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Abstract

This article proposes a methodology based on sequential Monte Carlo techniques that
permits state estimate of chaotic dynamic systems with Gaussian errors and non-linear
dynamics in real time. Such systems arise naturally in many varied applications. We
illustrate the methodology through the reconstruction of the states of the chaotic maps
of Henon, Ikeda, Tinkerbell and Lorenz, using four different algorithms, namely, generic
particle filter (GPF), particle filter with re-sampling (PFR), unscented Kalman filter
(UKF) and an unscented particle filter (UPF). The performance of the filters was eval-
uated in terms of the empirical standard deviation and the computation times showing
little variance among the estimated errors and a rapid execution of the algorithms.
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1. Introduction

System dynamics is the physical science that studies the movement of physical phenomena
changing and evolving with time. When the state behavior shows complicated, irregular,
complex, erratic movements, difficult to predict precisely in space and time and which
are very sensitive to the initial conditions and the instability, this leads to the study of
chaotic dynamical processes to explain the irregularities observed. A dynamic system is a
mathematical model which describes a process in terms of the possible states and a set of
rules for determining present and future states in terms of past states. It is defined as

xt = Mt(xt−1) + ut, (1)

yt = Ht(xt) + vt. (2)
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Equation (1) represents the dynamic system where xt ∈ X ⊂ Rn denotes the vector
of unknown states at time t, ut is a random error in the state estimation and Mt is a
transition operator that maps the state space into the same state space. The Equation (2)
represents the observed system where Ht is an operator that maps the state space into the
observation space at time t, yt ∈ Y ⊂ Rn is the vector of observations and vt is a random
observation error.
An importante task is to estimate the unknown states x0:t = (x0, . . . ,xt)

T , based on
the measures obtained in the observation process. y1:t = (y1, . . . ,yt)

T . The main idea is
to estimate recursively in time t, the posterior distribution P(x0:t|y1:t) and its associated
characteristics including the marginal distribution P(xt|y1:t), its expected values, modes
and variances. If one assumes that the white noise ut ∼ N(0, σ2

u) and vt ∼ N(0, σ2
v), it is

also necessary to estimate the parameters (σ2
u, σ

2
v).

In a given time t, the posterior distribution can be estimated using Bayes theorem as

P(x0:t|y1:t) ∝
P(y1:t|x0:t)P(x0:t)

∫

P(y1:t|x0:t)P(x0:t)dx0:t
.

It is possible to obtain a recursive formula to estimate P(x0:t|y1:t) by

P(x0:t+1|y1:t+1) = P(x0:t|y1:t)
P(yt+1|xt+1)P(xt+1|xt)

P(yt+1|y1:t)
.

In many cases P(x0:t+1|y1:t+1) cannot be evaluated accurately, instead, is calculated the
marginal distribution P(xt|y1:t) as follows:

Step 1 Predict

P(xt|y1:t−1) =

∫

P(xt|xt−1)P(xt−1|y1:t−1)dxt−1. (3)

Step 2 Update

P(xt|y1:t) =
P(yt|xt)P(xt|y1:t−1)

∫

P(yt|xt)P(xt|y1:t−1)dxt

. (4)

Given the difficulty to calculate the integrals involved in Equations (3) and (4), one of
the objectives of this research is to develop mathematical and computational strategies
to filter the signals (observations) and use them to reconstruct the vector of states of
the system considered in Equation (1). The filtering of a signal in real time is important
since it reduces the cost of storage in the database, permits a rapid interpretation of the
changes occurring in the phenomena under study and also provides the degrees of freedom
for predicting the current states using the past state history of the system. Applications
include weather forecasting; analysis of climate change, volatility of econometric series,
communication signals and satellite images; development of sensors for the aviation, auto-
mobile and navigation industries; and protection of the environment from the propagation
of dangerous contaminants.
This article will deal with some chaotic models arising from dynamic systems, which

