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Abstract

We consider random vectors XK×1 and YN×1 having a multivariate elliptical joint
distribution, and derive the exact joint distribution of X and L-statistics from Y, as a
mixture of multivariate unified skew-elliptical distributions. This mixture representation
enables us to predict X based on L-statistics from Y, and vice versa, when K = 1 and
with normal and t-distributions. Our results extend and generalize previous ones in two
ways: first, we consider a general multivariate set-up for which K ≥ 1 and N ≥ 2, and
second, we adopt the multivariate elliptical distribution to include previous multivariate
normal and t-formulations as special cases.

Keywords: Linear combination · Mixture distribution · Multivariate unified
skew-elliptical distribution · Order statistics · Squared-error loss.
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1. Introduction

A motivation for the paper is the following problem: it is usual practice to use the quiz
scores to predict a student’s final test mark. More formally, if X is the final test mark
and Y = (Y1, . . . , YN )⊤ are the quiz scores, we wish to study X in terms of some linear

combination
∑N

i=1 aiY(i), where Y(1) < · · · < Y(N) are the ordered quiz scores, with varying

weights ai. The results in this paper enable us to study X based on
∑N

i=1 aiY(i), when

(X,Y⊤)⊤ follows a (N + 1)-dimensional multivariate elliptical distribution.
The above problem is akin to the following that arises in electrical engineering and

discussed by Wiens et al. (2006). In processing cellular phone signals from several antennae,
receivers normally select only the strongest signals to reduce signal fading. Specifically, if
a receiver receives N signals, only the n ≤ N strongest signals will be processed, which are
then combined and used to analyze and predict the transmission system’s performance, as
measured by X = (X1, . . . ,XK)⊤, say.
Various incarnations of the above problem, simplified in some way, have been studied

previously by several authors. Viana (1998) and Olkin and Viana (1995) obtained the best
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linear predictors in the trivariate normal distribution case with N = 2 and K = 1, where
Y1 and Y2 are exchangeable such that (X,Y1)

⊤ and (X,Y2)
⊤ share a common correlation.

Loperfido (2008b) considered the same set-up and derived the exact joint distribution of
X and Y(2) = max(Y1, Y2). Jamalizadeh and Balakrishnan (2009a) similarly derived the

exact joint distribution of X and
∑2

i=1 aiY(i) in the case of a trivariate normal distribution
for X,Y1, Y2, with arbitrary covariance structure. They showed that this joint distribution
is a mixture of bivariate unified skew-normal distributions and obtained a predictor for
X using linear combinations of order statistics from Y1, Y2; see also Balakrishnan et al.
(2012) for the case of elliptical distributions.
Order statistics, their linear combinations (i.e., L-statistics), and their corresponding

distributions have also been similarly widely studied. Early results are provided by Gupta
and Pillai (1965), Basu and Ghosh (1978), Nagaraja (1982), and Balakrishnan (1993).
More recent work include Genc (2006), who derived the exact distribution of L-statistics
from the bivariate normal distribution; Arellano-Valle and Genton (2007, 2008), who con-
sidered multivariate elliptical distributions; and Jamalizadeh and Balakrishnan (2008),
who worked with bivariate skew-normal and skew-t distributions. Additional results are
given by Jamalizadeh et al. (2009a,b), Jamalizadeh and Balakrishnan (2009b, 2010), and
Loperfido (2008a).
In this paper, we consider the general case of N > 2 and K > 1, and assume an elliptical

joint distribution for X = (X1, . . . ,XK)⊤ and Y = (Y1, . . . , YN )⊤, i.e., let

(

X

Y

)

∼ ECK+N

(

µµµ,ΣΣΣ, h(K+N)
)

, (1)

the (K + N)-dimensional elliptical distribution with density generator function h(K+N),
and respective location parameter and dispersion-shape matrix

µµµ =

(

µµµx

µµµy

)

and ΣΣΣ =

(

ΣΣΣxx ΣΣΣ
⊤
yx

ΣΣΣyy

)

, (2)

where µµµx and µµµy are respective K × 1 and N × 1 location vectors of X and Y, ΣΣΣxx

and ΣΣΣyy are their respective K × K and N × N dispersion matrices, and ΣΣΣyx is a
N ×K shape matrix. Note that this specification includes the multivariate normal and t-
distributions, among others, and generalizes previous cases studied in the literature. With
Y(N) = (Y(1), . . . , Y(N))

⊤ as the vector of order statistics from Y, we derive the exact joint
distribution of X and LY(N), where L is a P ×N matrix of rank(L) = P . We show that
this joint distribution is a mixture of multivariate unified skew-elliptical distributions, and
obtain in the process, in the special case when K = 1 and L = a⊤ = (a1, . . . , aN ), the best
(nonlinear) predictors of X based on a⊤Y(N), and of a⊤Y(N) based on X, under square
loss function in the case of normal and t-distributions. We also present a mixture represen-
tation for the joint cumulative distribution function (CDF) of X and Y(r), r = 1, . . . , N ,
in terms of bivariate unified skew-elliptical distributions.
We organize the paper as follows. Section 2 presents a brief review of skew-elliptical

distribution theory and presents specialized results for normal and t-distributions in the
univariate and bivariate cases. The main results of the paper are then obtained in Section
3. Section 4 then concludes the paper.
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2. Skew-Elliptical Distributions: Preliminaries

Consider the random vectors XK×1 and YN×1 in Equation (1) above. A random vector
UN×1 is defined to have a multivariate unified skew-elliptical (SUE) distribution if and
only if

U
d
= (Y|X > 0), (3)

where “
d
=” denotes equality in distribution, and it is understood that the inequal-

ity “X > 0” must hold for each of the components of X; we write U ∼
SUEN,K(µµµy,µµµx,ΣΣΣyy,ΣΣΣxx,ΣΣΣyx, h

