
Chilean Journal of Statistics
Vol. 3, No. 2, September 2012, 193–212

Probabilistic and Inferential Aspects of Skew-Symmetric Models

Special Issue: “IV International Workshop in honour of Adelchi

Azzalini’s 60th Birthday”

On skewed continuous ln,p-symmetric distributions

Reinaldo B. Arellano-Valle1 and Wolf-Dieter Richter2,∗

1Departamento de Estad́ıstica, Pontificia Universidad Católica de Chile, Santiago, Chile
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Abstract

The general methods from theory of skewed distributions and from the theory of geo-
metric and stochastic representations of ln,p-symmetric distributions are combined here
to introduce skewed continuous ln,p-symmetric distributions.
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1. Introduction

The univariate skew-normal and its extension to a univariate skew-symmetric distribu-
tion were introduced in Azzalini (1985) and Azzalini (1986), respectively. Many authors
extended these considerations in various aspects and in different ways. For instance, a mul-
tivariate extension of the skew-normal distribution and its main properties were discussed
first in Azzalini and Dalla-Valle (1996) and then in Azzalini and Capitanio (1999). Thus,
several multivariate skew-normal versions and their extensions to skew-elliptical distribu-
tions have been introduced; see, e.g., Azzalini and Capitanio (1999) and Branco and Dey
(2001).

Multivariate unified skew-normal and skew-elliptical distributions were considered in
Arellano-Valle and Azzalini (2006) and Arellano-Valle and Genton (2010). Genton (2004)
gave an overview of these efforts. The concept of fundamental skew distributions, which
unifies all current known approaches, has been developed in Arellano-Valle and Genton
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(2005). The authors of Arellano-Valle et al. (2006a) brought a certain new structure to the
widespread field and unified many different approaches from a selection point of view.

The Gaussian measure indivisible-representation was first introduced in Richter (1985)
and later used in solving several problems in probability theory and mathematical statis-
tics. An overview of such applications is given in Richter (2009). Based upon a generalized
method of indivisibles, which makes use of the notion of non-Euclidean surface content,
in the same paper, a more general geometric measure representation formula for ln,p-
symmetric distributions is derived. This formula enables one to derive exact distributions
of several types of functions of ln,p-symmetrically distributed random vectors. This has
been demonstrated by generalizing the Fisher distribution, and also for several special
cases in Richter (2007) and Kalke et al. (2012).

Here, we extend the class of skewed distributions for cases where the underlying dis-
tribution is an ln,p-symmetric one. To this end, we first exploit stochastic representations
which are based upon the geometric measure representation formula in Richter (2009) to
derive marginal and conditional distributions from ln,p-symmetric distributions. Then, the
general density formula for skewed distributions from Arellano-Valle et al. (2006a) applies,
and then we follow the general concept in Arellano-Valle and Azzalini (2006).

The paper is structured as follows. In Section 2, we introduce the p-generalized normal
distribution Nn,p and consider partitions of correspondingly distributed random vectors.
Consequently, we generalize some results on Dirichlet distributions and on moments. In
Section 3, we deal with continuous ln,p-symmetric distributions, where their moments,
marginal and conditional densities are also derived and the scale mixture of the Nn,p

distribution is considered. Then, we use the general ideas from Arellano-Valle et al. (2006a)
and Arellano-Valle and Azzalini (2006) to introduce in the final Section 4 skewed ln,p-
symmetric densities.

2. Preliminaries

In this section, we present the generalized normal distribution, consider partitions of ran-
dom vectors and generalize some results on Dirichlet distributions and on moments.

2.1 The p-generalized normal distribution

Let X = (X1, . . . ,Xn)⊤ be a random vector following a p-generalized normal distribution,
denoted by X ∼ Nn,p, which in terms of its density is defined by

fX(x) = Cn
p e−

|x|
p
p

p , x = (x1, . . . , xn)⊤ ∈ R
n,

where |x|p = (
∑n

i=1 |xi|
p)1/p and Cp = p1−1/p/2Γ(1/p), p > 0. Clearly, this is equivalent

to X1, . . . ,Xn are independent and identically distributed (i.i.d.), with power exponential

density Cpe
− 1

p
|x|p, for x ∈ R.

Let now Rp = |X|p be the p-functional of the random vector X, which is a norm if p ≥ 1
and an antinorm if 0 < p < 1; see Moszyńska and Richter (2012). Since |X1|

p, . . . , |Xn|
p

are i.i.d. G (1/p, 1/p) random variables, we have Rp
p = |X|pp =

∑p
i=1 |Xi|

p ∼ G (n/p, 1/p),
where G(α, λ) denotes the gamma distribution with shape parameter α > 0 and scale
parameter λ > 0. Hence, the random variable Rp has density given by

f(r) =
rn−1e−

rp

p

p
n

p
−1Γ(n

p )
, r > 0. (1)
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As in Richter (2007), we refer this distribution by Rp ∼ χ(p, n). In particular, we have

E
[

Rk
p

]

=
pk/pΓ([n + k]/p)

Γ(n/p)
, ∀ k ≥ 0.

In addition, (1/p)|Xi|
p iid
∼ G (1/p, 1), for i = 1, . . . , n, following that

1

p

l+k−1
∑

i=l

|Xi|
p ∼ G

(

k

p
, 1

)

and
1

p
Rp

p =
1

p

n
∑

i=1

|Xi|
p ∼ G

(

n

p
, 1

)

.

