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Abstract

Recently Kundu and Gupta (2009) introduced a bivariate generalized exponential dis-
tribution, whose marginals are generalized exponential distributions. The bivariate gen-
eralized exponential distribution is a singular distribution, similarly as the well known
bivariate Weibull distribution. The corresponding two singular bivariate distributions
functions have very similar joint probability density functions. In this paper, we consider
the discrimination between these two bivariate distribution functions. The difference of
the maximized log-likelihood functions is used in discriminating between the two dis-
tribution functions. The asymptotic distribution of the test statistic has been obtained
and it can be used to compute the asymptotic probability of correct selection. Monte
Carlo simulations are performed to study the effectiveness of the proposed method. One
data set has been analyzed for illustrative purposes.

Keywords: Asymptotic distribution · EM algorithm · Likelihood ratio test
· Maximum likelihood · Monte Carlo simulations · Probability of correct selection.
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1. Introduction

Recently, the two-parameter generalized exponential (GE) distribution proposed by Gupta
and Kundu (1999) has received some attention. The two-parameter GE model, which has
one shape parameter and one scale parameter, is a positively skewed distribution. This
model has several desirable properties and many of them are very similar to the corre-
sponding properties of the well known Weibull distribution. For example, the probability
density functions (PDFs) and the hazard functions (HFs) of the GE and Weibull distribu-
tions are very similar. In addition, both distributions have compact cumulative distribution
functions (CDFs). These distributions contain the exponential distribution as a special
case. Therefore, they are extensions of the exponential distribution but in different man-
ners. It is further observed that the GE distribution can also be used quite successfully
in analyzing positively skewed data sets in place of the Weibull distribution. Moreover,
often it is very difficult to distinguish between these two distributions. For some recent
developments on the GE distribution, and for its different applications, the readers are
referred to the review article by Gupta and Kundu (2007).
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The problem of testing whether some given observations follow one of two (or more)
distributions is quite an old statistical problem. Cox (1961) (see also Cox, 1962) was
the pioneer in considering this problem. He also discussed the effect of choosing a wrong
model. Since then extensive work has been done in discriminating between two or more
distributions; see, e.g., Atkinson (1969, 1970), Bain and Englehardt (1980), Marshall et al.
(2001), Dey and Kundu (2009, 2010) and the references cited therein.

In recent times, it has been observed (see Gupta and Kundu, 2003, 2006) that, due
to the closeness between the Weibull and GE distributions, it is extremely difficult to
discriminate between their two corresponding CDFs. Note that if the shape parameter
is one, the two CDFs are not distinguishable. For small sample sizes, the probability of
correct selection (PCS) can be quite small, even if the shape parameter is not very close to
one. Interestingly, although extensive work has been done in discriminating between two
or more univariate distributions, but no work has been found in discriminating between
two bivariate distributions.

Recently, Kundu and Gupta (2009) introduced a singular bivariate distribution whose
marginals follow GE distributions, which is named as the bivariate generalized exponential
(BGE) distribution. The four-parameter BGE distribution has several desirable properties
and it can be used quite effectively to analyze bivariate data when there are ties. Another
well known four-parameter bivariate singular distribution is the bivariate Marshall-Olkin
Weibull (BMOW) distribution, which has been used quite effectively to analyze bivariate
data when there are ties; see, e.g., Kotz et al. (2000). The BMOW distribution has Weibull
marginals. Therefore, it is clear that for certain range of parameter values, the marginals
of the BGE and BMOW distributions are very similar. In fact, it is observed that the
shapes of the joint PDFs of the BGE and BMOW distributions can also be very similar
in nature.

In this paper, we consider discriminating between BGE and BMOW distributions. We
use the difference of the values for maximized log-likelihood functions in discriminating
between the two CDFs. The exact distribution of the proposed test statistic is difficult to
obtain, and hence we obtain its asymptotic distribution. It is observed that the asymptotic
distribution of the test statistic is normally distributed and it is used to compute the PCS.
In computing the PCS, one needs to compute the misspecified parameters. Computation
of the misspecified parameters involves solving a four dimensional optimization problem.
We suggest an approximation, which involves solving an one dimensional optimization
problem only, which it computationally becomes very efficient. Monte Carlo simulations
are performed to study the effectiveness of the proposed method, and it is observed that,
even for moderate sample sizes, the asymptotic results match very well with the simulated
results.

Rest of the paper is organized as follows. In Section 2, we briefly discuss about the
BGE and BMOW distributions. In Section 3, we present the discrimination procedure.
In Section 4, we provide the asymptotic distribution of the test statistics for both cases.
In Section 5, we discuss the calculation of the misspecified parameters. In Section 6, we
conduct Monte Carlo simulation study. In Section 7, we analyze a data set for illustrative
purposes. Finally, in Section 8 we conclude the paper.

2. BMOW and BGE Distributions

In this section, we briefly discuss about the BMOW and BGE distributions. We use the
following notations throughout the paper. It is assumed that the univariate Weibull dis-
tribution with the shape parameter α > 0 and the scale parameter λ > 0 has PDF, CDF
and survival function (SF) given by

fWE(x; α, λ) = αλxα−1e−λxα

, FWE(x; α, λ) = 1− e−λxα

, SWE(x; α, λ) = e−λxα

, x > 0, (1)
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respectively. From now on a Weibull distribution with the PDF as given in Equation (1)
is denoted by WE(α, λ). The GE distribution, with the shape parameter α > 0 and the
scale parameter λ > 0, has PDF given by

fGE(x; α, λ) = αλe−λx
(
1− e−λx

)α−1
, x > 0. (2)

The corresponding CDF and SF are

FGE(x; α, λ) =
(
1− e−λx

)α
, and SGE(x;α, λ) = 1−

(
1− e−λx

)α
,

respectively. A GE distribution with the PDF given in Equation (2) is denoted by GE(α, λ).

