
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5.2 Data Analysis

The following data represent the American Football (National Football League) League
data and they are obtained from the matches played on three consecutive weekends in
1986. The data were first published in ‘Washington Post’ and they are also available in
Csorgo and Welsh (1989).
It is a bivariate data set, and the variables X1 and X2 are as follows: X1 represents

the ‘game time’ to the first points scored by kicking the ball between goal posts, and X2

represents the ‘game time’ to the first points scored by moving the ball into the end zone.
These times are of interest to a casual spectator who wants to know how long one has to
wait to watch a touchdown or to a spectator who is interested only at the beginning stages
of a game.
The data (scoring times in minutes and seconds) are represented in Table 2. The data set

was first analyzed by Csorgo and Welsh (1989), by converting the seconds to the decimal
minutes, i.e. 2:03 has been converted to 2.05, 3:59 to 3.98 and so on. We have also adopted
the same procedure. Here also all the data points are divided by 10 just for computational
purposes. It should not make any difference in the statistical inference. We have taken the
initial guesses of α1, α2, α3 and λ are all equal to 1.

Table 2. American Football League (N F L) data

X1 X2 X1 X2 X1 X2

2.05 3.98 5.78 25.98 10.40 10.25
9.05 9.05 13.80 49.75 2.98 2.98
0.85 0.85 7.25 7.25 3.88 6.43
3.43 3.43 4.25 4.25 0.75 0.75
7.78 7.78 1.65 1.65 11.63 17.37
10.57 14.28 6.42 15.08 1.38 1.38
7.05 7.05 4.22 9.48 10.53 10.53
2.58 2.58 15.53 15.53 12.13 12.13
7.23 9.68 2.90 2.90 14.58 14.58
6.85 34.58 7.02 7.02 11.82 11.82
32.45 42.35 6.42 6.42 5.52 11.27
8.53 14.57 8.98 8.98 19.65 10.71
13.13 49.88 10.15 10.15 17.83 17.83
14.58 20.57 8.87 8.87 10.85 38.07

The variables X1 and X2 have the following structure: (i) X1 < X2 means that the
first score is a field goal, (ii) X1 = X2 means the first score is a converted touchdown,
(iii) X1 > X2 means the first score is an unconverted touchdown or safety. In this case
the ties are exact because no ‘game time’ elapses between a touchdown and a point-after
conversion attempt. Therefore, here ties occur quite naturally and they can not be ignored.
It should be noted that the possible scoring times are restricted by the duration of the
game but it has been ignored similarly as in Csorgo and Welsh (1989).
If we define the following random variables:

U1 = time to first field goal
U2= time to first safety or unconverted touchdown
U3 = time to first converted touchdown,

then X1 = max(U1, U3), X2 = max(U2, U3). Therefore, (X1, X2) has a similar structure
as the Marshall-Olkin bivariate exponential model or the proposed Blog-EK model.
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Before going to analyze the data using Blog-EK model, we fit the log-EK distribution to
X1 and X2 separately. The MLEs of α and λ of the respective log-EK distribution for X1

and X2 are (1.848, 1.582) and (1.396, 0.917) respectively. The Kolmogorov-Smirnov dis-
tances between the fitted distribution and the empirical distribution function and the cor-
responding p values (in brackets) for X1 and X2 are 0.0868 (0.5628) and 0.0867 (0.5617) re-
spectively. Based on the p values log-EK distribution can not be rejected for the marginals.
The MLEs of α1, α2, α3 and λ are obtained by maximizing the log-likelihood function (19)

with respect to the four unknown parameters and they are as follows 0.048, 0.596, 1.171 and
0.956 respectively. The corresponding log-likelihood value is -100.139. The corresponding
95% confidence intervals are (0.046, 0.142), (0.676, 0.92), (0.698, 1.643), (0.647, 1.266)
respectively.
Now the natural question is how good the fit. Unfortunately, we do not have any proper

bivariate goodness of fit test for general models like the univariate case. We examine the
marginals and the maximum of the marginals, definitely they provide some indication
about the goodness of fit of the proposed Blog-EK model to the given data set. We fit
log-EK (1.925, 1.619), log-EK (1.393, 0.916) and log-EK (1.384, 0.898) to X1, X2 and
X3 respectively. The parameters of the corresponding log-EK model are obtained from
Corollary 2.6, by replacing the true values with their estimates.
The Kolmogorov-Smirnov distances between the empirical distribution function and the

fitted distribution function and the associated p values reported in brackets in three cases
are 0.0827 (0.5357), 0.0867 (0.5617) and 0. 0.0703 (0.4556) respectively. From the p values,
we cannot reject the hypotheses that X1, X2 and X3 follow log-EK. We have fitted four-
parameter Blog-EK model also to this data set.
We analyze the data using the Blog-EK model. We have taken the initial guesses of

α1, α2, α3 and λ are all equal to 1. The estimate of α1, α2, α3 and λ become 0.048, 0.596,
1.171 and 9.563 respectively. The corresponding log-likelihood value is 38.017. the 95%
confidence intervals of α1, α2, α3 and λ are (0, 0.142), (0.309, 0.883), (0.793, 1.548), (8.531,
10.596) respectively.

6. Conclusions

In this paper we have proposed Blog-EK distribution function whose marginals are log-EK
distributions. This new bivariate distribution has several interesting properties and it can
be used as an alternative to the several continuous bivariate distributions. The generation
of random samples from proposed bivariate distribution is very simple, and therefore Monte
Carlo simulation can be performed very easily for different statistical inference purpose.
It is observed that the MLEs of the unknown parameters can be obtained by solving four
non-linear equations and Monte Carlo simulation indicate that the performance of the
MLEs are quite satisfactory. Analysis of one real data indicates that the performance of
the confidence intervals based on asymptotic distribution.
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