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Abstract

In the context of linear regression models, two strategies for a flexible distribution of
responses are explored. The two approaches are particular instances of a skewed Dirichlet
process with dependence on covariates, so that not only the mean response function but
the entire distribution of responses depends on covariates. The two constructions are
discussed and compared in the context of two examples.
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1. Introduction

Nonparametric Bayesian (NPB) models have received considerable interest over the past
few years. One of the main justifications for this increased popularity is the flexibility
they provide, compared to traditional parametric alternatives. A common starting point
for these methods is to consider the data as generated according to a certain distribution
F , assumed to belong to some infinite-dimensional class F , and the problem is how to
construct prior distributions on F . The resulting objects are generically termed random
probability measures (RPMs) and can be thought of as probability measures defined on the
space of distribution functions. The best-known example of RPM is the Dirichlet process
(DP), introduced by Ferguson (1973). General discussion and review of NPB methods can
be found in Dey et al. (1998), Walker et al. (1999), Ghosh and Ramamoorthi (2003) and
in Müller and Quintana (2004).

Iglesias et al. (2009) introduced the skewed Dirichlet process (SDP) as a flexible RPM
with the property of including symmetric DPs (Dalal, 1979; Tiwari, 1988) as a special
case; see also Doss (1984). The SDP includes a “skewness” parameter θ ∈ (0, 1) such
that symmetry arises if and only if θ = 1/2. This construction was specially useful when
modelling the distribution of errors εi in the context of regression models. By adequately
choosing the prior for θ, it is possible to derive a test of symmetry. Under a linear regression
model, if εi has a symmetric distribution and if E(|εi|) <∞, then it follows that E(εi) = 0,
which facilitates the interpretation of regression coefficients.
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This work extends models based on the SDP to include an additional dependence (or
indexing) on covariates. Two different methods are used to this effect. The first method
consists of stating a joint model for responses y = (y1, . . . , yn), covariates x = (x1, . . . , xn),
and the RPM F , which then implies a conditional model for (y, F ) given x that yields
the desired dependence. This strategy has been used, among others, by Müller et al.
(1996). The second method is adapted from the dependent models proposed by MacEach-
ern (1999), which has been most notoriously exploited by the class of ANOVA-DDP models
of De Iorio et al. (2004) and others. The two methods are compared in the context of linear
regression models.

The rest of this article is organized as follows. Section 2 describes how the different
components (the SDP and the dependent RPMs) are combined to form the dependent SDP
(DSDP), briefly discussing the main features of the proposed models. Section 3 illustrates
the model in two concrete examples. Some final remarks are stated in Section 4.

2. The Models

The proposed models have two main ingredients, which we briefly summarize in the fol-
lowing two subsections.

2.1 The skewed Dirichlet process

The Dirichlet process (DP) has been extensively studied and applied in an ever growing
range of fields. Specially important for our context is the representation by Sethuraman
(1994), which states that if F ∼ D(M,F0), a DP with total mass parameter M > 0 and
baseline distribution F0 in the appropriate space (Ferguson, 1973), then F can be repre-
sented as F (·) =

∑∞
h=1whδVh

(·), where V1, V2, . . .
i.i.d.∼ F0 and w1, w2, . . . are stochastically

ordered weights that follow a stick breaking process: w1 = U1 and wh = Uh×
∏h−1
i=1 (1−Ui)

for all h ≥ 2, with U1, U2, . . .
i.i.d.∼ Beta(1,M).

Iglesias et al. (2009) showed that if F ∼ SDP(M,F0, θ), a skewed DP with total mass
parameter M , baseline measure F0 on the positive real numbers (assumed to have density
f0) and skewness parameter θ, then F can be represented as

F (·) = θ

∞∑
h=1

whδθVh
(·) + (1− θ)

∞∑
h=1

whδ−(1−θ)Vh
(·), (1)

where the {wh}h≥1 and {Vh}h≥1 sequences are as before. Note that, just as the original DP,
Equation (1) is an infinite mixture of point masses, drawn according to F0. The difference is
that for SDPs, the point masses are defined through a mass-splitting procedure. Concretely,
each Vh is drawn from F0 and then two point masses are added, one at θVh, and the other
at −(1−θ)Vh, with respective weights θ and (1−θ). Each of these point masses is weighted
by the corresponding stick-breaking weight wh. Note that, just as the DP, this gives rise
to an almost surely discrete RPM. The skewness parameter θ represents the total amount
of mass assigned by F as in Equation (1) to the positive real numbers. In fact, it follows
from the representation given in (1) that for a Borel set B ⊂ R, the expected value of F
is given by