have been widely used to model the behavior of nature and is an area of active research;
see Majda and Harlim (2012). Liu and Chen (1998) proposed a general framework based
on Monte Carlo computation methods for real time dynamic systems, including impor-
tance sampling, resampling, rejection sampling, and Markov Chain techniques, with ap-
plications in engineering and econometric disequilibrium models. Meyer and Christensen
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(2000) used an algorithm of Markov Chain Monte Carlo, specifically the Gibbs sampler,
for estimating parameters in nonlinear models from time series of noisy data (logistic
map, Moran-Ricker map, Henon map). Meyer and Christensen (2001) used the extended
Kalman filter for the reconstruction of chaotic dynamical systems and compared these
results with those obtained using the Gibbs sampler. Bremer and Kaplan (2001) showed
how to use Markov Chain Monte Carlo techniques to estimate dynamic parameters on not
observed components of a states vector, particularly the Gibbs sampler used to estimate
states and reconstruct the attractors of Tinkerbell, Ikeda and Henon maps. Zhang et al.
(2006) addressed the problem of secure chaotic communication using sequential Monte
Carlo methods, showing that the modulated messages can be estimated using a particle
filter algorithm, the signal can be nonlinear, which improves the security level for commu-
nication. They simulated using the Holmes map to verify the results. Majda et al. (2010)
discuss some difficulties which arise when turbulence signals are filtered in real time in
dynamic systems and indicate that common problems include: signals from nature arise
from turbulent nonlinear dynamical systems, noisy spatio temporal signals which have
amplitude over many spatial scales; imperfect models; the dimension of the state vector is
very large order from 104 to 108; and spatio temporal observations are scarce or partially
observed and at different scales. They propose to develop new computational strategies
based on stochastic parametrization algorithms (extended Kalman filters, particle filtering)
to reduce the dimensionality, to reduce model error, and to improve the filtering as well as
the prediction capability. Majda et al. (2010) hope that this article will inspire other math-
ematicians, scientists and engineers to explore the use of modern applied mathematics in
developing new algorithms for filtering turbulent dynamical systems.
In this paper we propose to use four stochastic algorithms to filter signals and reconstruct

the states of four models arising from dynamic systems: Henon, Ikeda, Tinkerbell, and the
Lorenz model. These models is known to have chaotic behavior, are governed by dynamic
equations and the corresponding known time series are generated by equations of motion.
In addition to estimating the states and reconstructing the attractors, a comparison in
terms of errors and the CPU time between different algorithms is proposed. The considered
chaotic models are defined as follows:

(1) Henon map (Henon, 1976):

xt+1 = yt + 1− ax2t + u1t,

yt+1 = bxt + v1t, (5)

where: u1t ∼ Np(0, σ
2
u1
), v1t ∼ Np(0, σ

2
v1), u1t and v1t are mutually independent.

(2) Ikeda map (Casdagli, 1989):

xt+1 = 1 + ρ [xt cos(φt)− yt sin(φt)] + u2t,

yt+1 = ρ [xt sin(φt) + yt cos(φt)] + v2t, (6)

where u2t ∼ Np(0, σ
2
u2
), v2t ∼ Np(0, σ

2
v2
), u2t and v2t are mutually independent and

φt = 0.4 − 6/[1 + x2t + y2t ].
(3) Tinkerbell map (Nusse et al., 1997):

xt+1 = x2t − y2t + axt + byt + u3t,

yt+1 = 2xtyt + cxt + dyt + v3t, (7)

where u3t ∼ N(0, σ2
u3
) and v3t ∼ N(0, σ2

v3), u3t and v3t are mutually independent.
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(4) Lorenz model (Lorenz, 1963): is a coupled system of nonlinear differential
equations describing fluid dynamics:

ẋ = s(y − x),

ẏ = rx− y − xz,

ż = xy − bz, (8)

where s, r, b are parameters and ẋ = dx/dt, ẏ = dy/dt, ż = dz/dt. The state vector
x = (x, y, z)T represents a position of the particles in phase space.

The stochastic algorithms proposed in this paper to estimate the states in the dynamical
systems under study are: generic particle filter (GPF), particle filter with re-sampling
(PFR), unscented Kalman filter (UKF) and an unscented particle filter (UPF). For an
extensive review of these methods, see Anderson and Moore (1979), Arulampalam et al.
(2002), West and Harrison (1997), Gordon et al. (1993), Kitagawa (1996), Doucet et al.
(2000), Liu and West (2000), Pitt and Shephard (1999), Storvik (1999), Fearnhead (2002),
Doucet et al. (2001), Fong et al. (2002), Godsill et al. (2004), Lin et al. (2005), Simon
(2006), Snyder et al. (2008), Bengtsson et al. (2008), van der Merwe (2004), and Andrieu
et al. (2010) among others.
The rest of the article is as follows. Section 2 defines prior, likelihood and posterior

models; Section 3 discusses the sequential Monte Carlo techniques; Section 4 defines the
measurement of model performance; Section 5 summarizes the main results and Section 6
is a discussion of the results.

