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Abstract

The generation of models with high degree of realism has been possible through the
advance of equipments and techniques for spatial data acquisition. Many applications
require massive volumes of data, such as computer vision, medicine, remote sensing and
virtual reality. Triangle meshes are data representations with various advantages over
the use of regular grids, including adaptability to data density, ease of manipulation
and visualization of complex surfaces, and organization of structures at different levels
of resolution. This paper describes a method for constructing triangle meshes from
images at multiple scales smoothed with Gaussian filters. A new metric for incrementally
inserting data points into the mesh is proposed, which is robust in the presence of noise
or outliers. Experimental results demonstrate that the proposed approach generates
compact meshes while maintaining the original data surface approximation at a proper
level of accuracy.
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1. Introduction

The generation and distribution of spatial data sets in increasing resolutions have been
possible due to the great advance of data acquisition technologies. Several applications
can benefit from the use of advanced equipments for data collection. Satellites and laser
scanning systems are able to capture elevation data of the earth surface at high resolution.
Computed tomography, magnetic resonance, and ultrasound imaging devices acquire large
image volumes of internal human body organs. Video cameras obtain sets of samples that
can represent multiple views of an object.
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Efficient strategies are required for storage, manipulation and visualization of large data
volumes. A common method for approximating surfaces composed of a set of points uses a
polygonal mesh, which is usually represented by a set of triangles covering the domain of
points (see Kirkpatrick, 1983; Garland and Heckbert, 1995; van Kaick and Pedrini, 2006).
Therefore, a triangle mesh is a piecewise linear model that can be seen as a connected set
of contiguous non-overlapping triangles; see Pedrini (2001) and da Silva et al. (2010).

A widely investigated problem is to create a mesh that adequately approximates a set of
data points, preserving the relevant characteristics of the data and eliminating unnecessary
details. The main methods for generating triangle meshes can be classified into refinement
and simplification.

Mesh refinement methods (see Brown, 1997; Hoppe, 1997; Boissonnat et al., 2009; Dey
and Ray, 2010) initially construct a triangulation that approximates a small number of
data points. At each iteration, a new point is inserted into the mesh, typically one that
presents the largest approximation error in the current triangulation according to a metric.
Local adjustments are performed in the mesh and the refinement process finishes when
the triangulation satisfies a given error tolerance or when a required number of points is
achieved.

Mesh simplification methods (see Luebke and Erikson, 1997; Cignoni et al., 1998; Shaffer
and Garland, 2001; Luebke et al., 2003; van Kaick and Pedrini, 2006) consider a mesh with
all or a large number of points already belonging to the triangulation and, at each iteration,
eliminate the point with the smallest approximation error. The triangulation is then locally
rebuilt. As in refinement-based methods, the simplification process finishes when a required
number of points is satisfied or when an error tolerance is reached.

Delaunay triangulation (see de Berg et al., 2008) is typically used to maintain the mesh,
which has the property of maximizing the minimum angle of all triangles of the mesh,
reducing the occurrence of long and narrow triangles that tend to cause undesirable effects,
such as numerical instability and visual artifacts; see Scarlatos (1992).

This paper presents a novel metric for incrementally inserting data points into a triangle
mesh, which is robust in the presence of noise or outliers. The method also generates
meshes at multiple scales from a set of images obtained by the application of a Gaussian
filter. Experiments show that a multiscale approach produces compact meshes according
to the approximation error metric under consideration.

This article is organized as follows. The proposed method is described in Section 2.
Experimental results are presented and discussed in Section 3. The conclusions of the
work are given in Section 4.

2. Proposed Methodology

The method for constructing triangle meshes proposed in this work initially generates a
minimal approximation consisting of two triangles over the data domain. This coarse mesh
is then refined by iteratively adding new points, updating the triangulation after each point
is inserted, until either a specified error tolerance is achieved or a given number of points
is reached; see da Silva et al. (2010). An incremental Delaunay triangulation is used to
generate the mesh.

The vertex selection criterion is crucial during the triangulation process since it deter-
mines the degree of fidelity between the original data and the its approximation. The
magnitude of the error can be computed over a limited region to estimate local error or
over the entire domain to measure global error. Global error measures usually produce bet-
ter approximations. However, the resulting algorithms are significantly slower than those
using local metrics.
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One of the most common error measure used as vertex selection criterion is based on
the absolute maximum difference between the actual elevation data and the surface ap-
proximation, known as maximum vertical error measure. Nevertheless, such a measure is
very sensitive to the presence of noise or outliers in the data.