2.1 The BMOW distribution

Suppose U0 ∼ WE(α, λ0), U1 ∼ WE(α, λ1) and U2 ∼ WE(α, λ2) and they are indepen-
dently distributed. Define X1 = min{U0, U1} and X2 = min{U0, U2}. Then, the bivariate
vector (X1, X2) has the BMOW distribution with parameters α, λ0, λ1, λ2, and it is de-
noted by BMOW(Γ), where Γ = (α, λ0, λ1, λ2). Then, the (X1, X2) has joint SF of the
form

SBMOW(x1, x2; Γ) = P(X1 > x1, X2 > x2) = P(U1 > x1, U2 > x2, U0 > z)

= SWE(x1; α, λ1)SWE(x2; α, λ2)SWE(z; α, λ0),

where z = max{x1, x2}. The joint PDF of (X1, X2) can be written as

fBMOW(x1, x2; Γ) =





f1W (x1, x2; Γ), if 0 < x1 < x2;

f2W(x1, x2; Γ), if 0 < x2 < x1;

f0W(x; Γ), if 0 < x1 = x2 = x;

where

f1W(x1, x2; Γ) = fWE(x1; α, λ1)fWE(x2; α, λ0 + λ2),

f2W(x1, x2; Γ) = fWE(x1; α, λ0 + λ1)fWE(x2;α, λ2),

f0W(x; Γ) =
λ0

λ0 + λ1 + λ2
fWE(x;α, λ0 + λ1 + λ2).

Note that the function fBMOW(·) may be considered to be a PDF for the BMOW distribu-
tion if it is understood that the first two terms are PDFs with respect to two dimensional
Lebesgue measure, and the third term is a PDF with respect to a one dimensional Lebesgue
measure; see, e.g., Bemis et al. (1972). It is clear that the BMOW distribution has an abso-
lute continuous part on {(x1, x2); 0 < x1 < ∞, 0 < x2 < ∞, x1 6= x2}, and a singular part
on {(x1, x2); 0 < x1 < ∞, 0 < x2 < ∞, x1 = x2}. The surface plot of the absolute contin-
uous part of the joint PDF has been provided in Figure 1 for different parameter values.
It is immediate that the joint BMOW PDF can take variety of shapes, and, therefore, it
can be used quite effectively in analyzing singular bivariate data.
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Figure 1. Surface plots of the absolute continuous part of the joint PDF of BMOW for (α, λ1, λ2, λ3): (a) (2.0, 1.0,
1.0, 1.0) (b) (5.0, 1.0, 1.0, 1.0) (c) (2.0, 2.0, 2.0, 2.0) (d) (1.0, 1.0, 1.0, 1.0).

The following probabilities are used later in deriving the asymptotic PCS. If (X1, X2) ∼
BMOW(Γ), then

p1W = P(X1 < X2) =
∫ ∞

0

∫ y

0
fWE(x;α, λ1)fWE(y; α, λ0 + λ2)dxdy

=
λ1

λ0 + λ1 + λ2
,

p2W = P(X1 > X2) =
∫ ∞

0

∫ ∞

y
fWE(x; α, λ0 + λ1)fWE(y; α, λ2)dxdy

=
λ2

λ0 + λ1 + λ2
,

p0W = P(X1 = X2) =
λ0

λ0 + λ1 + λ2

∫ ∞

0
fWE(z;α, λ0 + λ1 + λ2)dz

=
λ0

λ0 + λ1 + λ2
.

2.2 The BGE distribution

Suppose V0 ∼ GE(α0, λ), V1 ∼ GE(α1, λ) and V2 ∼ GE(α2, λ). Define Y1 = max{V0, V1}
and Y2 = max{V0, V2}. Then the bivariate random vector (Y1, Y2) is said to have the
BGE distribution with parameters α0, α1, α2, λ, and it is denoted by BGE(Σ), where Σ =
(α0, α1, α2, λ). It is immediate that Y1 ∼ GE (α0 + α1, λ) and Y2 ∼ GE(α0 + α2, λ). The
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Figure 2. Surface plots of the absolute continuous part of the joint BGE PDF for (α1, α2, α3, λ): (a) (1.0, 1.0, 2.0,
1.0) (b) (1.0, 1.0, 1.0, 4.0) (c) (5.0, 5.0, 5.0, 1.0) (d) (0.5, 0.5, 0.5, 1.0).

joint CDF of (Y1, Y2) can be expressed as

FBGE(y1, y2; Σ) = P(Y1 ≤ y1, Y2 ≤ y2) = P(V1 ≤ y1, V2 ≤ y2, V0 ≤ v)

= (1− e−λy1)α1(1− e−λy2)α2(1− e−λv)α0 ,

where v = min{y1, y2}. In this case, the joint CDF of Y1 and Y2 can be written as

fBGE(y1, y2; Σ) =





f1G(y1, y2), if 0 < y1 < y2;

f2G(y1, y2), if 0 < y2 < y1;

f0G(y), if 0 < y1 = y2 = y,

where

f1G(y1, y2; Σ) = fGE(y1; α0 + α1, λ)fGE(y2; α2, λ),

f2G(y1, y2; Σ) = fGE(y1; α1, λ)fGE(y2; α0 + α2, λ),

f0G(y; Σ) =
α0

α0 + α1 + α2
fGE(y;α0 + α1 + α2, λ).