2. Prior, Likelihood and Posterior Models

Consider the system of equations given in Equations (1) and (2). The proposed objective
is to estimate the states x0:t based on the observations y1:t; and be able to estimate xt+1

given the observations y1:t. Suppose that the prior model is

P(x0:t) = P(x0)

t−1
∏

i=0

P(xi+1|x0:i) = P(x0)

t−1
∏

i=0

P (xi+1|xi),

where P(x0) is known as the prior probability density function for the initial state and
P(xi+1|xi) = P(xi+1|x0:i) is a first order Markov process. The likelihood of the model is
given by

P(y1:t|x0:t) =

t
∏

i=1

P(yi|x0:t) =

t
∏

i=1

P(yi|xi−1).

Given the prior distribution of the states and the likelihood of the model, the stochastic
posterior model is given by

P(x0:t|y1:t) = C × P(y1|x0)P(x0)

[

t−1
∏

i=1

P(yi+1|xi)P(xi|xi−1)

]

P(xt|xt−1),
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where C is a normalizing constant that may be difficult to evaluate. The forecasting prob-
lem can be expressed as

P(xt+1|y1:t) =

∫

· · ·

∫

P(x0:t+1|y1:t)dx0 · · · dxt. (9)

The above integrals given in Equations (3), (4) and (9) have an analytical solution only if
the measurement and state equations are linear and the errors have Gaussian distribution.
A solution is given by the Kalman filter. For a nonlinear function this problem may be
hard to resolve and one must look for solution strategies using recursive techniques such
as proposed in this work.

3. Sequential Monte Carlo Techniques

3.1 Generic particle filter

Given a simulation of N identically distributed independent random variables called par-

ticles, {x
(i)
0:t, i = 1, . . . , N} according to a distribution p(x0:t|y1:t), an empiric estimator of

this distribution is given by

p̃N (x0:t|y1:t) =
1

N

N
∑

i=1

δ(x0:t − x
(i)
0:t),

where δ(x0:t − x
(i)
0:t) denotes a point of mass of the function delta de Dirac located in

x
(i)
0:t. Here in lies the importance sampling method (IS). The IS can be modified to obtain

the estimator p̃N (x0:t|y1:t) of p(x0:t|y1:t) without modifying the simulated trajectories

{x
(i)
0:t−1, i = 1, . . . , N}. This involves an importance function q(x0:t|y1:t) in time t that

admits a marginal distribution in time t− 1, say

q(x0:t|y1:t) = q(x0:t−1|y1:t−1)q(xt|x0:t−1,y1:t), (10)

iterating, one obtains

q(x0:t|y1:t) = q(x0)

t
∏

k=1

q(xk|x0:k−1, y1:k).

Thus the importance function permits evaluating recursively in time the importance
weights

w
(i)
t ∝ w

(i)
t−1

p(yt|x
(i)
t )p(x

(i)
t |x

(i)
t−1)

q(x
(i)
t |x

(i)
0:t−1,y1:t)

.

A possible choice for the importance distribution is the prior distribution, that is,

q(x0:t|y1:t) = p(x0:t) = p(x0)

t
∏

k=1

p(xk|xk−1).
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In this case the importance weights satisfy

w
(i)
t ∝ w

(i)
t−1p(yt|x

(i)
t ).

We use the generic particle filter (GPF) developed by Lee (2005), which can be summarized
as follows:

Step 1. Initialization: For t = 0; and i = 1, . . . , N . Sample x
(i)
0 ∼ P (x0).

Step 2. Importance sampling: For t = 1, . . . , N ; and i = 1, . . . , N :

• x
(i)
t ∼ q(xt|x

(i)
0:t−1,y1:t) and form the set

x
(i)
0:t = (x

(i)
0:t−1, x

(i)
t ).

• We evaluate the importance weights

w
(i)
t ∝ w

(i)
t−1

p(yt|x
(i)
t )p(x

(i)
t |x

(i)
t−1)

q(x
(i)
t |x

(i)
0:t−1,y1:t)

.

• Normalize the importance weights

w̃
(i)
t =

w
(i)
t

∑N
j=1w

(j)
t

.

• Evaluate

N̂TME =
1

∑N
i=1

(

w̃
(i)
t

)2 .

Chen (2003) proposed to compare the index (N̂TME) with a predetermined threshold (NU )
to reduce the degeneracy. Thus,

Step 3. If N̂TME < NU = N/2

• For i = 1, . . . , N , is performed w̃
(i)
t = 1/N .

