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Abstract

In this paper, we consider hypothesis testing for the equality of means and variances of
correlated responses with non-normal distributions. Specifically, we assume that the re-
sponses follow a symmetric multivariate distribution. Wald type statistics are considered
which are asymptotically distributed according to a chi-square distribution. Statistics
are based on the sample mean and the sample covariance matrix. Applications are made
for comparing measurement methods and the performance of investment portfolios.
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1. Introduction

The problem of testing the equality of means and/or variances appears frequently in the
analysis of experimental data. Indeed, suppose that a p × 1 random vector, Y , has mean
µ, a p×1 vector, with elements µi, and covariance matrix Σ, a p×p matrix, with elements
σij . Sometimes we are interested in simultaneously testing the hypotheses

H01: µ1 = µ2 = · · · = µp and H02: σ11 = σ22 = · · · = σpp.

Depending on the application, these hypotheses can be tested jointly (H03: H01∩H02, say)
or separately. Moreover, given that one rejects one of these hypothesis, it is frequent to
consider sub-hypotheses for testing equality of a subset of means and/or variances.

The problem of testing the hypothesis H02, for example, has been discussed by several
authors. Pitman (1939) and Morgan (1939) proposed a test for the bivariate case. Assuming
that the responses are equicorrelated, Wilks (1946) developed the likelihood ratio test and
Han (1968) proposed four tests for H02. Choi and Wette (1972) suggested a test based on
the multiple correlation coefficient. Harris (1985) developed Wald-type tests, based on the
sample covariance matrix. More recently, Reza (1993) considered the likelihood ratio test
for the same hypothesis. In all these articles, it is assumed that the sample comes from a
multivariate normal distribution.
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Harris (1985), Cohen (1986) and Wilcox (1989) proposed several robust tests for H02. In
particular, Cohen (1986) proposed two procedures based on a nonparametric bootstrap.

Although the normality assumption is adequate in many situations, it is not appropriate
when the data comes from a distribution with heavier tails than the normal. This suggests
considering a wider class of distributions. For example, Lange et al. (1989) recommended
the t-distribution, while Little (1988) considered contaminated normal distributions. Both
models incorporate additional parameters, which allow the kurtosis of the distribution to
be fitted. These distributions are elements of a broader class of parametric models (that
preserve the symmetric structure) known as elliptic distributions and widely investigated
in the statistical literature; see, e.g., Fang et al. (1990) and Fang and Zhang (1990).

The object of this paper is to consider hypothesis testing assuming that we have a
random sample from a multivariate symmetric distribution with finite fourth moments.
For testing the hypothesis H01, H02 and H03 we use Wald’s statistic. Also, we extend the
tests considered in Choi and Wette (1972).

The paper is organized as follows. In Section 2, we provide some aspects of multivariate
symmetric distributions. In Section 3, we obtain Wald-type statistics for testing linear
hypotheses about the means and/or variances under symmetric distributions. In Section 4,
we present applications to the comparison of measuring devices and to the comparison of
Sharpe measures. Also, in this section, we consider moment estimators for the Sharpe ratio
and obtain an expression for the asymptotic covariance matrix, generalizing the results of
Jobson and Korkie (1981). Finally, in Section 5, we sketch some conclusions.

2. Symmetric Multivariate Distributions

We say that the p × 1 dimensional random vector Y has a symmetric distribution with
location parameter µ a p× 1 vector and a p× p scale matrix Λ, if its density is given by:

f(y;µ,Λ) = |Λ|−1/2g[(y − µ)>Λ−1(y − µ)], y ∈ Rp, (1)

where the function g: R → [0,∞) is such that
∫∞

0 up−1g(u2)du < ∞. The function g
is known as the density generator. For a vector Y distributed according to the density
given in Equation (1), we use the notation Y ∼ Sp(µ,Λ; g) or simply Sp(µ,Λ). Kelker
(1970) and Cambanis et al. (1981) discussed many properties of the symmetric (or elliptic)
distributions. The characteristic function is given by

φ(t) = exp(it>µ)ϕ(t>Λt)

for some function ϕ, where i =
√
−1. Provided they exists, E(Y ) = µ and Var(Y ) =

cgΛ = Σ, where cg = −2ϕ(1)(0) is a positive constant. The random vector Y has the
representation

Y
d= µ+RAU,

where d= means equal in distribution, R is a positive random variable, U has the uniform
distribution on u>u = 1, R and U are independent, and A is a nonsingular matrix such
that AA> = Λ. The moments of R are related to the characteristic function. For example,