Moreover, since |X|pp =
∑n

i=1 |Xi|
p, we straightforwardly have that

(

|X1|
p

|X|pp
, . . . ,

|Xn|
p

|X|pp

)⊤

∼ Dn

(

1

p
, . . . ,

1

p

)

,

where Dm+1(α1, . . . , αm+1), with αi > 0, for i = 1, . . . ,m + 1, denotes the Dirichlet
distribution. Similarly,





|X1|
p

|X|pp
, . . . ,

|Xk|
p

|X|pp
, 1 −

k
∑

j=1

|Xj |
p

|X|pp





⊤

∼ Dk+1

(

1

p
, . . . ,

1

p
,
n − k

p

)

,

for k ∈ {1, . . . , n − 1}, and the sub-vector

(Y1, . . . , Yk)
⊤ =

(

|X1|
p

|X|pp
, . . . ,

|Xk|
p

|X|pp

)⊤

has a density

hk(y1, . . . , yk) =
Γ
(

n
p

)

Γ
(

1
p

)k
Γ
(

n−k
p

)

k
∏

i=1

y
1

p
−1

i

(

1 −

k
∑

i=1

yi

)

n−k

p
−1

,

for y1 > 0, . . . , yk > 0, and
∑k

1 yi < 1. Hence, the density of (Z1, . . . , Zk)
⊤ =

((|X1|)/(|X|pp), . . . , (|Xk|)/(|X|pp))
⊤

is

gk(z1, . . . , zk) =
∂k

∂z1 · · · ∂zk
P

(

|Xi|

|X|p
≤ zi, i = 1, . . . , k

)

= hk(z
p
1 , . . . , zp

k)

k
∏

i=1

(pzp−1
i ),

and the following lemma has thus been proved.

Lemma 2.1 The density of (Z1, . . . , Zk)⊤ = ((|X1|)/(|X|pp), . . . , (|Xk|)/(|X|pp))
⊤
, where

X = (X1, . . . ,Xn)⊤ ∼ Nn,p, is

gk(z1, . . . , zk) =
Γ
(

n
p

)

(p
2

)k

Γ
(

1
p

)k
Γ
(

n−k
p

)

(

1 −

k
∑

i=1

zp
i

)

n−k

p
−1

, z1 > 0, . . . , zk > 0,

k
∑

1

zi < 1.

This is a generalization of Formula (1.26) in Fang et al. (1990).
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2.2 Stochastic representation of a partitioned p-generalized normally

distributed random vector

It is known from Richter (2009) that X ∼ Nn,p allows the stochastic representation

X
d
= RUp,

where R
d
= Rp and it is independent of Up

d
= X/Rp, which follows a p-generalized uniform

distribution (i.e., the uniform distribution with respect to the p-generalized surface content
on the p-generalized unit sphere Sn,p = {x ∈ R

n: |x|p = 1}). Now, consider the partition
of X

X = (X(1)⊤,X(2)⊤)⊤,

where X(1) ∈ R
k and X(2) ∈ R

n−k, 0 < k < n. Similarly, we partition

Up = (U⊤
p,1, U

⊤
p,2)

⊤,

where Up,1 is k-dimensional and so Up,2 is (n − k)-dimensional.

Lemma 2.2 The random vector Up allows the stochastic representation

(Up,1, Up,2)
d
= (R

(p)
k,nU (k)

p , (1 − R
(p)p
k,n )1/pU (n−k)

p ),

where the random elements R
(p)
k,n, U

(k)
p and U

(n−k)
p are independent, U

(k)
p and U

(n−k)
p are

any p-generalized uniformly distributed random vectors on Sk,p and Sn−k,p, respectively,

and R
(p) p
k,n is any random variable such that R

(p) p
k,n ∼ B (k/p, (n − k)/p), where B(α, β)

denotes the beta distribution with parameters α > 0 and β > 0.

Proof The random elements

X(1)

|X(1)|p
= U (k)

p ,
X(2)

|X(2)|p
= U (n−k)

p , |X(1)|p, |X(2)|p,

are independent. We put R
(p)
k,n = (|X(1)|p)/(|X|p). Then, (|X(2)|pp)/(|X|pp) = 1 − R

(p) p
k,n and

U⊤
p = (U⊤

p,1, U
⊤
p,2)

d
=

X⊤

|X|p
= (R

(p)
k,nU (k)⊤

p , (1 − R
(p)p
k,n )1/pU (n−k)⊤

p ).

Since (1/p)|X(1)|pp ∼ G(k/p, 1) and (1/p)|X(2)|pp ∼ G((n − k)/p, 1) and they are indepen-
dent, we then have

R
(p) p
k,n =

1
p |X

(1)|pp
1
p |X

(1)|pp + 1
p |X

(2)|pp
∼ B

(

k

p
,
n − k

p

)

.

�

Let us remark that one may think of R
(p)
k,n as, e.g., R

(p)
k,n = (|X(1)|p)/(|X|p) or as any

random variable following the same distribution as (|X(1)|p)/(|X|p). This result general-
izes Lemma 2 in Cambanis et al. (1981) to the case of arbitrary p > 0. The partition
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(X(1)⊤,X(2)⊤) of X⊤ allows according to this lemma the stochastic representation

(X(1),X(2))
d
= (RR

(p)
k,nU (k)

p , R(1 − R
(p) p
k,n )1/pU (n−k)

p ),

where R,R
(p)
k,n, U

(k)
p and U

(n−k)
p are independent. The meaning of the nonnegative random

variable R is quite different from that of the nonnegative variable R
(p)
k,n.

According to Richter (2007), R
(p)
k,n = cosp(φ), i.e., the p-generalized cosine-value of the

angle φ between the two one-dimensional subspaces of R
n spanned up by 0 ∈ R

n and one
of the vectors X and (X(1)⊤, 0⊤)⊤. Note that φ only takes its values in the interval [0, π/2].

2.3 Moments

Generalizing well known results from Fang et al. (1990) to the case of arbitrary p > 0,
we compute some multivariate moments of a p-generalized normal vector X ∼ Nn,p. For
this end, we first need some preliminary notations. We denote the sign of X by sgn(X) =
(sgn(X1), . . . , sgn(Xn))⊤ and its absolute value by |X| = (|X1|, . . . , |Xn|)

⊤. Here, for any
random variable Z, which is a.s. different from zero, the sign of Z is defined by

sgn(Z) =

{

+1, if Z > 0;
−1, if Z < 0.

It is clear by the symmetry that the random vectors |X| and sgn(X) are independent,
and that sgn(X) has uniform distribution on {−1,+1}n, sgn(X) ∼ U({−1,+1}n) say. We
formalize these results in the following lemma, where the marginal distribution of |X| is
also given. For further properties of these random vectors in the context of a more general
class of symmetric distributions, see Arellano-Valle et al. (2002) and Arellano-Valle and
del Pino (2004).