(K+N)). A closed-form expression for the corresponding
probability density function (PDF) is given by Arellano-Valle and Azzalini (2006) and
Arellano-Valle and Genton (2005, 2010a); see also Branco and Dey’s (2001) formu-
lation. Note that our construction of skew-elliptical distributions in Equation (3) re-
lies on dispersion matrices which may generate an identifiability problem; see for ex-
ample, Arellano-Valle and Azzalini (2006) and Arellano-Valle and Genton (2010b),
for the construction of skew-normal and skew-t distributions. In such cases, the dis-
persion matrices should be replaced with correlation matrices. Taking h(K+N)(u) =
φ(K+N)(u) = (2π)−(K+N)/2 exp(−u/2), u > 0, we obtain the multivariate unified
skew-normal distribution (SUN) (Arellano-Valle and Genton, 2010b). Given U ∼
SUNN,K(µµµy,µµµx,ΣΣΣyy,ΣΣΣxx,ΣΣΣyx), its respective PDF fU(·) and moment-generating function
(MGF) MU(·) are given by

fU(u) =
φN (u;µµµy,ΣΣΣyy)ΦK(µµµx +ΣΣΣ⊤

yxΣΣΣ
−1
yy (u−µµµy);ΣΣΣxx −ΣΣΣ⊤

yxΣΣΣ
−1
yyΣΣΣyx)

ΦK(µµµx;ΣΣΣxx)
,

MU(s) =
exp

(

µµµ⊤
y s+

1
2s

⊤ΣΣΣyys
)

ΦK(µµµx +ΣΣΣ⊤
yxs;ΣΣΣxx)

ΦK(µµµx;ΣΣΣxx)
, (4)

where φQ(·;ΣΣΣ) and ΦQ(·;ΣΣΣ) are the PDF and CDF of the centered Q-dimensional normal
distribution with dispersion matrix ΣΣΣ, respectively. In the case of the tν-kernel distribution
with generator

h(K+N)(u) = t(K+N)
ν (u) =

Γ
(

ν+K+N
2

)

Γ
(

ν
2

)

(νπ)
K+N

2

(

1 +
u

ν

)−(ν+K+N)/2
,

for u ≥ 0, ν > 0, where Γ(·) is the gamma function, we generate the multivariate unified
skew-t (SUT) distribution, with PDF

fU(u) = TK

(

µµµx +ΣΣΣ⊤
yxΣΣΣ

−1
yy (u−µµµy);

ν+(u−µµµy)
⊤ΣΣΣ−1

yy (u−µµµy)

ν+N (ΣΣΣxx −ΣΣΣ⊤
yxΣΣΣ

−1
yyΣΣΣyx), ν +N

)

×
tN (u;µµµy,ΣΣΣyy, ν)

TK(µµµx;ΣΣΣxx, ν)
,

where tQ(·;ΣΣΣ, ν) and TQ(·;ΣΣΣ, ν) are the respective PDF and CDF of the centered Q-
dimensional t-distribution with scale matrix ΣΣΣ and degrees of freedom ν, which we write
as U ∼ SUTN,K(µµµy,µµµx,ΣΣΣyy,ΣΣΣxx, ΣΣΣyx, ν). These distributions were developed recently in
Jamalizadeh and Balakrishnan (2012), who obtained marginal and conditional distribu-
tions of SUE distributions. In what follows, we study univariate and bivariate SUN and
SUT distributions and derive moment expressions, among others, for later use in Section
3.
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2.1 Univariate case

We now consider the univariate class of SUE distributions that arises from Equation (1)
with K ≥ 1 and N = 1. In this case, Equation (2) becomes

µµµ =

(

µµµx

µy

)

and ΣΣΣ =

(

ΣΣΣxx σσσxy

σyy

)

.

For U ∼ SUN1,K(µy,µµµx, σyy,ΣΣΣxx,σσσxy), we get

E[U ] = µy +
1

ΦK(µµµx;ΣΣΣxx)

K
∑

i=1

σxy,i√
σxx,ii

φ

(

µx,i√
σxx,ii

)

×ΦK−1

(

µµµx,−i −
µx,i

σxx,ii
σσσxx,−ii;ΣΣΣxx,−i|i

)

, (5)

where, for some i,

σσσxy =

(

σxy,i
σσσxy,−i

)

, µµµx =

(

µx,i

µµµx,−i

)

, ΣΣΣxx =

(

σxx,ii σσσ⊤
xx,−ii

ΣΣΣxx,−i−i

)

,

with ΣΣΣxx,−i|i = ΣΣΣxx,−i−i − σσσxx,−iiσσσ
⊤
xx,−ii/σxx,ii, and with φ(·) the standard normal PDF.

Equation (5) is easily obtained by differentiating Equation (4) and using the following:

∂

∂s
ΦK(µµµx + sσσσxy;ΣΣΣxx) =

K
∑

i=1

σxy,i√
σxx,ii

φ

(

µx,i + sσxy,i√
σxx,ii

)

ΦK−1

({

σσσxy,−i −
σxy,i
σxx,ii

σσσxx,−ii

}

s

+µµµx,−i −
µx,i

σxx,ii
σσσxx,−ii;ΣΣΣxx,−i|i

)

.

Next, if U ∼ SUT1,K(µy,µµµx, σyy,ΣΣΣxx,σσσxy, ν), we similarly obtain

E[U ] = µy +
νν/2Γ

(

ν−1
2

)

2
√
πΓ
(

ν
2

)

TK(µµµx;ΣΣΣxx, ν)

K
∑

i=1

σxy,i√
σxx,ii

(

ν +
µ2
x,i

σxx,ii

)−(ν−1)/2

×TK−1





√
ν − 1

√

ν +
µ2

x,i

σxx,ii

(

µµµx,−i −
µx,i

σxx,ii
σσσxx,−ii

)

;ΣΣΣxx,−i|i, ν − 1



 .

This follows from Equation (5) and from the result that for a χ2
ν random variable νV with

ν degrees of freedom,

E
[

V −1/2φ(aV 1/2)ΦQ(V
1/2b;ΣΣΣ)

]

=
νν/2Γ

(

ν−1
2

)

2
√
πΓ
(

ν
2

) (ν + a2)−(ν−1)/2

×TQ

(
√
ν − 1√
ν + a2

b;ΣΣΣ, ν − 1

)

,

for any real number a, any Q× 1 real vector b, and any positive definite Q×Q matrix ΣΣΣ.
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2.2 Bivariate case

Next, we consider the case N = 2 and K ≥ 1. Let

ΣΣΣyy =

(

σyy,11 σyy,12
σyy,22

)

and ΣΣΣyx =

(

σσσ⊤
yx1

σσσ⊤
yx2

)

.