(i) E(R2) = −2pϕ(1)(0),
(ii) E(R4) = 4p(p+ 2)ϕ(2)(0),

(iii) E(R6) = −8p(p+ 2)(p+ 4)ϕ(3)(0) and
(iv) E(R8) = 16p(p+ 2)(p+ 4)(p+ 6)ϕ(4)(0).
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If Y has finite fourth moments each component of Y has zero skewness and the same
kurtosis, given by

3

{
ϕ(2)(0)

[ϕ(1)(0)]2
− 1

}
= 3κ,

where 3κ is called the kurtosis parameter of Sp(µ,Λ).
In the case where µ = 0 and Λ = Ip (identity matrix of dimension p), we obtain the

spherical family of densities.
Let Yi = (yi1, . . . , yip)>, for i = 1, . . . , N , be the i-th p× 1 response vector of a random

sample from a p-variate symmetric distribution Sp(µ,Σ), where µ = (µ1, . . . , µp)> and
Σ = (σij), for i, j = 1, . . . , p. We are interested in simultaneously testing the hypotheses

H01: µ1 = µ2 = · · · = µp and H02: σ11 = σ22 = · · · = σpp.

Let σ = (σ11, . . . , σpp)> and θ = (µ>,σ>)>. More generally, we can test the linear hy-
pothesis H: Aθ = a.

3. Hypothesis Testing

In this section, we develop some asymptotic tests for the hypotheses H01, H02 and H03,
assuming that we have a random sample of size N from a multivariate symmetric dis-
tribution. First, we test the hypotheses using Wald’s statistic. Afterwards, we present an
alternative method for testing the hypotheses H01, H02 and H03 using certain transforma-
tions of the data. Under normality, Choi and Wette (1972) tested the hypothesis H02. Note
that H02 can be written as H02: A1σ = 0, where

A1 =


1 0 0 . . . −1
0 1 0 . . . −1
...

...
...

. . .
...

0 0 0 . . . −1


is a (p− 1)× p contrast matrix. Of course, we can also write H01: A1µ = 0.

3.1 Wald-type tests

Let

S = (sij) =
1

N − 1

N∑
i=1

(Yi − Ȳ )(Yi − Ȳ )>

denotes the p × p sample covariance matrix and V = (s11, . . . , spp)> denotes a p × 1
vector of diagonal elements of the matrix S. We consider a moment estimator of θ, say
θ̃ = (Ȳ >, V >)>, where Ȳ = (1/N)

∑N
i=1 Yi. From Anderson (1993), we know that

√
n (θ̃ − θ) d→ N2p(0,Ω) ,
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where d→ means convergence in distribution and

Ω =
(

Ωµµ 0
0 Ωσσ

)
,

with n = N − 1, Ωµµ = Σ and Ωσσ = 2(1 + κ)Σ ⊕ Σ + κσσ>, where ⊕ denotes the
Hadamard product. If we estimate Σ by S, Wald’s statistic for testing H03 is given by

W03 = nȲ >A>1 (A1SA
>
1 )−1A1Ȳ + nV >A>1 (A1Ω̂σσA

>
1 )−1A1V = W01 +W02,

where Ω̂σσ = 2(1 + κ)S ⊕ S + κV V >. Thus we reject at level α if W03 > χ2
1−α(2(p− 1)),

where χ2
1−α(2(p− 1)) denotes the 100(1−α)% percentile of a chi-square distribution with

2(p − 1) degrees of freedom. For testing H01, Wald’s statistic is W01 which converges in
distribution, under H01, to a χ2(p − 1). Then we reject at level α if W01 > χ2

1−α(p − 1).
Finally, for testing H02, Wald’s statistic is W02 and we reject at level α if W02 > χ2

1−α(p−1).
Note that, in the normal case, κ = 0 and

W02 =
n

2
V >A>1 (A1(S ⊕ S)A>1 )−1A1V,

which coincides with the W statistic given in Equation (2.3) of Harris (1985).

3.2 An alternative test

As in Harris (1985), let L = (l1, . . . , lp)>, with lj = log sjj , for j = 1, . . . , p and γ̃ =
h(Ȳ , V ) = (Ȳ >, L>)>. Then, using the delta method, we have that

√
n (γ̃ − γ) d→ N2p(0,Ψ),

where

Ψ =
(

Σ 0
0 Ψ2

)
,

with Ψ2 = 2(1 + κ)ρ⊕ ρ+ κ11>, ρ being the correlation matrix in the population, and 1
being a p× 1 vector of ones. Then, Wald’s statistic for testing H03 is given by

WL03 = W01 + nL>A>1 (A1Ψ̂2A
>
1 )−1A1L = W01 +WL02,

with Ψ̂2 = 2(1 + κ)R⊕R+ κ11>, where R is the sample correlation matrix. Under H03,
and for large samples, WL03 has a χ2 distribution with 2(p− 1) degrees of freedom. Note
that, in the normal case, κ = 0 and WL02 coincides with WL given in Harris (1985).