It is clear that the BGE distribution has also a singular part and an absolute continuous
part similarly as the BMOW distribution. The surface plot of the joint BGE PDF is
provided in Figure 2 for different parameter values. It is clear that the shape of the joint
BGE and BMOW PDFs are very similar.
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The following probabilities are needed later. If (Y1, Y2) ∼ BGE(Σ), then

p1G = P(Y1 < Y2) =
∫ ∞

0

∫ y

0
fGE(x;α0 + α1, λ)fGE(y; α2, λ)dxdy

=
α2

α0 + α1 + α2
,

p2G = P(Y1 > Y2) =
∫ ∞

0

∫ ∞

y
fGE(x; α1, λ)fGE(y; α0 + α2, λ)dxdy

=
α1

α0 + α1 + α2
,

p0G = P(Y1 = Y2) =
α0

α0 + α1 + α2

∫ ∞

0
fWE(z; α0 + α1 + α2, λ)dz

=
α0

α0 + α1 + α2
.

3. Discrimination Procedure

In this section, we present the discrimination procedure between the distributions. Specifi-
cally, suppose {(X11, X21), . . . , (X1n, X2n)} is a random bivariate sample of size n generated
either from a BGE(Σ) distribution or from a BMOW(Γ) distribution. Based on the above
sample, we want to decide from which distribution the data set has been obtained. We use
the following notations and sets for the rest of the paper; I0 = {(x1i, x2i), x1i = x2i = xi, i =
1, . . . , n}, I1 = {(x1i, x2i), x1i < x2i, i = 1, . . . , n}, I2 = {(x1i, x2i), x1i > x2i, i = 1, . . . , n},
I = I0 ∪ I1 ∪ I2, n0 = |I0|, n1 = |I1| and n2 = |I2|, n0 + n1 + n2 = n. It is assumed
that n0 6= 0, n1 6= 0, and n2 6= 0. Let Σ̂ = (α̂0, α̂1, α̂2, λ̂) be the maximum likelihood
(ML) estimators of Σ, based on the assumption that the data have been obtained from
the BGE(Σ) distribution. Similarly, let Γ̂ = (α̂, λ̂0, λ̂1, λ̂2) be the ML estimator of Γ based
on the assumption that the data have been obtained from the BMOW(Γ) distribution.
Note that (α̂0, α̂1, α̂2, λ̂) and (α̂, λ̂0, λ̂1, λ̂2) are obtained by maximizing the corresponding
log-likelihood function, say L1(α0, α1, α2, λ) and L2(α, λ0, λ1, λ2), respectively. Note that
here the log-likelihood function of the BGE distribution can be written as

L1(Σ) = (n0 + 2n1 + 2n2)log (λ) + n1log (α0 + α1) + n1log (α2) + n2log (α1)

+n2log (α0 + α2) + (α0 + α1 − 1)
∑

i∈I1

log (1− e−λx1i) + (α2 − 1)
∑

i∈I1

log (1− e−λx2i)

+(α1 − 1)
∑

i∈I2

log (1− e−λx1i) + (α0 + α2 − 1)
∑

i∈I2

log (1− e−λx2i) + n0log (α0)

+(α0 + α1 + α2 − 1)
∑

i∈I0

log (1− e−λxi)− λ

(∑

i∈I0

xi +
∑

i∈I1∪I2

x1i +
∑

i∈I1∪I2

x2i

)
, (3)
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and the BMOW log-likelihood function can be written as

L2(Γ) = (n0 + 2n1 + 2n2)log (α) + n1log (λ1) + n2log (λ2) + n0log (λ0) + n1log (λ0 + λ2)

+n2log (λ0 + λ1) + (α− 1)

[∑

i∈I0

log (x1i) +
∑

i∈I1∪I2

log (x2i) +
∑

i∈I0

log (xi)

]

−λ1

[ ∑

i∈I1∪I2

xα
1i +

∑

i∈I0

xα
i

]
− λ2

[ ∑

i∈I1∪I2

xα
2i +

∑

i∈I0

xα
i

]

−λ0

[∑

i∈I2

xα
1i +

∑

i∈I1

xα
2i +

∑

i∈I0

xα
i

]
.

We use the following discrimination procedure. Consider the statistic

T = L2(α̂, λ̂0, λ̂1, λ̂2)− L1(α̂0, α̂1, α̂2, λ̂). (4)

If T > 0, we choose the BMOW distribution, otherwise we prefer the BGE distribution.
It may be mentioned that (α̂0, α̂1, α̂2, λ̂) and (α̂, λ̂0, λ̂1, λ̂2) are obtained by maximizing
Equations (3) and (4) respectively. Computationally both are quite challenging problems.
To maximize directly these problems one needs to solve a four dimensional optimization
problem in each case. In both the cases the EM algorithm can be used quite effectively
to compute the ML estimators of the unknown parameters; see e.g., Kundu and Gupta
(2009) and Kundu and Dey (2009) for the BGE and BMOW distributions, respectively.
In each case, it involves solving just a one-dimensional optimization problem at each “E”
step, and both the methods work quite well. In the next section we provide the asymptotic
distribution of T , which helps to compute the asymptotic PCS.

4. Asymptotic Distributions

In this section, we provide the asymptotic distributions of the test statistics for both
cases and use the following notations. For any functions, f1(U) and f2(U), EBGE[f1(U)],
VBGE[f1(U)] and CovBGE(f2(U), f1(U)) denote the mean of f1(U), the variance of f1(U),
and the covariance of f1(U) and f2(U) respectively, under the assumption the U ∼
BGE(Σ). Similarly, we define EBWE[f1(U)], VBWE[f1(U)] and CovBWE(f2(U), f1(U)) as the
mean of f1(U), the variance of f1(U) and the covariance of f1(U) and f2(U) respectively,
under the assumption that U ∼ BWE(Γ) (bivariate Weibull). We have the following two
main results.

Theorem 4.1 Under the assumption that data come from the BMOW(α, λ0, λ1, λ2) dis-
tribution, the distribution of T as defined in Equation (4) is approximately normally
distributed with mean EBMOW[T ] and variance VBMOW[T ]. The expressions of EBMOW[T ]
and VBMOW[T ] are provided below.