For U = (U1, U2)
⊤ ∼ SUN2,K(µµµy,µµµx,ΣΣΣyy,ΣΣΣxx,ΣΣΣyx), it follows from Arellano-Valle and

Genton (2010a) that U1 ∼ SUN1,K(µy,1,µµµx, σyy,11,ΣΣΣxx,σσσyx1). In addition, we get

U2|U1 = u1 ∼ SUN1,K(µ2·1
y (u1),µµµ

2·1
x (u1), σ

22·1
yy ,ΣΣΣ2·1

xx ,σσσ
2·1
yx ),

where µ2·1
y (u1) = µy,2 + σyy,12(u1 − µy,1)/σyy,11, µµµ

2·1
x (u1) = µµµx + σσσyx1(u1 − µy,1)/σyy,11,

σ22·1
yy = σyy,22 − σ2

yy,12/σyy,11, ΣΣΣ2·1
xx = ΣΣΣxx − σσσyx1σσσ

⊤
yx1/σyy,11, and σσσ2·1

yx = σσσyx2 −
σyy,12σσσyx1/σyy,11. It can also be shown that

E[U2|U1 = u1] = µ2·1
y (u1) +

1

ΦK(µµµ2·1
x (u1);ΣΣΣ

2·1
xx )

K
∑

i=1

σ2·1
yx,i

√

σ2·1
xx,ii

φ





µ2·1
x,i(u1)
√

σ2·1
xx,ii





×ΦK−1

(

µµµ2·1
x,−1(u1)−

µ2·1
x,i(u1)

σ2·1
xx,ii

σσσ2·1
xx,−ii;ΣΣΣ

2·1
xx,−i|i

)

, (6)

where σ2·1
xx,ii = σxx,ii−σyx1,i/σyy,11, µµµ

2·1
x,−i(u1) = µµµx,−i+σσσyx1,−i(u1−µy,1)/σyy,11, σσσ

2·1
xx,−ii =

σσσxx,−ii − σyx1,iσσσyx1,−i/σyy,11,

ΣΣΣ2·1
xx,−i|i = ΣΣΣxx,−i−i −

σσσyx1,−iσσσ
⊤
yx1,−i

σyx,11
−

(

σσσxx,−ii − σyx1,iσσσyx1,−i

σyy,11

)(

σσσxx,−ii − σyx1,iσσσyx1,−i

σyy,11

)⊤

σxx,ii − σyx1,i

σyy,11

,

and where σσσyx1, σσσyx2, µµµx, and ΣΣΣxx are similarly partitioned as in Section 2.1. Analogous
results may be similarly obtained for U = (U1, U2)

⊤ ∼ SUT2,K(µµµy,µµµx,ΣΣΣyy,ΣΣΣxx,ΣΣΣyx, ν):

U1 ∼ SUT1,K(µy,1,µµµx, σyy,11,ΣΣΣxx,σσσyx1, ν), (7)

U2|U1 = u1 ∼ SUT1,K

(

µ2·1
y (u1),µµµ

2·1
x (u1), q1(u1, ν)σ

22·1
yy , q1(u1, ν)ΣΣΣ

2·1
xx , q1(u1, ν)σσσ

2·1
yx , ν + 1

)

,

E[U2|U1 = u1] = µ2·1
y (u1) +

(ν + 1)(ν+1)/2q
1/2
1 (u1, ν)Γ

(

ν
2

)

2
√
πΓ
(

ν+1
2

)

TK(µµµ2·1
x (u1); q1(u1, ν)ΣΣΣ

2·1
x , ν + 1)

K
∑

i=1

σ2·1
yx,i

√

σ2·1
xx,ii

×TK−1









√
ν
(

σσσ2·1
x,−i(u1)−

σ2·1
xi (u1)
σ2·1
xx,ii

σσσ2·1
xx,−ii

)

√

ν + 1 +
{µ2·1

x,i(u1)}2

q1(u1,ν)σ2·1
xx,ii

; q1(u1, ν)ΣΣΣ
2·1
xx,−i|i, ν









×






ν + 1 +

(

µ2·1
x,i(u1)

)2

q1(u1, ν)σ2·1
xx,ii







−ν/2

, (8)
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where σ2·1
yx,i, σ

2·1
xx,ii, µ

2·1
x,i(u1), µµµ

2·1
x,−1(u1), σ

2·1
yx,−ii, and ΣΣΣ2·1

xx,−i|i are as defined previously, and

q1(u1, ν) =
1

ν + 1

{

ν +
(u1 − µx,1)

2

σyy,11

}

.

Note that the above show that the class of SUN and SUT distributions are conveniently
closed under marginalization and conditionalization.

3. Main Results

Assume Equation (1) holds, where ΣΣΣ is positive definite. In this section, we show that
X and LY(N) are jointly distributed according to a mixture of SUE distributions, where

Y(N) = (Y(1), . . . , Y(N))
⊤ is the vector of order statistics from Y, and L is a P ×N matrix

of rank(L) = P . To this end, let Y(N) ∈ P(Y), where P(Y) = {Yi : Yi = PiY, i =
1, . . . , N !} is the collection of vectors Yi corresponding to the N ! different permutations
of the components of Y, with Pi a N × N permutation matrix such that Pi 6= Pi′ ,
for all i 6= i′. Further, let D be an (N − 1) × N difference matrix such that DY =
(Y2 − Y1, Y3 − Y2, . . . , YN − YN−1), i.e., row i of D is given by e⊤i+1 − e⊤i , i = 1, . . . , N ,
where e1, . . . , eN are N -dimensional unit basis vectors. We give below our main result on
the joint, marginal and conditional distributions of X and LY(N).