3.3 Estimation of the kurtosis parameter

To implement the previous tests it is necessary to know or estimate the kurtosis parameter
κ. First, we note that

E({(Y − µ)>Σ−1(Y − µ)}2) = p(p+ 2)(κ+ 1).
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Let

b2,p =
1
N

N∑
i=1

{(Yi − Ȳ )>S−1(Yi − Ȳ )}2.

Then, we see that b2,p converges in probability to p(p + 2)(κ + 1), from which it follows
that b2,p/[p(p + 2)] − 1 converges in probability to κ. Thus, a consistent estimator of κ
(Mardia, 1970) is given by

κ̃ =
b2,p

p(p+ 2)
− 1.

The convergence of the tests discussed above is valid when κ is replaced by the consistent
estimator κ̃. From Henze (1994) and Seo and Toyama (1996), the limit distribution of√
N (κ̃− κ) is a normal distribution with variance given by

σ2
κ =

1
p(p+ 2)

(p+4)(p+6)(κ(4)+1)−4
p

(p+4)(κ(3)+1)(κ+1)+
4
p

(p+2)(κ+1)3−(κ+1)2, (2)

where κ(j) = (ϕ(j)(0)/{ϕ(1)(0)}j)− 1, for j = 3, 4.
Let

bj,p =
1
N

N∑
i=1

{(Yi − Ȳ )>S−1(Yi − Ȳ )}j ,

for j = 3, 4. Then we have that (Seo and Toyama, 1996) (bj,p/cj)−1 converges in probability
to κ(j), where c3 = p(p+ 2)(p+ 4) and c4 = c3(p+ 6). Then, a consistent estimator of κ(j)

is given by κ̃(j) = (bj,p/cj) − 1, for j = 3, 4; see Seo and Toyama (1996) for an estimator
with bias correction, and Maruyama and Seo (2003) for some generalizations of Seo and
Toyama’s results.

A confidence interval for κ with confidence coefficient 1− α is approximately(
κ̃− zα/2

√
σ̃2
κ

N
, κ̃+ zα/2

√
σ̃2
κ

N

)
,

where σ̃2
κ is obtained substituting κ̃ by κ and κ̃(j) by κ(j), for j = 3, 4, in Equation (2),

and zα/2 is the (1− α/2)100% percentile of the standard normal distribution.

3.4 Generalized Choi-Wette test

In this section we propose an alternative test for H03 (and consequently for H01 and H02),
now assuming that the covariances between responses are all equal. That is, we assume
that σij = σ2, for i 6= j. We extend the test proposed by Choi and Wette (1972) for H02

under normality. We generalize this tests to the class of symmetric distributions with finite
fourth moments.
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Under normality, Choi and Wette (1972) proposed a test for H02, extending Pitman’s
test; see Pitman (1939). Following Choi and Wette (1972), let

xi1 =
p∑
j=1

yij and xij = pyij − xi1, j = 2, . . . , p, i = 1, . . . , N. (3)

Then, note that

Cov(xi1, Xi2) = V 12 =

(
pσ22 −

p∑
k=1

σkk, . . . , pσpp −
p∑

k=1

σkk

)
,

where Xi2 = (xi2, . . . , xip)>, for i = 1, . . . , N , from which it follows that (Choi and Wette,
1972; Han, 1968) H02 is equivalent to V 12 = 0.

Let Xi = (xi1, . . . , xip)>. Then, the transformation defined in Equation (3) can be writ-
ten in matrix notation as Xi = TYi, where T = 1(−)1> + pD, with D = diag{0, 1, . . . , 1}
a diagonal matrix, p× p, 1(−) = (1,−1, . . . ,−1)> and 1 = (1, . . . , 1)>, both p× 1 vectors.

From Equation (3) and by using properties of elliptic distributions, we have that Xi ∼
Sp(µx,Λx), where µx = p(µ̄, µ2 − µ̄, µ3 − µ̄, . . . , µp − µ̄)> and

Σx =
(
v11 V 12

V 21 V 22

)
= V ,

with µ̄ = (1/p)
∑p

j=1 µj , v11 being the variance of x1, and V 22 being the covariance matrix
of X2 = (x2, x3, . . . , xp)>. Let R̄ be the multiple correlation coefficient between x1 and the
variables x2, . . . , xp. We know that (Muirhead, 1982)

R̄ =
{
V 12V

−1
22 V 21

v11

}1/2

.