Step 4. Outputs: posteriori distribution, expected value and posteriori covariance.

p̃N (xt|y1:t) ≈

N
∑

i=1

w̃
(i)
t δ(xt − x

(i)
t ), (11)

x̃t = E[xt|y1:t] ≈

N
∑

i=1

w̃
(i)
t x

(i)
t , (12)

P̃t ≈

N
∑

i=1

w̃
(i)
t (x

(i)
t − x̃t)(x

(i)
t − x̃t)

T . (13)



Chilean Journal of Statistics 41

3.2 Particle filter with resampling

A problem that often arises with the generic particle filter is that of degeneration. After
a few iterations many of the particles may have insignificant weights implying that the
variance of the importance weights may increase in time. Doucet et al. (2000), established
two proposals to select an importance function that minimizes the variance of the weights

of the trajectories of the simulated states {x
(i)
0:t−1}. An way to measure the degeneracy

level in a particle set is to calculate the effective sample size (NTME) introduced in Kong
et al. (1994) and Liu (1996), defined as

NTME =
N

1 + Varq(.|y1:t)

[

w̃
(i)
t

] ,

where Varq(.|y1:t)[w̃
(i)
t ] is the variance of the normalized weights. In practice, the calculation

of NTME may be complicated, but it can be estimated by

N̂TME =
1

∑N
i=1

(

w̃
(i)
t

)2 .

N̂TME is then compared with a predetermined threshold NU = N/2. The modified algo-
rithm can be summarized as

Step 1 Initialization: For t = 0 and i = 1, . . . , N . Sample: x
(i)
0 ∼ p(x0).

Step 2 Importance sampling: For t = 1, . . . and for i = 1, . . . , N

a) Sample: x̃
(i)
t ∼ q(xt|x

(i)
0:t−1,y1:t); and construct the set

x̃
(i)
0:t = {x

(i)
0:t−1, x̃

(i)
t }.

b) Evaluate the importance weights

w
(i)
t ∝ w

(i)
t−1

p(yt|x̃
(i)
t )p(x̃

(i)
t |x̃

(i)
t−1)

q(x̃
(i)
t |x̃

(i)
0:t−1,y1:t)

.

c) Normalize the importance weights

w̃
(i)
t =

w
(i)
t

∑N
j=1w

(j)
t

.

d) Evaluate

N̂TME =
1

∑N
i=1

(

w̃
(i)
t

)2 .

Step 3 Re-sampling:

• If N̂TME ≥ NU , let x
(i)
0:t = x̃

(i)
0:t, for i = 1, . . . , N .

• Otherwise, if N̂TME < NU , for i = 1, . . . , N , sample an index j(i) distributed
according to a discrete distribution with N elements that satisfy pr{j(i) = l} =

w̃
(l)
t for l = 1, . . . , N .
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• For i = 1, . . . , N , let x
(i)
0:t = x̃

j(i)
0:t and w̃

(i)
t = 1/N .

Step 4 The output of the algorithm is as given in the Equations (11), (12) and (13).

3.3 Unscented transformation

The unscented transformation (UT) is a method to calculate the statistics of the first and
second order as: the mean and covariance of a random variable that suffers a nonlinear
transformation y = f(x) and is based on the beginning probabilistic that says than, it
is easier to approximate a distribution of probability than approximating a non-linear
arbitrary function (Julier and Uhlmann, 1996); is an elegant and exact way to calculate
the mean and covariance of the function y using a Taylor series expansion. Let x be a
vector of dimension nx with known mean x̄ and variance-covariance matrix Pxx . The UT
calculates the mean and covariance of y = f(x) as follows:

Step 1 Find deterministically 2nx+1 vectors of sigma points xi weighted by wi, according
to the following procedure:

x0 = x̄ ; w
(c)
0 =

λ

[nx + λ]
+ [1− α2 + β] ; w

(m)
0 =

λ

[nx + λ]
; i = 0.

xi = x̄+
(

√

[nx + λ]Pxx

)

i
; w

(c)
i = w

(m)
i =

1

2[nx + λ]
; i = 1, . . . , nx.

xi = x̄−
(

√

[nx + λ]Pxx

)

i
; w

(c)
i = w

(m)
i =

1

2[nx + λ]
; i = nx + 1, . . . , 2nx.

λ = α2[nx + κ]− nx.