Proof It is provided in Appendix. ¥

Now we provide the expressions for EBMOW[T ] and VBMOW[T ]. We denote

lim
n→∞

EBMOW[T ]
n

= AMBMOW and lim
n→∞

EBMOW[T ]
n

= AVBMOW.
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Therefore,

lim
n→∞

1
n

EBMOW[T ] = AMBMOW

= EBMOW[log (fBMOW(X1, X2; Γ))− log (fBGE(X1, X2; Σ̃))],

lim
n→∞

1
n

VBMOW[T ] = AVBMOW

= VBMOW[log (fBMOW(X1, X2; Γ))− log (fBGE(X1, X2; Σ̃))].

Note that both AMBMOW and AVBMOW cannot be obtained in explicit form. They have
to be obtained numerically and they are functions of p1W, p2W, p3W, Γ and Σ̃. Moreover,
it should be mentioned that the misspecified parameter Σ̃ as defined in Lemma 8.1 (see
Appendix) also needs to be computed numerically.

Theorem 4.2 Under the assumption that data come from the BGE(Σ) distribution, the
distribution of T as defined in Equation (4) is approximately normally distributed with
mean EBGE[T ] and variance VBGE[T ]. The expressions of EBGE[T ] and VBGE[T ] are provided
below.

Proof It is provided in Appendix. ¥

Now we provide the expressions for EBGE[T ] and VBGE[T ]. In this case, we denote

lim
n→∞

EBGE[T ]
n

= AMBGE and lim
n→∞

VBGE[T ]
n

= AVBGE.

Therefore,

lim
n→∞

1
n

EBGE[T ] = AMBGE = EBGE[log (fBMOW(X1, X2; Γ̃))− log (fBGE(X1, X2; Σ))],

lim
n→∞

1
n

VBGE[T ] = AVBGE = VBGE[log (fBMOW(X1, X2; Γ̃))− log (fBGE(X1, X2; Σ))].

As mentioned, here also both AMBGE and AVBGE cannot be obtained in explicit form.
They have to be obtained numerically and they are also functions of p1G, p2G, p3G, Γ̃ and
Σ. The misspecified parameter Γ̃ as defined in Lemma 8.2 (see Appendix) also needs to be
computed numerically.

Then, based on the corresponding asymptotic distributions, it is possible to compute
the PCS for both the cases.

5. Misspecified Parameter Estimates

In this section, we discuss the estimation of the misspecified parameters.

5.1 Estimation of Σ̃

In this case, it is assumed that the data have been obtained from the BMOW(Γ) dis-
tribution and we would like to compute Σ̃, the misspecified BGE parameters, as de-
fined in Lemma 8.1. Suppose (X1, X2) ∼ BMOW(Γ). Consider the following events:
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A1 = {X1 < X2}, A2 = {X1 > X2} and A0 = {X1 = X2}. Moreover, 1A is the indi-
cator function taking value 1 at the set A and 0 otherwise. Therefore, Σ̃ can be obtained
as the argument maximum of EBMOW[log (fBGE(X1, X2; Σ))] = Π1(Σ) (say), where

Π1(Σ) = log (λ) + p1Wlog (α0 + α1) + p1Wlog (α2)

+(α0 + α1 − 1)EBMOW[log (1− e−λX1) · 1A1 ]

+(α2 − 1)EBMOW[log (1− e−λX2) · 1A1 ]− λEBMOW[(X1 + X2) · 1A1 ]

+p2Wlog (α1) + (α1 − 1)EBMOW[log (1− e−λX1) · 1A2 ] + p2Wlog (α0 + α2)

+(α0 + α2 − 1)EBMOW[log (1− e−λX2) · 1A2 ]− λEBMOW[(X1 + X2) · IA2 ]

+(α0 + α1 + α2 − 1)EBMOW[log (1− e−λX) · 1A0 ]− λEBMOW[X · 1A0 ] + p0Wlogα0.

We need to maximize Π1(Σ) with respect to Σ for fixed Γ, to compute Σ̃, numerically.
Clearly, Σ̃ is a function of Γ, but we do not make it explicit for brevity. Since maximizing
Π1(Σ) involves a four dimensional optimization process, we suggest to use an approximate
version of it, which can be performed very easily, and works quite well in practice. The
idea basically came from the missing value principle, and it has been used by Kundu and
Gupta (2009) in developing the EM algorithm. We suggest to use the following Π∗1(Σ), the
“pseudo” version of Π1(Σ)

Π∗1(Σ) = (p0W + u2p1W + w2p2W)log (α0) + (p0W + 2p1W + 2p2W)log (λ)

+(α0 + α1 + α2 − 1)E
[
log (1− e−λX1) · 1A0

]

−λ (E[X1 · 1A0 ] + E [(X1 + X2) · 1A1∪A2 ]) + (u1p1W + p2W)log (α1)

+(w1p2W + p1W)log (α2) + (α0 + α1 − 1)E
[
log (1− e−λX1) · 1A1

]

+(α0 + α2 − 1)E
[
log (1− e−λX2) · 1A2

]
+ (α2 − 1)E

[
log (1− e−λX2) · 1A1

]

+(α1 − 1)E
[
log (1− e−λX1) · 1A2

]
.

Here,

u1 =
λ0

λ0 + λ2
, u2 =

λ2

λ0 + λ2
, w1 =

λ0

λ0 + λ1
, w2 =

λ1

λ0 + λ1
, (5)

and p1W, p2W, p3W are same as defined before. The explicit expressions of the expected
values are provided in Appendix. Note that Π∗1(Σ) is actually

Π∗1(Σ) = lim
n→∞

1
n

E [lpseudo(α0, α1, α2, λ | (X1i, X2i; i = 1, . . . , n)] .