Thus, testing the hypothesis H02 is equivalent to testing H: R̄ = 0. Note that the
equivalence only holds when all the σij , for i 6= j, are equal. We consider now the
hypothesis H03, which is equivalent to H03: µx(2) = 0 and R̄ = 0, where µx(2) =
p(µ2 − µ̄, µ3 − µ̄, . . . , µp − µ̄)>.

Let

Sx =
1

N − 1

N∑
i=1

(Xi − X̄)(Xi − X̄)>,

the covariance matrix of the random sample X1, . . . , XN from a symmetric distributions
Sp(µx,Λx). Consider the following partition of Sx,

Sx =
(
sx11 Sx12

Sx21 Sx22

)
.

Then, from Muirhead (1982), we have that, if R̄ = 0,

√
n

(
X̄ − µx
Sx12

)
d→ N2(p−1)(0,∆),



Chilean Journal of Statistics 119

where

∆ =
(

Σx 0>

0 (1 + κ)Ip−1

)
.

Thus, under H03,

nX̄>2 V
−1
22 X̄2 +

n

1 + κ
S>x12Sx12

d→ χ2(2(p− 1)),

where X̄2 = (x̄2, . . . , x̄p)>. On the other hand,

nR2
n = nS>x12Sx12 +Op(n−1/2),

(Muirhead, 1982), where

Rn =
{
Sx12S

−1
x22Sx21

sx11

}1/2

is the sample multiple correlation coefficient. By using Sx22 as a consistent estimator of
V 22 and applying Slusky’s theorem, we have that the statistic

W ∗03 = nX̄>2 S
−1
x22X̄2 +

n

(1 + κ)
R2
n = W ∗01 +W ∗02

converges in distribution to χ2(2(p − 1)) under H03. Thus, we reject H03 at level α if
W ∗03 > χ2

1−α(2(p− 1)). We also have an approximate test for testing H02 (or H) when we
reject at level α if W ∗02 > χ2

1−α(p− 1).
Under normality we have an exact test (Muirhead, 1982) for testing H: R̄ = 0. In fact,

under H, we have

F =
(N − p)
(p− 1)

R2
n

(1−R2
n)
∼ F (p− 1, N − p).

4. Applications

In this section we present two applications of the test discussed in the previous section. The
first is related to the problem of comparing measuring devices, while the second compares
Sharpe measures.

4.1 Comparing measuring devices

Comparing measuring devices which vary in pricing, speed, and other features such as
efficiency, has been of growing interest in many engineering and scientific applications.
Grubbs (1948, 1973, 1983) proposed a model for N items, each measured by p instruments,
such that yij = αj + xi + εij , where yij represents the measurement of the i-th item with
the j-th instrument, xi is the characteristic of interest in the i-th experimental unit and αj
is called additive bias, for j = 1, . . . , p and i = 1, . . . , N . In the literature it is assumed that
xi and εij are independent with normal distributions N(µx, φx) and N(0, φj), respectively.
In order to allow this model to be identifiable we may consider α1 = 0; see, e.g., Shyr
and Gleser (1986), Bedrick (2001) and Christensen and Blackwood (1993). However, in
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this work, we assume the transformation zi = xi − µx, for i = 1, . . . , N (Theobald and
Mallison, 1978), so that Grubbs’ model is expressed in an alternative form as

Yi = µ+ 1pzi + εi, i = 1, . . . , N,

where Yi = (yi1, . . . , yip)>, µ = (µ1, . . . , µp)>, with µj = αj + µx and εi = (εi1, . . . , εip)>.
The symmetric model is obtained by considering the random vectors Y1, . . . , YN as inde-

pendent and identically distributed Sp(µ,Λ), where µ = α+ 1pµx and covariance matrix
Σ = cgΛ = φx1p1>p +D(φ), with D(φ) = diag{φ1, . . . , φp} and φ = (φ1, . . . , φp)>.

In the context of Grubb’s model, the quality of the measurements is assessed in terms of
the additive bias and the precision (inverse of the variance) of the different instruments.
Thus, one hypothesis of interest to evaluate the exactness of the measurements made
by different instruments is H01: µ1 = µ2 = · · · = µp. To compare the precision of the
instruments, the hypothesis is H02: φ1 = · · · = φp. The hypothesis that considers both
conditions is H03: H01 ∩ H02. Note that, in this case, σij = φx for all i 6= j, so for testing
the hypothesis of interest we can use the results of Subsection 3.4.