E(F (B)) = θF0(B/θ) + (1− θ)F0(−B/(1− θ)),
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where B/θ = {b/θ: b ∈ B} and −B/(1 − θ) = {−b/(1 − θ): b ∈ B}. Also, when θ = 1/2,
Equation (1) becomes a symmetric version of the DP (Dalal, 1979; Tiwari, 1988); see
further details in Iglesias et al. (2009).

It is also important to point out here the clustering structure of DPs and SDPs. The
discreteness of DPs has been used many times as a mechanism to define probability distri-
butions on partitions. Let S0 = {1, . . . , n} be a collection of n indices and ρ = {S1, . . . , Sk}
be a partition of S0 into k nonempty disjoint sets with S0 = ∪kj=1Sj . Consider now

X1, . . . , Xn | F
i.i.d.∼ F and F ∼ D(M,F0). By the discreteness of F it follows that there

are ties among the sampled values. An interpretation of this structure in terms of Pólya
urns has been described in Blackwell and MacQueen (1973). Let X∗1 , . . . , X

∗
k denote the

unique values (also called locations) among X1, . . . , Xn and define the cluster memberships
s1, . . . , sn as s1 = 1, and si = sj if and only if Xi = Xj , so that Xi = X∗si

for all i ∈ S0. As
a convention, we assume clusters to be numbered consecutively, starting from 1. Letting ρ
denote the random partition implied by the indicators just defined, it can be shown that
X∗1 , . . . , X

∗
k

i.i.d.∼ F0 and

p(ρ = {S1, . . . , Sk}) =
Mk

∏k
j=1(|Sj | − 1)!∏n

i=1(M + i− 1)
, (2)

marginally over F and the locations, where |Sj | is the cardinality of Sj ; see, e.g., Pitman
(1996). It is interesting to point out that Equation (2) also corresponds to a product
partition model (PPM), as discussed in Hartigan (1990) and Barry and Hartigan (1992),
with product distribution p(ρ) ∝

∏k
j=1 c(Sj) and cohesion functions (which measure how

tightly grouped the elements in Sj are thought to be a priori) given by c(Sj) = M×(|Sj |−
1)!; see Quintana and Iglesias (2003) and Quintana (2006).

The SDP has also a similar structure of ties, but associated to the absolute values
of the sample. Indeed, Iglesias et al. (2009) showed that if X1, . . . , Xn | F

i.i.d.∼ F and
F ∼ SDP(M,F0, θ) then the partition induced by the ties among |X1|, . . . , |Xn| has the
same distribution as Equation (2), |X∗1 |, . . . , |X∗k |

i.i.d.∼ F0, and marginally each Xi has
density

r(x | θ) = f0(θ−1x)I{x ≥ 0}+ f0(−(1− θ)−1x)I{x < 0},

a continuous density over all the real numbers, provided f0 is continuous and limx→0+ f0(x)
exists. Moreover, sgn(X1), . . . , sgn(Xn) are shown to be i.i.d. with P(sgn(X1) = 1) = θ =
1−P(sgn(X1) = −1), and independent of |X1|, . . . , |Xn|. In practice, this means that we can
formulate SDP-based models simply in terms of regular DPs. Indeed, assuming the model
X1, . . . , Xn | F

i.i.d.∼ F and F ∼ SDP(M,F0, θ) can be equivalently represented as Xi =
Zi ·|Yi| where |Y1|, . . . , |Yn| | F

i.i.d.∼ F with F ∼ DP(M,F0) and Z1, . . . , Zn are i.i.d. random
variables, independent of {|Yi|, 1 ≤ i ≤ n} , with P(Z1 = θ) = 1− P (Z1 = −(1− θ)) = θ;
see further details in Iglesias et al. (2009).