Lemma 2.3 If X ∼ Nn,p, then sgn(X) and |X| are independent random vectors, with

sgn(X) ∼ U({−1,+1}n) and f|X|(t) = 2nCn
p e−

1

p

∑

n
i=1 tp

i , t = (t1, . . . , tn)⊤ ∈ R
n
+.

For any vector s = (s1, . . . , sn)⊤, let D(s) be the diagonal n×n matrix given by D(s) =
diag(s1, . . . , sn).

Lemma 2.4 If X ∼ Nn,p, then X
d
= D(S)T , where S and T are independent random

vectors such that S
d
= sgn(X) and T

d
= |X|.

Theorem 2.5 If X ∼ Nn,p, then for any integers ri ≥ 0, with i = 1, . . . , n,

E

[

n
∏

i=1

Xri

i

]

=







p
1
p

∑n
i=1 ri

∏

n
i=1 Γ

(

ri+1

p

)

Γ
(

1

p

)n , if ri is even for all i = 1, . . . , n;

0, if ri is odd for some i = 1, . . . , n.

Proof By Lemma 2.3 and the independence property,

E

[

n
∏

i=1

Xri

i

]

=

n
∏

i=1

E [Sri

i ] E [T ri

i ] ,
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where E [Sri

i ] equals zero for ri odd and one for ri even. The proof follows by using

E [T ri

i ] = pri/p Γ([ri + 1]/p)

Γ(1/p)
.

�

Corollary 2.6 If X ∼ Nn,p, then E[X] = 0 and E[XX⊤] = σ2
pIn, where σ2

p =

p2/pΓ(3/p)/Γ(1/p).

Obviously for p = 2, we have σ2
p = 1.

Corollary 2.7 Let Up = (U1, . . . , Un)⊤ be a p-generalized uniform vector on Sn,p. Then,
for any integer ri ≥ 0, with i = 1, . . . , n,

E

[

n
∏

i=1

U ri

i

]

=







Γ
(

n

p

)

∏

n
i=1 Γ

(

ri+1

p

)

Γ
(

n+
∑n

i=1
ri

p

)

Γn

(

1

p

) , if ri is even for all i = 1, . . . , n;

0, if ri is odd for some i = 1, . . . , n.

Proof Let X ∼ Nn,p and Rp = |X|p. According to Subsection 2.1 in Richter (2007),

Rp follows the χ(p, n)-density f(r) = rn−1e−
rp

p /
∫∞
0 rn−1e−

rp

p dr, r > 0. Since X = RpUp,
where Rp and Up are independent, we have

E

[

n
∏

i=1

Xri

i

]

= E
[

R
∑n

i=1 ri

p

]

E

[

n
∏

i=1

U ri

i

]

,

and the proof follows by Theorem 2.5 and E
[

Rs
p

]

= ps/pΓ[(n + s)/p]/Γ(n/p) for all p > 0
and s ≥ 0. �

This result generalizes one in Theorem 3.3 of Fang et al. (1990).

Corollary 2.8 Let Up be the p-generalized uniform vector on Sn,p. Then, E[Up] = 0 and
E[UpU

⊤
p ] = τn,pIn, where τn,p = Γ(3/p)Γ(n/p)/(Γ(1/p)Γ[(n + 2)/p]).

This result generalizes Theorem 2.7 in Fang et al. (1990). For the proof of this corollary,
we refer to Richter (2009). From Corollary 2.8 we can note that if p = 2, then τn,p = 1/n,
thus following the well-known result that Var[Up] = (1/n)In.

3. Continuous ln,p-Symmetric Distributions

In this section, we deal with continuous ln,p-symmetric distributions and find their mo-
ments, marginal and conditional densities.
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3.1 Notations for ln,p-spherical distributions

Following the notation in Fang et al. (1990), Henschel and Richter (2002), and Richter
(2009), we denote by R the set of all nonnegative random variables defined on the same
probability space as the random variable Rp and which are independent of the p-generalized
uniform random vector Up. Let F be any cumulative distribution function (c.d.f.) of a
positive random variable and put

Ln(F ) = {X: X
d
= RUp, R ∈ R has distribution function F,

R and Up are stochastically independent}.
From now on, let X denote an arbitrary element of Ln(F ). The random vector X is
called ln,p-symmetric or -spherical distributed, or even ln,p-norm symmetric distributed if
p ≥ 1, and the corresponding random variable R ∈ R is called its generating variate. The
assumption X ∈ Ln(F ) implies that X has a density iff R has a density. In this case,
the density of X is of the form Cp(n, g)g(

∑n
i=1 |xi|

p), where Cp(n, g) is a suitably chosen
normalizing constant and g: R

+ → R
+ is called the density generating function.

It is assumed that g satisfies the assumption In+2,g,p < ∞, where

Ik,g,p =

∫ ∞

0
rk−1g(rp)dr.

This distribution is the p-generalized normal distribution if the density generating function
is g(r) = e−r/p, for r > 0. In this case, we have

1

In,g,p
=

p1−n/p

Γ(n/p)
.

In what follows, we assume Cp(n, g) = 1, that is, X follows an ln,p-symmetric distribution

with density generator g = g(n). For an ln,p-spherical distribution defined in this way,
we use the notation X ∼ Sn,p(g), and for its c.d.f. we write Fn,p(· ; g). Equivalently, the
distribution of X is determined by the density

fX(x) = g(n)(|x|pp), x ∈ R
n.

It follows by definition that X allows the stochastic representation X
d
= RUp, where R is

a non-negative random variable with density

f(r) =
2
(

2
p

)n−1
Γ
(

1
p

)n

Γ(n
p )

rn−1g(n)(rp), r > 0, (2)

which is independent of the p-generalized uniform random vector Up. The cases p = 1, 2
concern the Gaussian distribution and the Laplace distribution, respectively.