This work proposes a new measure for inserting points into the mesh. In each triangle,
the point with median error, calculated between the original and the approximate surface.
Then, the point with the highest median error for all triangles is added to the mesh. This
strategy provides adequate adaptability to the data and is superior to the vertical error
measure for noisy images, as will be shown in Section 3.

To insert a new point p into the mesh, its containing triangle is located, or if p lies on an
existing edge, that edge is deleted and p is connected to the four vertices of the containing
quadrilateral. New edges are created to connect p to the vertices of the containing polygon.
All edges defining the containing polygon are checked to verify whether they satisfy the
Delaunay property, that is, the circumcircle of any triangle in the triangulation must
contain no other data points in its interior. If the property is satisfied, the edge remains
unchanged. If it is violated, the edge is swapped with the other diagonal of its quadrilateral.
In this case, two more edges become candidates for inspection. The process continues until
no more candidate edges remain, resulting a Delaunay triangulation.

A priority queue is used to maintain the candidate point of each triangle, that is, the
point with the highest median error. The median error is calculated by taking into the
account the median absolute difference between the actual elevation data and the surface
approximation for each triangle. At each refinement step, the point with the highest er-
ror within all triangles is extracted from the queue and inserted into the current mesh.
Algorithm 1 shows the main steps of the mesh refinement process from a single scale image.

Algorithm 1 Mesh refinement (from a single scale image)
1: Input: image I, set of points PI , maximum number of points N , and tolerance error ε
2: Output: subset P of data points and its triangulation T
3: P = PI ∪ four corners of I
4: T = IncrementalDelaunayTriangulation(P )
5: create priority queue Q with errors associated with T
6: while (highest median error in Q > ε) and (number of points < N) do
7: begin
8: select point p with highest median error in Q
9: P = P ∪ {p}

10: T = IncrementalDelaunayTriangulation(P )
11: update Q for the points affected by the insertion of point p
12: end
13: return P and T

In addition to create a mesh from a single image, the proposed method constructs
a triangle mesh from a multiscale image representation. In such representation, called
linear scale-space (see Witkin, 1983; Lindeberg, 1994; Wang and Zhu, 2008), an image is
smoothed by a sequence of Gaussian filters, generating images at different scales. A family
of derived images L(x, y; t) is defined by the convolution of a given image I(x, y) with the
Gaussian kernel

G(x, y; t) =
1√
2π t

exp
(
−{x

2 + y2}
2t

)
,

such that L(x, y; t) = G(x, y; t)I(x, y). The standard deviation (σ) of the Gaussian distribu-
tion is related to the scale parameter t according to t = σ2. The scale-space representation
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at scale level t = 0 is the image I itself, that is, L(x, y; 0) = I(x, y), such that the filter G
becomes an impulse function. As t increases, L is the result of smoothing I with a wider
filter, causing the removal of image details and noise.

A triangle mesh is initially constructed by using a predefined tolerance error over the
coarser scale image. The set of points selected to construct this initial triangulation is used
as a subset of points for the following scale. The use of multiple scales allows the selection
of data points at coarser scales first, which are less sensitive to noise. The mesh is refined
as other scales are employed. This process is repeated for the other scales until a given
error tolerance is reached or a required number of points is satisfied. Algorithm 2 shows
the main steps of the mesh refinement process from multiple scale representation of an
image.

Algorithm 2 Mesh refinement (from multiple scale representation of an image)

1: Input: set of images It at scales t = t0, t1, . . . , ts, maximum number of points M per
scale, and tolerance error ε

2: Output: subset P of data points and its triangulation T
3: for each image It, t = ts, . . . , t1, t0 do
4: begin
5: (Pt, T ) ← Algorithm 1 with input parameters It, P , M , and ε
6: P = P ∪ Pt

7: end
8: return P and T

Figure 1 shows representations of “Lena” image at different scales and corresponding
triangle meshes. Successive application of Gaussian smoothing to an image suppresses
more and more details present in the finer scales of the image.

3. Results and Discussion

The median-based error measure and the method for generating triangle meshes at multiple
scales were tested in a set of images with different sizes and characteristics. Figure 2 shows
three standard test images, a USGS digital elevation model (see USGS, 2011), and one
frame of the ETHZ pedestrian data set; see Ess et al. (2007).

Table 1 shows a comparison between the use of maximum vertical error and median error
measures as metric for selecting points to the mesh constructed over “peppers” image. For
each metric, the corresponding root mean square error (RMSE) is calculated with different
number of points using the original image (without noise) and the reconstructed image
from the mesh, which is created using the image contaminated by impulsive or Gaussian
noise. It is possible to observe that the median error metric for selecting data points is less
sensitive to the presence of noise in the image.