2.2 Dependent nonparametric models

Of particular recent interest is the study of NPB models that can be indexed by a set of
covariates. The resulting class of models has been usually termed dependent nonparametric
models. Specifically, if we denote the covariate space as X , the idea is to construct a class
of RPMs {Fx: x ∈ X} such that Fx retains some interesting properties for each x ∈ X .
Cifarelli and Regazzini (1978) proposed a model where Fx ∼ DP(M,F x0 ) and F x0 is a
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distribution centered around a linear regression on x. Related models are discussed in Mira
and Petrone (1996) and in Giudici et al. (2003). A much more flexible construction was
proposed by MacEachern (1999), where each atom in Sethuraman (1994) representation
of DPs depends on x: Fx(B) =

∑∞
h=1whδVh(x)(B) and the {Vh(x)} collection is such that

the random variables are independent across h for given x, but dependent across x for a
given h. This results on a collection of RPMs where each Fx is marginally a DP for every
x. The ANOVA-DDP model discussed in De Iorio et al. (2004) considers an ANOVA-
type regression for each atom. Similar approaches have been proposed for functional data
analysis (Dunson and Herring, 2006), survival analysis (Jara et al., 2007; De Iorio et al.,
2009), spatial data analysis (Gelfand et al., 2005; Duan et al., 2007), longitudinal data
analysis (Müller et al., 2005; De la Cruz-Meśıa et al., 2007) and time series (Caron et
al., 2008). Other dependent extensions of the DP involve the hierarchical DP (Teh et al.,
2006), the nested DP (Rodŕıguez et al., 2008), the kernel stick-breaking process (Dunson
and Park, 2008), and the matrix stick-breaking process (Dunson et al., 2008). A recent
application of nested DP models to functional data analysis is given in Rodŕıguez et al.
(2009).

A different modeling framework consists of proposing a joint model for responses y,
covariates x, and RPM F . By focusing on the implied conditional distribution p(y, F | x),
a dependent model for (y, F ) follows. This strategy has been applied a number of times
in different contexts; see Müller et al. (1996) and Shahbaba and Neal (2009).

Finally, a different type of dependent model that benefits from the simple structure of
product partition models (PPMs) (Hartigan, 1990; Barry and Hartigan, 1992) was recently
proposed by Müller et al. (2010). The approach also exploits the connections between PPMs
and DP-style RPMs.

2.3 The proposed models

Consider observations (yi, xi), i = 1, . . . , n corresponding to a response of interest yi and
a vector of associated covariates xi of dimension p ≥ 1. To present the discussion in a
concrete framework, suppose we want to model the relationship between responses and
covariates by means of a linear regression with a flexible distribution of errors. Iglesias et
al. (2009) proposed a hierarchical model:

yi | µi,β, σ2 ∼ N(µi + β>xi, σ2), (3)

µ1, . . . , µn | F
i.i.d.∼ F,

F ∼ SDP(M,F0(τ), θ),

where F0(τ) is the distribution of |Z|, with Z ∼ N(0, τ) and β ∼ N(0, S), σ−2 ∼
Gamma(ν0, ν1), τ−1 ∼ Gamma(λ0, λ1), and a mixture prior for θ:

θ ∼ (1− π) Beta(a0, b0) + πδ1/2(θ), (4)

where 0 < π < 1 represents the prior probability of symmetry. Model given in (3) implies
a flexible marginal distribution of errors yi − β>xi. Indeed, Iglesias et al. (2009) showed
that the marginal distribution of errors has a density function that can be expressed as
f(x) =

∫
N(x; µ, σ2) dF (µ), a flexible mixture.

The flexibility of model given in (3) can be enlarged by incorporating covariate depen-
dence, so that departures from the mean function specification can be captured in a better
way. Two possible ways to do this are described next.
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Conditional models Following Müller et al. (1996) and Shahbaba and Neal (2009), model
given in (3) can be extended as follows:

yi | xi, µi,β ∼ N(µi + β>xi, σ2) (5)

xi | ξi ∼ N(ξi, ηi)

µi ∼ θδθVi
(µi) + (1− θ)δ−(1−θ)Vi

(µi)

(V1, ξ1, η1), . . . , (Vn, ξn, ηn) | F ∼ F

F ∼ D(M,F0(τ)×Q),

completed with a prior p(β, τ, θ) = p(β)p(τ)p(θ), where each of these priors are the same
as model given in (3). In addition, the baseline distribution in model given in (5) has
density corresponding to the triplet (V, ξ, η) assumed to have independent components
with respective densities V | τ ∼ f0(τ) and Q a distribution for the pair (ξ, η), with
ξ ∼ N(ξ0, v0) and η−1 ∼ Gamma(aη, bη).