Proposition 3.1 Assume Equation (1) holds. Then the following are true:

(i) the joint CDF FX,LY(N)
(·) and joint PDF fX,LY(N)

(·) of X and LY(N) is then given
by

FX,LY(N)
(x,w) =

N !
∑

i=1

πiF
h(K+N+P−1)

K+P,N−1 (x,w;ΘΘΘi), (9)

fX,LY(N)
(x,w) =

N !
∑

i=1

πif
h(K+N+P−1)

K+P,N−1 (x,w;ΘΘΘi), (10)

where F h(K+N+P−1)

K+P,N−1 (·;ΘΘΘi) and fh(K+N+P−1)

K+P,N−1 (·;ΘΘΘi) are the CDF and PDF of

SUEK+P,N−1(ΘΘΘi, h
(K+N+P−1)), and

πi = Gh(N−1)

N−1 (ηηηi;ΓΓΓi),

with Gh(N−1)

N−1 (·;ΓΓΓi) the CDF of ECN−1(0,ΓΓΓi, h
(N−1)), ΘΘΘi = {ξξξi, ηηηi,ΩΩΩi,ΓΓΓi,ΛΛΛi},

ξξξi =

(

µµµx

Lµµµy,i

)

, ηηηi = Dµµµy,i, ΩΩΩi =

(

ΣΣΣxx ΣΣΣ⊤
yx,iL

⊤

LΣΣΣyy,iL
⊤

)

,

ΓΓΓi = DΣΣΣyy,iD
⊤, ΛΛΛi =

(

ΣΣΣ⊤
yx,iD

⊤

LΣΣΣyy,iL
⊤

)

,

µµµy,i = Piµµµy, ΣΣΣyy,i = PiΣΣΣyyP
⊤
i , and ΣΣΣyx,i = PiΣΣΣyx;
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(ii) the marginal CDF of LY(N) is given by

FLY(N)
(w) =

N !
∑

i=1

πiF
h(N+P−1)

P,N−1 (w;ΘΘΘ1
i ),

where ΘΘΘ1
i = {Lµµµy,i,Dµµµy,i,LΣΣΣyy,iL

⊤,DΣΣΣyy,iD
⊤,LΣΣΣyy,iD

⊤};
(iii) the conditional CDF of X given LY(N) = w is given by

FX|LY(N)
(x|w) =

N !
∑

i=1

πiF
h(K+N−1)

q2i(w)

K,N−1 (x;ΘΘΘ1·2
i ),

where F
h(K+N−1)

q
2i

(w)

K,N−1 (·;ΘΘΘ1·2
i ) is the CDF of SUEK,N−1(ΘΘΘ

1·2
i , h

(K+N−1)
q
2i
(w) ) with conditional

density generator function h
(m)
a given by

h(m)
a (u) =

h(m+1)(u+ a)

h(1)(a)
, a, u ≥ 0,

and ΘΘΘ1·2
i = {ξξξ1·2i (w), ηηη1·2i (w),ΩΩΩ11·2

i ,ΓΓΓ1·2
i ,ΛΛΛ1·2

i }, with ξξξ1·2i (w) = µµµx +

ΣΣΣ⊤
yx,iL

⊤(LΣΣΣyy,iL
⊤)−1(w − Lµµµy,i), ηηη

1·2
i (w) = Dµµµy,i +DΣΣΣyy,iL

⊤(LΣΣΣyy,iL
⊤)−1(w −

Lµµµy,i), ΩΩΩ11·2
i = ΣΣΣxx − ΣΣΣ⊤

yx,iL
⊤(LΣΣΣyy,i L⊤)−1LΣΣΣyx,i, ΓΓΓ1·2

i = ΓΓΓi −
DΣΣΣyy,iL

⊤(LΣΣΣyy,iL
⊤)−1LΣΣΣyy,i D⊤, ΛΛΛ1·2

i = ΣΣΣ⊤
yx,iD

⊤ − ΣΣΣ⊤
yx,iL

⊤(LΣΣΣyy,i

L⊤)−1LΣΣΣyy,iD
⊤, and q2i(w) = (w − Lµµµy,i)

⊤(LΣΣΣyy,i L
⊤)−1(w − Lµµµy,i);

(iv) the conditional CDF of LY(N) given X = x is given by

FLY(N)|X(w|x) =
N !
∑

i=1

πiF
h(N+P−1)

q1(x)

P,N−1 (w;ΘΘΘ2·1
i ),

where F
h
(N+P−1)

q1(x)

P,N−1 (·;ΘΘΘ2·1
i ) is the CDF of SUEP,N−1(ΘΘΘ

2·1
i , h

(N+P−1)
q1(x)

) with conditional

density generator function h
(N+P−1)
q1(x)

, and ΘΘΘ2·1
i = {ξξξ2·1i (x), ηηη2·1i (x),ΩΩΩ22·1

i ,ΓΓΓ2·1
i ,ΛΛΛ2·1

i },
with ξξξ2·1i (x) = µµµy,i + LΣΣΣyx,iΣΣΣ

−1
xx (x − µµµx), ηηη

2·1
i (x) = Dµµµy,i + DΣΣΣyx,iΣΣΣ

−1
xx (x − µµµx),

ΩΩΩ22·1
i = LΣΣΣyy,iL

⊤ − LΣΣΣyx,iΣΣΣ
−1
xxΣΣΣ

⊤
yx,iL

⊤, ΓΓΓ2·1
i = ΓΓΓi − DΣΣΣyx,iΣΣΣ

−1
xxΣΣΣ

⊤
yx,iD

⊤, ΛΛΛ2·1
i =

LΣΣΣyy,iD
⊤ − LΣΣΣ⊤

yx,iΣΣΣ
−1
xx ΣΣΣ⊤

yx,iD
⊤, and q1(x) = (x−µµµx)

⊤ΣΣΣ−1
xx (x−µµµx).

Proof For (i), note first that

FX,LY(N)
(x,w) =

N !
∑

i=1

P(DYi ≥ 0)P(X ≤ x,LYi ≤ w|DYi ≥ 0), (11)

where the inequalities hold componentwise. Next, note that





DYi

X

LYi



 ∼ ECK+N+P−1

((

ηηηi
ξξξi

)

,

(

ΓΓΓi ΛΛΛ
⊤
i

ΩΩΩi

)

, h(K+N+P−1)

)

,

for i = 1, . . . , N !. For the ith term of Equation (11), we have P(DYi ≥ 0) = πi and by
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Equation (3), we get

P(X ≤ x,LYi ≤ w|DYi ≥ 0) = F h(K+N+P−1)

K+P,N−1 (x,w;ΘΘΘi),

which proves (i). Parts (ii)-(iv) follow in a straightforward manner from the mixture rep-
resentation given in Equation (9) and results in Jamalizadeh and Balakrishnan (2012) on
marginal and conditional distributions of SUE distributions. �

Proposition 3.1 is a generalization of Jamalizadeh and Balakrishnan (2009b) and Balakr-
ishnan et al. (2012), and gives the relevant joint, marginal, and conditional distributions
as mixtures of SUE distributions. It can also be specialized to the case of normal and
t-distributions; hence, it can be viewed as extensions of Viana (1998) and Olkin and Viana

(1995). In either case, we need only replace F h(K+N+P−1)

K+P,N−1 (·;ΘΘΘi), the CDF of a SUE dis-

tribution with parameter ΘΘΘi and density generator function h(K+N+P−1) with the CDF

Fφ(K+N+P−1)

K+P,N−1 (·;ΘΘΘi) of a SUN distribution (with density generator function φ(K+N+P−1))

in the normal case, or with the CDF F
t(K+N+P−1)
ν

K+P,N−1 (·;ΘΘΘi) of a SUT distribution (with den-

sity generator function t
(K+N+P−1)
ν ) in the case of t. It is also important to mention that

the density generator function should be replaced by the characteristic generator function
when ΣΣΣ is singular.

3.1 Special case: results for X and a⊤Y(N)

In this section, we consider the special case K = P = 1 with L = a⊤ = (a1, . . . , aN ).

Provided
∑N

i=1 ai 6= 0, the joint distribution of X and a⊤Y(N) is given by Equation (9) in

Proposition 3.1. If
∑N

i=1 ai = 0, then the bivariate SUE distributions in Equation (9) are

singular, in which case the density generator function h(N+1) is replaced by the charac-
teristic generator function ϕ(N+1). Corresponding marginal and conditional distributions
likewise follow from Proposition 3.1. For example, consider the exchangeable case

(

X
Y

)

∼ ECN+1

(

µµµ =

(

µx

µ1N

)

,ΣΣΣ =

(

σ2 δτσ1⊤N
τ2{(1− ρ)IN + ρ1N1⊤N}

)

, h(N+1)

)

,

where τ > 0, |ρ| < 1,
√
N |δ| ≤

√

1 + ρ(N − 1), 1N = (1, . . . , 1)⊤ is the N×1 summing vec-
tor, and IN = diag(1, . . . , 1) is the N×N identity matrix. This equicorrelation structure for
Y is found most frequently in familial studies in genetics, for example, and in animal tera-
tology, where data arise in clusters from litters. Then, it follows from Proposition 3.1 that

X|a⊤Y(N) = w ∼ SUE1,N−1(ΘΘΘ
1·2, h(N)

q2(w)), where ΘΘΘ
1·2 = {ξ1·2(w), ηηη1·2(w), ω11·2,ΓΓΓ1·2,λλλ1·2},
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with

ξ1·2(w) = µx +
δσ
∑N

i=1 ai

τ

{

(1− ρ)
∑N

i=1 a
2
i + ρ

(

∑N
i=1 ai

)2
}

[

w − µ

N
∑

i=1

ai

]

,

ηηη1·2(w) =
(1− ρ)Da

(1− ρ)
∑N

i=1 a
2
i + ρ

(

∑N
i=1 ai

)2

[

w − µ

N
∑

i=1

ai

]

,

ω11·2 = σ2 −
δ2σ2

(

∑N
i=1 ai

)2

(1− ρ)
∑N

i=1 a
2
i + ρ

(

∑N
i=1 ai

)2 ,

ΓΓΓ1·2 = τ2(1− ρ)DD⊤ − τ2(1− ρ)2Daa⊤D⊤

(1− ρ)
∑N

i=1 a
2
i + ρ

(

∑N
i=1 ai

)2 ,

λλλ1·2 = − δτσ(1 − ρ)Da
∑N

i=1 ai

(1− ρ)
∑N

i=1 a
2
i + ρ

(

∑N
i=1 ai

)2 ,

q2(w) =

(

w − µ
∑N

i=1 ai

)2

τ

{

(1− ρ)
∑N

i=1 a
2
i + ρ

(

∑N
i=1 ai

)2
} .

These results may be specialized as well to the normal and t-cases as generalizations of
previous results by Jamalizadeh and Balakrishnan (2009b), Balakrishnan et al. (2012),
Viana (1998), and Olkin and Viana (1995), among others.
We now give the best (non-linear) predictors E[X|a⊤Y(N) = w] and E[a⊤Y(N)|X = x]

of X and a⊤Y(N), respectively, in the normal and t-cases under squared error loss. Let

D =

(

d⊤
j

D−j

)

=

(

e⊤j+1 − e⊤j
D−j

)

, (12)

where D−j is the matrix obtained from D by deleting row j, where e1, . . . , eN are N -
dimensional unit basis vectors.

Proposition 3.2 Suppose X and Y have a (N+1)-dimensional normal distribution with
mean µµµ and covariance matrix ΣΣΣ. Then, under squared error loss, the best (non-linear)
predictor of X based on a⊤Y(N) = w is

E
[

X|a⊤Y(N) = w
]

=

N !
∑

i=1

πiξ
1·2
i (w) +

N !
∑

i=1

πi

ΦN−1(ηηη1·2i (w);ΓΓΓ1·2
i )

N−1
∑

j=1

λ1·2
i,j

√

γ1·2i,jj

×φ





η1·2i,j (w)
√

γ1·2i,jj



ΦN−2

(

ηηη1·2i,−j(w) −
η1·2i,j (w)

γ1·2i,jj

γγγ1·2i,−jj;ΓΓΓ
1·2
i,−j|j

)

; (13)

if, on the other hand, X and Y have a (N + 1)-dimensional tν-distribution with mean
µµµ and scale matrix ΣΣΣ, then the best (non-linear) predictor of X based on a⊤Y(N) = w
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becomes

E
[

X|a⊤Y(N) = w
]

=

N !
∑

i=1

πiξ
1·2
i (w) +

(ν + 1)(ν+1)/2Γ
(

ν
2

)

2
√
πΓ
(

ν+1
2

)

N !
∑

i=1

πiq
1/2
2i (w, ν)

TN−1

(

ηηη1·2i (w);
q2i(w, ν)ΓΓΓ

1·2
i ,

ν + 1

)

×
N−1
∑

j=1

λ1·2
i,j

√

γ1·2i,jj

TN−2







√
ν

√

ν+1+
{η1·2

i,j
(w)}2

q2i(w,ν)γ1·2
i,jj

(

ηηη1·2i,−j(w) −
η1·2
i,j (w)