3.2 Marginal and conditional densities

Let X = (X1, . . . ,Xn)⊤ ∼ Sn,p(g) be a ln,p-symmetrically distributed random vector

with density generator g = g(n). We are interested in the marginal density of X(1) =
(X1, . . . ,Xk)⊤, for 1 ≤ k < n. The following result generalizes Theorem 2.10 and Formula
(2.23) in Fang et al. (1990).
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Lemma 3.1 Let X = (X1, . . . ,Xn)⊤ ∼ Sn,p(g). Then, X(1) = (X1, . . . ,Xk)
⊤ ∼ Sk,p(g)

and has density

∂m

∂x1 · · · ∂xk
P(Xi ≤ xi, i = 1, . . . , k) = g(k)

(

k
∑

i=1

|xi|
p

)

,

where the marginal density generator g(k) is given by

g(k)(u) =

(

2
p

)n−k
Γ
(

1
p

)n−k

Γ
(

n−k
p

)

∞
∫

u

g(n)(y)(y − u)
n−k

p
−1dy.

Proof Since X
d
= RU , where R = Rp and U = X/Rp are independent, we have

P(Xi ≤ xi, i = 1, . . . , k) = P
(

Ui ≤
xi

R
, i = 1, . . . , k

)

=

∞
∫

0

P
(

Ui ≤
xi

r
, i = 1, . . . , k

)

P(R ∈ dr)

=

∞
∫

0

x1
r
∫

−1

· · ·

xk
r
∫

−1

∂k

∂u1 · · · ∂uk
P(Ui ≤ ui, i = 1, . . . , k)

du1 · · · dukP(R ∈ dr).

It follows from Lemma 2.1 that

P(Xi ≤ xi, i = 1, . . . , k) = C

∞
∫

0

x1
r
∫

−1

· · ·

xk
r
∫

−1

I{
∑

k
i=1 |ui|p≤1}(u1, . . . , uk)

(

1 −

k
∑

i=1

|ui|
p

)

n−k

p
−1

du1 · · · dukdF (r),

where F is the c.d.f. of R and C = Γ (n/p) (p/2)k /Γ (1/p)k Γ ((n − k)/p) . Hence,

∂k

∂x1 · · · ∂xk
P(Xi ≤ xi, i = 1, . . . , k) = C

∞
∫

0

I{
∑

k
i=1 |xi|p≤rp}

(x1

r
, . . . ,

xk

r

)

(

1 −

k
∑

i=1

|
xi

r
|p

)

n−k

p
−1

r−kdF (r)

= C

∞
∫

(
∑ k

i=1 |xi|p)1/p

r−(n−p)

(

rp −

k
∑

i=1

|xi|
p

)

n−k

p
−1

dF (r)

= g(k)

(

k
∑

i=1

|xi|
p

)

,
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where

g(k)(u) =
Γ
(

n
p

)

(p
2

)k/2

Γ
(

1
p

)k
Γ
(

n−k
p

)

∞
∫

u1/p

r−(n−p)(rp − u)
n−k

p
−1dF (r).

It is known from Richter (2009) that dF (r) = I−1
n,g,pr

n−1g(n)(rp)dr, r > 0. Hence,

g(k)(u) =

(p
2

)
k

2 Γ
(

n
p

)

Γ
(

1
p

)k
Γ
(

n−k
p

)

pIn,g,p

∞
∫

u

y−
(n−p)

p
+ (n−1)

p
+ (1−p)

p (y − u)(n−k)/p−1g(n)(y)dy.

Making use of the equation In,g,p = 1/nπn(p), where p → πn(p) and πn(p) =
2nΓn (1/p) /npn−1Γ (n/p) denotes the ball number function in Richter (2011), the result
follows. �

Consider again the partition X = (X(1)⊤,X(2)⊤)⊤, where as before X(1) and X(2) take
values in R

k and R
n−k, for 0 < m < n, respectively. We now are interested in determining

the conditional density fX(1)|X(2)=x(2)(x(1)) of X(1) given X(2) = x(2).

It follows from Lemma 3.1 that X(2) has a continuous ln−k,p-symmetric distribution with

a density generator g(n−k) satisfying the representation

g(n−k)(u) =

(

2
p

)k
Γ
(

1
p

)k

Γ
(

k
p

)

∞
∫

u

g(n)(y)(y − u)
k

p
−1dy =

(

2
p

)k
Γ
(

1
p

)k

Γ
(

k
p

)

∞
∫

0

g(n)(z + u)z
k

p
−1dz.

Hence,

fX(1)|X(2)=x(2)(x(1)) =
g(n)(|x(1)|pp + |x(2)|pp)

g(n−k)(|x(2)|pp)
=: g

(k)
[a] (|x(1)|pp),

where a = |x(2)|pp. The following lemma has thus been proved.

Lemma 3.2 Let X = (X(1)⊤,X(2)⊤)⊤ follow the ln,p-symmetric distribution with the

density generator g(n). The conditional density of X(1) given X(2) = x(2) is then a lk,p-
symmetric density satisfying the representation

fX(1)|X(2)=x(2)(x(1)) = g
(k)
[a] (|x(1)|pp), a = |x(2)|pp,

with the uniquely defined conditional density generator

g
(k)
[a] (u) =

(p
2

)k
Γ
(

k
p

)

g(n)(a + u)

Γ
(

1
p

)k ∞
∫

0

g(n)(z + a)z
k

p
−1dz

.

In other words, we have (X(1)|X(2) = x(2)) ∼ Sk,p

(

g
(k)
[|x(2)|pp]

)

.
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This lemma generalizes a corresponding formula in Section 2.4 of Fang et al. (1990). In

the special case of the generalized Nn,p distribution, g(n)(u) = Cn
p e−

u

p , u > 0, Lemma 3.2

yields g
(k)
[a] (u) = g(m)(u) = Cm

p e−
u

p , u > 0, for all a > 0.

According to the stochastic representation in Subsection 2.2 it may be remarked here

that the components (1−ap)1/pU
(k)
p and aU

(n−k)
p of the vector ((1−ap)1/pU

(k)
p , aU

(n−k)
p ) are

obviously independent. Moreover, the stochastic representation from the end of Subsection
2.2 may be reformulated as follows.

Corollary 3.3 If the random vector X = (X(1)⊤,X(2)⊤)⊤ follows a continuous ln,p-
symmetric distribution, then the following statements are true:

(a) The sub-vectors X(1) and X(2) allow the stochastic representations X(1) d
= R1U

(k)
p

and X(2) d
= R2U

(n−k)
p , where R1

d
= RR

(p)
k,n, R2

d
= R(1 − R

(p)p
k,n )1/p, and where

(R1, R2), U
(k)
p and U

(n−k)
p are independent.