λ is a scale parameter that determines the direction of the sigma points, α de-
termines the dispersion of the sigma points around x̄ [0 ≤ α ≤ 1], κ is a second
scale parameter that varies between 0 < κ < 3 − nx. The parameter β represents
the degree of liberty used to introduce prior knowledge of the distribution of xi;
(

√

[nx + λ]Pxx

)

i
is ith column of the square root of the matrix [nx + λ]Pxx and

wi are weights associated with the ith sigma point such that
∑2nx

i=0 wi = 1.
Step 2 Propagate the sigma points by the nonlinear transformation:

yi = f(xi) ; i = 0, . . . , 2nx. (14)

Step 3 Calculate the mean and covariance of y as

ȳ =

2nx
∑

i=1

w
(m)
i yi ; Pyy =

2nx
∑

i=1

w
(c)
i (yi − ȳ)(yi − ȳ)T ,

the precision of the mean and covariance of y = f(x) is guarantied by the Taylor series
expansion, independently of the form of f(x). The generated sigma points guarantee the
convergence by the mechanism of the Monte Carlo method given in Julier et al. (2000).

3.4 Unscented Kalman filter

The unscented Kalman filter (UKF) is an extension of the UT applied to the state and
observation equations given in the Equations (1) and (2). In the UKF the distribution
of states is represented by a Gaussian random variable that is specified by a minimal set
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of deterministically chosen sample points. It increases the state space model to include
the components of the original states and the noise variable xat = (xTt u

T
t )

T . The selection
scheme of sigma points is applied to this new augmented state vector to calculate the
corresponding sigma matrix xai,t. Then the filter updates the average and the covariance
by means of a Gaussian approximation of the distribution a posteriori of the states. Use
the selection scheme sigma points of the UT to obtain xat , then update the mean and
covariance using the Kalman filter equations. The UKF summarized, considering:

Step 1 Given the nonlinear system:

xt = Mt(xt−1) + ut = ft(xt−1) + ut,

yt = Ht(xt) + vt = ht(xt) + vt,

ut ∼ N(0, Qt),

vt ∼ N(0, Rt). (15)

Step 2 Initialization:

x̂at = E[xat ],

P a
t = E[(xat − x̂at )(x

a
t − x̂at )

T ].

Step 3 Generation of the sigma points:

xai,t =
[

x̂at ; x̂at +
(

√

[nx + q + λ]P a
t

)

i
; x̂at −

(

√

[nx + q + λ]P a
t

)

i

]

.

Step 4 Propagation:

xai,t+1 = f(xai,t),

x̂−t+1 =

2(nx+q)
∑

i=0

w
(m)
i xai,t+1,

P−
t+1 =

2(nx+q)
∑

i=0

w
(c)
i (xai,t+1 − x̂−t+1)(x

a
i,t+1 − x̂−t+1)

T ,

yi,t+1 = h(xai,t+1),

ŷ−t =

2(nx+q)
∑

i=0

w
(m)
i yi,t+1,

P yy
t+1 =

2(nx+q)
∑

i=0

w
(c)
i (yi,t+1 − ŷ−t+1)(yi,t+1 − ŷ−t+1)

T +Rt,

P xy
t+1 =

2(nx+q)
∑

i=0

w
(c)
i (xai,t+1 − x̂−t+1)(yi,t+1 − ŷ−t+1)

T .



44 L. Snchez and S. Infante

Step 5 Updating:

Kt+1 = P xy
t+1(P

yy
t+1)

−1,

x̂+t+1 = x̂−t+1 +Kt+1

[

yt − ŷ−t
]

,

P+
t+1 = P−

t+1 −Kt+1P
yy
t+1K

T
t+1.

3.5 Unscented particle filter

The new filter that results from using the UKF within the structure of the particle filters
is called a unscented particle filter (UPF). The main idea is to use the UKF to generate
the samples of the proposed distribution required in the PF

x
(i)
t ∼ q(x

(i)
t |x

(i)
0:t−1,y1:t) = N(x̂

(i)
t , P̂

(i)
t ),

where x̂
(i)
t and P̂

(i)
t is the mean and covariance of the points x

(i)
t , generated by the procedure

of UKF. A cycle of the UPF may be summarized as follows:

Step 1 Initialization: In time t = 0

(1) For i = 1, . . . , N . Sample x
(i)
0 ∼ p(x0).

(2) For i = 1, . . . , N . Calculate the weights w
(i)
0 = p(y0|x

(i)
0 ):

x̂
(i)
0 = E

[

x
(i)
0

]

; P
(i)
0 = E

[

(x
(i)
0 − x̂

(i)
0 )(x

(i)
0 − x̂

(i)
0 )T

]

.

x
a,(i)
0 =

(

x
(i)
0
w0

)

; P
a,(i)
0 =

(

P
(i)
0 0

0 Q
(i)
0

)

.