It is important to point out that, due to the equivalent formulation of SDPs in terms of
a regular DP discussed in Section 2.1, model given in (5) is indeed a SDP-model for the
intercept parameters and the relationship between y and x is linear at the sampling level.
Interestingly, the implied clustering structure is also shared by the parameters ξ and η
that define the model for covariates {xi, 1 ≤ i ≤ n}. In fact, a model for the covariates is
explicitly stated in (5), which implies a joint model for (y, x) and the RPM F . By focusing
on the implied conditional model p(y, F | x) = p(y, x, F )/p(x), it follows that the indexing
of partitions (and henceforth of RPMs) is far from linear because the denominator induces
nonlinearities in x.

Regression on the atoms The class of dependent models in MacEachern (1999) feature
a regression at the level of the atoms in Sethuraman (1994) decomposition. An ANOVA
version of such dependence was proposed in De Iorio et al. (2004). A simple way to incor-
porate this modeling strategy into the problem at hand is to postulate a regression at the
level of the offset parameters |µ1|, . . . , |µn|. Concretely, assume

yi | xi, µi,β ∼ N(µi + β>xi, σ2) (6)

Vi = exp
(
αi + λ>i xi

)
µi ∼ θ δθVi

(µi) + (1− θ) δ−(1−θ)Vi
(µi)

(α1, λ1), . . . , (αn, λn) | F ∼ F

F ∼ D(M,F0),

with the same additional assumptions on other parameters as in (5) and where now
F0(α, λ) ≡ N(m0, V0) is a (p+ 1)-dimensional multivariate normal distribution.

Note that under model given in (6), the |µi| are determined by means of a log-linear
model and the coefficients of this model are cluster-specific, with a DP-style clustering
structure, from which the equivalence of model given in (6) to a model formulated in
terms of a dependent SDP (DSDP) follows. Finally, note that each of the models given
in (5) and (6) are basically DP-style models, so that we can use the posterior simulation
methods specifically proposed for such cases. The typically most involved MCMC step
consists of updating the cluster-related parameters Vi (or µi). The algorithms discussed
in MacEachern and Müller (1998) or Neal (2000) are standard approaches to deal with
the clustering structure. They also have the advantage of not relying on the likelihood



40 F. Quintana

and the baseline measure being conjugate, as some of the early methods do. A new set of
Vi parameters implies a new set of configurations {si}. Following the advice in Bush and
MacEachern (1996), it is customary to drop the imputed V ∗i (or µ∗i ) values and resam-
ple them from their full conditionals. These correspond to the posterior under a simple
parametric model with likelihood as given in (5) or (6) and prior given by the correspond-
ing baseline measure. Standard methods can be used for the remaining parameters in the
models; see additional SDP-specific discussion in Iglesias et al. (2009).

Of special interest for models defined in (5) or (6) is the predictive inference, i.e. the
density that corresponds to a new response yn+1 at a given value of the covariate vector xn.
This can be easily implemented on top of posterior simulation for each respective model.
The key step consists of sampling a new offset parameter µn+1. The same basic structure
applies to both models, so we limit the discussion to model given in (6). It follows from the
Pólya urn representation of Blackwell and MacQueen (1973) that the distribution of a new
(αn+1, λn+1) is a mixture of point-masses at previously imputed values and the baseline
measure:

p((αn+1, λn+1) | all else) =
k∑
j=1

nj
M + n

δ(α∗j ,λ
∗
j )(αn+1, λn+1) +

M

M + n
f0(αn+1, λn+1), (7)

where (α∗1, λ
∗
1), . . . , (α∗k, λ

∗
k) are the unique values among {(αi, λi)}ni=1 (the cluster loca-

tions) and nj is the number of (αi, λi)’s equal to (α∗j , λ
∗
j ) (the cluster sizes). Here, f0 is the

density function that corresponds to F0 in model given in (6). From Equation (7) and the
transformation Vi = exp(αi + λ>i xi) for all i ≥ 1, the distribution of Vn+1 easily follows as
another mixture of point masses and a continuous distribution. Then, µn+1 is computed
as θVn+1 with probability θ, or −(1 − θ)Vn+1 with probability 1 − θ, using the currently
imputed value for θ. Putting all the pieces together, a predictive draw for a next response
corresponding to covariate vector xn+1 can be generated as