Here lpseudo(·) is the “pseudo” log-likelihood function of the complete data set, as described
in Kundu and Gupta (2009). Moreover, it has the same form as in Kundu and Gupta
(2009), but since here it is assumed that (X1i, X2i) ∼ BMOW(α, λ1, λ2, λ3), therefore the
expressions of u1, u2, w1, w2 are as Equation (5), and they are different than Kundu and
Gupta (2009).
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Now the maximization of Π∗1(Σ) can be performed as follows. Note that for a given λ,
the maximization of Π∗1(Σ) with respect to α0, α1 and α2 can occur at

α̃0(λ) =
p0W + u2p1W + w2p2W

E [log (1− e−λX1) · 1A0 ] + E [log (1− e−λX1) · 1A1 ] + E [log (1− e−λX2) · 1A2 ]
,

α̃1(λ) =
u1p1W + p2W

E [log (1− e−λX1) · 1A0 ] + E [log (1− e−λX1) · 1A1 ] + E [log (1− e−λX1) · 1A2 ]
,

α̃2(λ) =
p1W + w1p2W

E [log (1− e−λX2) · 1A0 ] + E [log (1− e−λX2) · 1A2 ] + E [log (1− e−λX2) · 1A1 ]
,

respectively, and finally maximization of Π∗1(Σ) can be obtained by maximizing profile
function, namely, Π∗1(α̃0(λ), α̃1(λ), α̃2(λ), λ) with respect to λ only. Therefore, it involves
solving an one dimensional optimization problem only.

5.2 Estimation of Γ̃

In this case, it is assumed that the data have been obtained from the BGE(Σ) distribution
and we compute Γ̃, the misspecified BMOW parameters, as defined in Lemma 8.2. In
this case, Γ̃ can be obtained as the argument maximum of EBGE[log (fBMOW(X1, X2; Γ))] =
Π2(Γ) (say), where

Π2(Γ) = (p0G + 2p1G + 2p2G)log (α)

+p1Glog (λ1) + p2Glog (λ2) + p0Glog (λ0) + p1Glog (λ0 + λ2)

+p2Glog (λ0 + λ1) + (α− 1) (EBGE[logX1 · 1A1 ] + EBGE[logX1 · 1A2 ])

+(α− 1) (EBGE[logX2 · 1A1 ] + EBMOW[logX2 · 1A2 ] + EBMOW[logX1 · 1A0 ])

−λ1 (EBMOW[Xα
1 · 1A1 ] + EBMOW[Xα

1 · 1A2 ] + EBMOW[Xα
1 · 1A0 ])

−λ2 (EBMOW[Xα
2 · 1A1 ] + EBMOW[Xα

2 · 1A2 ] + EBMOW[Xα
1 · 1A0 ])

−λ0 (EBMOW[Xα
1 · 1A2 ] + EBMOW[Xα

2 · 1A1 ] + EBMOW[Xα
1 · 1A0 ]) .

In this case, we need to maximize Π2(Γ) with respect to Γ numerically to obtain Γ̃, for a
fixed Σ. Clearly, Γ̃ depends on Σ, and we do not make it explicit for brevity.

Similarly, as before since maximization of Π2(Γ) involves a four dimensional optimization
problem, we suggest to use the following approximation of Π∗2(Γ). We suggest to use

Π∗2(Γ) = (p0G + 2p1G + 2p2G)logα + (α− 1)E [logX1 · 1A0 + (logX1 + logX2) · 1A1∪A2 ]

−λ0E [Xα
1 · 1A0 + Xα

1 · 1A2 + Xα
2 · 1A1 ] + (p0G + a1p1G + b1p2G) log (λ0)

−λ1E [Xα
1 ] + (p1G + a2p2G) log (λ1)− λ2E [Xα

2 ] + (p2G + b2p1G) log (λ1).

Here

a1 =
α1

α0 + α1
, a2 =

α0

α0 + α2
, b1 =

α2

α0 + α2
, b2 =

α0

α0 + α2
,

p0G, p1G, p2G are same as defined before. The expressions of the different expectations are
provided in Appendix.
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It may be similarly observed as before that

Π∗2(Γ) = lim
n→∞

1
n

E [lpseudo(α, λ0, λ1, λ2 | (X1i, X2i); i = 1, . . . , n)] ,

where (X1i, X2i) ∼ BGE(α0, α1, α2, λ). The explicit expression of lpseudo(·) is available in
Kundu and Dey (2009).

The maximization of Π∗2(Γ) with respect to Γ can be performed quite easily. For fixed
α, the maximization Π∗2(Γ) with respect to λ1, λ2 and λ0 can be obtained for

λ̃1 =
p1G + b2p2G

E [Xα
1 ]

,

λ̃2 =
p2G + a2p1G

E [Xα
2 ]

,

λ̃0 =
p0G + a1p1G + b1p2G

E [Xα
1 · 1A0 ] + E [Xα

1 · 1A2 ] + E [Xα
2 · 1A1 ]

,

respectively, and finally the maximization Π∗2(Γ) can be performed by maximizing the
profile function Π∗2(α, λ̃0(α), λ̃1(α), λ̃2(α)) with respect to α only.

6. Numerical Results

In this section, we perform some numerical experiments to observe how these asymp-
totic results work for different sample sizes, and for different parameter values. All these
computations are performed at the Indian Institute of Technology Kanpur, using Intel(R)
Core(TM)2 Quad CPU Q9550 2.83GHz, 3.23 GB RAM machines. The programs are writ-
ten in R software (2.8.1), which can be obtained from the authors on request. We compute
the PCS based on Monte Carlo (MC) simulation, and also based on the asymptotic results.
We replicate the process 1000 times and compute the proportion of correct selection. For
computing the PCS based on asymptotic results, first we compute the misspecified param-
eters and based on those misspecified parameters we compute the PCS.