(b) A random vector following the conditional distribution of X(1) given X(2) = x(2)

allows the stochastic representation (X(1)|X(2) = x(2))
d
= R[|x(2)|pp]U

(k)
p , where,

for each fixed |x(2)|p, the random variable R[|x(2)|pp]
d
= (Rp − |x(2)|pp)1/p and it is

independent of U
(k)
p .

(c) The vectors X(1) and X(2) are conditionally independent given |X(2)|p, that is,

X(1) ⊥⊥ X(2)| |X(2)|p.

Proof The assertion in (a) is known from Subsection 2.2. Statement (b) is, because of
the geometric measure representation theorem in Richter (2009), just a reformulation of
the distributional statement in Lemma 3.2. From (b), it follows that

(X(1)| |X(2)|p = a)
d
= R[ap]U

(k)
p .

Moreover,

(X(2)| |X(2)|p = a)
d
= aU (m)

p

and

(X(1),X(2)| |X(2)|p = a)
d
= (R[ap]U

(k)
p , aU (m)

p ),

where R[ap]U
(k)
p and aU

(m)
p are independent. �

The first part of this corollary generalizes Formula (2.6.9) of Theorem 2.6.6 in Fang and
Zhang (1990). The part (b) generalizes (2.29)–(2.30) of Theorem 2.13 in Fang et al. (1990).
Part (c) is a consequence of (b) and generalizes the same result for spherical distributions;
see, e.g., Arellano-Valle et al. (2006b).
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3.3 Scale mixture of the Nn,p distribution

Let R = V −1/pRp, where Rp ∼ χ(n, p) is independent of V , which is a non-negative
mixing variable with c.d.f. G that does not depend on n. Suppose that R is independent
of U (n), the p-generalized uniform vector of R

n. Then, the random vector defined by
Y = RU (n) = V −1/pRpU

(n) = V −1/pX, where X ∼ Nn,p is independent of V ∼ G. We

then have Y ∼ Sn,p(g
(n)), where the generator function g(n) is defined below. Conditioning

on V = v, we have by Equation (1) that the density of R = V −1/pRp is

f(r) =
rn−1

p
n

p
−1Γ(n

p )

∫ ∞

0
v

n

p e−
rp

p
vdG(v), r > 0.

Since the functions fR and g(n) satisfy Equation (2), it follows that

g(n)(u) =

(p
2

)n

p
n

p Γ
(

1
p

)n

∫ ∞

0
v

n

p e−
rp

p
vdG(v).

This density generator function defines an important class of ln,p-symmetric distributions,
which extends the scale mixtures of normal distributions to the scale mixtures of p-
generalized normal distributions. An important member is the n-dimensional p-generalized
Student-t distribution, with ν > 0 degrees of freedom, denoted by Y ∼ tn,p(ν), for which
V ∼ G(ν/p, ν/p). In this case,

g(n)(u) =

(p
2

)n
(

ν
p

)
ν

p

p
n

p Γ
(

1
p

)n
Γ
(

ν
p

)

∞
∫

0

v
n+ν

p
−1e−

ν+u

p
vdv.

Hence, Y follows a ln,p-symmetric distribution with density

fY (y) = Dn,p,ν

(

1 +
|y|pp
ν

)− ν+n

p

, y ∈ R
n,

where

Dn,p,ν =

(p
2

)n
Γ
(

ν+n
p

)

Γ
(

ν
p

)

Γ
(

1
p

)n
ν

n

p

.

Definition 3.4 The distribution of a random vector Y with density

tn,p(y; ν) := Dn,p,ν

(

1 +
|y|pp
ν

)− ν+n

p

, y ∈ R
n, p > 0, ν > 0,

is called the n-dimensional p-generalized Student-t distribution with ν degrees of freedom.
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The class of p-generalized Student-t densities given in Definition 3.4 was introduced in
Richter (2007) for n = 1; for p = 2, see Arellano-Valle and Bolfarine (1995). It follows
from there that, in the case of the p-generalized Student-t distribution, one can think

V =
|Z1|

p + · · · + |Zν |
p

ν
, (Z1, . . . , Zν)⊤ ∼ Nn,p in R

ν .

The following theorem has thus been proved.

Theorem 3.5 Let Y = (Y (1)⊤, Y (2)⊤)⊤ ∼ Nn+ν,p, where Y (1) and Y (2) take values in R
n

and R
ν , respectively. Then, (ν1/p)/(|Y (2)|p)Y

(1) follows the density tn,p(y; ν), for y ∈ R
n.

If Y = (Y (1)⊤, Y (2)⊤)⊤ ∼ tn,p(ν), where Y (1) ∈ R
k and Y (2) ∈ R

n−k (0 < k < n), then

we have by construction that the density generator of Y (1) satisfies the representation

g(k)(u) = Dk,p,ν

(

1 +
u

ν

)−(ν+k)/p
,

that is, Y (1) ∼ tk,p(ν), with density tk,p(y
(1), ν).

The conditional density of Y (1) given Y (2) = y(2) is therefore

fY (1)|Y (2)=y(2)(y(1)) =

(

ν + n − k

ν + a

) k

p

tk,p

(

(

ν + n − k

ν + a

) 1

p

y(1); ν + n − k

)

,

with a = |y(2)|pp, that is, this conditional density is an lk,p-symmetric one, but rescaled by

the factor (ν + a)1/p/(ν + n − k)1/p.