(i) Draw (αn+1, λn+1) from Equation (7) and compute Vn+1 = exp(αn+1 + λ>n+1xn+1).
(ii) Draw µn+1 ∼ θδθVn+1(µn+1) + (1− θ)δ−(1−θ)Vn+1

(µn+1).
(iii) Draw yn+1 ∼ N(µi + β>xn+1, σ

2),

where the currently imputed values for all parameters at a given MCMC iteration are
used in the above calculations. As a more accurate alternative, one may wish to directly
evaluate the predictive density of yn+1, which is given by

p(yn+1 | xn+1, all else) = θ

k∑
j=1

nj
M + n

N
(
yn+1; θ exp(α∗j + λ∗>j xn+1) + β>xn+1, σ

2
)

(8)

+(1− θ)
k∑
j=1

nj
M + n

N
(
yn+1; −(1− θ) exp(α∗j + λ∗>j xn+1) + β>xn+1, σ

2
)

+
Mθ

M + n

∫
N
(
yn+1; θ exp(αn+1 + λ>n+1xn+1) + β>xn+1, σ

2
)

×N ((αn+1, λn+1); m0, V0) dαn+1dλn+1

+
M(1− θ)
M + n

∫
N
(
yn+1; −(1− θ) exp(αn+1 + λ>n+1xn+1) + β>xn+1, σ

2
)

×N ((αn+1, λn+1); m0, V0) dαn+1dλn+1,

where N(a; b, c) is a multivariate normal density on a, with mean b and covariance matrix
c. Evaluation of the integrals in Equation (8) may require numerical methods.
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Table 1. Posterior summaries (means, standard deviations and 95% highest posterior density intervals) of some parameters

for the stock market returns example under both models.

Parameter Posterior Summary Model (5) Model (6)
Mean 0.665 0.554

β SD 0.200 0.195
95% HPD (0.259,1.055) (0.175,0.948)

Mean 0.549 0.598
θ SD 0.196 0.148

95% HPD (0.101,0.946) (0.349,0.909)

Mean 0.032 0.029
σ2 SD 0.005 0.005

95% HPD (0.024,0.042) (0.022,0.039)

Mean 0.448 -
τ SD 0.294 -

95% HPD (0.138,1.187) -

3. Data Illustrations

Two examples are considered next to illustrate the different aspects of the proposed models.

3.1 Stock market returns

Iglesias et al. (2009) considered the data on a monthly series of stock returns for the Concha
y Toro wine producers. The relationship between such returns and a variable describing
the market behavior (e.g. the Chilean IPSA index) is of special interest to market analysts.
The capital asset pricing model (CAPM) (Elton and Gruber, 1995) is a standard tool in
this context, which establishes a relation between the return on the asset in excess of
the risk-free rate during the ith period yi, and the excess return on the market portfolio
of assets in that period xi. It is common to assume this relation to be linear, namely,
yi ∼ N(µ+ βxi, σ

2). The slope β is called the systematic risk. It represents the sensitivity
of the expected excess asset returns to the expected excess market returns, and is usually
the main target of the analysis. The SDP model in Iglesias et al. (2009) provided increased
flexibility and robustness to outlier-prone alternatives.

An even more flexible approach is given by the two dependent models as defined in
(5) and (6). To fit these models, the following hyperparameter choices were made. For
the conditional model: M = 1, S = 100, a0 = b0 = 1, π = 0.2, ν0 = λ0 = aη = 2.01,
ν1 = λ1 = bη = 1.01, ξ0 = 0.027 (the empirical mean of the covariate), v0 = 0.078
(which amounts to 10 times de empirical variance); and for the DSDP model: m>0 = (0, 0),
V0 = 10× I2, and the other hyperparameters are exactly as in the previous case.