γ1·2
i,jj

γγγ1·2i,−jj

)

;

q2i(w, ν)ΓΓΓ
1·2
i,−j|j, ν







×
(

ν + 1 +
{η1·2i,j (w)}2

q2i(w, ν)γ1·2i,jj

)−ν/2

. (14)

All relevant quantities in Equations (13)–(14) are as defined in Proposition 3.1 and in
Section 2.2; for example,

ηηη1·2i (w) =

(

η1·2i,j (w)

ηηη1·2i,−j(w)

)

= Dµµµy,i +DΣΣΣyy,iL
⊤(LΣΣΣyy,iL

⊤)−1(w − Lµµµy,i), (15)

ΓΓΓ1·2
i,−j|j = D−jΣΣΣyy,iD

⊤
−j −

D−jΣΣΣyy,iaa
⊤ΣΣΣyy,iD

⊤
−j

a⊤ΣΣΣyy,ia
−

γγγ1·2i,−jj

(

γγγ1·2i,−jj

)⊤

γ1·2i,jj

= ΓΓΓ1·2
i,−j−j −

γγγ1·2i,−jj

(

γγγ1·2i,−jj

)⊤

γ1·2i,jj

,

with D given by Equation (12). The best (non-linear) predictor E[a⊤Y(N)|X = x] of

a⊤Y(N) based on X = x in both the normal and t-cases is obtained by replacing “w” with
“x”, changing the superscript “1 · 2” to “2 · 1”, and replacing “q2i(w, ν)” in Equation (14)
with “q1(x, ν)”.

Proof Expressions (13) and (14) are straightforward from Equations (6) and (8). �

Proposition 3.2 extends results in Loperfido (2008b), Jamalizadeh and Balakrishnan
(2009a), and Balakrishnan et al. (2012), to the case N ≥ 2.

3.2 Special case: results for X and Y(r)

The joint CDF of X and Y(r) can be obtained from Proposition 3.1 or from Section 3.1,
by taking a = er, r = 1, . . . , N . However, note that the resulting CDF involves a mixture
consisting of N ! components. Evaluating the CDF may thus be a problem in practice when
N is large.
In this section, we present an alternative approach for deriving this joint CDF with

only N
(N−1
r−1

)

< N ! terms. To do this, let 1 ≤ r ≤ N be an integer, and for integers
1 ≤ j1 < · · · < jr−1 ≤ N − 1, let Sj1...jr−1

= diag (s1, . . . , sN−1) be a (N − 1) × (N − 1)
diagonal matrix such that if jr−1 = N , then

si =

{

1, for i = j1, . . . , jr−2, and i = N − 1;
−1, otherwise
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and otherwise

si =

{

1, for i = j1, . . . , jr−1;
−1, otherwise.

In particular, Sj1...jN−1
= IN−1 and Sj0 = −IN−1. Further, let Yj1...jr−1

= (Yj1 , . . . , Yjr−1
)⊤,

and for i = 1, . . . , N , let the vector Y−i−j1−···−jr−1
(jk 6= i, k = 1, . . . , r − 1) be obtained

from Y by deleting Yi, Yj1 , . . . , Yjr−1
. Consider also the partitions

Y =

(

Y−i

Yi

)

, µµµ =

(

µµµy,−i

µy,i

)

, ΣΣΣyy =

(

ΣΣΣyy,−i−i σσσyy,−ii

σyy,ii

)

,

so that





X
Y−i

Yi



 ∼ ECm+N









µx

µµµy,−i

µy,i



 ,





σxx σσσ⊤
yx,−i σyx,i

ΣΣΣyy,−i−i σσσyy,−ii

σyy,i



 , h(N+1)



 .

The following proposition gives the joint CDF of X and Y(r) as a mixture of SUE distribu-

tions with only N
(N−1
r−1

)

< N ! terms. The resulting CDF is thus computationally simpler
to evaluate and hence, more useful in practice than the corresponding CDF obtained from
Proposition 3.1. Moreover, the result is technically elegant and should be of theoretical
interest in its own right.

Proposition 3.3 For r = 1, . . . , N , and jk 6= i, the joint CDF of X and Y(r) is given by

FX,Y(r)
(x, y) =

N
∑

i=1

∑

j1<···<jr−1

1≤jk≤N,jk 6=i

πi,j1...jr−1
F h(N+1)

2,N−1 (x, y;ΘΘΘi,j1...jr−1
), (16)

where ΘΘΘi,j1...jr−1
= {ξξξi,j1...jr−1

, ηηηi,j1...jr−1
,ΩΩΩi,j1...jr−1

,ΓΓΓi,j1...jr−1
,ΛΛΛi,j1...jr−1

},
F h(N+1)

2,N−1 (·;ΘΘΘi,j1...jr−1
) is the CDF of SUE2,N−1(ΘΘΘi,j1...jr−1

, h(N+1)), and

πi,j1...jr−1
= Gh(N−1)

N−1 (Sj1...jr−1
(µy,i1N−1 −µµµy,−i);ΓΓΓi,j1...jr−1

), (17)

with Gh(N−1)

N−1 (·;ΓΓΓi,j1...jr−1
) the CDF of ECN−1(0,ΓΓΓi,j1...jr−1

, h(N+1)), ξξξi,j1...jr−1
= (µx, µy,i)

⊤,
ηηηi,j1...jr−1

= Sj1...jr−1
(µy,i1N−1 −µµµy,−i),

ΩΩΩi,j1...jr−1
=

(

σxx σyx,i
σyy,ii

)

,

ΓΓΓi,j1...jr−1
= Sj1...jr−1

(σyy,ii1N−11
⊤
N−1 +ΣΣΣyy,−i−i − 1N−1σσσ

⊤
yy,−ii − σσσyy,−ii1

⊤
N−1)Sj1...jr−1

,

ΛΛΛi,j1...jr−1
=

(

(σyx,i1
⊤
N−1 − σσσyx,−i)

⊤Sj1...jr−1

(σyy,ii1
⊤
N−1 − σσσyy,−ii)

⊤Sj1...jr−1

)

=

(

(σyx,i1
⊤
N−1 −σσσyx,−i)

⊤Sj1...jr−1

λλλ⊤
i,j1...jr−1

)

.