3.4 Moments

To compute the mixed moments of an ln,p-symmetric random vector X ∼ Sn,p, we obtain

from the stochastic representation X
d
= RU (n) that

E

[

n
∏

i=1

Xri

i

]

= E
[

R
∑

n
i=1 ri

]

E

[

n
∏

i=1

U ri

i

]

,

provided that E
[

R
∑n

i=1 ri
]

is finite, and where E [
∏n

i=1 U ri

i ] is given in Corollary 2.7. In

particular, by Corollary 2.8, we have E[X] = 0 if E[R] is finite and E[XX⊤] = σ2
p,gIn,

where σ2
p,g = τpE[R2], if E[R2] is finite. It is convenient to emphasize here that similarly

to the case of p = 2, the univariate variance component σ2
p,g = τpE[R2] does not depend

on n.
For example, if X ∼ tn,p(ν), we have by Subsection 3.2 that R = V −1/pRp, where

V ∼ G(ν/p, ν/p) and is independent of Rp ∼ χ(n, p), thus implying that

E
[

R
∑n

i=1 ri

]

= E
[

V −
∑n

i=1 ri/p
]

E
[

R
∑n

i=1 ri

p

]

=
ν

∑n
i=1 ri

p Γ
(

ν−
∑

n
i=1 ri

p

)

Γ
(

n+
∑

n
i=1 ri

p

)

Γ
(

ν
p

)

Γ
(

n
p

) , ν >
n
∑

i=1

ri.
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Hence, for the tn,p(ν)-symmetric distribution, we have that, for ν >
∑n

i=1 ri,

E

[

n
∏

i=1

Xri

i

]

=











ν

∑n
i=1 ri

p Γ
(

ν−
∑n

i=1 ri

p

)

∏n
i=1 Γ

(

ri+1

p

)

Γ
(

ν

p

)

Γn

(

1

p

) , if ri is even for all i = 1, . . . , n;

0, if ri is odd for some i = 1, . . . , n.

In particular, we have E[X] = 0 if ν > 1 and E[XX⊤] = σ2
p,νIn if ν > 2, where

σ2
p,ν =

νΓ([ν − 2]/p)Γ(3/p)

Γ(ν/p)Γ(1/p)
.

3.5 Linear transformations

A further extension of the family of continuous ln,p-spherical distributions follows by con-
sidering the distribution of the linear transformation Y = µ + ΓX, where X ∼ Sm,p(g),
Γ ∈ R

n×m and µ ∈ R
n.

We recall that a density level set (LS) is a set of points from the sample space where the
density attains one and the same value which is called the density level. In the case of X,
every density level set is an lm,p-sphere, which is centered at the origin. It is reasonable
to call the set Dm · LS an axes-aligned p-generalized ellipsoid if Dm is an m ×m-diagonal
matrix consisting of positive elements. Rotating such a set with an orthogonal m × m-
matrix Hm and shifting the resulting set, then in the case m = n by µ leads to a set which
is called a p-generalized ellipsoid with location vector µ and shape matrix Γ = HnDn.

Since X
d
= RUp, we have Y

d
= µ+RΓUp. The random vector Y has location vector µ and

if Γ = HnDn we say that Y has shape matrix Γ. If E[R2] < ∞, then it is straightforward
to see that E[Y ] = µ and Cov(Y ) = σ2

p,gΣ, where Σ = ΓΓ⊤ and as was mentioned

σ2
p,g = τpE[R2] is the univariate variance component induced by the density generator

function g= g(n). Also, if m = n still holds, then the random vector Y has density

fY (y) = |Γ|−1g(n)(‖Γ−1(y − µ)‖p
p), y ∈ R.

Its c.d.f. FY (y) = P(Y ≤ y) is then

FY (y) = P(µ + ΓX ≤ y) =

∫

{x∈Rn: µ+Γx≤y}

g(n)(x)dx, y ∈ R
n,

where the sign of inequality ≤ means component-wise inequality. In what follows, we
denote the c.d.f. of Y by Fn,p(y;µ,Σ, g), where Σ = ΓΓ⊤, or by Fn,p(y; Σ, g) when µ = 0,
or simply by Fn,p(y; g) when µ = 0 and Σ = In. In the case of p = 2, Y has the usual
elliptical distribution with location vector µ and dispersion matrix Σ and is commonly
denoted by ECn(µ,Σ, g).

4. Skewed ln,p-Symmetric Distributions

Next, we discuss two ways to construct skewed ln,p-symmetric distributions.
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4.1 Construction from selection mechanisms

Let X(1) ∈ R
k and X(2) ∈ R

m be two random vectors following a lk+m,p-symmetric joint

distribution with density generator g(k+m), i.e., they have joint density

fX(1),X(2)(x(1), x(2)) = g(k+m)(|x(1)|pp + |x(2)|pp), (x(1), x(2)) ∈ R
k+m.

For any fixed matrix Λ ∈ R
m×k, we study the distribution of X(1) when a linear ran-

dom selection mechanism of the form X(2) < ΛX(1) is considered. The following result
characterizes the density of this particular selection distribution.

Theorem 4.1 It holds

fX(1)|X(2)<ΛX(1)(z) =
1

F
(2)
m,p

(

0; Im + ΛΛ⊤, g(m)
)

fX(1)(z)F (1)
m,p

(

Λz; g
(m)
[|z|pp]

)

, z ∈ R
m,

where F
(1)
m,p(x; g

(m)
a ) =

∫

R
m
+

g
(m)
a (|x − u|pp)du and F

(2)
m,p(x; Σ, g(m)) denotes the c.d.f. of ΓX

with Γ = (Λ,−Im) and Σ = ΓΓ⊤ = Im + ΛΛ⊤.

Proof According to Lemma 3.1,

fX(1)(x(1)) = g(k)(|x(1)|pp), x(1) ∈ R
k.

With a matrix Λ: R
k → R

m, we set

U1 = X(1), and U2 = ΛX(1) − X(2),

which is equivalent to

X(1) = U1, and X(2) = ΛU1 − U2.

The Jacobian of this transformation is

J =

∣

∣

∣

∣

Ik 0
Λ −Im

∣

∣

∣

∣

and hence |J | = 1. The joint density of U1 and U2 is thus

fU1,U2
(u1, u2) = fX(1),X(2)(u1,Λu1 − u2) = g(k+m)(|u1|

p
p + |Λu1 − u2|

p
p).

Then, it follows that

fU2|U1=u1
(u2) =

g(k+m)(|u1|
p
p + |Λu1 − u2|

p
p)

g(k)(|u1|
p
p)

= g
(m)
[|u1|

p
p](|Λu1 − u2|

p
p). (3)

We note also that an interpretation of Λ follows from the fact that Cov(U2, U1) = σ2
p,gΛ.