Step 2 Prediction and updating: For t ≥ 1
(1) For i = 1, . . . , N ; update the particles with UKF.

a) Generate the sigma points:

x
a,(i)
t =

[

x̂
a,(i)
t ; x̂

a,(i)
t +

√

[nx + q + λ]P
a,(i)
t ; x̂

a,(i)
t −

√

[nx + q + λ]P
a,(i)
t

]

.

b) Prediction and updating:

x
x,(i)
t+1 = f(x

a,(i)
t ),

x̂
(i)
t+1|t =

2(nx+q)
∑

j=0

w
(m)
j x

x,(i)
j,t+1,

P
(i)
t+1|t =

2(nx+q)
∑

j=0

w
(c)
j (x

x,(i)
j,t+1 − x̂

(i)
t+1|t)(x

x,(i)
j,t+1 − x̂

(i)
t+1|t)

T ,

y
(i)
t+1 = h(x

x,(i)
t+1 ),



Chilean Journal of Statistics 45

ŷ
(i)
t+1|t =

2(nx+q)
∑

j=0

w
(m)
j y

(i)
j,t+1,

P vv
t+1 =

2(nx+q)
∑

j=0

w
(c)
j (y

(i)
j,t+1 − ŷ

(i)
t+1|t)(y

(i)
j,t+1 − ŷ

(i)
t+1|t)

T +Rt,

P xy
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(i)
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t+1|t

)
]

,

P̂
(i)
t+1 = P

(i)
t+1|t −Kt+1P

vv
t+1K

T
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(2) For i = 1, . . . , N ; sample from the importance density:

x
(i)
t ∼ N(x̂

(i)
t , P̂

(i)
t ).

(3) For i = 1, . . . , N ; calculate:

w
(i)
t = p(yt|x

(i)
t )w̃

(i)
t−1

and normalize the importance weights:

w̃
(i)
t =

w
(i)
t

∑

j w
(j)
t

.

(4) If N̂TME < NU , re-sample from the population {x
(i)
t , w̃

(i)
t } to obtain a new set

{x
(i)
t , 1/N} with uniform weights.

Step 3 The output of the algorithm is as given in the Equations (11), (12) and (13).

4. Measurement of Model Performance

To validate the results, the models were implemented with M particles and N runtimes
using the empiric standard deviation defined as

√

Var[xt|l] =
1

N

N
∑

t=1





1

M

M
∑

j=1

(

x
(j)
t|l

− x
(j)
t

)2





1

2

,

where x
(j)
t is the true state simulated in the jth simulation; x

(j)
t|l =

∑N
i=1 w̃

(i)
t|l x

j,(i)
t , is

the Monte Carlo estimator of xt|l = E[xt|y1:t] for the jth trial signal and x
j,(i)
t is the ith

simulated trajectory associated with the signal j; and w̃
(i)
t|t = w̃

(i)
t , is an importance weight.
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5. Results

The GPF, PFR, UKF and UPF algorithms were implemented and evaluated in the four
chaotic models: Henon, Ikeda, Tinkerbell and Lorenz. In first place, the model given in
Equation (5) was considered supposing that the parameters θ = (a, b, σ2

u1
, σ2

v1
) were known

and that the states x0:t unknown. In this study, no real observations of the systems were
available y1:t (observed variables), so the data was obtained by simulating the linear model
yt+1 = 0.3xt + ηt (Bremer and Kaplan, 2001), with x0 = 1, y1 = 0, ηt ∼ N(0, 0.001).
After obtaining the observed sample, the next step was the initialization of the required
parameters for each of the proposed algorithms. The parameters used for the particle
filters were: x0 ∼ N(0.3, 0.01), u1t ∼ N(0, 10), v1t ∼ N(0, 0.1), for the GPF, and x0 ∼
N(0.6, 0.001), u1t ∼ N(0, 0.007), v1t ∼ N(0, 0.9) for the PFR. The selected parameters were
a = 1.4 and b = 0.3, in order to simplify this study (this methodology could also estimate
their values); and the selected importance function was qt(·) = N(µ,Σ), where µ and Σ
are known; the threshold used in the re-sampling was set at Nu = N/2. The specifications
a priori used for the UKF and the UPF were x̂+0 = 0.6314, P+

0 = 1, Qt = 0.01, Rt = 0.01,
κ = 0.0001, β = 2 and α = 0.001. The efficacy of each algorithm was evaluated using
the empiric standard deviation (ESD) and the execution time (ET) for each filter. The
algoritms were implemented in the Matlab software platform in a Pentium Dual-Core
2.8 GHz. The Figure (1) shows the true Henon model together with the posterior means
of the estimated states for the GPF and the PFR. The Figure (2) shows the true Henon
map together with the posterior means estimated by the UKF and the UPF. Observe that
all of these filters adjust almost perfectly to the original map.