The marginal CDF of Y(r) is readily obtained from Equation (16) as

FY(r)
(y) =

N
∑

i=1

∑

j1<···<jr−1

1≤jk≤N,jk 6=i

πi,j1...jr−1
F h(N+1)

1,N−1 (y;ΘΘΘ
(r)
i,j1...jr−1

),
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where ΘΘΘ
(r)
i,j1...jr−1

= {µy,i, ηηηi,j1,...,jr−1
, σyy,ii,ΓΓΓi,j1,...,jr−1

,λλλi,j1,...,jr−1
}.

Proof We have

FX,Y(r)
(x, y) =

N
∑

i=1

P
(

X ≤ x, Yi ≤ y, Yi = Y(r)

)

. (18)

The ith term of the RHS of Equation (18) is

P
(

X ≤ x, Yi ≤ y, Yi = Y(r)

)

=
∑

j1<···<jr−1

1≤jk≤N,jk 6=i

P

(

X < x, Yi ≤ y,
max(Yj1...jr−1

) < Yi < min(Y−i−j1−···−jr−1
)

)

=
∑

j1<···<jr−1

1≤jk≤N,jk 6=i

P(X < x, Yi ≤ y|Sj1...jr−1
{1N−1Yi −Y−i} > 0)

×P(Sj1...jr−1
{1N−1Yi −Y−i} > 0),

where max(Yj1...jr−1
) = max(Yj1 , . . . , Yjr−1

) and min(Y−i−j1−···−jr−1
) is the minimum of

the elements of Y−i−j1−···−jr−1
, which is defined at the beginning of Section 3.2. Now, we

have for i = 1, . . . , N ,

(

Sj1...jr−1
{1N−1Yi −Y−i}
(X,Yi)

⊤

)

∼ ECN+1

((

ηηηi,j1...jr−1

ξξξi,j1...jr−1

)

,

(

ΓΓΓi,j1...jr−1
ΛΛΛ⊤

i,j1...jr−1

ΩΩΩi,j1...jr−1

)

, h(N+1)

)

,

so that

P(X < x, Yi ≤ y|Sj1...jr−1
{1N−1Yi −Y−i} > 0) = F h(N+1)

2,N−1 (x, y;ΘΘΘi,j1...jr−1
),

and since P(Sj1...jr−1
{1N−1Yi −Y−i} > 0) = πi,j1...jr−1

, the proof is complete. �

Proposition 3.3 extends Loperfido’s (2008b) result to the general contralateral data set-
up and for an arbitrary multivariate skew-elliptical distribution with an arbitrary cor-
relation structure. Best nonlinear predictors of X and of Y(r) based on X and on Y(r),
respectively, are also conveniently obtained from Proposition 3.3. To do this for the case
r = N , consider the following partitions for j 6= i:

µµµy,−i =

(

µy,j

µµµy,−i−j

)

, ΣΣΣyy,−i−i =

(

σyy,jj σσσ⊤
yy;−i−j,j

ΣΣΣyy;−i−j,−i−j

)

,

σσσyy,−ii =

(

σyy,ji
σσσyy;−i−j,i

)

, σσσyx,−i =

(

σyx,j
σσσyx,−i−j

)

.

Assuming joint normality for X and Y, we get

E
[

X|Y(N) = y
]

=

N
∑

i=1

πi















ξ1·2i (y) +
1

ΦN−1

(

ηηη1·2i (y);ΓΓΓ1·2
i

)

∑

j 6=i

λ1·2
i,j φ

(

η1·2
i,j (y)√
γ1·2
i,jj

)

√

γ1·2i,jj

×ΦN−2

(

ηηη1·2i,−j(y)−
η1·2i,j (y)

γ1·2i,jj

γγγ1·2i,−jj;ΓΓΓ
1·2
i,−j|j

)}

, (19)
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Figure 1. Contour plots of fX,Y(N)
(x, y), for µx = µ = 0 and σ2 = τ2 = 1, with (a) ρ = 0.1, δ = 0.5, (b)

ρ = −0.45, δ = 0.5, (c) ρ = 0.1, δ = 0, and (d) ρ = −0.45, δ = 0.9.

where πi = Gh(N−1)

N−1 (ηηηi;ΓΓΓi), ξ
1·2
i (y) = µx + σyx,i(y − µy,i)/σyy,ii, λ

1·2
i,j = σyx,i − σyx,j −

σyx,i(σyy,ii − σyy,ji)/σyy,ii, γ1·2i,jj = σyy,ii + σyy,jj − 2σyy,ji − (σyy,ii − σyy,ji)
2/σyy,ii,

γγγ1·2
i,−jj = σyy,ii1

⊤
N−2 + σσσ⊤

yy;−i−j,j − σσσ⊤
yy;−i−j,i − σyy,ji1

⊤
N−2 − (σyy,ii − σyy,ji)(σyy,ii1N−2 −

σσσyy;−i−j,i)
⊤/σyy,ii,

ηηη1·2i (y) =

(

η1·2i,j (y)

ηηη1·2i,−j(y)

)

= µy,i1N−1 −µµµy,−i +
σyy,ii1N−1 − σσσyy,−ii

σyy,ii
(y − µy,i),

ΓΓΓ1·2
i = ΓΓΓi −

(σyy,ii1N−1 − σσσyy,−ii)(σyy,ii1N−1 − σσσyy,−ii)
⊤

σyy,ii
,

ΓΓΓ1·2
i,−j−j = σyy,ii1N−21

⊤
N−2 +ΣΣΣyy;−i−j,−i−j − 1N−2σσσyy;−i−j,i − σσσyy;−i−j,i1

⊤
N−2

−(σyy,ii1N−2 − σσσyy;−i−j,i)(σyy,ii1N−2 − σσσyy;−i−j,i)
⊤

σyy,ii
,

with ΓΓΓ1·2
i,−j|j given in Equation (15). Similarly, the predictor E[Y(N)|X = x] can be anal-

ogously obtained from Equation (19) by replacing “y” with “x” and changing the super-
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Figure 2. Plots of (a) E[X|Y(N) = y] in Equation (21) and of (b) E[Y(N)|X = x] in Equation (20), with N = 3,

µx = µ = 0, σ2 = τ2 = 1, and ρ = δ = 0.5. Superimposed on (a) and (b) are scatterplots of x vs. y = max(y1, y2, y3),
and of y = max(y1, y2, y3) vs. x, for sample size 1000.