Let Z denote a random vector, which follows the conditional distribution of X(1) under

X(2) < ΛX(1), Z
d
= (X(1)|X(2) < ΛX(1)). Then, Z

d
= (U1| 0 < ΛX(1) − X(2)) and

Z
d
= (U1| 0 < U2).
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By the general representation formula for the density of the corresponding conditional
distribution in Arellano-Valle and del Pino (2004) or Arellano-Valle et al. (2006a),

fZ(z) = fU1
(z)

P(0 < U2|U1 = z)

P(0 < U2)
,

where fU1
(z) = fX(1)(z) = g(k)(|z|pp). By Equation (3) and the change of variable w =

Λz − u2, we have

P(0 < U2|U1 = z) =

∫

R
m
+

g
(m)
[|z|pp](|Λz − u2|

p
p)du2 = F (1)

m,p

(

Λz; g
(m)
[|z|pp]

)

.

Hence,

fZ(z) = Cm,pg
(k)(|z|pp)F

(1)
m,p

(

Λz; g
(m)
[|z|pp]

)

,

with 1/Cm,p = P(0 < U2). Since X
d
= −X and U2 = ΓX, where Γ = (Λ,−Im), then U2

and −U2 have the same distribution. Thus, P(0 < U2) = P(−U2 < 0) = P(U2 < 0) and

the c.d.f. of U2 = ΓX is denoted by F
(2)
m,p

(

u2; Σ, g(m)
)

, where Σ = ΓΓ⊤ = Im + ΛΛ⊤, such

that 1/Cm,p = F
(2)
m,p

(

0; Im + ΛΛ⊤, g(m)
)

. �

Definition 4.2 The distribution of a random vector Z with density of the form

fZ(z) =
1

F
(2)
m,p

(

0; Im + ΛΛ⊤, g(m)
)

g(k)(|z|pp)F (1)
m,p

(

Λz; g
(m)
[|z|pp]

)

, z ∈ R
k,

is called skewed lk,p-symmetric distribution with dimensionality parameter m, density
generator g and skewness/shape matrix-parameter Λ. The notation Z ∼ SSk,m,p(Λ, g) is
used for this distribution.

An important simplification is obtained when the matrix Im + ΛΛ⊤ is diagonal, where

F
(2)
m,p

(

0; Im + ΛΛ⊤, g
)

= 1/(2m) by symmetry, following thus that

fZ(z) = 2mg(k)(|z|pp)F (1)
m,p

(

Λz; g
(m)
[|z|pp]

)

, z ∈ R
k.

The skewed lk,p-symmetric subclass for m = 1 extends the skew-spherical class introduced
in Branco and Dey (2001), where p = 2. For this subclass, the above density reduces to

fZ(z) = 2g(k)(|z|pp)F
(1)
1,p

(

λ⊤z; g
(1)
[|z|pp]

)

, z ∈ R
k,

for which

F
(1)
1,p

(

u; g
(1)
[|z|pp]

)

is a univariate c.d.f. and is immediate to be computed numerically when it does not have
an explicit expression. For m ≥ 1, the above definition extends the analogous definition in
Arellano-Valle and Genton (2005), where p = 2.
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Corollary 4.3 The conditional distribution of X(1) under X(2) < ΛX(1) is skewed lk,p-
symmetric with dimensionality parameter m, density generator g and skewness/shape
matrix-parameter Λ.

Corollary 4.3 extends the corresponding results in Branco and Dey (2001) and Arellano-
Valle and Genton (2005), which deal with the cases m = 1, p = 2 and m ≥ 1, p = 2,
respectively.

Example 4.4 An important special case is the skewed Nn,p distribution, where

g(k)(|x|pp) = Ck
p e−

1

p
|x|pp =: φk,p(x)

is the Nk,p density and

F
(1)
k,p

(

x; Σ, g(k)
)

=

∫

t<x
φk,p(t; Σ)dt =: Φ

(1)
k,p(x; Σ), x ∈ R

k,

i.e., the c.d.f. of a non-singular linear transformation Y = ΓX, with X ∼ Nn,p and ΓΓ⊤ =
Σ. Denoting accordingly

F (2)
m,p(0; Im + ΛΛ⊤, g(m)) = Φ(2)

m,p(0; Im + ΛΛ⊤),

we say that a random vector Z has k-dimensional skew-Nn,p distribution with dimen-
sionality parameter m and skewness/shape matrix parameter Λ ∈ R

m×k, denoted by
Z ∼ SNk,m,p(Λ), if its density is given by

fZ(z) =
1

Φ
(2)
m,p(0; Im + ΛΛ⊤)

φk,p(z)Φ(1)
m,p(Λz), z ∈ R

k.

For m = 1 and p = 2, we obtain the multivariate skew-normal density

fZ(z) = 2φk,p(z)Φ1,p(λ
⊤z), z ∈ R

k,

which was introduced in Azzalini and Dalla-Valle (1996) and studied systematically in
Azzalini and Capitanio (1999). For m = k with Λ = diag(λ1, . . . , λk), the components
of the skew-Nn,p random vector Z = (Z1, . . . , Zk)

⊤ are independent and have marginal
densities fZi

(zi) = 2φ1,p(zi)Φ1,p(λizi), i = 1, . . . , k.

Example 4.5 Another important special case is the skew-tk,p(ν) distribution, which is
considered next, where

g(k)(|x|pp) = Dk,p,ν

(

1 + (|x|pp)/(ν)
)−(ν+k)/p

=: tk,p(x; ν)

is the tk,p(ν) density, and

F
(1)
k,p (x; Σ, g) =

∫

t<x
tk,p(t; Σ, ν)dt := T

(1)
k,p (x; Σ, ν)

and T
(2)
m,p is defined accordingly.
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We say that a random vector Z has a skew-tk,p distribution with dimensionality param-
eter m and skewness/shape matrix parameter Λ ∈ R

m×k, denoted by Z ∼ Stk,m,p(Λ), if
its density is given by

fZ(z) =
1

T
(2)
m,p(0; Im + ΛΛ⊤, ν)

tk,p(z; ν)T (1)
m,p

(

(

ν + k

ν + |z|pp

)1/p

Λz; ν + k

)

, z ∈ R
k.