Figure 1. Algorithms GPF and PFR for Henon model.

The Table (1) shows a summary of the empiric standard deviation and execution times of
the algorithms for the Henon model for 1000 simulations of length N = 50, 100, 150, 200.
No significant differences in the estimated errors are observed for the different sample
sizes however the execution times of the GPF and UPF do differ from the other filters.
In second place, the model given in Equation (6) was considered. The data was obtained
by simulating 1000 observations of the model yt+1 = ρ [xt sin(φt) + yt cos(φt)] + ηt, with
x0 ∼ N(0, 0.001), y0 ∼ N(0, 0.001), ρ = 0.92, and ηt ∼ N(0, 0.001). The initial values for
the GPF and PFR were taken as x0 ∼ N(0.1, 0.1), u2t ∼ N(0, 0.01), v2t ∼ N(0, 10), and the
importance function was a normal distribution with known mean and variance. The initial
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Figure 2. Algorithms UKF and UPF for the Henon model.

Table 1. MC filters: Henon model.
√

Var[xt|t] GPF PFR UKF UPF

N=50 1.110 0.898 0.982 1.001
N=100 1.107 0.879 0.990 0.990
N=150 1.100 0.874 0.981 1.010
N=200 1.106 0.867 0.981 0.994
CPU Time (seg) 3.298 0.347 0.015 2.620

values for the UKF and UPF filters are x̂+0 = 0.1, P+
0 = 1, Qt = 0.0001, Rt = 1, κ = 0.0001,

β = 2 and α = 0.001. In Figures (3) and (4) are shown the true Ikeda model together
with the posterior means of the states estimated by the GPF, PFR, UKF and UPF filters,
observing good estimations with respect to the true map. In Table (2) is shown a summary
of the empiric standard deviation and the execution times for 1000 simulations of length
N = 50, 100, 150, 200 for the Ikeda model. No significant differences in the estimated errors
were observed for the different sample sizes however the execution times of the UPF did
differ quite significantly from the other filters. In third place, the model given in Equation

Table 2. MC filters: Ikeda model.
√

Var[xt|t] GPF PFR UKF UPF

N=50 2.436 2.513 2.414 2.629
N=100 2.497 2.443 2.447 2.504
N=150 2.493 2.374 2.535 3.225
N=200 2.496 2.394 2.385 2.647
CPU Time (seg) 0.561 0.552 0.019 3.682

(7) was considered. The experimental data was obtained simulating 1000 observations of
the model yt+1 = 2xtyt + cxt + dyt + ηt, with initial values x0 = −0.72, y0 = −0.64, c = 2,
d = 0.5 and ηt ∼ N(0, 0.001). To initialize the GPF and PFR the following procedure was
used: x0 ∼ N(0, 0.1), u3t ∼ Np(0, 0.001), v3t ∼ Np(0, 10), using a normal distribution with
known mean and variance as the importance function. The model parameters were chosen
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Figure 3. Algorithms GPF and PFR for the Ikeda model.

Figure 4. Algorithms UKF and UPF for the Ikeda model.

as a = 0.9, b = −0.6013, c = 2, d = 0.5. Similarly, the prior specifications used for the
UKF and UPF filters are x̂+0 = 0, P+

0 = 1, Qt = 0.0001, Rt = 0.01, κ = 0.0001, β = 2 and
α = 0.001. In the Figure (5) is seen the true Tinkerbell model along with the posterior
means of the states estimated by the GPF and PFR algorithms. In the Figure (6) is seen
the true Tinkerbell model along with the estimated posterior means of the states estimated
by UKF and UPF; in each case the algorithms reconstruct a good approximation of the
true model. In the Table (3) is found a summary of the empiric standard deviation of 1000
simulations of length N = 50, 100, 150, 200 and the execution time of the algorithms for
the Tinkerbell model. No significant differences were noted in the estimated errors however
the UPF was slowest in execution time.
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Table 3. MC filters: Tinkerbell model.
√

Var[xt|t] GPF PFR UKF UPF

N=50 0.243 0.258 0.387 0.355
N=100 0.260 0.251 0.380 0.351
N=150 0.268 0.242 0.387 0.354
N=200 0.252 0.247 0.392 0.358
CPU Time (seg) 0.408 0.389 0.014 2.718

Figure 5. Algorithms GPF and PFR for the Tinkerbell model.