script “1 · 2” to “2 · 1”, where ξ2·1i (x) = µy,i + σyx,i(x − µx)/σxx, λ
2·1
i,j = σyy,ii − σyy,ji −

σyx,i(σyx,i − σyx,j)/σxx, γ2·1i,jj = σyy,ii + σyy,jj − 2σyy,ji − (σyx,i − σyx,j)
2/σxx, γγγ

2·1
i,−jj =

σyy,ii1
⊤
N−2+σσσ⊤

yy;−i−j,j−σσσ⊤
yy;−i−j,i−σyy,ji1

⊤
N−2−(σyx,i−σyx,j)(σyx,i1N−2−σσσyx,−i−j)

⊤/σxx,

ηηη2·1i (x) =

(

η2·1i,j (x)

ηηη2·1i,−j(x)

)

= µy,i1N−1 −µµµy,−i +
σyx,i1N−1 − σσσyx,−i

σxx
(x− µx),

ΓΓΓ2·1
i = ΓΓΓi −

(σyx,i1N−1 −σσσyx,−i)(σyx,i1N−1 −σσσyx,−i)
⊤

σxx
,

ΓΓΓ2·1
i,−j−j = σyy,ii1N−21

⊤
N−2 +ΣΣΣyy;−i−j,−i−j − 1N−2σσσyy;−i−j,i −σσσyy;−i−j,i1

⊤
N−2

−(σyx,i1N−2 − σσσyx,−i−j)(σyx,i1N−2 − σσσyx,−i−j)
⊤

σxx
.

Note that these predictors are computationally simpler than the corresponding ones given
in Proposition 3.2.



Chilean Journal of Statistics 83

In the exchangeable case, it is easy to see that X and Y(r) are jointly

SUE2,N−1(ΘΘΘ, h(N+1)), where

ΘΘΘ =

{(

µx

µ

)

,0,

(

σ2 δτσ
τ2

)

, τ2(1− ρ)(IN−1 + ρ1N−11
⊤
N−1),

(

0⊤

τ2(1− ρ)1⊤N−1

)}

.

That is, X and Y(r) have an exact bivariate SUE joint distribution under exchangeability.
In the case with r = N and assuming X and Y are jointly normal, their exact joint
distribution is SUN, the contour plots of which are shown in Figure 1, with µx = µ = 0,
σ2 = τ2 = 1, for (ρ, δ) = (0.1, 0.5), (−0.45, 0.5), (0.1, 0), (−0.45, 0.9). In this case, the best
predictors above reduce to

E
[

Y(N)|X = x
]

= µ+ δτ

(

x− µx

σ

)

+
(N − 1)τ

√
1− ρ√

π
, (20)

E
[

X|Y(N) = y
]

= µx + δσ









(

y − µ

τ

)

−
(N − 1)

√

1−ρ
1+ρφ

(√

1−ρ
1+ρ

(y−µ)
τ

)

ΦN−1

(

(1− ρ)τ2(y − µ)1N−1;
(1− ρ)τ2

{

IN−1 + ρ1N−11
⊤
N−1

}

)









×ΦN−2

( (1−ρ)(y−µ)
1+ρ 1N−2;

(1− ρ)τ2
{

IN−2 +
ρ

1+ρ1N−21
⊤
N−2

}

)

. (21)

We plot Equation (20) as a function of x ∈ (−3, 3) and Equation (21) as a function
of y ∈ (−3, 3) in Figures 2(b) and 2(a), respectively, with N = 3, µx = µ = 0, σ2 =
τ2 = 1, and ρ = δ = 0.5. Also shown in Figures 2(b) and 2(a) are scatterplots of xk vs.
yk = max(y1k, y2k, y3k) and of yk = max(y1k, y2k, y3k) vs. xk, respectively, from a sample
(xk, y1k, yk2, y3k)

⊤, k = 1, . . . , 1000, from the 4-dimensional normal distribution with mean
vector µµµ = (µx, µ, µ, µ)

⊤ = 0 and exchangeable covariance matrix

ΣΣΣ =









σ2 δτσ δτσ δτσ
τ2 ρ ρ

τ2 ρ
τ2









=









1 0.5 0.5 0.5
1 0.5 0.5

1 0.5
1









.

Figure 2 shows that the regression functions in Equations (20) and (21) both provide
relatively good fits for the data.
Note that Equations (20) and (21) reproduce earlier results for N = 2 given, for example,

by Viana (1998) and Olkin and Viana (1995). Proposition 3.3 may also be used to obtain
the best predictors of X and of Y(N) based on Y(N) and on X, respectively, in the case of
a joint t-distribution for X and Y.

4. Conclusion

In this paper, we derived general results on joint distributions and prediction for a K × 1
vector X and a vector of L-statistics LY(N) (i.e., an affine transformation of the vector
of order statistics Y(N)) of an N × 1 vector Y, where X and Y are assumed to have a
joint multivariate elliptical distribution. The results involving multivariate skew-elliptical
distributions are general enough to include several previous results as special cases; see,
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e.g., Jamalizadeh and Balakrishnan (2009b) and Balakrishnan et al. (2012). By considering
elliptical distributions, which include normal as well as t-distributions, we provide a robust
alternative to conventional formulations based on normality. Note that while we paid
particular attention to the special cases of normal and t-distributions, other elliptical
distributions such as the Laplace and slash distributions may be considered as well. We
however defer these other cases for future work. In addition, the results in this paper can
be easily extended to SUE distributions. For example, the results can be easily extended to
multivariate skew-elliptical distributions introduced by Branco and Dey (2001), as a referee
suggested (since the multivariate skew-elliptical distributions presented by these authors
are special cases of SUN distributions). Note that our results give the joint distribution
of X and LY(N) as N !-component mixtures. In practice, evaluating such distributions can
become computationally infeasible, especially when N is large. Proposition 3.3 gives a
computationally more efficient alternative form that involves a smaller number of mixture
components but only for the special case K = 1 and LY(N) = Y(r), r = 1, . . . , N . An
analogous result in the general case should be useful in practice. Alternatively, accurate
approximations may be obtained to alleviate the computational demands of evaluating the
exact distributions. This would be the subject of future work as well.
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