For m = 1 and p = 2, we have the multivariate skew-t distribution introduced in Branco
and Dey (2001), Gupta (2003) and Azzalini and Capitanio (2003).

A straightforward extension follows when we consider the conditional distribution of
X(1) given the selection mechanism X(2) < ΛX(1) + τ . In such a case, we have the more
general skew p-generalized lk,p-symmetric class of densities defined by

fZ(z) =
1

F
(2)
m,p (τ ; Im + ΛΛ⊤g)

g(k)(|z|pp)F (1)
m,p

(

Λz + τ ; g
(m)
[|z|pp]

)

, z ∈ R
k.

The convenience of this more general class is because it is closed by marginalization and
also by conditioning when p = 2, while for τ = 0, it does not preserve this last property.
This class generalizes the unified skew-elliptical (SUE) family obtained for p = 2 and
studied systematically in Arellano-Valle and Genton (2010); see also Arellano-Valle and
Genton (2005) and Arellano-Valle and Azzalini (2006). We call this last class the SUE-p-
generalized family of distributions and most of the above results could be explored for this
class.

4.2 Construction from stochastic representations

Now consider the stochastic representation

Z
d
= X(1) + ∆|X(2)|, (4)

where X(1) and X(2) are as before, i.e., with joint Sk+m,p(g) distribution, and where ∆ ∈

R
k×m is fixed matrix. Also, consider the linear transformation W1 = X(1) + ∆X(2) and

W2 = X(2). Note that W1 and W2 have joint density

fW1,W2
(w1, w2) = g(k+m)(|w1 − ∆w2|

p
p + |w2|

p
p), (w1, w2) ∈ R

k+m.

Moreover, since

fX(1),|X(2)|(x, t) = fX(1),X(2)|X(2)>0(x, t) = Cg(k+m)(|x|pp + |t|pp), (x, t) ∈ R
k × R

m
+ ,

we have (X(1), |X(2)|)
d
= (X(1),X(2)) | X(2) > 0, which is equivalent to (see Arellano-Valle

et al., 2002; Arellano-Valle and del Pino, 2004) X(1) ⊥⊥ sgn(X(2))| |X(2)|. Hence, we have

Z
d
= (X(1) + ∆X(2)) | X(2) > 0 = W1 | W2 > 0,
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following that the density of Z is

fZ(z) = fW1
(z)

P(W2 > 0 | W1 = z)

P(W2 > 0)

= CfW1
(z)P(W2 > 0 | W1 = z)

= C

∫

R
m
+

g(k+m)(|z − ∆w|pp + |w|pp)dw, z ∈ R
k.

For p = 2, this density reduces to the skew-elliptical density given by

fZ(z) = 2mg(k)(Q(z))Fm

(

(Im + ∆⊤∆)−1∆⊤z; (Im + ∆⊤∆)−1, g
(m)
[Q(z)]

)

,

where

Q(z) = z⊤[Ik − ∆(Im + ∆⊤∆)−1∆⊤]z = z⊤(Ik + ∆∆⊤)−1z.

For m = k, this skew-elliptical class of distributions was introduced in Sahu et al.
(2003). For extensions of this family and its relation with other skew-elliptical families, see
Arellano-Valle and Genton (2005), Arellano-Valle and Azzalini (2006) and Arellano-Valle
and Genton (2010).

One of the advantages of this route to obtain multivariate skew-symmetric distributions
comes from the stochastic representation given in Equation (4), which among other things
allows us to easily compute the moments of Z; see Arellano-Valle et al. (2002) and Arellano-
Valle and del Pino (2004). In particular, when the mean vector and covariance matrix of
Z exist, we have from Equation (4) that they are given by

E[Z] = ∆E
[

|X(2)|
]

and Cov (Z) = Cov(X
(2)
1 ) + ∆Cov(|X(2)|)∆⊤,

where

Cov(X
(2)
1 ) = σ2

p,gIk.

To compute E[|X(2)|] and Cov(|X(2)|), we can use the following lemma, whose proof is
straightforward from the results in Section 2.3.

Lemma 4.6 Let X = (X1, . . . ,Xn)⊤ ∼ Sn,p(g) and R = |X|p. Then,

E [|Xi|
r|Xj |

s] =



















Γ( r+s+1

p
)

Γ( 1

p
)

Γ( n

p
)E(Rr+s)

Γ( n+r+s

p
)

, i = j;

Γ( r+1

p
)Γ( s+1

p
)

Γ2( 1

p
)

Γ( n

p
)E(Rr+s)

Γ( n+r+s

p
)

, i 6= j;

if E [Rr+s] is finite.

For the particular case of X ∼ Nn,p, the moments of the p-generalized normal radial
random variable Rp = |X|p satisfies the relation

Γ(n
p )E

[

Rk
p

]

Γ(n+k
p )

= p
k

p .
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Hence, for the mean vector and covariance matrix of the corresponding skew-Nn,p random

vector Zp
d
= X

(1)
p + ∆|X

(2)
p |, we obtain

E [Zp] =
p

1

p Γ(2
p)

Γ(1
p)

∆1k, and Cov(Zp) =
p

2

p Γ(3
p)

Γ(1
p)

{

Ik +

(

1 −
Γ2(2

p)

Γ(1
p)Γ(3

p)

)

∆∆⊤

}

.

If Z is a scale-mixture of the skew-Nn,p random vector Zp, then there is a non-negative

random variable V which is independent of Zp such that Z
d
= V −1/pZp. Hence, we have

E [Z] = E
[

V −1/p
]

E [Zp]

if E
[

V −1/p
]

is finite and

E
[

ZpZ
⊤
p

]

= E
[

V −2/p
]

E
[

ZpZ
⊤
p

]

if E
[

V −2/p
]

is finite, from where we can compute Cov(Z).

Conclusions

In this paper, we have introduced a class of skewed continuous symmetric distributions
combining the theory of skewed distributions and the theory of geometric and stochastic
representations of ln,p-symmetric distributions. Several properties and results about skewed
continuous ln,p-symmetric distributions have been provided.
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