Alternatively, in the presence of a gold standard (that is to say, an instrument for
measuring the characteristic of interest without error) St. Laurent (1998), proposed the
model yij = xi + εij , to assess the degree of agreement between the measurements made
by p approximate methods and the gold standard, for i = 1, . . . , N and j = 1, . . . , p. In
this case, xi corresponds to the measurement of the gold standard in the i-th experimental
unit. The model is expressed in an alternative form as

Yi = 1pxi + εi, i = 1, . . . , N,

where, E(xi) = µ, Var(xi) = φx, E(εi) = 0, Var(εi) = Σ, and xi is independent of εi. Note
that in this model it is possible that the random measurement errors of the approximate
methods, εij , are correlated.

St. Laurent (1998) used ρj = φx/(φx+σjj) to assess the degree of agreement between the
measurements made with the j-th approximate method and the gold standard. In this case
the hypothesis of interest is H: ρ1 = ρ2 = · · · = ρp. In order to do this, St. Laurent (1998)
defines the differences, Di = Yi−1pxi, for i = 1, . . . , N . Note that D1, . . . , DN are random
i.i.d. vectors with mean 0 and covariance matrix Σ. Under the normality assumption we
have that (St. Laurent, 1998) the maximum likelihood estimators of ρj and Σ are given
by

ρ̂j =
1

1 + σ̂jj/φ̂x
, j = 1, . . . , p, and Σ̂ =

1
N

N∑
i=1

DiD
>
i ,

where

φ̂x =
1
N

N∑
i=1

(xi − x̄)2 and
1
N
σ̂jj =

1
N

N∑
i=1

(yij − xi)2, j = 1, . . . , p.

Finally, since ρ1 = ρ2 = · · · = ρp if and only if σ11 = σ22 = · · · = σpp, testing H is equivalent
to testing H02: A1σ = 0, so we can use the test statistics derived in Subsections 3.1 and
3.2 for testing H: ρ1 = ρ2 = · · · = ρp, under symmetric non-normal measurements, i.e.,
Sp(0,Σ) distributions.
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4.2 Comparing Sharpe measures

As in Jobson and Korkie (1981), consider the general situation in which the relative per-
formance of a finite number of portfolios is to be evaluated. Let yij represents the return
premium from the j-th portfolio in period i, for j = 1, . . . , p and i = 1, . . . , N . In this case,
Yi = (yi1, . . . , yip)> corresponds to a p× 1 random vector of excess returns of p portfolios
in the i-th period. The performance measure of Sharpe, for portfolio j, is defined by

τj =
µj√
σjj

, j = 1, . . . , p.

The moment estimator of τj is τ̃j = ȳj/
√
sjj , for j = 1, . . . , p. Then, using the delta

method, we have

√
n (τ̃ − τ ) d→ Np(0,Ψ) ,

where τ = (τ1, . . . , τp)>, τ̃ = (τ̃1, . . . , τ̃p)> and

Ψ = D1ΣD>1 +D2{2(1 + κ)Σ⊕Σ + κσσ>}D>2 ,

with D1 = diag{1/√σ11, . . . , 1/
√
σpp} and D2 = −(1/2) diag{τ1/

√
σ11, . . . , τp/

√
σpp},

both p× p diagonal matrices. For p portfolios, we wish to test the hypothesis H: τ1 = τ2 =
· · · = τp. Wald’s statistic for testing H is given by

WSh = nτ̃>A>1 (A1Ψ̃A>1 )−1A1τ̃ ,

where

Ψ̃ = D̃1SD̃
>
1 + D̃2{2(1 + κ)S ⊕ S + κV V >}D̃>2

is a consistent estimator of Ψ, with

D̃1 = diag
{

1
√
s11

, . . . ,
1
√
spp

}
and D̃2 = −1

2
diag

{
τ̃1√
s11

, . . . ,
τ̃1√
spp

}
.

The statistic WSh generalizes results from Jobson and Korkie (1981) and Memmel (2003),
who consider a test for the difference between Sharpe ratios under the assumption of
multivariate normality; see also Leung and Wong (2008).

5. Conclusions

In this paper, we have discussed some tests, based on large samples, to test hypotheses
about means and variances of correlated random variables. Much of the literature discusses
this type of tests under the assumption of normality. We have extended these tests to the
class of symmetric multivariate distributions with finite fourth moments. The implementa-
tion of the tests is very simple and they can be used to compare measurement instruments.
We have also extended a test to evaluate the performance of investment portfolios. The
behavior of the tests discussed here for the case of finite samples, via simulation studies,
and the extension of these tests to multivariate skew-elliptic distributions are topics of our
current work.
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