6.1 Case 1: parent distribution is BMOW

In this case, we consider the following parameter sets:
Set 1: α = 2.0, λ0 = 1.0, λ1 = 1.0, λ2 = 1.0; Set 2: α = 1.5, λ0 = 1.0, λ1 = 1.0, λ2 = 1.0;
Set 3: α = 1.5, λ0 = 0.5, λ1 = 0.5, λ2 = 0.5; Set 4: α = 1.5, λ0 = 2.0, λ1 = 1.0, λ2 = 1.5,
and different sample sizes namely n = 20, 40, 60, 80, 100. For each parameter set and for
each sample size, we have generated the sample from the BMOW distribution. Then, we
compute the ML estimates of the unknown parameters and the values for the corresponding
maximized log-likelihood functions, assuming that the data are coming from the BMOW
or BGE distribution. In computing the ML estimates of the unknown parameters, we have
used the EM algorithm as suggested in Kundu and Dey (2009) and Kundu and Gupta
(2009), respectively. Finally, based on the values for the corresponding maximized log-
likelihood functions, we decide whether we have made the correct decision or not. We
replicate the process 1000 times, and compute the proportion of correct selection. The
results are reported in the first rows of Tables 1 to 4.

Now, to compare these results with the corresponding asymptotic results, first we com-
pute the misspecified parameters for each parameter set, and they are presented in the
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Table 1. PCS based on MC simulations and based on asymptotic distribution (AD) for parameter Set 1.

n 20 40 60 80 100
MC 0.9255 0.9808 0.9953 0.9987 0.9997
AD 0.9346 0.9837 0.9956 0.9987 0.9996

Table 2. PCS based on MC simulations and based on AD for parameter Set 2.

n 20 40 60 80 100
MC 0.9255 0.9808 0.9953 0.9987 0.9997
AD 0.9212 0.9772 0.9928 0.9976 0.9992

Table 3. PCS based on MC simulations and based on AD for parameter Set 3.

n 20 40 60 80 100
MC 0.9073 0.9749 0.9914 0.9979 0.9989
AS 0.9204 0.9767 0.9926 0.9975 0.9992

Table 4. PCS selection based on MC simulations and based on AD for parameter Set 4.

n 20 40 60 80 100
MC 0.8834 0.9587 0.9843 0.9952 0.9973
AS 0.8996 0.9648 0.9866 0.9947 0.9979

following Table 5. In each case, we need to compute AMBMOW and AVBMOW, as defined
in Theorem 4.1. Since the exact expressions of AMBMOW and AVBMOW are quite compli-
cated, we have used simulation consistent estimates of AMBMOW and AVBMOW, which can
be obtained very easily. The simulation consistent estimators of AMBMOW and AVBMOW are
obtained using 10,000 replications, and they are reported in Table 6.

Table 5. Misspecified parameter values Σ̃ for different parameter sets.

Set α̃1 α̃2 α̃0 λ̃
1 1.5098 1.5098 1.6228 2.81
2 0.8853 0.8853 0.9458 2.35
3 0.8908 0.8908 0.9600 1.49
4 1.3393 1.0782 0.7362 3.10

Table 6. AMBMOW and AVBMOW for different parameter sets.

Set AMBMOW AVBMOW

1 0.2346 0.4823
2 0.1982 0.3936
3 0.2297 0.4317
4 0.1762 0.4317

Now, using Theorem 4.1 and based on the asymptotic distribution of T and the dis-
crimination statistic, we compute the PCS, i.e., P(T > 0), for different sample sizes. The
results are reported in the second rows of Tables 1 to 4 for all the parameter sets. It is
very interesting to observe that for the bivariate case, even for small sample sizes the PCS
are very high, and the asymptotic results match very well with the simulated results.

6.2 Case 2: parent distribution is BGE

In this case, we consider the parameter sets:
Set 5: α0 = 1.5, α1 = 2.0, α2 = 1.0, λ = 1.0; Set 6: α0 = 1.0, α1 = 1.0, α2 = 1.0, λ = 1.0;
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Set 7: α0 = 2.0, α1 = 2.0, α2 = 2.0, λ = 1.0; Set 8: α0 = 1.5, α1 = 1.5, α2 = 1.5, λ =
1.0, and the same sample sizes as in Case 1. In this case, we generate the sample from the
BGE distribution and using the same procedure as before we compute the proportion of
correct selection. The results are reported in the first rows of Tables 7 to 10.

Table 7. PCS based on MC simulations and based on AD for parameter Set 5.

n 20 40 60 80 100
MC 0.9195 0.9797 0.9935 0.9986 0.9993
AS 0.9330 0.9830 0.9953 0.9986 0.9996

Table 8. PCS based on MC simulations and based on AD for parameter Set 6.

n 20 40 60 80 100
MC 0.9001 0.9701 0.9892 0.9962 0.9984
AS 0.9153 0.9741 0.9914 0.9970 0.9989

Table 9. PCS based on MC simulations and based on AD for parameter Set 7.

n 20 40 60 80 100
MC 0.9189 0.9811 0.9944 0.9987 0.9994
AS 0.9347 0.9837 0.9955 0.9987 0.9996

Table 10. PCS based on MC simulations and based on AD for parameter Set 8.

n 20 40 60 80 100
MC 0.9096 0.9768 0.9929 0.9975 0.9991
AS 0.9299 0.9816 0.9947 0.9984 0.9995

Now, to compute the asymptotic PCS, first we compute the misspecified parameters
as suggested in Section 5, and they are reported in Table 11. We also report simulated
consistent estimates of AMBGE and AVBGE in Table 12.

Table 11. Misspecified parameter values Γ̃ for different parameter sets.