Figure 3 shows the triangulations produced with 5000 points using both error measures
for “peppers” image corrupted by impulsive and Gaussian noise. The median error is able
to insert more significant points into the mesh for both types of noise.

Table 2 shows the number of points inserted into the mesh and the root mean square
error for each tested image using the original scale (monoscale approach) and multiple
images obtained with Gaussian filter (multiscale approach). In both cases, the median
error is used as metric for incrementally inserting data points into the triangulation. It
can be observed that, even though the same number of points is used in both approaches,
the errors for the multiscale scheme are lower compared to the monoscale scheme.
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(a) t = 0 (b) t = 2

(c) t = 8 (d) t = 32

(e) t = 128 (f) t = 512

Figure 1. “Lena” image at different scales and corresponding triangle meshes.

(a) Lena (512× 512 pixels) (b) Baboon (533× 532 pixels) (c) Peppers (512× 512 pixels)

(d) Crater (336×459 pix-
els)

(e) Pedestrians (640× 480 pixels)

Figure 2. Set of images used in the experiments.
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Table 1. Comparison between maximum vertical error and median error as vertex insertion criteria for “peppers”
image. RMSE values are reported for different number of points inserted into the mesh using the original image
(without noise) and the reconstructed image from the mesh.

Peppers (512× 512 pixels)
Number RMSE

Metric
of points No noise Impulsive noise Gaussian noise

Maximum error 1,000 23.267 88.069 44.629
2,000 15.712 81.253 39.716
3,000 12.308 69.493 38.159
4,000 10.817 57.733 36.676
5,000 9.594 50.643 35.746

Median error 1,000 30.835 30.512 32.743
2,000 24.106 25.109 27.590
3,000 20.139 22.292 24.991
4,000 18.411 17.175 22.598
5,000 15.694 16.219 20.668

(a) Maximum error (impulsive
noise)

(b) Maximum error (Gaussian
noise)

(c) median error (impulsive noise) (d) Median error (Gaussian noise)

Figure 3. Triangle meshes obtained with 5000 points using maximum error and median error over peppers image
corrupted by impulsive and Gaussian noise.

The maximum number of points per scale (value M in Algorithm 2) was experimentally
defined in the paper. In all the conducted experiments, a maximum of 5000 points was
allowed at each scale. One alternative strategy would be to define a percentage value
associated with the image size, for instance, 5% of the total number of data points.
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Table 2. RMSE for each tested image using both the original scale (monoscale approach) and multiple images
obtained with Gaussian filter (multiscale approach).

Number Monoscale Multiscale
Image

of points Impulsive noise Gaussian noise Impulsive noise Gaussian noise
Lena 5,000 17.234 22.259 15.754 19.767

10,000 12.178 20.199 11.343 15.371
15,000 9.669 17.995 7.565 11.454
20,000 7.937 16.161 5.785 9.674

Baboon 5,000 31.219 33.115 29.069 32.149
10,000 29.379 31.816 27.117 29.980
15,000 28.691 30.679 25.495 28.153
20,000 26.262 29.453 24.352 27.676

Peppers 5,000 16.219 20.668 13.011 17.654
10,000 12.206 17.923 10.192 13.536
15,000 10.543 16.014 8.646 11.982
20,000 7.821 15.774 6.831 9.765

Crater Lake 5,000 19.698 23.872 17.342 21.315
10,000 15.877 20.121 13.331 17.839
15,000 11.654 17.928 10.928 15.938
20,000 7.452 15.283 5.921 12.821

Pedestrians 5,000 30.523 31.009 28.757 30.789
10,000 24.999 26.781 23.452 25.434
15,000 21.745 24.135 18.989 22.874
20,000 16.602 20.961 14.562 17.971

4. Conclusions and Future Work

A method for constructing triangle meshes from images represented at multiple scales was
proposed in this paper. Data points are incrementally inserted into the mesh through a local
criterion based on the median error calculated between the original and the approximate
surface. Such point selection measure is robust to the presence of noise or outliers in the
data. Experimental results demonstrate that meshes constructed from multiscale images
smoothed with Gaussian filter approximate the original data surface with adequate level
of fidelity. Although the same number of points is used in the meshes, the errors for the
multiscale scheme are lower compared to the monoscale scheme.

Future work will include investigation of new schemes for generating images in different
resolution levels and new criteria for selection and insertion of data points to build the
mesh.
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