Table 1 shows posterior summaries for some of the relevant parameters. Note that τ
appears only in model given in (5). Some differences exist between these estimates. The
systematic risk β appears somewhat lower for the DSDP model than for the conditional
model. Also, the posterior distribution for θ has some less spread in the DSDP case. All of
this can be graphically seen in Figure 1, which shows the posterior densities for β, θ and σ2

for both models, with solid lines corresponding to the conditional model given in (5). The
posterior distributions for β and σ2 mostly agree, but some discrepancies are found for
that of θ. Nevertheless, the posterior of θ is skewed to the right in both cases, suggesting
evidence against symmetry.
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Figure 1. Posterior inference for stock market returns data under models (5) and (6). The display includes the
posterior densities of β, σ2 and θ for model (5) in solid line, and model (6) in dashed line. The remaining graph
shows the posterior probabilities of symmetry (“S”) and asymmetry (“A”), P(θ = 0.5 | y) and P(θ 6= 0.5 | y).

The bottom-right plot in Figure 1 shows the posterior distribution of symmetry, i.e. the
posterior distribution of the binary indicator I{θ = 1/2}, with values 0 (asymmetry) and
1 (symmetry). Both models have almost identical posteriors (P(θ = 1/2 | y), which were
estimated as 0.300 and 0.303 for conditional and DSDP models, respectively). In both
cases there is some support for the hypothesis of symmetry. In fact, this is corroborated
by the corresponding Bayes factor, computed as (Iglesias et al., 2009)

BF =
P(θ = 1

2 | y)(1− π)
P(θ 6= 1

2 | y)π
,

which gives 1.714 and 1.739, respectively. This also agrees with the fact that, as seen from
Table 1, E(θ | y) > 1/2 in both cases.

Another interesting aspect of the models concerns predictions. These are computed as
discussed in Section 2.3. Figure 2 shows such inference for a sequence of covariate values
ranging from −1 to 1 (the empirical range is from −0.282 to 0.274). Note how these den-
sities become more dispersed as the covariate value gets away from the observed empirical
range. Also, the predictions for both models are almost identical except at the extremes.
Interestingly, the plotted densities for the DSDP model seem to “shrink” more towards
the empirically observed range than the conditional one.

Finally, to compare how the two models fit the observed data, the CPO (conditional pre-
dictive ordinate) statistic may be used on individual observations (Gelfand et al., 1992).
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Figure 2. Predictive densities for stock market returns data under both models. The sequence of plots shows the
predictive density that corresponds to the indicated covariate values. The densities for model (5) are shown in solid
lines, and in dashed lines for model (6).

The idea is to assess the model fit by a cross-validation approach, comparing actual ob-
servations with how the model predicts them after deletion. All these predictions can be
summarized by computing the summation of the log-CPOs over all observations, which
yields the so-called log of the pseudo-marginal likelihood (LPML); see also Geisser and
Eddy (1979). In general, the highest LPML value across a collection of models is regarded
as providing the best fit; see further theoretical and practical details, as well as additional
discussion, in Chen et al. (2000). For the conditional model the LPML was 66.646, while
for the DSDP model the value was 73.856, suggesting a better fit in the later case.
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Table 2. Posterior summaries (means, standard deviations and 95% highest posterior density intervals) of some parameters

for the Australian athlete data under both models.

Parameter Posterior Summary Model (5) Model (6)
Mean 15.770 17.797

β0 SD 2.377 2.198
95% HPD (11.010,20.360) (13.470,22.000)

Mean 0.856 1.272
β1 SD 0.590 0.490

95% HPD (-0.324,2.048) (0.264,2.205)

Mean 0.953 0.399
β2 SD 0.529 0.484

95% HPD (-0.066,1.989) (-0.534,1.352)

Mean 0.200 0.246
β3 SD 0.108 0.095

95% HPD (-0.016,0.402) (0.060,0.428)

Mean 0.011 0.007
β4 SD 0.004 0.004

95% HPD (0.003,0.020) (-0.001,0.016)

Mean 0.461 0.811
θ SD 0.259 0.119

95% HPD (0.026,0.967) (0.535,0.989)

Mean 0.148 0.225
σ2 SD 0.015 0.032

95% HPD (0.120,0.178) (0.171,0.293)

Mean 0.445 -
τ SD 0.287 -

95% HPD (0.144,1.214) -

3.2 Biomedical data

Consider now the body mass index (bmi) data for 202 Australian athletes, available on-
line in the sn package in R and discussed in Cook and Weisberg (1994) and Azzalini
and Capitanio (1999), among others. For the purpose of this illustration, bmi is taken as
the response and four covariates are adopted: gender, red-cell count (rcc), white-cell count
(wcc) and plasma ferritin concentration (Fe). Including an intercept term, the design vector
xi is therefore 5-dimensional.