Figure 6. Algorithms UKF and UPF for the Tinkerbell model.



50 L. Snchez and S. Infante

Finally, the model given in Equation (8) was studied. A discrete model was developed
by a first order method of Euler considering xt = xt−1+hf(xt−1), with stepsize h = 0.009.
The discrete evolution equation is

xt+1 = xt + h(s(yt − xt)) + ut,

yt+1 = yt + h(rxt − yt − xtzt) + vt,

zt+1 = zt + h(xtyt − bzt) + wt,

where u4t ∼ N(0, σ2
u4
), v4t ∼ N(0, σ2

v4
) and w4t ∼ N(0, σ2

w4
). In each step of time t, the

observations are generated by a linear observation Equation (Chui and Chen, 2009)

yt = xt + ηt,

where yt = (x+t , y
+
t , z

+
t )

T , xt = (xt, yt, zt)
T , and ηt ∼ N(0, σ2

ηI), 0 is a vector of zeros, and
I is the identity matrix. The GPF and PFR filters were initialized by: x0 ∼ N(0.22, 0.1),
y0 ∼ N(1.63, 0.1), z0 ∼ N(20.81, 0.1), u4t ∼ N(0, 0.1), v4t ∼ N(0, 0.1), w4t ∼ N(0, 0.1),
ηt ∼ N(0, 100I), and a normal distribution with known mean and variance was used as the
importance function. The initial values for UKF and UPF are

x̂+0 = [0.2294, 1.6360, 20.81] , P+
0 =





1 0 0
0 1 0
0 0 1



 ,

Qt =





0.01 0 0
0 0.01 0
0 0 0.01



 , Rt =





0.01 0 0
0 0.01 0
0 0 0.01



 ,

κ = 0.0001, β = 2 and α = 0.001. In the Figure (7) is shown the true Lorenz model along
with the posterior means estimated by GPF and PFR. In the Figure (8) is seen the true
Lorenz model along with the posterior means of the states estimated by UKF and UPF; in
each case observe that the algorithms reconstruct a good approximation of the true chaotic
model. The Table (4) gives a summary of the empiric standard deviation and execution
times of 1000 simulations of length N = 50, 100, 150, 200 for the posterior estimation of
the states x0:t of the Lorenz model. No significant differences are noted in the errors and
times however the UPF was again the slowest.

Table 4. MC filters: Lorenz model.
√

Var[xt|t] GPF PFR UKF UPF

N=50 7.741 7.749 6.826 7.532
N=100 7.736 7.776 6.826 7.645
N=150 7.732 7.730 6.815 7.692
N=200 7.722 7.747 6.832 7.727
CPU time (seg) 0.798 0.783 0.030 5.611
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Figure 7. Algorithms GPF and PFR for the Lorenz model.

Figure 8. Algorithms UKF and UPF for the Lorenz model.

6. Discussion

In this article are proposed computationally efficient, mathematical strategies to filter
the signals of chaotic models. In particular, ways were discussed to sequentially implement
four algorithms the generic particle filter, the particle filter with resampling, the unscented
Kalman filter and the unscented particle filter in order to estimate the states and recon-
struct the attractors generated by the Henon, Ikeda, Tinkerbell and Lorenz maps. The
recursive nature of the methods permit that they be computationally efficient and that
the estimators obtained be optimal. In this study, the results show that the proposed filters
reconstruct very well the states of the four considered models. The GPF, PFR, UKF and
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UPF reconstruct exactly the original Henon map. In the Ikeda model, the results show
that the GPF and PFR are more efficient that the UKF and UPF in the reconstruction of
the original map. In the Tinkerbell model, the GPF and PFR reproduce exactly the orig-
inal model while the UKF and UPF are less efficient in the reconstruction of the map. In
the Lorenz model, the four algorithms performed the reconstruction of the original model
adequately. Even though the reconstruction of chaotic maps is not new, here is presented
an alternative way to perform the reconstruction. The methods have the advantage that
they do not require suppositions in the models; they are applied in discrete models with
non-linear structures and with Gaussian and non-Gaussian errors; the approximation is
global and the exact solution is obtained when the number of particles tends to infinity.
The disadvantage is that in problems of high dimension the algorithms GPF and PFR fail
due to the problem of degeneration of the weights. Finally, an adequate measure of the
performance of the filters is presented, specifically, the empiric standard deviation (ESD)
was tabled for all four algorithms on each of the four considered models, showing low errors
and little variability among them. The execution times of the algorithms on the different
models were also given showing significantly longer times for the UPF when compared
with the other filters.
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