Set α̃ λ̃0 λ̃1 λ̃2

5 1.6199 0.1732 0.1137 0.1992
6 1.4199 0.2575 0.2418 0.2418
3 1.8200 0.1123 0.1050 0.1050
8 1.6199 0.1665 0.1553 0.1553

Table 12. AMBMOW and AVBMOW for different parameter sets.

Set AMBMOW AVBMOW

5 0.2224 0.4406
6 0.1967 0.4095
3 0.2316 0.4692
8 0.2128 0.4157

Now, similarly as before, based on the asymptotic distribution of T , as provided in
Theorem 4.2, we compute the PCS in this case, i.e., P(T < 0), for different sample sizes.
We report the results in the second rows of Tables 7 to 10 for all the parameter sets. In
this case, it observed that the asymptotic results match extremely well with the simulated
results.
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7. Data Analysis

In this section, we present the analysis of a real data set for illustrative purposes. These
data are from the National Football League (NFL), American Football, matches played on
three consecutive weekends in 1986. It has been originally published in “Washington Post”.
In this bivariate data set, the variables are the “game time” to the first points scored by
kicking the ball between goal posts (X1) and the “game time” to the first points scored by
moving the ball into the end zone (X2). These times are of interest to a casual spectator
who wants to know how long one has to wait to watch a touchdown or to a spectator who
is interested only at the beginning stages of a game. The data (scoring times in minutes
and seconds) are represented in Table 13. We have analyzed the data by converting the
seconds to the decimal minutes, i.e., 2:03 has been converted to 2.05.

Table 13. American Football League (NFL) data.

X1 X2 X1 X2 X1 X2

2:03 3:59 5:47 25:59 10:24 14:15
9:03 9:03 13:48 49:45 2:59 2:59
0:51 0:51 7:15 7:15 3:53 6:26
3:26 3:26 4:15 4:15 0:45 0:45
7:47 7:47 1:39 1:39 11:38 17:22

10:34 14:17 6:25 15:05 1:23 1:23
7:03 7:03 4:13 9:29 10:21 10:21
2:35 2:35 15:32 15:32 12:08 12:08
7:14 9:41 2:54 2:54 14:35 14:35
6:51 34:35 7:01 7:01 11:49 11:49

32:27 42:21 6:25 6:25 5:31 11:16
8:32 14:34 8:59 8:59 19:39 10:42

31:08 49:53 10:09 10:09 17:50 17:50
14:35 20:34 8:52 8:52 10:51 38:04

The variables X1 and X2 have the structure: (i) X1 < X2 means that the first score is
a field goal, (ii) X1 = X2 means the first score is a converted touchdown, (iii) X1 > X2

means the first score is an unconverted touchdown or safety. In this case, the ties are
exact because no “game time” elapses between a touchdown and a point-after conversion
attempt. Therefore, it is clear that, in this case, X1 = X2 occurs with positive probability,
and some singular distribution should be used to analyze this data set.

If we define the random variables

U1 = time to first field goal,

U2 = time to first safety or unconverted touchdown,

U0 = time to first converted touchdown.

Then, X1 = min{U0, U1} and X2 = min{U0, U2}. Therefore, (X1, X2) has a similar struc-
ture as the bivariate Marshall-Olkin exponential model. Csorgo and Welsh (1989) analyzed
the data using the bivariate Marshall-Olkin exponential model but concluded that it does
not work well, because X2 may be exponential but X1 is not. In fact it is observed that
the empirical HFs of both X1 and X2 are increasing functions.

Since both BMOW and BGE distributions can have increasing marginal HFs, we fit both
the models to the data set. For the BMOW distribution, using EM algorithm as suggested
in Kundu and Dey (2009), we compute the ML estimates of the unknown parameters as α̂ =
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Figure 3. Histogram of the bootstrap sample of the discrimination statistic.

1.2889, λ̂0 = 11.2073, λ̂1 = 8.3572, λ̂2 = 0.4720, and the associated 95% confidence intervals
are (1.0372, 1.5406), (5.7213, 16.6932), (2.5312, 14.1831), (-0.4872, 1.4314) respectively.
The value for the corresponding maximized likelihood function is 47.8041. In case of the
BGE distribution using the EM algorithm as suggested in Kundu and Gupta (2009), we
obtained the ML estimates of the unknown parameters as α̂0 = 1.1628, α̂1 = 0.0558, α̂2

= 0.5961, λ̂ = 9.5634, and the associated 95% confidence intervals are (0.6991, 1.6266),
(-0.0205, 0.1322), (0.2751, 0.9171) and (6.5298, 12.5970) respectively. The value for the
corresponding maximized likelihood function is 38.0042. Therefore, based on the values
for the corresponding maximized likelihood function, we prefer to use the BMOW model
rather than the BGE model to analyze this data set.

Now, to compute the PCS in this case, we perform non-parametric bootstrap. The
histogram of the bootstrap sample of the discrimination statistic is provided in Figure 3.
Based on one thousand bootstrap replications, it is observed that the PCS is 0.98.

8. Conclusion

In this paper, we have considered discrimination between two singular bivariate models,
namely the BMOW and BGE distributions. Both the distributions have singular part and
absolute continuous part. The difference of the values for the corresponding maximized
likelihood function has been used as the discrimination statistic. We have obtained the
asymptotic distribution of the discrimination statistic, which can be used to compute
the asymptotic PCS. MC simulations are performed to see the behavior of the proposed
method. It is known that the discrimination between Weibull and generalized exponential
distributions is quite difficult (see Gupta and Kundu, 2003), but in this paper it is observed
that the discrimination between the BMOW and BGE distributions is relatively easier.
Even with small sample sizes the PCS quite high. Moreover, the asymptotic PCS matches
very well with the simulated PCS even for moderate sample sizes. We have performed
the analysis of a data set and computed the PCS using non-parametric bootstrap method.
Although we do not have any theoretical results, it seems non-parametric bootstrap method
also can be used quite effectively in computing the PCS in this case. More work is needed
in this direction.