The hyperparameter values were chosen exactly as in Section 3.1. Additionally, for model
given in (5) the empirical means for the four covariates were 0.505, 4.719, 7.109 and 76.876,
while the variances multiplied by a factor of 10 were 2.512, 2.097, 32.420, and 22563.677,
respectively. And for model given in (6), the values m>0 = (0, 0, 0, 0, 0) and V0 = 10 × I5

were used.
A summary of the posterior inference on parameters can be found in Table 2 and graphi-

cal display of some of the corresponding marginal posterior densities can be seen in Figure
3.
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Figure 3. Posterior inference for biomedical data example under both models. The display includes the posterior
densities of the regression coefficients β0 (intercept), β1 (gender), β2 (rcc), β3 (wcc), β4 (Fe), σ2 and θ for model (5)
in solid line, and model (6) in dashed line. The display also includes the posterior probabilities of symmetry (“S”)
and asymmetry (“A”), P(θ = 0.5 | y) and P(θ 6= 0.5 | y), and the posterior density of τ for model (5) only.

Model DSDP finds strong support for skewness (the Bayes factor for symmetry is 0.0692)
and the corresponding posterior distribution for θ is very skewed to the right. In contrast,
for the conditional model, the Bayes factor for symmetry is 0.950 and the posterior for
θ is slightly skewed to the left. It is then clear that the two models differ in the way
they capture some features of the data. They both point to non-symmetric behavior of
the distribution of yi − β>xi, but they differ in the extent and direction of the skewness.
The differences between models are also reflected in the respective posterior distributions
for regression coefficients. The significance of variables differs radically between models.
By examining the HPDs in Table 2 one can conclude that only Fe is significant for the
conditional model, while only gender and white-cell count have posterior distributions
mostly away from zero for the DSDP model. Thus, the two models are effectively favoring
different ways of expressing the mean response, which may help explaining the discrepancy
in skewness and in the variance parameter σ2.
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The findings above are also reflected in the predictive densities corresponding to various
combinations of the covariates. Figure 4 shows such inference for different combinations
of gender and Fe. The latter values were picked over the observed Fe range. It is clear
that the location of such predictions shifts to the right for the conditional model as the
Fe values increase, while the predictions for the DSDP model remain mostly unchanged.
In contrast, predictions for different combinations of gender and white-cell count values
change for the DSDP model, but are mostly unchanged for the conditional model (data
not shown).
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Figure 4. Predictive densities for biomedical data under both models. The sequence of plots shows the predictive
density that corresponds to the combination of gender and the indicated covariate values of plasma ferritin con-
centration, keeping fixed rcc and wcc at their median values. The densities for model (5) are shown in solid and
dashed lines (for male and female athletes, respectively), while for model (6), the densities are shown in dotted and
semi-dashed lines (for male and female athletes, respectively).

As in Section 3.1, the LPMP statistic is useful to compare models. The values obtained
were −482.8726 for the conditional model and −445.9674 for the DSDP model, suggesting
a much better fit for the latter.
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4. Discussion

The purpose of this article was to explore and compare two different ways of defining
dependence for models that are based on skewed Dirichlet processes. One approach in-
volved a joint model for responses, covariates and random measure, which would then
yield dependence by conditioning on the covariates. The other approach consisted of a
log-linear regression at the level of the atoms in the infinite series representation by Sethu-
raman (1994). Either model is capable of representing nonlinear trajectories in terms of
the covariates.

In the specific applications to linear regression models discussed in Section 3, the de-
pendence was stated for the errors distribution, also including a mean response function
that is linear in terms of covariates. Both models exhibited some differences when fitted
to data on stock market returns and, specially, for the biomedical features of Australian
athletes. The differences simply reflect the particular way in which each model accommo-
dates the distribution of yi − β>xi in light of the information provided by covariates and
responses. Interestingly, the LPML calculations showed that the DSDP provides a better
fit in both cases for the specific implementation adopted. Nevertheless, it is possible to
adopt many other definitions of dependence and it is not advisable to draw overall con-
clusions about which modeling strategy is best (i.e. conditional versus DSDP) from the
examples discussed here.
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