Appendix

To prove Theorem 4.1, we need of Lemma 8.1. Here a.s.→ means converges almost surely.
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Lemma 8.1 Under the assumption that data are from the BWE(α, λ0, λ1, λ2) distribution,
as n →∞, we have
(i) α̂

a.s.−→ α, λ̂0
a.s.−→ λ0, λ̂1

a.s.−→ λ1 and λ̂2
a.s.−→ λ2 where for Γ = (α, λ0, λ1, λ2),

EBMOW[log (fBMOW(X1, X2; Γ))] = max Γ̄EBMOW[log (fBMOW(X1, X2; Γ̄))];

(ii) α̂0
a.s.−→ α̃0 , α̂1

a.s.−→ α̃1, α̂2
a.s.−→ α̃2, λ̂

a.s.−→ λ̃, where for Σ = (α0, α1, α2, λ),

EBMOW[log (fBGE(X1, X2; Σ̃))] = maxΣEBMOW[log (fBGE(X1, X2; Σ))].

It may be noted that Σ̃ may depend on Γ, but we do not make it explicit for brevity;
(iii) If we denote

T ∗ = L2(α, λ0, λ1, λ2)− L1(α̃0, α̃1, α̃2, λ̃),

then n−
1
2 (T − EBMOW[T ]) is asymptotically equivalent to n−

1
2 (T ∗ − EBMOW[T ∗]) .

Proof of Lemma 8.1 It is quite standard and it follows along the same line as the proof
of Lemma 2.2 of White (1982), and it is avoided. ¥

Proof of Theorem 4.1 Using Central limit theorem and part (ii) of Lemma 8.1, it
follows that n−

1
2 (T ∗ − EBWE [T ∗]) is asymptotically normally distributed with mean zero

and variance VBMOW[T ∗]. Therefore, using part (iii) of Lemma 8.1, the result immediately
follows. ¥

To prove Theorem 4.2 and for defining the misspecified parameter Γ̃, we need of Lemma
8.2, whose proof is same as the proof of Lemma 8.1.

Lemma 8.2 Suppose the data follow the BGE(α0, α1, α2, λ) distribution, as n → ∞, we
have
(i) α̂0

a.s.−→ α0, α̂1
a.s.−→ α1, α̂2

a.s.−→ α2 and λ̂ → λ where

EBGE[log (fBGE(X1, X2; Σ))] = max Σ̄EBGE[log (fBGE(X1, X2; Σ̄))];

(ii) α̂
a.s.−→ α̃, λ̂0

a.s.−→ λ̃0, λ̂1
a.s.−→ λ̃1, λ̂2

a.s.−→ λ̃2, where Γ̃ = (α̃, λ̃0, λ̃1, λ̃2),

EBGE[log (fBMOW(X1, X2; Γ̃))] = maxΓEBGE[log (fBMOW(X1, X2; Γ))];

here also Γ̃ depend on Σ, but we do not make it explicit for brevity;
(iii) If we denote

T∗ = L2(α̃, λ̃0, λ̃1, λ̃2)− L1(α0, α1, α2, λ),

then n−
1
2 (T − EBGE[T ]) is asymptotically equivalent to n−

1
2 (T∗ − EBGE[T ∗]) .

Proof of Theorem 4.2 Along the same line as the Proof of Lemma 8.1, it also follows
using Lemma 8.2. ¥

The following lemmas are useful in computing the different expected values needed in
Π∗1(Σ) and in Π∗2(Γ). Here 1A0 , 1A1 and 1A2 are same as defined before.
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Lemma A.1 Let W0 ∼ GE(α0 + α1 + α2, λ), W1 ∼ GE(α0 + α1, λ), W2 ∼ GE(α0 + α2, λ)
and (X1, X2) ∼ BGE(α0, α1, α2, λ). If g(·) is any Borel measurable function, then

E[g(X1) · 1A1 ] = E[g(W1)] +
α0 + α1

α0 + α1 + α2
E[g(W0)].

E[g(X1) · 1A2 ] =
α1

α0 + α1 + α2
E[g(W0)].

E[g(X1) · 1A0 ] = E[g(X2) · 1A0 ] =
α0

α0 + α1 + α2
E[g(W0)].

E[g(X2) · 1A1 ] =
α2

α0 + α1 + α2
E[g(W0)].

E[g(X2) · 1A2 ] = E[g(W2)] +
α0 + α2

α0 + α1 + α2
E[g(W0)].

Proof of Lemma A.1 See Kundu and Gupta (2009). ¥

Lemma A.2 Let Z0 ∼ WE(α, λ0 + λ1 + λ2), Z1 ∼ WE(α, λ0 + λ1), Z2 ∼ WE(α, λ0 + λ2)
and (X1, X2) ∼ BMOW(α, λ0, λ1, λ2). If g(·) is any Borel measurable function, then

E[g(X1) · 1A1 ] =
λ1

λ0 + λ1 + λ2
E[g(Z1)].

E[g(X1) · 1A2 ] = E[g(Z1)]− λ0 + λ1

λ0 + λ1 + λ2
E[g(Z0)].

E[g(X1) · 1A0 ] = E[g(X2) · 1A0 ] =
λ0

λ0 + λ1 + λ2
E[g(Z0)].

E[g(X2) · 1A1 ] = E[g(Z2)]− λ0 + λ2

λ0 + λ1 + λ2
.

E[g(X2) · 1A2 ] =
λ2

λ0 + λ1 + λ2
E[g(Z2)].

Proof of Lemma A.1 They can be obtained along the same line as in Lemma A.1. ¥
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